An Optogenetic‐Controlled Cell Reprogramming System for Driving Cell Fate and Light‐Responsive Chimeric Mice

Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is li...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 10; no. 4; pp. e2202858 - n/a
Main Authors Wang, Meiyan, Liu, Yuanxiao, Wang, Ziwei, Qiao, Longliang, Ma, Xiaoding, Hu, Lingfeng, Kong, Deqiang, Wang, Yuan, Ye, Haifeng
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.02.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light‐emitting diode‐based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. A light‐inducible cell reprogramming (LIRE) system is developed based on the photoreceptor protein phytochrome and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9, which enables non‐invasive, precise regulation of endogenous Sox2 and Oct4 to initiate pluripotent reprogramming under light illumination. Moreover, iPSCLIRE cells can be differentiated into different cell types by illumination and can generate the optogenetic chimeric mice which will uncover unknown gene functions in vivo.
AbstractList Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSC ) under light-emitting diode-based illumination. iPSC cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSC cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2  and Oct4  loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSC LIRE ) under light‐emitting diode‐based illumination. iPSC LIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSC LIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. A light‐inducible cell reprogramming (LIRE) system is developed based on the photoreceptor protein phytochrome and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9, which enables non‐invasive, precise regulation of endogenous Sox2  and Oct4  to initiate pluripotent reprogramming under light illumination. Moreover, iPSC LIRE cells can be differentiated into different cell types by illumination and can generate the optogenetic chimeric mice which will uncover unknown gene functions in vivo.
Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light‐emitting diode‐based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. A light‐inducible cell reprogramming (LIRE) system is developed based on the photoreceptor protein phytochrome and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9, which enables non‐invasive, precise regulation of endogenous Sox2 and Oct4 to initiate pluripotent reprogramming under light illumination. Moreover, iPSCLIRE cells can be differentiated into different cell types by illumination and can generate the optogenetic chimeric mice which will uncover unknown gene functions in vivo.
Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2  and Oct4  loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSC LIRE ) under light‐emitting diode‐based illumination. iPSC LIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSC LIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
Abstract Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light‐emitting diode‐based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
Author Wang, Meiyan
Qiao, Longliang
Wang, Ziwei
Liu, Yuanxiao
Wang, Yuan
Ye, Haifeng
Hu, Lingfeng
Kong, Deqiang
Ma, Xiaoding
AuthorAffiliation 2 Department of Animal Sciences, College of Agriculture and Natural Resources Michigan State University East Lansing MI 48824 USA
1 Shanghai Frontiers Science Center of Genome Editing and Cell Therapy Biomedical Synthetic Biology Research Center Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Dongchuan Road 500 Shanghai 200241 China
AuthorAffiliation_xml – name: 1 Shanghai Frontiers Science Center of Genome Editing and Cell Therapy Biomedical Synthetic Biology Research Center Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Dongchuan Road 500 Shanghai 200241 China
– name: 2 Department of Animal Sciences, College of Agriculture and Natural Resources Michigan State University East Lansing MI 48824 USA
Author_xml – sequence: 1
  givenname: Meiyan
  surname: Wang
  fullname: Wang, Meiyan
  organization: East China Normal University
– sequence: 2
  givenname: Yuanxiao
  surname: Liu
  fullname: Liu, Yuanxiao
  organization: East China Normal University
– sequence: 3
  givenname: Ziwei
  surname: Wang
  fullname: Wang, Ziwei
  organization: East China Normal University
– sequence: 4
  givenname: Longliang
  surname: Qiao
  fullname: Qiao, Longliang
  organization: East China Normal University
– sequence: 5
  givenname: Xiaoding
  surname: Ma
  fullname: Ma, Xiaoding
  organization: East China Normal University
– sequence: 6
  givenname: Lingfeng
  surname: Hu
  fullname: Hu, Lingfeng
  organization: East China Normal University
– sequence: 7
  givenname: Deqiang
  surname: Kong
  fullname: Kong, Deqiang
  organization: East China Normal University
– sequence: 8
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: Michigan State University
– sequence: 9
  givenname: Haifeng
  orcidid: 0000-0002-5482-8116
  surname: Ye
  fullname: Ye, Haifeng
  email: hfye@bio.ecnu.edu.cn
  organization: East China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36507552$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9r2zAYh83oWLuu1x2HYZdekum_pcsgpGtXyCi0265Ctl47CrblSU5GbvsI-4z7JFWaLrS7DAQSrx496H35vc6Oet9Dlr3FaIoRIh-M3cQpQSQtyeWL7IRgJSdUMnb05HycncW4QghhTguG5avsmAqOCs7JSTbM-vxmGH0DPYyu-vPr99z3Y_BtCzafQ9vmtzAE3wTTda5v8rttHKHLax_yi-A2u9IDdWlGyE1v84VrlmPS3EIcfB_dBvL50nUQXJV_cRW8yV7Wpo1w9rifZt8uP32df54sbq6u57PFpOJE0YngpSCgKl4gXEtFC4JYJRWyuMSMIIq5lST1VEtiBYeikri2sqwR1GVBREFPs-u913qz0kNwnQlb7Y3TDwUfGm1C6rgFrTgTUJZQQ4WYqHEprFLcYkVBEFSw5Pq4dw3rsgNbQZqQaZ9Jn9_0bqkbv9FKKoEKmgTnj4Lgf6whjrpzsUpzMz34ddSk4FQIiYRM6Pt_0JVfhz6NKlGKMMokwYma7qkq-BgD1IfPYKR32dC7bOhDNtKDd09bOOB_k5AAtgd-uha2_9Hp2cX3O6YIpffFrMhX
CitedBy_id crossref_primary_10_1016_j_biomaterials_2023_122328
Cites_doi 10.1016/j.mtbio.2020.100091
10.1186/s13059-015-0846-3
10.1016/j.stem.2008.08.014
10.1038/nature08267
10.1038/s41467-020-17530-9
10.1038/s41467-021-21801-4
10.1038/s41587-021-01036-w
10.1038/s41556-018-0254-5
10.1038/s41592-019-0436-5
10.1038/nmeth.4430
10.1038/s41551-022-00847-9
10.1523/JNEUROSCI.1615-07.2007
10.1038/nature12466
10.1038/s41467-021-25107-3
10.1007/978-1-0716-1084-8_12
10.1016/j.celrep.2018.09.026
10.1038/nature07864
10.1038/nature23664
10.1016/j.cell.2021.01.019
10.1126/sciadv.abf0797
10.1016/j.bcp.2019.113729
10.1074/jbc.M206379200
10.1002/advs.201800952
10.1016/j.cell.2005.08.020
10.1007/s12041-021-01278-2
10.1016/j.cell.2006.07.024
10.1073/pnas.1520883112
10.1073/pnas.1802448115
10.1038/ncomms1187
10.1126/science.1172482
10.1126/sciadv.abb1777
10.1016/j.cell.2013.06.044
10.1038/nmeth.3871
10.1038/s41586-020-2201-4
10.1016/j.stem.2016.01.022
10.1038/nrd.2016.245
10.1038/nmeth.3312
10.1016/j.stem.2018.05.016
10.1038/s41587-021-01180-3
10.1016/j.cell.2007.11.019
10.1002/stem.37
10.1126/science.abe0237
10.1016/j.cell.2016.05.082
10.1016/j.cell.2014.09.029
10.1038/s41587-021-01112-1
10.1016/j.stem.2017.12.001
10.1038/nchembio.1753
10.1016/j.tibtech.2010.01.002
10.1016/j.cell.2017.10.025
10.1073/pnas.2016850117
10.3389/fmolb.2020.606593
10.1016/j.cell.2016.12.016
10.1038/nmeth.1923
10.1038/nature14136
10.1038/nbt.3070
10.1038/nbt.1502
10.1016/j.chembiol.2014.12.011
10.1016/j.cels.2016.12.001
10.1038/nbt.3659
10.1126/scitranslmed.aal2298
10.1016/j.cell.2014.11.052
10.1056/NEJMc1706274
10.1126/sciadv.abh2358
10.1016/j.neuron.2013.05.029
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202202858
DatabaseName Wiley Online Library Open Access
Wiley Online Library website
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9546ebbefec046f1b6d995d193e62074
10_1002_advs_202202858
36507552
ADVS4923
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32171414; 31971346; 31870861
– fundername: ECNU Multifunctional Platform for Innovation
  funderid: 011
– fundername: National Key R&D Program of China
  funderid: 2019YFA0110802; 2019YFA0904500
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 22N31900300; 18JC1411000
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Instruments Sharing Platform of the School of Life Sciences
– fundername: Nature Science Foundation of Chongqing
  funderid: CSTB2022NSCQ‐MSX0461
– fundername: East China Normal University
– fundername: National Key R&D Program of China
  grantid: 2019YFA0110802
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 18JC1411000
– fundername: National Key R&D Program of China
  grantid: 2019YFA0904500
– fundername: Nature Science Foundation of Chongqing
  grantid: CSTB2022NSCQ-MSX0461
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 22N31900300
– fundername: National Natural Science Foundation of China
  grantid: 31971346
– fundername: ECNU Multifunctional Platform for Innovation
  grantid: 011
– fundername: ;
  grantid: 32171414; 31971346; 31870861
– fundername: ;
– fundername: ;
  grantid: 22N31900300; 18JC1411000
– fundername: National Key R&D Program of China
  grantid: 2019YFA0110802; 2019YFA0904500
– fundername: Nature Science Foundation of Chongqing
  grantid: CSTB2022NSCQ‐MSX0461
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
CGR
CUY
CVF
ECM
EIF
EJD
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5293-65b62e9c5701f8937204c890d1b1420315d82000f82d65e7c81fd8bf0efb72673
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Oct 22 15:12:05 EDT 2024
Tue Sep 17 21:30:28 EDT 2024
Sat Oct 26 04:01:46 EDT 2024
Thu Oct 10 18:15:32 EDT 2024
Fri Dec 06 03:48:14 EST 2024
Sat Nov 02 12:22:56 EDT 2024
Sat Aug 24 01:07:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords endogenous transcription factors
cell reprogramming
chimeric mice
regenerative medicines
optogenetics
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5293-65b62e9c5701f8937204c890d1b1420315d82000f82d65e7c81fd8bf0efb72673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5482-8116
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896073/
PMID 36507552
PQID 2792434821
PQPubID 4365299
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9546ebbefec046f1b6d995d193e62074
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9896073
proquest_miscellaneous_2753668068
proquest_journals_2792434821
crossref_primary_10_1002_advs_202202858
pubmed_primary_36507552
wiley_primary_10_1002_advs_202202858_ADVS4923
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 21
2017; 4
2015; 33
2002; 277
2019; 16
2008; 3
2020; 11
2017; 9
2016; 34
2020; 7
2020; 6
2010; 28
2022; 40
2019; 21
2007; 131
2020; 172
2008; 26
2013; 154
2006; 126
2017; 168
2009; 324
2007; 27
2021; 9
2015; 12
2015; 160
2021; 7
2015; 16
2011; 2
2019; 6
2020; 581
2013; 500
2015; 11
2021; 184
2017; 171
2016; 165
2021; 100
2016; 18
2018; 22
2017; 377
2009; 27
2014; 159
2016; 13
2018; 25
2009; 458
2017; 548
2021; 12
2021; 2239
2017; 14
2005; 122
2017; 16
2013; 78
2022; 6
2015; 112
2018; 115
2015; 22
2020; 117
2015; 517
2021; 373
2009; 461
2012; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Tabebordbar M. (e_1_2_8_65_1) 2021; 21
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 3
  start-page: 346
  year: 2008
  publication-title: Cell Stem Cell
– volume: 28
  start-page: 214
  year: 2010
  publication-title: Trends Biotechnol.
– volume: 78
  start-page: 785
  year: 2013
  publication-title: Neuron
– volume: 160
  start-page: 339
  year: 2015
  publication-title: Cell
– volume: 16
  start-page: 633
  year: 2019
  publication-title: Nat. Methods
– volume: 25
  start-page: 487
  year: 2018
  publication-title: Cell Rep.
– volume: 581
  start-page: 83
  year: 2020
  publication-title: Nature
– volume: 33
  start-page: 58
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 154
  start-page: 442
  year: 2013
  publication-title: Cell
– volume: 122
  start-page: 947
  year: 2005
  publication-title: Cell
– volume: 12
  start-page: 1659
  year: 2021
  publication-title: Nat. Commun.
– volume: 40
  start-page: 262
  year: 2022
  publication-title: Nat. Biotechnol.
– volume: 377
  start-page: 792
  year: 2017
  publication-title: N. Engl. J. Med.
– volume: 159
  start-page: 647
  year: 2014
  publication-title: Cell
– volume: 40
  start-page: 779
  year: 2022
  publication-title: Nat. Biotechnol.
– volume: 184
  start-page: 844
  year: 2021
  publication-title: Cell
– volume: 168
  start-page: 442
  year: 2017
  publication-title: Cell
– volume: 21
  year: 2021
  publication-title: Cell
– volume: 34
  start-page: 933
  year: 2016
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 157
  year: 2022
  publication-title: Nat. Biomed. Eng.
– volume: 16
  start-page: 115
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 2
  start-page: 187
  year: 2011
  publication-title: Nat. Commun.
– volume: 12
  start-page: 326
  year: 2015
  publication-title: Nat. Methods
– volume: 373
  year: 2021
  publication-title: Science
– volume: 458
  start-page: 771
  year: 2009
  publication-title: Nature
– volume: 517
  start-page: 583
  year: 2015
  publication-title: Nature
– volume: 126
  start-page: 663
  year: 2006
  publication-title: Cell
– volume: 4
  start-page: 109
  year: 2017
  publication-title: Cell Syst.
– volume: 26
  start-page: 1269
  year: 2008
  publication-title: Nat. Biotechnol.
– volume: 14
  start-page: 963
  year: 2017
  publication-title: Nat. Methods
– volume: 548
  start-page: 592
  year: 2017
  publication-title: Nature
– volume: 22
  start-page: 169
  year: 2015
  publication-title: Chem. Biol.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 11
  start-page: 3708
  year: 2020
  publication-title: Nat. Commun.
– volume: 2239
  start-page: 175
  year: 2021
  publication-title: Methods Mol. Biol.
– volume: 27
  start-page: 8654
  year: 2007
  publication-title: J. Neurosci.
– volume: 324
  start-page: 797
  year: 2009
  publication-title: Science
– volume: 461
  start-page: 86
  year: 2009
  publication-title: Nature
– volume: 9
  year: 2021
  publication-title: Mater Today Bio
– volume: 12
  start-page: 5123
  year: 2021
  publication-title: Nat. Commun.
– volume: 21
  start-page: 275
  year: 2019
  publication-title: Nat. Cell Biol.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 541
  year: 2016
  publication-title: Cell Stem Cell
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 500
  start-page: 472
  year: 2013
  publication-title: Nature
– volume: 22
  start-page: 252
  year: 2018
  publication-title: Cell Stem Cell
– volume: 9
  start-page: 357
  year: 2012
  publication-title: Nat. Methods
– volume: 22
  start-page: 810
  year: 2018
  publication-title: Cell Stem Cell
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 280
  year: 2015
  publication-title: Genome Biol.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  year: 2017
  publication-title: Sci. Transl. Med.
– volume: 172
  year: 2020
  publication-title: Biochem. Pharmacol.
– volume: 27
  start-page: 1050
  year: 2009
  publication-title: Stem Cells
– volume: 165
  start-page: 1586
  year: 2016
  publication-title: Cell
– volume: 277
  year: 2002
  publication-title: J. Biol. Chem.
– volume: 171
  start-page: 1495
  year: 2017
  publication-title: Cell
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 13
  start-page: 563
  year: 2016
  publication-title: Nat. Methods
– volume: 11
  start-page: 198
  year: 2015
  publication-title: Nat. Chem. Biol.
– volume: 131
  start-page: 861
  year: 2007
  publication-title: Cell
– volume: 100
  start-page: 27
  year: 2021
  publication-title: J. Genet.
– volume: 40
  start-page: 946
  year: 2022
  publication-title: Nat. Biotechnol.
– volume: 7
  year: 2020
  publication-title: Front. Mol. Biosci.
– ident: e_1_2_8_27_1
  doi: 10.1016/j.mtbio.2020.100091
– ident: e_1_2_8_64_1
  doi: 10.1186/s13059-015-0846-3
– ident: e_1_2_8_12_1
  doi: 10.1016/j.stem.2008.08.014
– ident: e_1_2_8_50_1
  doi: 10.1038/nature08267
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-020-17530-9
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-021-21801-4
– ident: e_1_2_8_31_1
  doi: 10.1038/s41587-021-01036-w
– ident: e_1_2_8_53_1
  doi: 10.1038/s41556-018-0254-5
– ident: e_1_2_8_36_1
  doi: 10.1038/s41592-019-0436-5
– ident: e_1_2_8_43_1
  doi: 10.1038/nmeth.4430
– ident: e_1_2_8_66_1
  doi: 10.1038/s41551-022-00847-9
– ident: e_1_2_8_47_1
  doi: 10.1523/JNEUROSCI.1615-07.2007
– ident: e_1_2_8_38_1
  doi: 10.1038/nature12466
– ident: e_1_2_8_61_1
  doi: 10.1038/s41467-021-25107-3
– ident: e_1_2_8_26_1
  doi: 10.1007/978-1-0716-1084-8_12
– ident: e_1_2_8_34_1
  doi: 10.1016/j.celrep.2018.09.026
– ident: e_1_2_8_10_1
  doi: 10.1038/nature07864
– ident: e_1_2_8_6_1
  doi: 10.1038/nature23664
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2021.01.019
– ident: e_1_2_8_30_1
  doi: 10.1126/sciadv.abf0797
– ident: e_1_2_8_54_1
  doi: 10.1016/j.bcp.2019.113729
– ident: e_1_2_8_49_1
  doi: 10.1074/jbc.M206379200
– ident: e_1_2_8_55_1
  doi: 10.1002/advs.201800952
– ident: e_1_2_8_60_1
  doi: 10.1016/j.cell.2005.08.020
– ident: e_1_2_8_14_1
  doi: 10.1007/s12041-021-01278-2
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.1520883112
– ident: e_1_2_8_37_1
  doi: 10.1073/pnas.1802448115
– ident: e_1_2_8_28_1
  doi: 10.1038/ncomms1187
– ident: e_1_2_8_52_1
  doi: 10.1126/science.1172482
– ident: e_1_2_8_58_1
  doi: 10.1126/sciadv.abb1777
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cell.2013.06.044
– ident: e_1_2_8_24_1
  doi: 10.1038/nmeth.3871
– ident: e_1_2_8_5_1
  doi: 10.1038/s41586-020-2201-4
– ident: e_1_2_8_29_1
  doi: 10.1016/j.stem.2016.01.022
– ident: e_1_2_8_1_1
  doi: 10.1038/nrd.2016.245
– ident: e_1_2_8_48_1
  doi: 10.1038/nmeth.3312
– ident: e_1_2_8_2_1
  doi: 10.1016/j.stem.2018.05.016
– ident: e_1_2_8_62_1
  doi: 10.1038/s41587-021-01180-3
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cell.2007.11.019
– ident: e_1_2_8_45_1
  doi: 10.1002/stem.37
– ident: e_1_2_8_4_1
  doi: 10.1126/science.abe0237
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cell.2016.05.082
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cell.2014.09.029
– ident: e_1_2_8_35_1
  doi: 10.1038/s41587-021-01112-1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.stem.2017.12.001
– volume: 21
  year: 2021
  ident: e_1_2_8_65_1
  publication-title: Cell
  contributor:
    fullname: Tabebordbar M.
– ident: e_1_2_8_42_1
  doi: 10.1038/nchembio.1753
– ident: e_1_2_8_15_1
  doi: 10.1016/j.tibtech.2010.01.002
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cell.2017.10.025
– ident: e_1_2_8_59_1
  doi: 10.1073/pnas.2016850117
– ident: e_1_2_8_33_1
  doi: 10.3389/fmolb.2020.606593
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cell.2016.12.016
– ident: e_1_2_8_67_1
  doi: 10.1038/nmeth.1923
– ident: e_1_2_8_40_1
  doi: 10.1038/nmeth.4430
– ident: e_1_2_8_19_1
  doi: 10.1038/nature14136
– ident: e_1_2_8_16_1
  doi: 10.1038/nbt.3070
– ident: e_1_2_8_11_1
  doi: 10.1038/nbt.1502
– ident: e_1_2_8_41_1
  doi: 10.1016/j.chembiol.2014.12.011
– ident: e_1_2_8_39_1
  doi: 10.1038/nchembio.1753
– ident: e_1_2_8_17_1
  doi: 10.1016/j.cels.2016.12.001
– ident: e_1_2_8_23_1
  doi: 10.1038/nbt.3659
– ident: e_1_2_8_56_1
  doi: 10.1126/scitranslmed.aal2298
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cell.2014.11.052
– ident: e_1_2_8_7_1
  doi: 10.1056/NEJMc1706274
– ident: e_1_2_8_32_1
  doi: 10.1126/sciadv.abh2358
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuron.2013.05.029
SSID ssj0001537418
Score 2.2991474
Snippet Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate...
Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate...
Abstract Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2202858
SubjectTerms Animals
Cell Differentiation
cell reprogramming
Cellular Reprogramming - genetics
chimeric mice
CRISPR
endogenous transcription factors
Fibroblasts
Fibroblasts - metabolism
Gene expression
Gene loci
Genetic engineering
Genomes
Humans
Induced Pluripotent Stem Cells - metabolism
Light emitting diodes
Mice
Optogenetics
Plasmids
Proteins
regenerative medicines
Stem cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA_Sp76Itf5ZrSWCoD4s3c1e_j3Wq0cRq6AW-rYkmwk9OPeOeu1zP0I_o5_EmWTvuEOhL8I-7YZsmJlkfpPM_MLYm4S6PZ3qGgxRRtH60pkoyk5X1iu0altRvfPZF3V6Pvp0IS82rvqinLBMD5wFd2TlSIH3EKHDUC7WXgVrZUDcAUqg_0urbyU2gqlcH9wQLcuKpbESRy7cEDu3wMfQ_e4bXiiR9f8LYf6dKLkJYJMHmjxiDwfoyI_zkPfYA-gfs71hcv7i7wYG6ff7bHHc86-L5RyNg2oUf9_ejXNG-gwCH8NsxhF358Ssn-i6eKYt54hf-cnVlLYYcqsJAlHu-sA_UwiP3XwbMmpvgI8vp-mwh5_hUvOEnU8-_hiflsPVCmUn0cGXSnolwHZSV3UkyCKqUWdQLzVtCtHND8FQEU80IigJujN1DMbHCqLXQunmKdvp5z08Z9x5kM4LEzxCK2-FExGg0TY44bVzvmBvV6JuF5lBo81cyaIlpbRrpRTsA2li3YqYr9MLtId2sIf2Pnso2MFKj-0wHfEXGsNMovGpC_Z6_RknEp2OuB7m19RGNkqZSuE4nmW1r0fSII7VUoqC6S2D2Brq9pd-epnIuq3BGFE3BSuT6dwjghbByHfizHvxP2Txku1it01OMj9gO8ura3iFGGrpD9N0-QOAaxq2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCKM9AQUZCAg5REyd-nVC7dFUhWhBQqbfIjm260pIs221_PzOxN3QFAimnxFEcz4z9eWb8DSGvBtRtMaqrYItSB21zowLLW1loK0CrdYHnnU9OxfFZ_eGcnyeH22VKq9zMicNE7foWfeT7SHRXIxNL-W75M8eqURhdTSU0bpMdVlZKTcjO4dHp5y-_vSy8QnqWDVtjwfaNu0aWbgaXwjrvN1ajgbT_b0jzz4TJm0B2WIlm98jdBCHpQZT5Lrnlu_tkNxnpJX2TmKTfPiCLg45-Wq57UBI8q5hPY176wjs69YsFBfQd07N-wAJGI3k5BRRL36_m6GiIrWYAR6npHP0YSUdSVu21p9OL-RDwoScw3TwkZ7Ojb9PjPJVXyFsOi3wuuBXM65bLogwIW1hRtwpkU6JjCKs_OIUHeYJiTnAvW1UGp2wofLCSCVk9IpOu7_wTQo313FimnAV4ZTUzLHhfSe0Ms9IYm5HXm2FulpFFo4l8yaxBgTSjQDJyiFIYWyH79XCjX31vkjE1mtfCW-uDb2F7H0ornNbcARb1ggEmysjeRoZNMkn4xKhAGXk5PgZjwgiJ6Xx_hW14JYQqBPTjcRT52JMKsKzknGVEbinDVle3n3Tzi4GwWyvYJ8oqI_mgNv8ZggYAyVfkzXv67994Ru7AC1VMId8jk_Xqyj8HhLS2L5IZ_AJ4dA_g
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagXLggWv4CpTISEnCImjjx37EsXVWIAgIq9RbZsU1XWrKr7bZnHoFn5EmYsbNpIyohpJzskWN5PPY39sxnQl5G1G3xVleBi1IHbXOjAstbWWgrYFbrAvOdjz-Ko5P6_Sk_vZbFn_ghhgM3tIy4XqOBG3u-f0Uaatwl0m0z-BRXt8kdwDYC3zBg9eerUxZeIT0LvjAH3nVeqbreMDcWbH_cxGhnigT-N6HOv4Mnr4PauCtN75N7PZykB0n_2-SW73bIdm-w5_R1zyr95gFZHnT003K9gAmDeYu_f_6apCj1uXd04udzClg8BWv9gO2MJipzCpiWvlvN8NghSU0BnFLTOfoB3Xpo5ksfZXvp6eRsFi-A6DEsPw_JyfTw2-Qo759byFsOm34uuBXM65bLogwIY1hRtwp0VeJBEb4G4RQm9gTFnOBetqoMTtlQ-GAlE7J6RLa6ReefEGqs58Yy5SzALauZYcH7SmpnmJXG2Iy82gx1s0ysGk3iT2YNKqUZlJKRt6iJQQrZsGPBYvW96Y2r0bwW3loffAvufiitcFpzB9jUCwYYKSO7Gz02vYnCLyS4nkjtU2bkxVANxoU3JqbziwuU4ZUQqhDQj8dJ7UNPKsC2knOWETmaEKOujmu62Vkk8NYK_EZZZSSPU-cfQ9AAQPmKPHpP_1P-GbkLJVWKMd8lW-vVhX8OEGpt96KV_AFS3xaQ
  priority: 102
  providerName: Wiley-Blackwell
Title An Optogenetic‐Controlled Cell Reprogramming System for Driving Cell Fate and Light‐Responsive Chimeric Mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202858
https://www.ncbi.nlm.nih.gov/pubmed/36507552
https://www.proquest.com/docview/2792434821
https://www.proquest.com/docview/2753668068
https://pubmed.ncbi.nlm.nih.gov/PMC9896073
https://doaj.org/article/9546ebbefec046f1b6d995d193e62074
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-t44UXxPgbGJWRkICHrIkT_3vcwqoJ0VENJu0timOHVWrTqnR75iPwGfkknO2kWgUSElKeEsu2fHe539l3PwO88ahbu1NdiSFK3igdV7KhcS0SpTlqtUpcvfPknJ9d5h-v2NUesL4Wxift13p21M4XR-3s2udWrhb1qM8TG00nhZKIu0U2GsAA3e-dED2UBmeOkaUnaEzoqDK3jpib4iOZu6AvQ1giGKM7vshT9v8NZ_6ZLnkXxno_NH4IDzoASY7DRA9gz7aP4KAz0e_kXccj_f4xrI5b8nm1WaKKuErFXz9-FiEvfW4NKex8ThB9h_SsBTowEsjLCaJY8mE9cxsNodUY4SipWkM-uUAeu7no8mpvLSmuZ_7Ih0zwh_MELsenX4uzuLtgIa4ZuvmYM82pVTUTSdo44EKTvJYondRtDbn7H4x0pTyNpIYzK2qZNkbqJrGNFpSL7Cnst8vWPgdSacsqTaXRCLC0ohVtrM2EMhXVoqp0BG_7pS5XgUejDIzJtHTyKbfyieDESWLbyvFf-xfL9bey04JSsZxbrW1jawzwm1RzoxQziEYtp4iKIjjs5Vh2RolDCAw2HZlPGsHr7Wc0J3dGUrV2eePasIxzmXCcx7Mg9u1MerWJQOwoxM5Ud7-gBnvK7k5jI4i96vxjCUqEJF8cc96L_x7pJdzHvrKQX34I-5v1jX2F8GmjhzCg-XQI905Oz6cXQ78JMfQm9Bswux55
link.rule.ids 230,314,727,780,784,864,885,2102,11562,21388,27924,27925,33744,33745,43805,46052,46476,50814,50923,53791,53793,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELege4AXxPjMGGAkJOAhWuLEH3lCW1lVoC0INmlvURzbrFJJuq7b389d7IZVIJDylDiK47uzf747_46Q1x3q1hjVVbBFyV2h40o5FtcyKbQArS4SPO88nYnxaf7pjJ8Fh9tlSKvczIndRG3aGn3kB0h0lyMTS_p-eRFj1SiMroYSGrfJDjKn8wHZOTqeff3228vCM6Rn2bA1JuygMtfI0s3gUljn_cZq1JH2_w1p_pkweRPIdivR6D65FyAkPfQy3yW3bPOA7AYjvaRvA5P0u4dkcdjQL8t1C0qCZxXjoc9LX1hDh3axoIC-fXrWT1jAqCcvp4Bi6YfVHB0NvtUI4CitGkMnnnQkZNVeWzo8n3cBHzqF6eYROR0dnwzHcSivENccFvlYcC2YLWouk9QhbGFJXiuQTYqOIaz-YBQe5HGKGcGtrFXqjNIusU5LJmT2mAyatrFPCa205ZVmymiAV7pgFXPWZrIwFdOyqnRE3myGuVx6Fo3S8yWzEgVS9gKJyBFKoW-F7NfdjXb1owzGVBY8F1Zr62wN23uXamGKghvAolYwwEQR2d_IsAwmCZ_oFSgir_rHYEwYIaka215hG54JoRIB_XjiRd73JAMsKzlnEZFbyrDV1e0nzfy8I-wuFOwTZRaRuFOb_wxBCYDkO_Lm7f37N16SO-OT6aScfJx9fkbuwsuZTyffJ4P16so-B7S01i-CSfwCUG0SyA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegkxAviPG1wAAjIQEPURMn_npCW7dqwFYmYNLeoji2WaWSlK7b389d7JZVIJDylDiK47vz_Xw-_46Q1z3qNrirq2CJUnpt0lp5ljYy00aAVusMzzufTMTRWfnxnJ_H_KfLmFa5mhP7idp2DcbIh0h0VyITSz70MS3i9GD8fv4zxQpSuNMay2ncJlvgFTM2IFv7h5PTL78jLrxAqpYVc2PGhrW9RsZuBpfCmu83PFNP4P831Pln8uRNUNt7pfF9ci_CSboX5L9Nbrn2AdmOBntJ30ZW6XcPyWyvpZ_nyw4UBs8tpqOQoz5zlo7cbEYBiYdUrR_gzGggMqeAaOnBYopBh9BqDNCU1q2lx4GAJGbYXjs6upj2mz_0BKaeR-RsfPhtdJTGUgtpw8Hhp4IbwZxuuMxyjxCGZWWjQE45BomwEoRVeKjHK2YFd7JRubfK-Mx5I5mQxWMyaLvW7RBaG8drw5Q1ALWMZjXzzhVS25oZWdcmIW9Ww1zNA6NGFbiTWYUCqdYCScg-SmHdCpmw-xvd4nsVDavSvBTOGOddA0t9nxthteYWcKkTDPBRQnZXMqyiecIn1sqUkFfrx2BYuFtSt667wja8EEJlAvrxJIh83ZMCcK3knCVEbijDRlc3n7TTi568WytYM8oiIWmvNv8ZggrAyVfk0Hv67994Se6ANVTHHyafnpG78G4RMst3yWC5uHLPATgtzYtoEb8AJgMW9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optogenetic%E2%80%90Controlled+Cell+Reprogramming+System+for+Driving+Cell+Fate+and+Light%E2%80%90Responsive+Chimeric+Mice&rft.jtitle=Advanced+science&rft.au=Wang%2C+Meiyan&rft.au=Liu%2C+Yuanxiao&rft.au=Wang%2C+Ziwei&rft.au=Qiao%2C+Longliang&rft.date=2023-02-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1002%2Fadvs.202202858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202202858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon