An Optogenetic‐Controlled Cell Reprogramming System for Driving Cell Fate and Light‐Responsive Chimeric Mice
Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is li...
Saved in:
Published in | Advanced science Vol. 10; no. 4; pp. e2202858 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.02.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light‐emitting diode‐based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
A light‐inducible cell reprogramming (LIRE) system is developed based on the photoreceptor protein phytochrome and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9, which enables non‐invasive, precise regulation of endogenous Sox2 and Oct4 to initiate pluripotent reprogramming under light illumination. Moreover, iPSCLIRE cells can be differentiated into different cell types by illumination and can generate the optogenetic chimeric mice which will uncover unknown gene functions in vivo. |
---|---|
AbstractList | Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSC
) under light-emitting diode-based illumination. iPSC
cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSC
cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSC LIRE ) under light‐emitting diode‐based illumination. iPSC LIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSC LIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. A light‐inducible cell reprogramming (LIRE) system is developed based on the photoreceptor protein phytochrome and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9, which enables non‐invasive, precise regulation of endogenous Sox2 and Oct4 to initiate pluripotent reprogramming under light illumination. Moreover, iPSC LIRE cells can be differentiated into different cell types by illumination and can generate the optogenetic chimeric mice which will uncover unknown gene functions in vivo. Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light‐emitting diode‐based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. A light‐inducible cell reprogramming (LIRE) system is developed based on the photoreceptor protein phytochrome and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9, which enables non‐invasive, precise regulation of endogenous Sox2 and Oct4 to initiate pluripotent reprogramming under light illumination. Moreover, iPSCLIRE cells can be differentiated into different cell types by illumination and can generate the optogenetic chimeric mice which will uncover unknown gene functions in vivo. Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSC LIRE ) under light‐emitting diode‐based illumination. iPSC LIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSC LIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. Abstract Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light‐inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease‐deficient CRISPR‐associated protein 9 for induced PSCs reprogramming. This system enables remote, non‐invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE) under light‐emitting diode‐based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non‐invasive control of user‐defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non‐invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications. |
Author | Wang, Meiyan Qiao, Longliang Wang, Ziwei Liu, Yuanxiao Wang, Yuan Ye, Haifeng Hu, Lingfeng Kong, Deqiang Ma, Xiaoding |
AuthorAffiliation | 2 Department of Animal Sciences, College of Agriculture and Natural Resources Michigan State University East Lansing MI 48824 USA 1 Shanghai Frontiers Science Center of Genome Editing and Cell Therapy Biomedical Synthetic Biology Research Center Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Dongchuan Road 500 Shanghai 200241 China |
AuthorAffiliation_xml | – name: 1 Shanghai Frontiers Science Center of Genome Editing and Cell Therapy Biomedical Synthetic Biology Research Center Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Dongchuan Road 500 Shanghai 200241 China – name: 2 Department of Animal Sciences, College of Agriculture and Natural Resources Michigan State University East Lansing MI 48824 USA |
Author_xml | – sequence: 1 givenname: Meiyan surname: Wang fullname: Wang, Meiyan organization: East China Normal University – sequence: 2 givenname: Yuanxiao surname: Liu fullname: Liu, Yuanxiao organization: East China Normal University – sequence: 3 givenname: Ziwei surname: Wang fullname: Wang, Ziwei organization: East China Normal University – sequence: 4 givenname: Longliang surname: Qiao fullname: Qiao, Longliang organization: East China Normal University – sequence: 5 givenname: Xiaoding surname: Ma fullname: Ma, Xiaoding organization: East China Normal University – sequence: 6 givenname: Lingfeng surname: Hu fullname: Hu, Lingfeng organization: East China Normal University – sequence: 7 givenname: Deqiang surname: Kong fullname: Kong, Deqiang organization: East China Normal University – sequence: 8 givenname: Yuan surname: Wang fullname: Wang, Yuan organization: Michigan State University – sequence: 9 givenname: Haifeng orcidid: 0000-0002-5482-8116 surname: Ye fullname: Ye, Haifeng email: hfye@bio.ecnu.edu.cn organization: East China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36507552$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9r2zAYh83oWLuu1x2HYZdekum_pcsgpGtXyCi0265Ctl47CrblSU5GbvsI-4z7JFWaLrS7DAQSrx496H35vc6Oet9Dlr3FaIoRIh-M3cQpQSQtyeWL7IRgJSdUMnb05HycncW4QghhTguG5avsmAqOCs7JSTbM-vxmGH0DPYyu-vPr99z3Y_BtCzafQ9vmtzAE3wTTda5v8rttHKHLax_yi-A2u9IDdWlGyE1v84VrlmPS3EIcfB_dBvL50nUQXJV_cRW8yV7Wpo1w9rifZt8uP32df54sbq6u57PFpOJE0YngpSCgKl4gXEtFC4JYJRWyuMSMIIq5lST1VEtiBYeikri2sqwR1GVBREFPs-u913qz0kNwnQlb7Y3TDwUfGm1C6rgFrTgTUJZQQ4WYqHEprFLcYkVBEFSw5Pq4dw3rsgNbQZqQaZ9Jn9_0bqkbv9FKKoEKmgTnj4Lgf6whjrpzsUpzMz34ddSk4FQIiYRM6Pt_0JVfhz6NKlGKMMokwYma7qkq-BgD1IfPYKR32dC7bOhDNtKDd09bOOB_k5AAtgd-uha2_9Hp2cX3O6YIpffFrMhX |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2023_122328 |
Cites_doi | 10.1016/j.mtbio.2020.100091 10.1186/s13059-015-0846-3 10.1016/j.stem.2008.08.014 10.1038/nature08267 10.1038/s41467-020-17530-9 10.1038/s41467-021-21801-4 10.1038/s41587-021-01036-w 10.1038/s41556-018-0254-5 10.1038/s41592-019-0436-5 10.1038/nmeth.4430 10.1038/s41551-022-00847-9 10.1523/JNEUROSCI.1615-07.2007 10.1038/nature12466 10.1038/s41467-021-25107-3 10.1007/978-1-0716-1084-8_12 10.1016/j.celrep.2018.09.026 10.1038/nature07864 10.1038/nature23664 10.1016/j.cell.2021.01.019 10.1126/sciadv.abf0797 10.1016/j.bcp.2019.113729 10.1074/jbc.M206379200 10.1002/advs.201800952 10.1016/j.cell.2005.08.020 10.1007/s12041-021-01278-2 10.1016/j.cell.2006.07.024 10.1073/pnas.1520883112 10.1073/pnas.1802448115 10.1038/ncomms1187 10.1126/science.1172482 10.1126/sciadv.abb1777 10.1016/j.cell.2013.06.044 10.1038/nmeth.3871 10.1038/s41586-020-2201-4 10.1016/j.stem.2016.01.022 10.1038/nrd.2016.245 10.1038/nmeth.3312 10.1016/j.stem.2018.05.016 10.1038/s41587-021-01180-3 10.1016/j.cell.2007.11.019 10.1002/stem.37 10.1126/science.abe0237 10.1016/j.cell.2016.05.082 10.1016/j.cell.2014.09.029 10.1038/s41587-021-01112-1 10.1016/j.stem.2017.12.001 10.1038/nchembio.1753 10.1016/j.tibtech.2010.01.002 10.1016/j.cell.2017.10.025 10.1073/pnas.2016850117 10.3389/fmolb.2020.606593 10.1016/j.cell.2016.12.016 10.1038/nmeth.1923 10.1038/nature14136 10.1038/nbt.3070 10.1038/nbt.1502 10.1016/j.chembiol.2014.12.011 10.1016/j.cels.2016.12.001 10.1038/nbt.3659 10.1126/scitranslmed.aal2298 10.1016/j.cell.2014.11.052 10.1056/NEJMc1706274 10.1126/sciadv.abh2358 10.1016/j.neuron.2013.05.029 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202202858 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library website Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9546ebbefec046f1b6d995d193e62074 10_1002_advs_202202858 36507552 ADVS4923 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32171414; 31971346; 31870861 – fundername: ECNU Multifunctional Platform for Innovation funderid: 011 – fundername: National Key R&D Program of China funderid: 2019YFA0110802; 2019YFA0904500 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 22N31900300; 18JC1411000 – fundername: Fundamental Research Funds for the Central Universities – fundername: Instruments Sharing Platform of the School of Life Sciences – fundername: Nature Science Foundation of Chongqing funderid: CSTB2022NSCQ‐MSX0461 – fundername: East China Normal University – fundername: National Key R&D Program of China grantid: 2019YFA0110802 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 18JC1411000 – fundername: National Key R&D Program of China grantid: 2019YFA0904500 – fundername: Nature Science Foundation of Chongqing grantid: CSTB2022NSCQ-MSX0461 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 22N31900300 – fundername: National Natural Science Foundation of China grantid: 31971346 – fundername: ECNU Multifunctional Platform for Innovation grantid: 011 – fundername: ; grantid: 32171414; 31971346; 31870861 – fundername: ; – fundername: ; grantid: 22N31900300; 18JC1411000 – fundername: National Key R&D Program of China grantid: 2019YFA0110802; 2019YFA0904500 – fundername: Nature Science Foundation of Chongqing grantid: CSTB2022NSCQ‐MSX0461 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN CGR CUY CVF ECM EIF EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c5293-65b62e9c5701f8937204c890d1b1420315d82000f82d65e7c81fd8bf0efb72673 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:12:05 EDT 2024 Tue Sep 17 21:30:28 EDT 2024 Sat Oct 26 04:01:46 EDT 2024 Thu Oct 10 18:15:32 EDT 2024 Fri Dec 06 03:48:14 EST 2024 Sat Nov 02 12:22:56 EDT 2024 Sat Aug 24 01:07:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | endogenous transcription factors cell reprogramming chimeric mice regenerative medicines optogenetics |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5293-65b62e9c5701f8937204c890d1b1420315d82000f82d65e7c81fd8bf0efb72673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5482-8116 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896073/ |
PMID | 36507552 |
PQID | 2792434821 |
PQPubID | 4365299 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9546ebbefec046f1b6d995d193e62074 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9896073 proquest_miscellaneous_2753668068 proquest_journals_2792434821 crossref_primary_10_1002_advs_202202858 pubmed_primary_36507552 wiley_primary_10_1002_advs_202202858_ADVS4923 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 21 2017; 4 2015; 33 2002; 277 2019; 16 2008; 3 2020; 11 2017; 9 2016; 34 2020; 7 2020; 6 2010; 28 2022; 40 2019; 21 2007; 131 2020; 172 2008; 26 2013; 154 2006; 126 2017; 168 2009; 324 2007; 27 2021; 9 2015; 12 2015; 160 2021; 7 2015; 16 2011; 2 2019; 6 2020; 581 2013; 500 2015; 11 2021; 184 2017; 171 2016; 165 2021; 100 2016; 18 2018; 22 2017; 377 2009; 27 2014; 159 2016; 13 2018; 25 2009; 458 2017; 548 2021; 12 2021; 2239 2017; 14 2005; 122 2017; 16 2013; 78 2022; 6 2015; 112 2018; 115 2015; 22 2020; 117 2015; 517 2021; 373 2009; 461 2012; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Tabebordbar M. (e_1_2_8_65_1) 2021; 21 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 3 start-page: 346 year: 2008 publication-title: Cell Stem Cell – volume: 28 start-page: 214 year: 2010 publication-title: Trends Biotechnol. – volume: 78 start-page: 785 year: 2013 publication-title: Neuron – volume: 160 start-page: 339 year: 2015 publication-title: Cell – volume: 16 start-page: 633 year: 2019 publication-title: Nat. Methods – volume: 25 start-page: 487 year: 2018 publication-title: Cell Rep. – volume: 581 start-page: 83 year: 2020 publication-title: Nature – volume: 33 start-page: 58 year: 2015 publication-title: Nat. Biotechnol. – volume: 154 start-page: 442 year: 2013 publication-title: Cell – volume: 122 start-page: 947 year: 2005 publication-title: Cell – volume: 12 start-page: 1659 year: 2021 publication-title: Nat. Commun. – volume: 40 start-page: 262 year: 2022 publication-title: Nat. Biotechnol. – volume: 377 start-page: 792 year: 2017 publication-title: N. Engl. J. Med. – volume: 159 start-page: 647 year: 2014 publication-title: Cell – volume: 40 start-page: 779 year: 2022 publication-title: Nat. Biotechnol. – volume: 184 start-page: 844 year: 2021 publication-title: Cell – volume: 168 start-page: 442 year: 2017 publication-title: Cell – volume: 21 year: 2021 publication-title: Cell – volume: 34 start-page: 933 year: 2016 publication-title: Nat. Biotechnol. – volume: 6 start-page: 157 year: 2022 publication-title: Nat. Biomed. Eng. – volume: 16 start-page: 115 year: 2017 publication-title: Nat. Rev. Drug Discovery – volume: 2 start-page: 187 year: 2011 publication-title: Nat. Commun. – volume: 12 start-page: 326 year: 2015 publication-title: Nat. Methods – volume: 373 year: 2021 publication-title: Science – volume: 458 start-page: 771 year: 2009 publication-title: Nature – volume: 517 start-page: 583 year: 2015 publication-title: Nature – volume: 126 start-page: 663 year: 2006 publication-title: Cell – volume: 4 start-page: 109 year: 2017 publication-title: Cell Syst. – volume: 26 start-page: 1269 year: 2008 publication-title: Nat. Biotechnol. – volume: 14 start-page: 963 year: 2017 publication-title: Nat. Methods – volume: 548 start-page: 592 year: 2017 publication-title: Nature – volume: 22 start-page: 169 year: 2015 publication-title: Chem. Biol. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 11 start-page: 3708 year: 2020 publication-title: Nat. Commun. – volume: 2239 start-page: 175 year: 2021 publication-title: Methods Mol. Biol. – volume: 27 start-page: 8654 year: 2007 publication-title: J. Neurosci. – volume: 324 start-page: 797 year: 2009 publication-title: Science – volume: 461 start-page: 86 year: 2009 publication-title: Nature – volume: 9 year: 2021 publication-title: Mater Today Bio – volume: 12 start-page: 5123 year: 2021 publication-title: Nat. Commun. – volume: 21 start-page: 275 year: 2019 publication-title: Nat. Cell Biol. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 541 year: 2016 publication-title: Cell Stem Cell – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 500 start-page: 472 year: 2013 publication-title: Nature – volume: 22 start-page: 252 year: 2018 publication-title: Cell Stem Cell – volume: 9 start-page: 357 year: 2012 publication-title: Nat. Methods – volume: 22 start-page: 810 year: 2018 publication-title: Cell Stem Cell – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 280 year: 2015 publication-title: Genome Biol. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2017 publication-title: Sci. Transl. Med. – volume: 172 year: 2020 publication-title: Biochem. Pharmacol. – volume: 27 start-page: 1050 year: 2009 publication-title: Stem Cells – volume: 165 start-page: 1586 year: 2016 publication-title: Cell – volume: 277 year: 2002 publication-title: J. Biol. Chem. – volume: 171 start-page: 1495 year: 2017 publication-title: Cell – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 13 start-page: 563 year: 2016 publication-title: Nat. Methods – volume: 11 start-page: 198 year: 2015 publication-title: Nat. Chem. Biol. – volume: 131 start-page: 861 year: 2007 publication-title: Cell – volume: 100 start-page: 27 year: 2021 publication-title: J. Genet. – volume: 40 start-page: 946 year: 2022 publication-title: Nat. Biotechnol. – volume: 7 year: 2020 publication-title: Front. Mol. Biosci. – ident: e_1_2_8_27_1 doi: 10.1016/j.mtbio.2020.100091 – ident: e_1_2_8_64_1 doi: 10.1186/s13059-015-0846-3 – ident: e_1_2_8_12_1 doi: 10.1016/j.stem.2008.08.014 – ident: e_1_2_8_50_1 doi: 10.1038/nature08267 – ident: e_1_2_8_57_1 doi: 10.1038/s41467-020-17530-9 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-021-21801-4 – ident: e_1_2_8_31_1 doi: 10.1038/s41587-021-01036-w – ident: e_1_2_8_53_1 doi: 10.1038/s41556-018-0254-5 – ident: e_1_2_8_36_1 doi: 10.1038/s41592-019-0436-5 – ident: e_1_2_8_43_1 doi: 10.1038/nmeth.4430 – ident: e_1_2_8_66_1 doi: 10.1038/s41551-022-00847-9 – ident: e_1_2_8_47_1 doi: 10.1523/JNEUROSCI.1615-07.2007 – ident: e_1_2_8_38_1 doi: 10.1038/nature12466 – ident: e_1_2_8_61_1 doi: 10.1038/s41467-021-25107-3 – ident: e_1_2_8_26_1 doi: 10.1007/978-1-0716-1084-8_12 – ident: e_1_2_8_34_1 doi: 10.1016/j.celrep.2018.09.026 – ident: e_1_2_8_10_1 doi: 10.1038/nature07864 – ident: e_1_2_8_6_1 doi: 10.1038/nature23664 – ident: e_1_2_8_21_1 doi: 10.1016/j.cell.2021.01.019 – ident: e_1_2_8_30_1 doi: 10.1126/sciadv.abf0797 – ident: e_1_2_8_54_1 doi: 10.1016/j.bcp.2019.113729 – ident: e_1_2_8_49_1 doi: 10.1074/jbc.M206379200 – ident: e_1_2_8_55_1 doi: 10.1002/advs.201800952 – ident: e_1_2_8_60_1 doi: 10.1016/j.cell.2005.08.020 – ident: e_1_2_8_14_1 doi: 10.1007/s12041-021-01278-2 – ident: e_1_2_8_8_1 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_8_63_1 doi: 10.1073/pnas.1520883112 – ident: e_1_2_8_37_1 doi: 10.1073/pnas.1802448115 – ident: e_1_2_8_28_1 doi: 10.1038/ncomms1187 – ident: e_1_2_8_52_1 doi: 10.1126/science.1172482 – ident: e_1_2_8_58_1 doi: 10.1126/sciadv.abb1777 – ident: e_1_2_8_20_1 doi: 10.1016/j.cell.2013.06.044 – ident: e_1_2_8_24_1 doi: 10.1038/nmeth.3871 – ident: e_1_2_8_5_1 doi: 10.1038/s41586-020-2201-4 – ident: e_1_2_8_29_1 doi: 10.1016/j.stem.2016.01.022 – ident: e_1_2_8_1_1 doi: 10.1038/nrd.2016.245 – ident: e_1_2_8_48_1 doi: 10.1038/nmeth.3312 – ident: e_1_2_8_2_1 doi: 10.1016/j.stem.2018.05.016 – ident: e_1_2_8_62_1 doi: 10.1038/s41587-021-01180-3 – ident: e_1_2_8_9_1 doi: 10.1016/j.cell.2007.11.019 – ident: e_1_2_8_45_1 doi: 10.1002/stem.37 – ident: e_1_2_8_4_1 doi: 10.1126/science.abe0237 – ident: e_1_2_8_3_1 doi: 10.1016/j.cell.2016.05.082 – ident: e_1_2_8_22_1 doi: 10.1016/j.cell.2014.09.029 – ident: e_1_2_8_35_1 doi: 10.1038/s41587-021-01112-1 – ident: e_1_2_8_44_1 doi: 10.1016/j.stem.2017.12.001 – volume: 21 year: 2021 ident: e_1_2_8_65_1 publication-title: Cell contributor: fullname: Tabebordbar M. – ident: e_1_2_8_42_1 doi: 10.1038/nchembio.1753 – ident: e_1_2_8_15_1 doi: 10.1016/j.tibtech.2010.01.002 – ident: e_1_2_8_51_1 doi: 10.1016/j.cell.2017.10.025 – ident: e_1_2_8_59_1 doi: 10.1073/pnas.2016850117 – ident: e_1_2_8_33_1 doi: 10.3389/fmolb.2020.606593 – ident: e_1_2_8_18_1 doi: 10.1016/j.cell.2016.12.016 – ident: e_1_2_8_67_1 doi: 10.1038/nmeth.1923 – ident: e_1_2_8_40_1 doi: 10.1038/nmeth.4430 – ident: e_1_2_8_19_1 doi: 10.1038/nature14136 – ident: e_1_2_8_16_1 doi: 10.1038/nbt.3070 – ident: e_1_2_8_11_1 doi: 10.1038/nbt.1502 – ident: e_1_2_8_41_1 doi: 10.1016/j.chembiol.2014.12.011 – ident: e_1_2_8_39_1 doi: 10.1038/nchembio.1753 – ident: e_1_2_8_17_1 doi: 10.1016/j.cels.2016.12.001 – ident: e_1_2_8_23_1 doi: 10.1038/nbt.3659 – ident: e_1_2_8_56_1 doi: 10.1126/scitranslmed.aal2298 – ident: e_1_2_8_25_1 doi: 10.1016/j.cell.2014.11.052 – ident: e_1_2_8_7_1 doi: 10.1056/NEJMc1706274 – ident: e_1_2_8_32_1 doi: 10.1126/sciadv.abh2358 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuron.2013.05.029 |
SSID | ssj0001537418 |
Score | 2.2991474 |
Snippet | Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate... Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate... Abstract Pluripotent stem cells (PSCs) hold great promise for cell‐based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2202858 |
SubjectTerms | Animals Cell Differentiation cell reprogramming Cellular Reprogramming - genetics chimeric mice CRISPR endogenous transcription factors Fibroblasts Fibroblasts - metabolism Gene expression Gene loci Genetic engineering Genomes Humans Induced Pluripotent Stem Cells - metabolism Light emitting diodes Mice Optogenetics Plasmids Proteins regenerative medicines Stem cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1faxQxEA_Sp76Itf5ZrSWCoD4s3c1e_j3Wq0cRq6AW-rYkmwk9OPeOeu1zP0I_o5_EmWTvuEOhL8I-7YZsmJlkfpPM_MLYm4S6PZ3qGgxRRtH60pkoyk5X1iu0altRvfPZF3V6Pvp0IS82rvqinLBMD5wFd2TlSIH3EKHDUC7WXgVrZUDcAUqg_0urbyU2gqlcH9wQLcuKpbESRy7cEDu3wMfQ_e4bXiiR9f8LYf6dKLkJYJMHmjxiDwfoyI_zkPfYA-gfs71hcv7i7wYG6ff7bHHc86-L5RyNg2oUf9_ejXNG-gwCH8NsxhF358Ssn-i6eKYt54hf-cnVlLYYcqsJAlHu-sA_UwiP3XwbMmpvgI8vp-mwh5_hUvOEnU8-_hiflsPVCmUn0cGXSnolwHZSV3UkyCKqUWdQLzVtCtHND8FQEU80IigJujN1DMbHCqLXQunmKdvp5z08Z9x5kM4LEzxCK2-FExGg0TY44bVzvmBvV6JuF5lBo81cyaIlpbRrpRTsA2li3YqYr9MLtId2sIf2Pnso2MFKj-0wHfEXGsNMovGpC_Z6_RknEp2OuB7m19RGNkqZSuE4nmW1r0fSII7VUoqC6S2D2Brq9pd-epnIuq3BGFE3BSuT6dwjghbByHfizHvxP2Txku1it01OMj9gO8ura3iFGGrpD9N0-QOAaxq2 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCKM9AQUZCAg5REyd-nVC7dFUhWhBQqbfIjm260pIs221_PzOxN3QFAimnxFEcz4z9eWb8DSGvBtRtMaqrYItSB21zowLLW1loK0CrdYHnnU9OxfFZ_eGcnyeH22VKq9zMicNE7foWfeT7SHRXIxNL-W75M8eqURhdTSU0bpMdVlZKTcjO4dHp5y-_vSy8QnqWDVtjwfaNu0aWbgaXwjrvN1ajgbT_b0jzz4TJm0B2WIlm98jdBCHpQZT5Lrnlu_tkNxnpJX2TmKTfPiCLg45-Wq57UBI8q5hPY176wjs69YsFBfQd07N-wAJGI3k5BRRL36_m6GiIrWYAR6npHP0YSUdSVu21p9OL-RDwoScw3TwkZ7Ojb9PjPJVXyFsOi3wuuBXM65bLogwIW1hRtwpkU6JjCKs_OIUHeYJiTnAvW1UGp2wofLCSCVk9IpOu7_wTQo313FimnAV4ZTUzLHhfSe0Ms9IYm5HXm2FulpFFo4l8yaxBgTSjQDJyiFIYWyH79XCjX31vkjE1mtfCW-uDb2F7H0ornNbcARb1ggEmysjeRoZNMkn4xKhAGXk5PgZjwgiJ6Xx_hW14JYQqBPTjcRT52JMKsKzknGVEbinDVle3n3Tzi4GwWyvYJ8oqI_mgNv8ZggYAyVfkzXv67994Ru7AC1VMId8jk_Xqyj8HhLS2L5IZ_AJ4dA_g priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagXLggWv4CpTISEnCImjjx37EsXVWIAgIq9RbZsU1XWrKr7bZnHoFn5EmYsbNpIyohpJzskWN5PPY39sxnQl5G1G3xVleBi1IHbXOjAstbWWgrYFbrAvOdjz-Ko5P6_Sk_vZbFn_ghhgM3tIy4XqOBG3u-f0Uaatwl0m0z-BRXt8kdwDYC3zBg9eerUxZeIT0LvjAH3nVeqbreMDcWbH_cxGhnigT-N6HOv4Mnr4PauCtN75N7PZykB0n_2-SW73bIdm-w5_R1zyr95gFZHnT003K9gAmDeYu_f_6apCj1uXd04udzClg8BWv9gO2MJipzCpiWvlvN8NghSU0BnFLTOfoB3Xpo5ksfZXvp6eRsFi-A6DEsPw_JyfTw2-Qo759byFsOm34uuBXM65bLogwIY1hRtwp0VeJBEb4G4RQm9gTFnOBetqoMTtlQ-GAlE7J6RLa6ReefEGqs58Yy5SzALauZYcH7SmpnmJXG2Iy82gx1s0ysGk3iT2YNKqUZlJKRt6iJQQrZsGPBYvW96Y2r0bwW3loffAvufiitcFpzB9jUCwYYKSO7Gz02vYnCLyS4nkjtU2bkxVANxoU3JqbziwuU4ZUQqhDQj8dJ7UNPKsC2knOWETmaEKOujmu62Vkk8NYK_EZZZSSPU-cfQ9AAQPmKPHpP_1P-GbkLJVWKMd8lW-vVhX8OEGpt96KV_AFS3xaQ priority: 102 providerName: Wiley-Blackwell |
Title | An Optogenetic‐Controlled Cell Reprogramming System for Driving Cell Fate and Light‐Responsive Chimeric Mice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202202858 https://www.ncbi.nlm.nih.gov/pubmed/36507552 https://www.proquest.com/docview/2792434821 https://www.proquest.com/docview/2753668068 https://pubmed.ncbi.nlm.nih.gov/PMC9896073 https://doaj.org/article/9546ebbefec046f1b6d995d193e62074 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-t44UXxPgbGJWRkICHrIkT_3vcwqoJ0VENJu0timOHVWrTqnR75iPwGfkknO2kWgUSElKeEsu2fHe539l3PwO88ahbu1NdiSFK3igdV7KhcS0SpTlqtUpcvfPknJ9d5h-v2NUesL4Wxift13p21M4XR-3s2udWrhb1qM8TG00nhZKIu0U2GsAA3e-dED2UBmeOkaUnaEzoqDK3jpib4iOZu6AvQ1giGKM7vshT9v8NZ_6ZLnkXxno_NH4IDzoASY7DRA9gz7aP4KAz0e_kXccj_f4xrI5b8nm1WaKKuErFXz9-FiEvfW4NKex8ThB9h_SsBTowEsjLCaJY8mE9cxsNodUY4SipWkM-uUAeu7no8mpvLSmuZ_7Ih0zwh_MELsenX4uzuLtgIa4ZuvmYM82pVTUTSdo44EKTvJYondRtDbn7H4x0pTyNpIYzK2qZNkbqJrGNFpSL7Cnst8vWPgdSacsqTaXRCLC0ohVtrM2EMhXVoqp0BG_7pS5XgUejDIzJtHTyKbfyieDESWLbyvFf-xfL9bey04JSsZxbrW1jawzwm1RzoxQziEYtp4iKIjjs5Vh2RolDCAw2HZlPGsHr7Wc0J3dGUrV2eePasIxzmXCcx7Mg9u1MerWJQOwoxM5Ud7-gBnvK7k5jI4i96vxjCUqEJF8cc96L_x7pJdzHvrKQX34I-5v1jX2F8GmjhzCg-XQI905Oz6cXQ78JMfQm9Bswux55 |
link.rule.ids | 230,314,727,780,784,864,885,2102,11562,21388,27924,27925,33744,33745,43805,46052,46476,50814,50923,53791,53793,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELege4AXxPjMGGAkJOAhWuLEH3lCW1lVoC0INmlvURzbrFJJuq7b389d7IZVIJDylDiK47uzf747_46Q1x3q1hjVVbBFyV2h40o5FtcyKbQArS4SPO88nYnxaf7pjJ8Fh9tlSKvczIndRG3aGn3kB0h0lyMTS_p-eRFj1SiMroYSGrfJDjKn8wHZOTqeff3228vCM6Rn2bA1JuygMtfI0s3gUljn_cZq1JH2_w1p_pkweRPIdivR6D65FyAkPfQy3yW3bPOA7AYjvaRvA5P0u4dkcdjQL8t1C0qCZxXjoc9LX1hDh3axoIC-fXrWT1jAqCcvp4Bi6YfVHB0NvtUI4CitGkMnnnQkZNVeWzo8n3cBHzqF6eYROR0dnwzHcSivENccFvlYcC2YLWouk9QhbGFJXiuQTYqOIaz-YBQe5HGKGcGtrFXqjNIusU5LJmT2mAyatrFPCa205ZVmymiAV7pgFXPWZrIwFdOyqnRE3myGuVx6Fo3S8yWzEgVS9gKJyBFKoW-F7NfdjXb1owzGVBY8F1Zr62wN23uXamGKghvAolYwwEQR2d_IsAwmCZ_oFSgir_rHYEwYIaka215hG54JoRIB_XjiRd73JAMsKzlnEZFbyrDV1e0nzfy8I-wuFOwTZRaRuFOb_wxBCYDkO_Lm7f37N16SO-OT6aScfJx9fkbuwsuZTyffJ4P16so-B7S01i-CSfwCUG0SyA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegkxAviPG1wAAjIQEPURMn_npCW7dqwFYmYNLeoji2WaWSlK7b389d7JZVIJDylDiK47vz_Xw-_46Q1z3qNrirq2CJUnpt0lp5ljYy00aAVusMzzufTMTRWfnxnJ_H_KfLmFa5mhP7idp2DcbIh0h0VyITSz70MS3i9GD8fv4zxQpSuNMay2ncJlvgFTM2IFv7h5PTL78jLrxAqpYVc2PGhrW9RsZuBpfCmu83PFNP4P831Pln8uRNUNt7pfF9ci_CSboX5L9Nbrn2AdmOBntJ30ZW6XcPyWyvpZ_nyw4UBs8tpqOQoz5zlo7cbEYBiYdUrR_gzGggMqeAaOnBYopBh9BqDNCU1q2lx4GAJGbYXjs6upj2mz_0BKaeR-RsfPhtdJTGUgtpw8Hhp4IbwZxuuMxyjxCGZWWjQE45BomwEoRVeKjHK2YFd7JRubfK-Mx5I5mQxWMyaLvW7RBaG8drw5Q1ALWMZjXzzhVS25oZWdcmIW9Ww1zNA6NGFbiTWYUCqdYCScg-SmHdCpmw-xvd4nsVDavSvBTOGOddA0t9nxthteYWcKkTDPBRQnZXMqyiecIn1sqUkFfrx2BYuFtSt667wja8EEJlAvrxJIh83ZMCcK3knCVEbijDRlc3n7TTi568WytYM8oiIWmvNv8ZggrAyVfk0Hv67994Se6ANVTHHyafnpG78G4RMst3yWC5uHLPATgtzYtoEb8AJgMW9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optogenetic%E2%80%90Controlled+Cell+Reprogramming+System+for+Driving+Cell+Fate+and+Light%E2%80%90Responsive+Chimeric+Mice&rft.jtitle=Advanced+science&rft.au=Wang%2C+Meiyan&rft.au=Liu%2C+Yuanxiao&rft.au=Wang%2C+Ziwei&rft.au=Qiao%2C+Longliang&rft.date=2023-02-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=4&rft_id=info:doi/10.1002%2Fadvs.202202858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202202858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |