Oxygen‐Independent Sulfate Radical for Stimuli‐Responsive Tumor Nanotherapy

Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 17; pp. e2200974 - n/a
Main Authors Ding, Dandan, Mei, Zihan, Huang, Hui, Feng, Wei, Chen, Liang, Chen, Yu, Zhou, Jianqiao
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.06.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine. The CuS@PMS nanosystems with multiple theranostic functions are maneuverable in stimuli‐responsive sulfate radical‐mediated nanotherapy against melanoma in an oxygen‐independent manner, competent in photoacoustic imaging and precipitating skin regeneration. The high‐performance sulfate radical tumor therapy is implemented via exploiting the outstanding oxidation property of sulfate radical and inducing synergistic activation by photothermal effect and copper ions.
AbstractList Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine. The CuS@PMS nanosystems with multiple theranostic functions are maneuverable in stimuli‐responsive sulfate radical‐mediated nanotherapy against melanoma in an oxygen‐independent manner, competent in photoacoustic imaging and precipitating skin regeneration. The high‐performance sulfate radical tumor therapy is implemented via exploiting the outstanding oxidation property of sulfate radical and inducing synergistic activation by photothermal effect and copper ions.
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H 2 O 2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO 5 − )‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO 4 − )‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO 4 − . Different from conventional ROS, the emergence of •SO 4 − , possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O 2 ) and H 2 O 2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine.
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H 2 O 2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO 5 − )‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO 4 − )‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO 4 − . Different from conventional ROS, the emergence of •SO 4 − , possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O 2 ) and H 2 O 2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine. The CuS@PMS nanosystems with multiple theranostic functions are maneuverable in stimuli‐responsive sulfate radical‐mediated nanotherapy against melanoma in an oxygen‐independent manner, competent in photoacoustic imaging and precipitating skin regeneration. The high‐performance sulfate radical tumor therapy is implemented via exploiting the outstanding oxidation property of sulfate radical and inducing synergistic activation by photothermal effect and copper ions.
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H O ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO . Different from conventional ROS, the emergence of •SO , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O ) and H O content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine.
Abstract Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine.
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine.
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2 O2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5- )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4- )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4- . Different from conventional ROS, the emergence of •SO4- , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2 ) and H2 O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine.Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2 O2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5- )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4- )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4- . Different from conventional ROS, the emergence of •SO4- , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2 ) and H2 O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine.
Author Ding, Dandan
Zhou, Jianqiao
Mei, Zihan
Chen, Liang
Feng, Wei
Huang, Hui
Chen, Yu
AuthorAffiliation 4 Wenzhou Institute of Shanghai University Wenzhou 325000 P. R. China
2 Shanghai Engineering Research Center of Organ Repair Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
3 School of Medicine Shanghai University Shanghai 200444 P. R. China
1 Department of Ultrasound Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai 200025 P. R. China
AuthorAffiliation_xml – name: 3 School of Medicine Shanghai University Shanghai 200444 P. R. China
– name: 1 Department of Ultrasound Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai 200025 P. R. China
– name: 2 Shanghai Engineering Research Center of Organ Repair Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
– name: 4 Wenzhou Institute of Shanghai University Wenzhou 325000 P. R. China
Author_xml – sequence: 1
  givenname: Dandan
  surname: Ding
  fullname: Ding, Dandan
  organization: Shanghai Jiaotong University School of Medicine
– sequence: 2
  givenname: Zihan
  surname: Mei
  fullname: Mei, Zihan
  organization: Shanghai Jiaotong University School of Medicine
– sequence: 3
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
  email: huanghuish@shu.edu.cn
  organization: Shanghai University
– sequence: 4
  givenname: Wei
  surname: Feng
  fullname: Feng, Wei
  organization: Shanghai University
– sequence: 5
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: Shanghai University
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-8206-3325
  surname: Chen
  fullname: Chen, Yu
  email: chenyuedu@shu.edu.cn
  organization: Wenzhou Institute of Shanghai University
– sequence: 7
  givenname: Jianqiao
  surname: Zhou
  fullname: Zhou, Jianqiao
  email: zjq11432@rjh.com.cn
  organization: Shanghai Jiaotong University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35488513$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1UREvplSNaiQuXBH-u7QtSVb4iVURqClfLu55NHe2ug70byI2fwG_kl-CQErW99GJbnmdezzue5-ioDz0g9JLgKcGYvrVuk6YUU4qxlvwJOqFEqwlTnB_dOR-js5RWGGMimOREPUPHTHClBGEnaD7_uV1C_-fX71nvYA156YdiMbaNHaC4ss7Xti2aEIvF4Lux9Zm8grQOffIbKK7HLoe-2D4MNxDtevsCPW1sm-Dsdj9FXz9-uL74PLmcf5pdnF9OakE1mzDAFmzlGJMK88pRzDWtlBWKgyirSlJWOQwSsKihAcoJ4xIaLCUGwbVmp2i213XBrsw6-s7GrQnWm38XIS6NjYOvWzBYSGCiVI2oHa8IVVlSlLRyhGhNbZm13u211mPVgatzB6Jt74nej_T-xizDxmiidMllFnhzKxDD9xHSYDqfamhb20MYk6GlUJRmoyyjrx-gqzDGPrcqU1JwIbESmXp1t6JDKf__LQPTPVDHkFKE5oAQbHazYXazYQ6zkRP4g4TaD3bwYefIt4-m_fAtbB95xJy__7ZgOrv8C79Nzv0
CitedBy_id crossref_primary_10_1016_j_biomaterials_2024_122570
crossref_primary_10_1016_j_jconrel_2024_05_016
crossref_primary_10_3389_fbioe_2023_1191014
crossref_primary_10_3390_jfb13040227
crossref_primary_10_26599_POM_2024_9140082
crossref_primary_10_1039_D4TB01777C
crossref_primary_10_1002_sstr_202400463
crossref_primary_10_1002_adhm_202201607
crossref_primary_10_1016_j_ajps_2024_100989
crossref_primary_10_1039_D3QM00206C
crossref_primary_10_1016_j_microc_2024_110144
crossref_primary_10_26599_NR_2025_94907164
crossref_primary_10_1002_adma_202405847
crossref_primary_10_1007_s40843_024_3177_5
crossref_primary_10_1002_smll_202308055
crossref_primary_10_1016_j_cej_2023_143012
crossref_primary_10_1002_ange_202416461
crossref_primary_10_1002_advs_202204881
crossref_primary_10_1016_j_matchemphys_2024_129863
crossref_primary_10_3389_fbioe_2022_1003777
crossref_primary_10_1021_acsnano_3c00326
crossref_primary_10_1021_acsnano_4c00952
crossref_primary_10_1039_D4TB01468E
crossref_primary_10_1002_advs_202302250
crossref_primary_10_1039_D4TB01877J
crossref_primary_10_1002_adhm_202301346
crossref_primary_10_1002_anie_202416461
crossref_primary_10_1016_j_eng_2023_06_010
crossref_primary_10_1016_j_nantod_2024_102180
crossref_primary_10_1021_acsanm_4c05824
crossref_primary_10_1021_acsanm_4c05728
crossref_primary_10_1002_advs_202308632
Cites_doi 10.1039/C9NR06651A
10.1016/j.cej.2017.11.059
10.1021/ja508641z
10.1021/acsnano.0c08848
10.1038/s41573-019-0044-1
10.1021/acsnano.8b02034
10.1016/j.apcatb.2016.04.003
10.1016/j.semcancer.2012.02.003
10.1021/acs.nanolett.9b01065
10.1002/smll.201900744
10.1002/smll.201702225
10.1002/anie.201813702
10.1021/acs.accounts.7b00535
10.1016/j.chemosphere.2017.12.152
10.1038/nrm3801
10.1016/j.biomaterials.2012.09.066
10.1002/adma.202005062
10.1016/j.biomaterials.2019.119656
10.1016/j.cej.2014.10.043
10.1038/s41580-020-0230-3
10.1021/acsnano.7b06870
10.1021/acsami.8b19667
10.1002/adma.202006532
10.1056/NEJMra2034861
10.1021/acsnano.0c07388
10.1021/acsami.5b11664
10.1016/j.scitotenv.2011.12.004
10.1039/C6CS00271D
10.1021/jacs.0c09482
10.1016/j.chemosphere.2020.127294
10.1038/nrclinonc.2017.43
10.1016/j.apcatb.2019.04.052
10.1016/S0140-6736(13)60802-8
10.1021/jacs.8b05992
10.1002/EXP.20210010
10.1038/s41467-017-02657-z
10.1002/anie.201411953
10.1002/EXP.20210149
10.1016/S0140-6736(18)31559-9
10.1021/acsami.9b01370
10.1021/acsnano.7b05858
10.1016/j.biomaterials.2015.02.112
10.1002/smll.201801353
10.1002/adma.202001976
10.1021/acs.chemrev.8b00626
10.1016/j.pharmthera.2014.11.014
10.1021/acs.nanolett.9b00770
10.1021/acsami.0c04755
10.1016/j.jmrt.2020.12.083
10.1021/acsbiomaterials.8b00736
10.1021/acsami.1c07409
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202200974
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Collection
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_057e3568f5cd4b1285ce562bd11992a6
PMC9189647
35488513
10_1002_advs_202200974
ADVS3943
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81471669; 82071928; 81470079
– fundername: Scientific Program Fund of Shanghai Jiao Tong University School of Medicine
  funderid: TM201618
– fundername: Basic Research Program of Shanghai Municipal Government
  funderid: 21JC1406002
– fundername: Shanghai Science and Technology Program
  funderid: 21010500100
– fundername: Scientific Program Fund of Shanghai Jiao Tong University School of Medicine
  grantid: TM201618
– fundername: National Natural Science Foundation of China
  grantid: 81470079
– fundername: National Natural Science Foundation of China
  grantid: 82071928
– fundername: Shanghai Science and Technology Program
  grantid: 21010500100
– fundername: National Natural Science Foundation of China
  grantid: 81471669
– fundername: Basic Research Program of Shanghai Municipal Government
  grantid: 21JC1406002
– fundername: ;
  grantid: 81471669; 82071928; 81470079
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5293-3e0aeabd337804bd20492b8a584e56bb723bd0e7e05cefe241347ef0770e54993
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:32:01 EDT 2025
Thu Aug 21 14:10:46 EDT 2025
Thu Jul 10 19:03:59 EDT 2025
Fri Jul 25 06:28:24 EDT 2025
Mon Jul 21 06:03:22 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 03:59:40 EDT 2025
Wed Jan 22 16:23:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords melanoma
ulfate radical
skin tissue healing
reactive oxygen species (ROS)
stimuli-responsive
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5293-3e0aeabd337804bd20492b8a584e56bb723bd0e7e05cefe241347ef0770e54993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8206-3325
OpenAccessLink https://www.proquest.com/docview/2675457085?pq-origsite=%requestingapplication%
PMID 35488513
PQID 2675457085
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_057e3568f5cd4b1285ce562bd11992a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9189647
proquest_miscellaneous_2658228043
proquest_journals_2675457085
pubmed_primary_35488513
crossref_primary_10_1002_advs_202200974
crossref_citationtrail_10_1002_advs_202200974
wiley_primary_10_1002_advs_202200974_ADVS3943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2020 2012; 19 22
2021 2015 2019; 10 262 253
2019 2021 2021 2019; 119 1 1 11
2016 2019 2021; 45 58 33
2018 2014; 392 383
2012 2020; 416 257
2019; 11
2018 2018 2017 2018; 334 140 13 196
2020; 142
2021 2017; 384 14
2019 2018; 19 12
2021 2018 2018; 15 9 12
2018 2015 2019; 51 54 15
2019; 19
2018 2020 2017; 4 12 11
2020; 32
2019 2021; 11 15
2020 2014; 21 15
2015 2021; 53 13
2016; 8
2018 2016; 194
2014 2019; 136 13
2021 2020; 33 233
2013 2015; 34 148
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
Xiang H. (e_1_2_7_15_2) 2019; 13
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_24_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 19 12
  start-page: 3229 6806
  year: 2019 2018
  publication-title: Nano Lett. ACS Nano
– volume: 384 14
  start-page: 2229 463
  year: 2021 2017
  publication-title: N. Engl. J. Med. Nat. Rev. Clin. Oncol.
– volume: 136 13
  start-page: 2223
  year: 2014 2019
  publication-title: J. Am. Chem. Soc. ACS Nano
– volume: 21 15
  start-page: 363 411
  year: 2020 2014
  publication-title: Nat. Rev. Mol. Cell Biol. Nat. Rev. Mol. Cell Biol.
– volume: 10 262 253
  start-page: 1415 854 206
  year: 2021 2015 2019
  publication-title: J. Mater. Res. Technol. Chem. Eng. J. Appl. Catal., B
– volume: 53 13
  start-page: 379
  year: 2015 2021
  publication-title: Biomaterials ACS Appl. Mater Interfaces
– volume: 119 1 1 11
  start-page: 4881 50
  year: 2019 2021 2021 2019
  publication-title: Chem. Rev. Exploration Exploration ACS Appl. Mater. Interfaces
– volume: 34 148
  start-page: 422 66
  year: 2013 2015
  publication-title: Biomaterials Pharmacol. Ther.
– volume: 334 140 13 196
  start-page: 1502 95
  year: 2018 2018 2017 2018
  publication-title: Chem. Eng. J. J. Am. Chem. Soc. Small Chemosphere
– volume: 19
  start-page: 3344
  year: 2019
  publication-title: Nano Lett.
– volume: 51 54 15
  start-page: 678 4070
  year: 2018 2015 2019
  publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. Small
– volume: 15 9 12
  start-page: 873 231 5197
  year: 2021 2018 2018
  publication-title: ACS Nano Nat. Commun. ACS Nano
– volume: 11 15
  start-page: 417 6457
  year: 2019 2021
  publication-title: ACS Appl. Mater Interfaces ACS Nano
– volume: 8
  start-page: 2847
  year: 2016
  publication-title: ACS Appl. Mater Interfaces
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4 12 11
  start-page: 3364
  year: 2018 2020 2017
  publication-title: ACS Biomater. Sci. Eng. ACS Appl. Mater Interfaces ACS Nano
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 194
  start-page: 169
  year: 2018 2016
  publication-title: Small Appl. Catal., B
– volume: 33 233
  year: 2021 2020
  publication-title: Adv. Mater. Biomaterials
– volume: 392 383
  start-page: 971 816
  year: 2018 2014
  publication-title: Lancet Lancet
– volume: 19 22
  start-page: 39 319
  year: 2020 2012
  publication-title: Nat. Rev. Drug. Discovery Semin. Cancer Biol.
– volume: 45 58 33
  start-page: 6597 2407
  year: 2016 2019 2021
  publication-title: Chem. Soc. Rev. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 416 257
  start-page: 507
  year: 2012 2020
  publication-title: Sci. Total Environ. Chemosphere
– ident: e_1_2_7_6_1
  doi: 10.1039/C9NR06651A
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cej.2017.11.059
– ident: e_1_2_7_15_1
  doi: 10.1021/ja508641z
– ident: e_1_2_7_21_2
  doi: 10.1021/acsnano.0c08848
– ident: e_1_2_7_3_1
  doi: 10.1038/s41573-019-0044-1
– ident: e_1_2_7_13_2
  doi: 10.1021/acsnano.8b02034
– ident: e_1_2_7_10_2
  doi: 10.1016/j.apcatb.2016.04.003
– ident: e_1_2_7_3_2
  doi: 10.1016/j.semcancer.2012.02.003
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.nanolett.9b01065
– ident: e_1_2_7_8_3
  doi: 10.1002/smll.201900744
– ident: e_1_2_7_9_3
  doi: 10.1002/smll.201702225
– ident: e_1_2_7_7_2
  doi: 10.1002/anie.201813702
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.accounts.7b00535
– ident: e_1_2_7_9_4
  doi: 10.1016/j.chemosphere.2017.12.152
– ident: e_1_2_7_5_2
  doi: 10.1038/nrm3801
– ident: e_1_2_7_19_1
  doi: 10.1016/j.biomaterials.2012.09.066
– ident: e_1_2_7_7_3
  doi: 10.1002/adma.202005062
– ident: e_1_2_7_14_2
  doi: 10.1016/j.biomaterials.2019.119656
– ident: e_1_2_7_22_2
  doi: 10.1016/j.cej.2014.10.043
– ident: e_1_2_7_5_1
  doi: 10.1038/s41580-020-0230-3
– ident: e_1_2_7_12_3
  doi: 10.1021/acsnano.7b06870
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.8b19667
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202006532
– ident: e_1_2_7_2_1
  doi: 10.1056/NEJMra2034861
– ident: e_1_2_7_12_1
  doi: 10.1021/acsnano.0c07388
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.5b11664
– ident: e_1_2_7_17_1
  doi: 10.1016/j.scitotenv.2011.12.004
– ident: e_1_2_7_7_1
  doi: 10.1039/C6CS00271D
– ident: e_1_2_7_11_1
  doi: 10.1021/jacs.0c09482
– ident: e_1_2_7_17_2
  doi: 10.1016/j.chemosphere.2020.127294
– ident: e_1_2_7_2_2
  doi: 10.1038/nrclinonc.2017.43
– ident: e_1_2_7_22_3
  doi: 10.1016/j.apcatb.2019.04.052
– ident: e_1_2_7_1_2
  doi: 10.1016/S0140-6736(13)60802-8
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.8b05992
– ident: e_1_2_7_4_2
  doi: 10.1002/EXP.20210010
– ident: e_1_2_7_12_2
  doi: 10.1038/s41467-017-02657-z
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.201411953
– ident: e_1_2_7_4_3
  doi: 10.1002/EXP.20210149
– volume: 13
  start-page: 2223
  year: 2019
  ident: e_1_2_7_15_2
  publication-title: ACS Nano
– ident: e_1_2_7_1_1
  doi: 10.1016/S0140-6736(18)31559-9
– ident: e_1_2_7_4_4
  doi: 10.1021/acsami.9b01370
– ident: e_1_2_7_20_3
  doi: 10.1021/acsnano.7b05858
– ident: e_1_2_7_24_1
  doi: 10.1016/j.biomaterials.2015.02.112
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201801353
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202001976
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.8b00626
– ident: e_1_2_7_19_2
  doi: 10.1016/j.pharmthera.2014.11.014
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.nanolett.9b00770
– ident: e_1_2_7_20_2
  doi: 10.1021/acsami.0c04755
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jmrt.2020.12.083
– ident: e_1_2_7_20_1
  doi: 10.1021/acsbiomaterials.8b00736
– ident: e_1_2_7_24_2
  doi: 10.1021/acsami.1c07409
SSID ssj0001537418
Score 2.4096272
Snippet Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the...
Abstract Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200974
SubjectTerms Animals
Copper
Lasers
Light
Melanoma
Morphology
Neoplasms - therapy
Oxygen
Reactive Oxygen Species
reactive oxygen species (ROS)
skin tissue healing
Spectrum analysis
stimuli‐responsive
Sulfates
Tumor Microenvironment
Tumors
ulfate radical
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekxfx22qVCIJ6CKbZbDc9qliqoIK10FvIJrsoaCrait78Cf5Gf4lvNtvQouLFa3ZINrOzmTeZ2TeM7cow0IFQyqdm2j4xYPlKthDzmMC0FEK5zB4UvrhsdnrReV_0J1p9UU1YSQ9cKu4QeEJz0YyNyPJI4WsqMg2frfIGFU6mlmwbPm8imCrPB3OiZRmzNAbhYZq_EDt3SNkAGU15IUvW_xPC_F4oOQlgrQdqL7B5Bx29o3LKi2xGF0ts0W3OZ2_fMUgfLLOrq9c3GMbn-8dZ1eV26HVH9wbI0rtObW7GA1z1usM7qo-C5LUrln3R3s3oAUP47rrTWW8rrNc-vTnp-K5zgp8J-G-f6yDVqco5J34hlYeIA0IVp0AbUJ5SMuQqD7TEMmXaaMqtRVKbQMpAU8DIV9lsMSj0OvNkwwAGZIA9eRYBK6X050oYGedYU6N5jfljTSaZoxWn7hb3SUmIHCak-aTSfI3tVfKPJaHGr5LHtDCVFBFh2wswj8SZR_KXedRYfbysidudeASipEhIoM0a26mGsa8oWZIWejAiGRETVVCEN1wrraCaCUeYB6SKETllH1NTnR4p7m4td3erEdPZX2jNWtIfKkiATbq8FfGN_9DFJpujO5eFbnU2O3wa6S1AqqHatrvnC1a3HcA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll7E9bm6SgVBPRS7TbLpHlUUFXzgKngrSZvowtqVfYh78yf4G_0lzqTZalERr83Qx0ym-SaZ-YaQLREGOuBK-dhM20cGLF-JJsQ8JjBNBaFcYguFzy8aJ7fs7I7ffaniz_khig039Az7v0YHl6q_90kaKtNnpNsOcXtfsEkyjfW1mNQXsqvPXRZOkZ4FO8xBdO3TiLExc2MQ7pVvUVqZLIH_T6jze_LkV1BrV6XjOTLr4KS3n9u_QiZ0Nk8qzmH73o5jld5dIJeXLyOYLO-vb6dF59uB1xp2DKBN71ra8xoPIKzXGrQxZwokr10C7bP2boaPMAT_YlexNVokt8dHN4cnvuum4Ccc1nSf6kBqqVJKkXNIpSHEBqGKJCAQzRtKiZCqNNACTJdoo_G8jQltAiECjUEkXSJTWTfTK8QTdQPQIAEolCYM8JPE3SxuRJSCnY2mVeKPNRknjmocO1504pwkOYxR83Gh-SrZLuSfcpKNXyUP0DCFFJJj2wvd3n3sfC0GCKopb0SGJylTsADDBwHMU2kdc21lo0pqY7PGzmPhERA5MS4AgVbJZjEMvoYHKDLT3SHK8Ajpgxh84XI-C4o3oRD6AXqFEVGaH6VXLY9k7QfL592sR1gPDFqzM-kPFcSAV1q0yejqP-XXyAxezPPcamRq0BvqdUBUA7VhneYDlfQaZA
  priority: 102
  providerName: Wiley-Blackwell
Title Oxygen‐Independent Sulfate Radical for Stimuli‐Responsive Tumor Nanotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202200974
https://www.ncbi.nlm.nih.gov/pubmed/35488513
https://www.proquest.com/docview/2675457085
https://www.proquest.com/docview/2658228043
https://pubmed.ncbi.nlm.nih.gov/PMC9189647
https://doaj.org/article/057e3568f5cd4b1285ce562bd11992a6
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swED9B-7KXaQzYylgVpEmMB4vUH3X6NMEGYhsw1ILEWxTHNiCxlEGLxn-_O8cNq9jHa-wosX1n_-7DvwN4p3nqUmUMo2LajBiwmNEDtHl86gcGTbkyXBQ-Ou4fnMkv5-o8OtzuYlrlbE8MG7Udl-Qj3-aIbKXSiBA-3PxgVDWKoquxhMYitHELzrIWtHf3jk-Gj14WJYieZcbWmPLtwt4TSzenqICWc6dRIO3_E9J8mjD5O5ANJ9H-C3geIWSyU6_5Eiy46iUsRSW9S95HJumtZfj67ecDCgj73NS6nSSj6bVHfJkMixChSRC0JqPJFWVJsWFMmL13yen0Ozbg3htvaD2swNn-3unHAxarJ7BS4RnOhEsLVxgrBHEMGcvRFuAmKxBxONU3RnNhbOo0LlXpvKP4mtTOp1qnjoxGsQqtaly515DonkcoUCL0saVEvFSQ90p5nVlcV-9EB9hsFvMyUotThYvrvCZF5jnNet7Megc2m_43NanGX3vu0qI0vYgMOzwY317kUbdyhJxOqH7mVWmlQTnAASGsM7ZHubVFvwPrsyXNo4biJxp56sBG04y6RQGTonLjKfVRGdEFSRzhq1oCmj8RaOohWsUWPScbc78631JdXQb-7kEvo_u_OGtBiv4zBTnik5EYSLH272G8gWf0Tp3Gtg6tye3UvUXANDFdWOTypAvtnU9Hh6Nu1JFucD_8At1tFyQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEOOzbECQQMCDtdSO4_RhQgw2tXQrqO2kvZk4dmDSlo6t3eg_xd_IXeIEKr6e9hq7TXw-n3_nO_8O4JnioQulMYyKaTNiwGJGddHnycO8a9CVy8qLwvvDuHcQvT-Uhyvwvb4LQ2mVtU0sDbWdZnRGvskR2UZSIUJ4ffqVUdUoiq7WJTQqtRi4xSW6bOdb_Xc4v885392ZvO0xX1WAZRL3NiZcmLrUWCGIe8dYjhiZmyTFndjJ2BjFhbGhUziEzOWO4k6RcnmoVOjImRL4v9dgNRJxyFuwur0z_Dj6eaojBdHB1OyQId9M7QWxgnOKQqhoafcriwT8Cdn-nqD5K3Aud77dW3DTQ9bgTaVja7Diituw5o3CefDSM1e_ugODD98WqJCs39TWnQXj-XGOeDYYpWVEKECQHIxnR5SVxUY-QffCBZP5CTagrfc3whZ34eBK5HoPWsW0cA8gUJ0coUeGUMtmEeKzlE7LZK4Si3qUO9EGVktRZ57KnCpqHOuKhJlrkrpupN6GF03_04rE4689t2lSml5Evl0-mJ591n4ta4S4Tsg4yWVmI4MbPA4IYaSxHcrlTeM2bNRTqr1FwFc0-tuGp00zrmUK0KSFm86pj0yInijCEd6vNKD5EoGuJaJjbFFLurH0qcstxdGXki-820novjFKrdSi_4hAIx4ai24kHv57GE_gem-yv6f3-sPBOtyg31cpdBvQmp3N3SMEazPz2K-QAD5d9aL8AR_WT98
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IMZnYYCRQMCD1dSO6_QBIcZWrRTK1G7S3kIc2zBppGNrB_3X-Ou4S5xAxdfTXmO3ic939u98598BPNYicpEyhlMxbU4MWNzoPvo8PvJ9g65cXl4Ufjfu7R7Ebw7V4Rp8r-_CUFplvSaWC7Wd5XRG3hGIbGOlESF0fEiL2NsevDz5wqmCFEVa63IalYqM3PIrum9nL4bbONdPhBjs7L_e5aHCAM8V7nNcuihzmbFSEg-PsQLxsjBJhruyUz1jtJDGRk7jcHLnHcWgYu18pHXkyLGS-L-XYF2TV9SC9a2d8d7k5wmPkkQNUzNFRqKT2XNiCBcUkdDxyk5YFgz4E8r9PVnzVxBd7oKDa3A1wFf2qtK3DVhzxXXYCAvEGXsWWKyf34DR-29LVE4-bOrsztl0cewR27JJVkaHGAJmNp0fUYYWn4Rk3XPH9hefsQHX_XA7bHkTDi5ErregVcwKdweY7nqEITnCLpvHiNUyOjlTXicWdco72QZeSzHNA605Vdc4TitCZpGS1NNG6m142vQ_qQg9_tpziyal6UVE3OWD2enHNNh1inDXSdVLvMptbHCzxwEhpDS2S3m9Wa8Nm_WUpmF1wFc0utyGR00z2jUFa7LCzRbURyVEVRTjCG9XGtB8iUQ3E5EytugV3Vj51NWW4uhTyR3e7yZ09xilVmrRf0SQIjaayn4s7_57GA_hMhpj-nY4Ht2DK_TzKptuE1rz04W7j7htbh4EA2Hw4aJt8gfYJ1QU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen%E2%80%90Independent+Sulfate+Radical+for+Stimuli%E2%80%90Responsive+Tumor+Nanotherapy&rft.jtitle=Advanced+science&rft.au=Ding%2C+Dandan&rft.au=Mei%2C+Zihan&rft.au=Huang%2C+Hui&rft.au=Feng%2C+Wei&rft.date=2022-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=17&rft_id=info:doi/10.1002%2Fadvs.202200974&rft_id=info%3Apmid%2F35488513&rft.externalDocID=PMC9189647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon