Oxygen‐Independent Sulfate Radical for Stimuli‐Responsive Tumor Nanotherapy
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production o...
Saved in:
Published in | Advanced science Vol. 9; no. 17; pp. e2200974 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.06.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine.
The CuS@PMS nanosystems with multiple theranostic functions are maneuverable in stimuli‐responsive sulfate radical‐mediated nanotherapy against melanoma in an oxygen‐independent manner, competent in photoacoustic imaging and precipitating skin regeneration. The high‐performance sulfate radical tumor therapy is implemented via exploiting the outstanding oxidation property of sulfate radical and inducing synergistic activation by photothermal effect and copper ions. |
---|---|
AbstractList | Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine.
The CuS@PMS nanosystems with multiple theranostic functions are maneuverable in stimuli‐responsive sulfate radical‐mediated nanotherapy against melanoma in an oxygen‐independent manner, competent in photoacoustic imaging and precipitating skin regeneration. The high‐performance sulfate radical tumor therapy is implemented via exploiting the outstanding oxidation property of sulfate radical and inducing synergistic activation by photothermal effect and copper ions. Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H 2 O 2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO 5 − )‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO 4 − )‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO 4 − . Different from conventional ROS, the emergence of •SO 4 − , possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O 2 ) and H 2 O 2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine. Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H 2 O 2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO 5 − )‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO 4 − )‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO 4 − . Different from conventional ROS, the emergence of •SO 4 − , possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O 2 ) and H 2 O 2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine. The CuS@PMS nanosystems with multiple theranostic functions are maneuverable in stimuli‐responsive sulfate radical‐mediated nanotherapy against melanoma in an oxygen‐independent manner, competent in photoacoustic imaging and precipitating skin regeneration. The high‐performance sulfate radical tumor therapy is implemented via exploiting the outstanding oxidation property of sulfate radical and inducing synergistic activation by photothermal effect and copper ions. Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H O ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO . Different from conventional ROS, the emergence of •SO , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O ) and H O content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine. Abstract Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)‐loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)‐mediated and stimuli‐responsive tumor nanotherapy in an oxygen‐independent manner. In this therapeutic modality, the second near‐infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half‐life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli‐responsive nanosystems in biomedicine. Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2O2) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5−)-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4−)-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4−. Different from conventional ROS, the emergence of •SO4−, possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2) and H2O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine. Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2 O2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5- )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4- )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4- . Different from conventional ROS, the emergence of •SO4- , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2 ) and H2 O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine.Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2 O2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5- )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4- )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4- . Different from conventional ROS, the emergence of •SO4- , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2 ) and H2 O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine. |
Author | Ding, Dandan Zhou, Jianqiao Mei, Zihan Chen, Liang Feng, Wei Huang, Hui Chen, Yu |
AuthorAffiliation | 4 Wenzhou Institute of Shanghai University Wenzhou 325000 P. R. China 2 Shanghai Engineering Research Center of Organ Repair Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China 3 School of Medicine Shanghai University Shanghai 200444 P. R. China 1 Department of Ultrasound Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai 200025 P. R. China |
AuthorAffiliation_xml | – name: 3 School of Medicine Shanghai University Shanghai 200444 P. R. China – name: 1 Department of Ultrasound Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai 200025 P. R. China – name: 2 Shanghai Engineering Research Center of Organ Repair Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China – name: 4 Wenzhou Institute of Shanghai University Wenzhou 325000 P. R. China |
Author_xml | – sequence: 1 givenname: Dandan surname: Ding fullname: Ding, Dandan organization: Shanghai Jiaotong University School of Medicine – sequence: 2 givenname: Zihan surname: Mei fullname: Mei, Zihan organization: Shanghai Jiaotong University School of Medicine – sequence: 3 givenname: Hui surname: Huang fullname: Huang, Hui email: huanghuish@shu.edu.cn organization: Shanghai University – sequence: 4 givenname: Wei surname: Feng fullname: Feng, Wei organization: Shanghai University – sequence: 5 givenname: Liang surname: Chen fullname: Chen, Liang organization: Shanghai University – sequence: 6 givenname: Yu orcidid: 0000-0002-8206-3325 surname: Chen fullname: Chen, Yu email: chenyuedu@shu.edu.cn organization: Wenzhou Institute of Shanghai University – sequence: 7 givenname: Jianqiao surname: Zhou fullname: Zhou, Jianqiao email: zjq11432@rjh.com.cn organization: Shanghai Jiaotong University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35488513$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1UREvplSNaiQuXBH-u7QtSVb4iVURqClfLu55NHe2ug70byI2fwG_kl-CQErW99GJbnmdezzue5-ioDz0g9JLgKcGYvrVuk6YUU4qxlvwJOqFEqwlTnB_dOR-js5RWGGMimOREPUPHTHClBGEnaD7_uV1C_-fX71nvYA156YdiMbaNHaC4ss7Xti2aEIvF4Lux9Zm8grQOffIbKK7HLoe-2D4MNxDtevsCPW1sm-Dsdj9FXz9-uL74PLmcf5pdnF9OakE1mzDAFmzlGJMK88pRzDWtlBWKgyirSlJWOQwSsKihAcoJ4xIaLCUGwbVmp2i213XBrsw6-s7GrQnWm38XIS6NjYOvWzBYSGCiVI2oHa8IVVlSlLRyhGhNbZm13u211mPVgatzB6Jt74nej_T-xizDxmiidMllFnhzKxDD9xHSYDqfamhb20MYk6GlUJRmoyyjrx-gqzDGPrcqU1JwIbESmXp1t6JDKf__LQPTPVDHkFKE5oAQbHazYXazYQ6zkRP4g4TaD3bwYefIt4-m_fAtbB95xJy__7ZgOrv8C79Nzv0 |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2024_122570 crossref_primary_10_1016_j_jconrel_2024_05_016 crossref_primary_10_3389_fbioe_2023_1191014 crossref_primary_10_3390_jfb13040227 crossref_primary_10_26599_POM_2024_9140082 crossref_primary_10_1039_D4TB01777C crossref_primary_10_1002_sstr_202400463 crossref_primary_10_1002_adhm_202201607 crossref_primary_10_1016_j_ajps_2024_100989 crossref_primary_10_1039_D3QM00206C crossref_primary_10_1016_j_microc_2024_110144 crossref_primary_10_26599_NR_2025_94907164 crossref_primary_10_1002_adma_202405847 crossref_primary_10_1007_s40843_024_3177_5 crossref_primary_10_1002_smll_202308055 crossref_primary_10_1016_j_cej_2023_143012 crossref_primary_10_1002_ange_202416461 crossref_primary_10_1002_advs_202204881 crossref_primary_10_1016_j_matchemphys_2024_129863 crossref_primary_10_3389_fbioe_2022_1003777 crossref_primary_10_1021_acsnano_3c00326 crossref_primary_10_1021_acsnano_4c00952 crossref_primary_10_1039_D4TB01468E crossref_primary_10_1002_advs_202302250 crossref_primary_10_1039_D4TB01877J crossref_primary_10_1002_adhm_202301346 crossref_primary_10_1002_anie_202416461 crossref_primary_10_1016_j_eng_2023_06_010 crossref_primary_10_1016_j_nantod_2024_102180 crossref_primary_10_1021_acsanm_4c05824 crossref_primary_10_1021_acsanm_4c05728 crossref_primary_10_1002_advs_202308632 |
Cites_doi | 10.1039/C9NR06651A 10.1016/j.cej.2017.11.059 10.1021/ja508641z 10.1021/acsnano.0c08848 10.1038/s41573-019-0044-1 10.1021/acsnano.8b02034 10.1016/j.apcatb.2016.04.003 10.1016/j.semcancer.2012.02.003 10.1021/acs.nanolett.9b01065 10.1002/smll.201900744 10.1002/smll.201702225 10.1002/anie.201813702 10.1021/acs.accounts.7b00535 10.1016/j.chemosphere.2017.12.152 10.1038/nrm3801 10.1016/j.biomaterials.2012.09.066 10.1002/adma.202005062 10.1016/j.biomaterials.2019.119656 10.1016/j.cej.2014.10.043 10.1038/s41580-020-0230-3 10.1021/acsnano.7b06870 10.1021/acsami.8b19667 10.1002/adma.202006532 10.1056/NEJMra2034861 10.1021/acsnano.0c07388 10.1021/acsami.5b11664 10.1016/j.scitotenv.2011.12.004 10.1039/C6CS00271D 10.1021/jacs.0c09482 10.1016/j.chemosphere.2020.127294 10.1038/nrclinonc.2017.43 10.1016/j.apcatb.2019.04.052 10.1016/S0140-6736(13)60802-8 10.1021/jacs.8b05992 10.1002/EXP.20210010 10.1038/s41467-017-02657-z 10.1002/anie.201411953 10.1002/EXP.20210149 10.1016/S0140-6736(18)31559-9 10.1021/acsami.9b01370 10.1021/acsnano.7b05858 10.1016/j.biomaterials.2015.02.112 10.1002/smll.201801353 10.1002/adma.202001976 10.1021/acs.chemrev.8b00626 10.1016/j.pharmthera.2014.11.014 10.1021/acs.nanolett.9b00770 10.1021/acsami.0c04755 10.1016/j.jmrt.2020.12.083 10.1021/acsbiomaterials.8b00736 10.1021/acsami.1c07409 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202200974 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Collection Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_057e3568f5cd4b1285ce562bd11992a6 PMC9189647 35488513 10_1002_advs_202200974 ADVS3943 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81471669; 82071928; 81470079 – fundername: Scientific Program Fund of Shanghai Jiao Tong University School of Medicine funderid: TM201618 – fundername: Basic Research Program of Shanghai Municipal Government funderid: 21JC1406002 – fundername: Shanghai Science and Technology Program funderid: 21010500100 – fundername: Scientific Program Fund of Shanghai Jiao Tong University School of Medicine grantid: TM201618 – fundername: National Natural Science Foundation of China grantid: 81470079 – fundername: National Natural Science Foundation of China grantid: 82071928 – fundername: Shanghai Science and Technology Program grantid: 21010500100 – fundername: National Natural Science Foundation of China grantid: 81471669 – fundername: Basic Research Program of Shanghai Municipal Government grantid: 21JC1406002 – fundername: ; grantid: 81471669; 82071928; 81470079 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5293-3e0aeabd337804bd20492b8a584e56bb723bd0e7e05cefe241347ef0770e54993 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:32:01 EDT 2025 Thu Aug 21 14:10:46 EDT 2025 Thu Jul 10 19:03:59 EDT 2025 Fri Jul 25 06:28:24 EDT 2025 Mon Jul 21 06:03:22 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 03:59:40 EDT 2025 Wed Jan 22 16:23:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | melanoma ulfate radical skin tissue healing reactive oxygen species (ROS) stimuli-responsive |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5293-3e0aeabd337804bd20492b8a584e56bb723bd0e7e05cefe241347ef0770e54993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8206-3325 |
OpenAccessLink | https://www.proquest.com/docview/2675457085?pq-origsite=%requestingapplication% |
PMID | 35488513 |
PQID | 2675457085 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_057e3568f5cd4b1285ce562bd11992a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9189647 proquest_miscellaneous_2658228043 proquest_journals_2675457085 pubmed_primary_35488513 crossref_primary_10_1002_advs_202200974 crossref_citationtrail_10_1002_advs_202200974 wiley_primary_10_1002_advs_202200974_ADVS3943 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2020 2012; 19 22 2021 2015 2019; 10 262 253 2019 2021 2021 2019; 119 1 1 11 2016 2019 2021; 45 58 33 2018 2014; 392 383 2012 2020; 416 257 2019; 11 2018 2018 2017 2018; 334 140 13 196 2020; 142 2021 2017; 384 14 2019 2018; 19 12 2021 2018 2018; 15 9 12 2018 2015 2019; 51 54 15 2019; 19 2018 2020 2017; 4 12 11 2020; 32 2019 2021; 11 15 2020 2014; 21 15 2015 2021; 53 13 2016; 8 2018 2016; 194 2014 2019; 136 13 2021 2020; 33 233 2013 2015; 34 148 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 Xiang H. (e_1_2_7_15_2) 2019; 13 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_24_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 19 12 start-page: 3229 6806 year: 2019 2018 publication-title: Nano Lett. ACS Nano – volume: 384 14 start-page: 2229 463 year: 2021 2017 publication-title: N. Engl. J. Med. Nat. Rev. Clin. Oncol. – volume: 136 13 start-page: 2223 year: 2014 2019 publication-title: J. Am. Chem. Soc. ACS Nano – volume: 21 15 start-page: 363 411 year: 2020 2014 publication-title: Nat. Rev. Mol. Cell Biol. Nat. Rev. Mol. Cell Biol. – volume: 10 262 253 start-page: 1415 854 206 year: 2021 2015 2019 publication-title: J. Mater. Res. Technol. Chem. Eng. J. Appl. Catal., B – volume: 53 13 start-page: 379 year: 2015 2021 publication-title: Biomaterials ACS Appl. Mater Interfaces – volume: 119 1 1 11 start-page: 4881 50 year: 2019 2021 2021 2019 publication-title: Chem. Rev. Exploration Exploration ACS Appl. Mater. Interfaces – volume: 34 148 start-page: 422 66 year: 2013 2015 publication-title: Biomaterials Pharmacol. Ther. – volume: 334 140 13 196 start-page: 1502 95 year: 2018 2018 2017 2018 publication-title: Chem. Eng. J. J. Am. Chem. Soc. Small Chemosphere – volume: 19 start-page: 3344 year: 2019 publication-title: Nano Lett. – volume: 51 54 15 start-page: 678 4070 year: 2018 2015 2019 publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. Small – volume: 15 9 12 start-page: 873 231 5197 year: 2021 2018 2018 publication-title: ACS Nano Nat. Commun. ACS Nano – volume: 11 15 start-page: 417 6457 year: 2019 2021 publication-title: ACS Appl. Mater Interfaces ACS Nano – volume: 8 start-page: 2847 year: 2016 publication-title: ACS Appl. Mater Interfaces – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 4 12 11 start-page: 3364 year: 2018 2020 2017 publication-title: ACS Biomater. Sci. Eng. ACS Appl. Mater Interfaces ACS Nano – volume: 11 year: 2019 publication-title: Nanoscale – volume: 194 start-page: 169 year: 2018 2016 publication-title: Small Appl. Catal., B – volume: 33 233 year: 2021 2020 publication-title: Adv. Mater. Biomaterials – volume: 392 383 start-page: 971 816 year: 2018 2014 publication-title: Lancet Lancet – volume: 19 22 start-page: 39 319 year: 2020 2012 publication-title: Nat. Rev. Drug. Discovery Semin. Cancer Biol. – volume: 45 58 33 start-page: 6597 2407 year: 2016 2019 2021 publication-title: Chem. Soc. Rev. Angew. Chem., Int. Ed. Adv. Mater. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 416 257 start-page: 507 year: 2012 2020 publication-title: Sci. Total Environ. Chemosphere – ident: e_1_2_7_6_1 doi: 10.1039/C9NR06651A – ident: e_1_2_7_9_1 doi: 10.1016/j.cej.2017.11.059 – ident: e_1_2_7_15_1 doi: 10.1021/ja508641z – ident: e_1_2_7_21_2 doi: 10.1021/acsnano.0c08848 – ident: e_1_2_7_3_1 doi: 10.1038/s41573-019-0044-1 – ident: e_1_2_7_13_2 doi: 10.1021/acsnano.8b02034 – ident: e_1_2_7_10_2 doi: 10.1016/j.apcatb.2016.04.003 – ident: e_1_2_7_3_2 doi: 10.1016/j.semcancer.2012.02.003 – ident: e_1_2_7_16_1 doi: 10.1021/acs.nanolett.9b01065 – ident: e_1_2_7_8_3 doi: 10.1002/smll.201900744 – ident: e_1_2_7_9_3 doi: 10.1002/smll.201702225 – ident: e_1_2_7_7_2 doi: 10.1002/anie.201813702 – ident: e_1_2_7_8_1 doi: 10.1021/acs.accounts.7b00535 – ident: e_1_2_7_9_4 doi: 10.1016/j.chemosphere.2017.12.152 – ident: e_1_2_7_5_2 doi: 10.1038/nrm3801 – ident: e_1_2_7_19_1 doi: 10.1016/j.biomaterials.2012.09.066 – ident: e_1_2_7_7_3 doi: 10.1002/adma.202005062 – ident: e_1_2_7_14_2 doi: 10.1016/j.biomaterials.2019.119656 – ident: e_1_2_7_22_2 doi: 10.1016/j.cej.2014.10.043 – ident: e_1_2_7_5_1 doi: 10.1038/s41580-020-0230-3 – ident: e_1_2_7_12_3 doi: 10.1021/acsnano.7b06870 – ident: e_1_2_7_21_1 doi: 10.1021/acsami.8b19667 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202006532 – ident: e_1_2_7_2_1 doi: 10.1056/NEJMra2034861 – ident: e_1_2_7_12_1 doi: 10.1021/acsnano.0c07388 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.5b11664 – ident: e_1_2_7_17_1 doi: 10.1016/j.scitotenv.2011.12.004 – ident: e_1_2_7_7_1 doi: 10.1039/C6CS00271D – ident: e_1_2_7_11_1 doi: 10.1021/jacs.0c09482 – ident: e_1_2_7_17_2 doi: 10.1016/j.chemosphere.2020.127294 – ident: e_1_2_7_2_2 doi: 10.1038/nrclinonc.2017.43 – ident: e_1_2_7_22_3 doi: 10.1016/j.apcatb.2019.04.052 – ident: e_1_2_7_1_2 doi: 10.1016/S0140-6736(13)60802-8 – ident: e_1_2_7_9_2 doi: 10.1021/jacs.8b05992 – ident: e_1_2_7_4_2 doi: 10.1002/EXP.20210010 – ident: e_1_2_7_12_2 doi: 10.1038/s41467-017-02657-z – ident: e_1_2_7_8_2 doi: 10.1002/anie.201411953 – ident: e_1_2_7_4_3 doi: 10.1002/EXP.20210149 – volume: 13 start-page: 2223 year: 2019 ident: e_1_2_7_15_2 publication-title: ACS Nano – ident: e_1_2_7_1_1 doi: 10.1016/S0140-6736(18)31559-9 – ident: e_1_2_7_4_4 doi: 10.1021/acsami.9b01370 – ident: e_1_2_7_20_3 doi: 10.1021/acsnano.7b05858 – ident: e_1_2_7_24_1 doi: 10.1016/j.biomaterials.2015.02.112 – ident: e_1_2_7_10_1 doi: 10.1002/smll.201801353 – ident: e_1_2_7_23_1 doi: 10.1002/adma.202001976 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.8b00626 – ident: e_1_2_7_19_2 doi: 10.1016/j.pharmthera.2014.11.014 – ident: e_1_2_7_13_1 doi: 10.1021/acs.nanolett.9b00770 – ident: e_1_2_7_20_2 doi: 10.1021/acsami.0c04755 – ident: e_1_2_7_22_1 doi: 10.1016/j.jmrt.2020.12.083 – ident: e_1_2_7_20_1 doi: 10.1021/acsbiomaterials.8b00736 – ident: e_1_2_7_24_2 doi: 10.1021/acsami.1c07409 |
SSID | ssj0001537418 |
Score | 2.4096272 |
Snippet | Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the... Abstract Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However,... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200974 |
SubjectTerms | Animals Copper Lasers Light Melanoma Morphology Neoplasms - therapy Oxygen Reactive Oxygen Species reactive oxygen species (ROS) skin tissue healing Spectrum analysis stimuli‐responsive Sulfates Tumor Microenvironment Tumors ulfate radical |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekxfx22qVCIJ6CKbZbDc9qliqoIK10FvIJrsoaCrait78Cf5Gf4lvNtvQouLFa3ZINrOzmTeZ2TeM7cow0IFQyqdm2j4xYPlKthDzmMC0FEK5zB4UvrhsdnrReV_0J1p9UU1YSQ9cKu4QeEJz0YyNyPJI4WsqMg2frfIGFU6mlmwbPm8imCrPB3OiZRmzNAbhYZq_EDt3SNkAGU15IUvW_xPC_F4oOQlgrQdqL7B5Bx29o3LKi2xGF0ts0W3OZ2_fMUgfLLOrq9c3GMbn-8dZ1eV26HVH9wbI0rtObW7GA1z1usM7qo-C5LUrln3R3s3oAUP47rrTWW8rrNc-vTnp-K5zgp8J-G-f6yDVqco5J34hlYeIA0IVp0AbUJ5SMuQqD7TEMmXaaMqtRVKbQMpAU8DIV9lsMSj0OvNkwwAGZIA9eRYBK6X050oYGedYU6N5jfljTSaZoxWn7hb3SUmIHCak-aTSfI3tVfKPJaHGr5LHtDCVFBFh2wswj8SZR_KXedRYfbysidudeASipEhIoM0a26mGsa8oWZIWejAiGRETVVCEN1wrraCaCUeYB6SKETllH1NTnR4p7m4td3erEdPZX2jNWtIfKkiATbq8FfGN_9DFJpujO5eFbnU2O3wa6S1AqqHatrvnC1a3HcA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll7E9bm6SgVBPRS7TbLpHlUUFXzgKngrSZvowtqVfYh78yf4G_0lzqTZalERr83Qx0ym-SaZ-YaQLREGOuBK-dhM20cGLF-JJsQ8JjBNBaFcYguFzy8aJ7fs7I7ffaniz_khig039Az7v0YHl6q_90kaKtNnpNsOcXtfsEkyjfW1mNQXsqvPXRZOkZ4FO8xBdO3TiLExc2MQ7pVvUVqZLIH_T6jze_LkV1BrV6XjOTLr4KS3n9u_QiZ0Nk8qzmH73o5jld5dIJeXLyOYLO-vb6dF59uB1xp2DKBN71ra8xoPIKzXGrQxZwokr10C7bP2boaPMAT_YlexNVokt8dHN4cnvuum4Ccc1nSf6kBqqVJKkXNIpSHEBqGKJCAQzRtKiZCqNNACTJdoo_G8jQltAiECjUEkXSJTWTfTK8QTdQPQIAEolCYM8JPE3SxuRJSCnY2mVeKPNRknjmocO1504pwkOYxR83Gh-SrZLuSfcpKNXyUP0DCFFJJj2wvd3n3sfC0GCKopb0SGJylTsADDBwHMU2kdc21lo0pqY7PGzmPhERA5MS4AgVbJZjEMvoYHKDLT3SHK8Ajpgxh84XI-C4o3oRD6AXqFEVGaH6VXLY9k7QfL592sR1gPDFqzM-kPFcSAV1q0yejqP-XXyAxezPPcamRq0BvqdUBUA7VhneYDlfQaZA priority: 102 providerName: Wiley-Blackwell |
Title | Oxygen‐Independent Sulfate Radical for Stimuli‐Responsive Tumor Nanotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202200974 https://www.ncbi.nlm.nih.gov/pubmed/35488513 https://www.proquest.com/docview/2675457085 https://www.proquest.com/docview/2658228043 https://pubmed.ncbi.nlm.nih.gov/PMC9189647 https://doaj.org/article/057e3568f5cd4b1285ce562bd11992a6 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swED9B-7KXaQzYylgVpEmMB4vUH3X6NMEGYhsw1ILEWxTHNiCxlEGLxn-_O8cNq9jHa-wosX1n_-7DvwN4p3nqUmUMo2LajBiwmNEDtHl86gcGTbkyXBQ-Ou4fnMkv5-o8OtzuYlrlbE8MG7Udl-Qj3-aIbKXSiBA-3PxgVDWKoquxhMYitHELzrIWtHf3jk-Gj14WJYieZcbWmPLtwt4TSzenqICWc6dRIO3_E9J8mjD5O5ANJ9H-C3geIWSyU6_5Eiy46iUsRSW9S95HJumtZfj67ecDCgj73NS6nSSj6bVHfJkMixChSRC0JqPJFWVJsWFMmL13yen0Ozbg3htvaD2swNn-3unHAxarJ7BS4RnOhEsLVxgrBHEMGcvRFuAmKxBxONU3RnNhbOo0LlXpvKP4mtTOp1qnjoxGsQqtaly515DonkcoUCL0saVEvFSQ90p5nVlcV-9EB9hsFvMyUotThYvrvCZF5jnNet7Megc2m_43NanGX3vu0qI0vYgMOzwY317kUbdyhJxOqH7mVWmlQTnAASGsM7ZHubVFvwPrsyXNo4biJxp56sBG04y6RQGTonLjKfVRGdEFSRzhq1oCmj8RaOohWsUWPScbc78631JdXQb-7kEvo_u_OGtBiv4zBTnik5EYSLH272G8gWf0Tp3Gtg6tye3UvUXANDFdWOTypAvtnU9Hh6Nu1JFucD_8At1tFyQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEOOzbECQQMCDtdSO4_RhQgw2tXQrqO2kvZk4dmDSlo6t3eg_xd_IXeIEKr6e9hq7TXw-n3_nO_8O4JnioQulMYyKaTNiwGJGddHnycO8a9CVy8qLwvvDuHcQvT-Uhyvwvb4LQ2mVtU0sDbWdZnRGvskR2UZSIUJ4ffqVUdUoiq7WJTQqtRi4xSW6bOdb_Xc4v885392ZvO0xX1WAZRL3NiZcmLrUWCGIe8dYjhiZmyTFndjJ2BjFhbGhUziEzOWO4k6RcnmoVOjImRL4v9dgNRJxyFuwur0z_Dj6eaojBdHB1OyQId9M7QWxgnOKQqhoafcriwT8Cdn-nqD5K3Aud77dW3DTQ9bgTaVja7Diituw5o3CefDSM1e_ugODD98WqJCs39TWnQXj-XGOeDYYpWVEKECQHIxnR5SVxUY-QffCBZP5CTagrfc3whZ34eBK5HoPWsW0cA8gUJ0coUeGUMtmEeKzlE7LZK4Si3qUO9EGVktRZ57KnCpqHOuKhJlrkrpupN6GF03_04rE4689t2lSml5Evl0-mJ591n4ta4S4Tsg4yWVmI4MbPA4IYaSxHcrlTeM2bNRTqr1FwFc0-tuGp00zrmUK0KSFm86pj0yInijCEd6vNKD5EoGuJaJjbFFLurH0qcstxdGXki-820novjFKrdSi_4hAIx4ai24kHv57GE_gem-yv6f3-sPBOtyg31cpdBvQmp3N3SMEazPz2K-QAD5d9aL8AR_WT98 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IMZnYYCRQMCD1dSO6_QBIcZWrRTK1G7S3kIc2zBppGNrB_3X-Ou4S5xAxdfTXmO3ic939u98598BPNYicpEyhlMxbU4MWNzoPvo8PvJ9g65cXl4Ufjfu7R7Ebw7V4Rp8r-_CUFplvSaWC7Wd5XRG3hGIbGOlESF0fEiL2NsevDz5wqmCFEVa63IalYqM3PIrum9nL4bbONdPhBjs7L_e5aHCAM8V7nNcuihzmbFSEg-PsQLxsjBJhruyUz1jtJDGRk7jcHLnHcWgYu18pHXkyLGS-L-XYF2TV9SC9a2d8d7k5wmPkkQNUzNFRqKT2XNiCBcUkdDxyk5YFgz4E8r9PVnzVxBd7oKDa3A1wFf2qtK3DVhzxXXYCAvEGXsWWKyf34DR-29LVE4-bOrsztl0cewR27JJVkaHGAJmNp0fUYYWn4Rk3XPH9hefsQHX_XA7bHkTDi5ErregVcwKdweY7nqEITnCLpvHiNUyOjlTXicWdco72QZeSzHNA605Vdc4TitCZpGS1NNG6m142vQ_qQg9_tpziyal6UVE3OWD2enHNNh1inDXSdVLvMptbHCzxwEhpDS2S3m9Wa8Nm_WUpmF1wFc0utyGR00z2jUFa7LCzRbURyVEVRTjCG9XGtB8iUQ3E5EytugV3Vj51NWW4uhTyR3e7yZ09xilVmrRf0SQIjaayn4s7_57GA_hMhpj-nY4Ht2DK_TzKptuE1rz04W7j7htbh4EA2Hw4aJt8gfYJ1QU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen%E2%80%90Independent+Sulfate+Radical+for+Stimuli%E2%80%90Responsive+Tumor+Nanotherapy&rft.jtitle=Advanced+science&rft.au=Ding%2C+Dandan&rft.au=Mei%2C+Zihan&rft.au=Huang%2C+Hui&rft.au=Feng%2C+Wei&rft.date=2022-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=17&rft_id=info:doi/10.1002%2Fadvs.202200974&rft_id=info%3Apmid%2F35488513&rft.externalDocID=PMC9189647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |