Enhanced Near‐Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulk‐Heterojunction Electron‐Transporting Layers

How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an invert...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 6; no. 21; pp. 1901714 - n/a
Main Authors Chen, Chih‐I, Wu, Shengfan, Lu, Yen‐An, Lee, Chia‐Chen, Ho, Kuo‐Chuan, Zhu, Zonglong, Chen, Wen‐Chang, Chueh, Chu‐Chen
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.11.2019
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. A low bandgap nonfullerene acceptor (NFA) is incorporated into fullerene electron‐transporting layer (ETL) of an inverted perovskite solar cell aiming to intercept the NIR light passing through the device. However, it cannot enhance the device's NIR photoresponse. Further adding a p‐type polymer effectively enhances the device's NIR photoresponse due to better cascade energy‐level alignment and increased hole mobility.
AbstractList How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron-transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p-type polymer. The ternary bulk-heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade-energy-level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs.
How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron-transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p-type polymer. The ternary bulk-heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade-energy-level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs.How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron-transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p-type polymer. The ternary bulk-heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade-energy-level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs.
Abstract How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs.
How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. A low bandgap nonfullerene acceptor (NFA) is incorporated into fullerene electron‐transporting layer (ETL) of an inverted perovskite solar cell aiming to intercept the NIR light passing through the device. However, it cannot enhance the device's NIR photoresponse. Further adding a p‐type polymer effectively enhances the device's NIR photoresponse due to better cascade energy‐level alignment and increased hole mobility.
How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. A low bandgap nonfullerene acceptor (NFA) is incorporated into fullerene electron‐transporting layer (ETL) of an inverted perovskite solar cell aiming to intercept the NIR light passing through the device. However, it cannot enhance the device's NIR photoresponse. Further adding a p‐type polymer effectively enhances the device's NIR photoresponse due to better cascade energy‐level alignment and increased hole mobility.
Author Lu, Yen‐An
Chen, Wen‐Chang
Chueh, Chu‐Chen
Lee, Chia‐Chen
Chen, Chih‐I
Zhu, Zonglong
Ho, Kuo‐Chuan
Wu, Shengfan
AuthorAffiliation 2 Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan
3 Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong
1 Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
AuthorAffiliation_xml – name: 3 Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong
– name: 2 Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan
– name: 1 Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
Author_xml – sequence: 1
  givenname: Chih‐I
  surname: Chen
  fullname: Chen, Chih‐I
  organization: National Taiwan University
– sequence: 2
  givenname: Shengfan
  surname: Wu
  fullname: Wu, Shengfan
  organization: City University of Hong Kong
– sequence: 3
  givenname: Yen‐An
  surname: Lu
  fullname: Lu, Yen‐An
  organization: National Taiwan University
– sequence: 4
  givenname: Chia‐Chen
  surname: Lee
  fullname: Lee, Chia‐Chen
  organization: National Taiwan University
– sequence: 5
  givenname: Kuo‐Chuan
  surname: Ho
  fullname: Ho, Kuo‐Chuan
  organization: National Taiwan University
– sequence: 6
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  email: zonglzhu@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 7
  givenname: Wen‐Chang
  surname: Chen
  fullname: Chen, Wen‐Chang
  organization: National Taiwan University
– sequence: 8
  givenname: Chu‐Chen
  orcidid: 0000-0003-1203-4227
  surname: Chueh
  fullname: Chueh, Chu‐Chen
  email: cchueh@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31728294$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSK0e0EhcuCf7a9fqCVNJAI0WAaOBqzTqzyaYbO9i7Qb3xE7jy9_gleJMStb305I9532fG43meHFlnMUleUjKkhLC3MN-GISNUESqpeJKcMKqKAS-EOLqzP07OQlgRQmjGpaDFs-SYU8kKpsRJ8mdsl2ANztNPCP7vr98TW3nw8fxl6VrnMWycDZi6Kp3YLfq2j6B323Bdt5heuQZ8OsKmCels6V23WKZfoa2dhSa9wFAvbG993zXXkX2JbbSuOmt6RTpu0LTe2RiZebAxk29ru0incIM-vEieVtAEPLtdT5NvH8az0eVg-vnjZHQ-HZiMKTYo5kZmjAuEXGFJRZ5XgpYCVKmqvJKUkcIwzmUBhQSQQEzsFS-lQWkUZIafJpM9d-5gpTe-XoO_0Q5qvbtwfqEh1mUa1HORFRHOREZKkdNcAeGVZFJUiADYs97tWZuuXOPcoG09NPeg9yO2XuqF2-q84CrnIgLe3AK8-9FhaPW6Dia2Fyy6LmjGaUbin_IiSl8_kK5c52PfdyomlZKyB766W9GhlP8TEAXDvcB4F4LH6iChRPdTpvsp04cpiwbxwGDqdvfl8UV186jtZ93gzSNJ9PnF9yvKOeP_ANg46_I
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c01893
crossref_primary_10_1016_j_cej_2022_134792
crossref_primary_10_1002_advs_201903331
crossref_primary_10_1002_aenm_202404552
crossref_primary_10_1002_nano_202000287
crossref_primary_10_1016_j_cej_2024_149280
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1002_admi_202002007
crossref_primary_10_1016_j_mtener_2024_101742
crossref_primary_10_1039_D2TC02110B
crossref_primary_10_3390_electronics12153319
crossref_primary_10_1039_C9CS00733D
crossref_primary_10_1016_j_cej_2021_129424
crossref_primary_10_1002_solr_202400185
crossref_primary_10_1007_s12598_020_01703_y
crossref_primary_10_1063_5_0013912
crossref_primary_10_1016_j_cej_2023_141358
crossref_primary_10_1007_s10311_021_01364_y
crossref_primary_10_1021_acsomega_2c03775
crossref_primary_10_1016_j_dyepig_2021_109385
crossref_primary_10_1016_j_optmat_2024_115243
crossref_primary_10_1063_5_0174262
crossref_primary_10_1002_aenm_202000361
crossref_primary_10_1007_s10825_025_02281_x
crossref_primary_10_1002_admt_202100080
crossref_primary_10_1002_aelm_202000870
Cites_doi 10.1021/acs.chemmater.6b03564
10.1038/ncomms8747
10.1016/j.scib.2019.06.005
10.1021/acs.jpcc.6b01728
10.1002/adma.201600281
10.1103/PhysRevB.55.R656
10.1021/acs.chemmater.7b04616
10.1002/adfm.200801286
10.1021/acsenergylett.6b00254
10.1002/adma.201602776
10.1016/j.nanoen.2015.04.029
10.1021/acsenergylett.6b00657
10.1016/j.scib.2018.02.015
10.1038/ncomms3242
10.1021/acsami.8b06256
10.1063/1.3294290
10.1002/adma.201504555
10.1021/acs.nanolett.7b02532
10.1002/adfm.200900775
10.1002/celc.201700498
10.1002/advs.201700792
10.1039/C4TA04482G
10.1002/aenm.201402321
10.1021/ma0618732
10.1021/jacs.5b07228
10.1002/adma.201704051
10.1039/C9TA03896E
10.1021/acs.jpclett.5b02686
10.1021/jacs.7b11278
10.1038/s41467-018-07255-1
10.1016/j.nanoen.2015.08.016
10.1103/PhysRevB.84.195209
10.1021/acs.chemrev.8b00539
10.1039/C5CS00113G
10.1021/ja710079w
10.1039/C6MH00508J
10.1002/adma.201707170
10.1039/C6EE03397K
10.1038/nmat2102
10.1039/C5EE00120J
10.1039/C4EE03322A
10.1016/j.scib.2017.11.003
10.1002/adma.201703980
10.1039/C6RA27944A
10.1063/1.4922150
10.1016/j.joule.2017.09.017
10.1002/advs.201700204
10.1021/acs.chemrev.8b00336
10.1021/nl504168q
10.1016/j.matchemphys.2011.06.007
10.1016/j.scib.2019.05.015
10.1038/nmat4014
10.1002/adma.201604545
10.1039/C7NR07933H
10.1002/adma.201805843
10.1126/sciadv.1700106
10.1126/science.aad5845
10.1002/advs.201500324
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201901714
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d45841b2450b46169a03f7274feeaaec
PMC6839634
31728294
10_1002_advs_201901714
ADVS1332
Genre article
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 108‐3017‐F‐002‐002; MOST 106‐2218‐E‐002‐021‐MY2; 108‐2638‐E‐002‐003‐MY2
– fundername: Ministry of Education
  funderid: 108L9006
– fundername: Featured Area Research Center Program
– fundername: National Taiwan University
  funderid: 108L7846
– fundername: ;
  grantid: MOST 108‐3017‐F‐002‐002; MOST 106‐2218‐E‐002‐021‐MY2; 108‐2638‐E‐002‐003‐MY2
– fundername: ;
  grantid: 108L7846
– fundername: ;
  grantid: 108L9006
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5292-8dc75234ea69eb1466f41b4a9b9f6f71208c23378a87aa7a0c1713b7ce7c9a5c3
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 18:43:19 EDT 2025
Fri Jul 11 15:19:40 EDT 2025
Fri Jul 25 08:25:38 EDT 2025
Thu Apr 03 06:59:01 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 03:59:20 EDT 2025
Wed Jan 22 16:39:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords nonfullerene acceptors
inverted perovskite solar cells
bulk‐heterojunctions
electron‐transporting layers
NIR photoresponse
Language English
License Attribution
2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5292-8dc75234ea69eb1466f41b4a9b9f6f71208c23378a87aa7a0c1713b7ce7c9a5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1203-4227
OpenAccessLink https://www.proquest.com/docview/2312799774?pq-origsite=%requestingapplication%
PMID 31728294
PQID 2312799774
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_d45841b2450b46169a03f7274feeaaec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839634
proquest_miscellaneous_2315084438
proquest_journals_2312799774
pubmed_primary_31728294
crossref_primary_10_1002_advs_201901714
crossref_citationtrail_10_1002_advs_201901714
wiley_primary_10_1002_advs_201901714_ADVS1332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 62
2019; 7
2015; 15
2017; 7
2017; 1
2015; 6
2015; 5
2017; 2
2013; 4
2017; 3
2017; 4
2015; 3
2011; 84
2008; 7
2018; 63
2017; 29
2015; 106
2015; 8
2016; 120
2017; 139
2018; 9
2016; 7
2016; 1
2018; 5
2011; 129
2016; 3
2019; 64
1997; 55
2015; 137
2017; 17
2017; 10
2015; 44
2016; 20
2019; 29
2014; 13
2019; 119
2018; 30
2007; 40
2016; 28
2009; 19
2018; 10
2016; 351
2008; 130
2010; 96
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 2891
  year: 2017
  publication-title: ChemElectroChem
– volume: 4
  start-page: 2242
  year: 2013
  publication-title: Nat. Commun.
– volume: 62
  start-page: 1562
  year: 2017
  publication-title: Sci. Bull.
– volume: 2
  start-page: 782
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 119
  start-page: 3036
  year: 2019
  publication-title: Chem. Rev.
– volume: 8
  start-page: 1602
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 8631
  year: 2016
  publication-title: Chem. Mater.
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4734
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 10
  start-page: 710
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 3619
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3028
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 5140
  year: 2017
  publication-title: Nano Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 9063
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 5371
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 769
  year: 2017
  publication-title: Joule
– volume: 28
  start-page: 3159
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 275
  year: 2015
  publication-title: Nano Energy
– volume: 15
  start-page: 662
  year: 2015
  publication-title: Nano Lett.
– volume: 29
  year: 2017
  publication-title: Chem. Mater.
– volume: 7
  start-page: 161
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 63
  start-page: 340
  year: 2018
  publication-title: Sci. Bull.
– volume: 129
  start-page: 1207
  year: 2011
  publication-title: Mater. Chem. Phys.
– volume: 28
  start-page: 9423
  year: 2016
  publication-title: Adv. Mater.
– volume: 40
  start-page: 1353
  year: 2007
  publication-title: Macromolecules
– volume: 20
  start-page: 126
  year: 2016
  publication-title: Nano Energy
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 3245
  year: 2018
  publication-title: Nanoscale
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 64
  start-page: 1083
  year: 2019
  publication-title: Sci. Bull.
– volume: 4
  start-page: 242
  year: 2017
  publication-title: Mater. Horiz.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 55
  start-page: R656
  year: 1997
  publication-title: Phys. Rev. B
– volume: 120
  start-page: 8023
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 1
  start-page: 474
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 7476
  year: 2017
  publication-title: RSC Adv.
– volume: 19
  start-page: 1227
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 5265
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 158
  year: 2008
  publication-title: Nat. Mater.
– volume: 8
  start-page: 956
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 64
  start-page: 885
  year: 2019
  publication-title: Sci. Bull.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 3418
  year: 2019
  publication-title: Chem. Rev.
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemmater.6b03564
– ident: e_1_2_7_59_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_7_32_1
  doi: 10.1016/j.scib.2019.06.005
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.jpcc.6b01728
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_7_41_1
  doi: 10.1103/PhysRevB.55.R656
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.chemmater.7b04616
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.200801286
– ident: e_1_2_7_14_1
  doi: 10.1021/acsenergylett.6b00254
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_7_58_1
  doi: 10.1016/j.nanoen.2015.04.029
– ident: e_1_2_7_34_1
  doi: 10.1021/acsenergylett.6b00657
– ident: e_1_2_7_31_1
  doi: 10.1016/j.scib.2018.02.015
– ident: e_1_2_7_55_1
  doi: 10.1038/ncomms3242
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.8b06256
– ident: e_1_2_7_52_1
  doi: 10.1063/1.3294290
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201504555
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.nanolett.7b02532
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.200900775
– ident: e_1_2_7_54_1
  doi: 10.1002/celc.201700498
– ident: e_1_2_7_10_1
  doi: 10.1002/advs.201700792
– ident: e_1_2_7_27_1
  doi: 10.1039/C4TA04482G
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201402321
– ident: e_1_2_7_46_1
  doi: 10.1021/ma0618732
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.5b07228
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201704051
– ident: e_1_2_7_5_1
  doi: 10.1039/C9TA03896E
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.jpclett.5b02686
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.7b11278
– ident: e_1_2_7_7_1
  doi: 10.1038/s41467-018-07255-1
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2015.08.016
– ident: e_1_2_7_40_1
  doi: 10.1103/PhysRevB.84.195209
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_7_4_1
  doi: 10.1039/C5CS00113G
– ident: e_1_2_7_44_1
  doi: 10.1021/ja710079w
– ident: e_1_2_7_28_1
  doi: 10.1039/C6MH00508J
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201707170
– ident: e_1_2_7_1_1
  doi: 10.1039/C6EE03397K
– ident: e_1_2_7_51_1
  doi: 10.1038/nmat2102
– ident: e_1_2_7_56_1
  doi: 10.1039/C5EE00120J
– ident: e_1_2_7_16_1
  doi: 10.1039/C4EE03322A
– ident: e_1_2_7_30_1
  doi: 10.1016/j.scib.2017.11.003
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201703980
– ident: e_1_2_7_45_1
  doi: 10.1039/C6RA27944A
– ident: e_1_2_7_9_1
  doi: 10.1063/1.4922150
– ident: e_1_2_7_11_1
  doi: 10.1016/j.joule.2017.09.017
– ident: e_1_2_7_13_1
  doi: 10.1002/advs.201700204
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.chemrev.8b00336
– ident: e_1_2_7_19_1
  doi: 10.1021/nl504168q
– ident: e_1_2_7_49_1
  doi: 10.1016/j.matchemphys.2011.06.007
– ident: e_1_2_7_18_1
  doi: 10.1016/j.scib.2019.05.015
– ident: e_1_2_7_57_1
  doi: 10.1038/nmat4014
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.201604545
– ident: e_1_2_7_6_1
– ident: e_1_2_7_22_1
  doi: 10.1039/C7NR07933H
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201805843
– ident: e_1_2_7_48_1
  doi: 10.1126/sciadv.1700106
– ident: e_1_2_7_17_1
  doi: 10.1126/science.aad5845
– ident: e_1_2_7_3_1
  doi: 10.1002/advs.201500324
SSID ssj0001537418
Score 2.2853112
Snippet How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject...
How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject...
Abstract How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1901714
SubjectTerms bulk‐heterojunctions
electron‐transporting layers
inverted perovskite solar cells
Light
Morphology
NIR photoresponse
nonfullerene acceptors
Photovoltaic cells
Polymers
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoyEhIwCFq4leSIy1bLQgqRFupt2jsOFpglaB99MxP4Mrf45cwY2ejXQHqhet67LU8nz0z8fgbxp6bpnCVgizNwToKUJrUCm9T69CWSWg0hKolH07N9EK9u9SXW6W-KCcs0gPHhTts6CIvt0LpzCqTmwoy2aLRVa33AN7R6Ys2byuYiu-DJdGybFgaM3EIzRWxc5P9C092tqxQIOv_m4f5Z6LktgMbLNDJbXZrcB356zjlfXbDd3fY_rA5l_zlwCD96i77Oelm4WafnyKQf33_8bZrF5Rpzj_OegyyY16s533LiWdjsaIWv-ivlvQtl59RuMuP_Xy-5Oexjg__NHw05G9Cygd1PVrPv-LYU0qo6b-gfSQJPhnq6mDLSJyO5pG_B3Lu77GLk8n58TQdajCkTosKD8vGFRirKg-mwmNdGdOiNhRUtmpNW-QiK52QsiihLAAKyBwur7SF84gB0E7eZ3td3_mHjAubgdHaOgxJMarMLAqCzn2paQSfJSzd6KR2A0E51cmY15FaWdSkw3rUYcJejPLfIjXHPyWPSMWjFFFqhx8QaPUAtPo6oCXsYAOQetjn-BcyF0VFPnTCno3NuEPp2gU636-DDHrBSskyYQ8insaZSCoPJirsXewgbWequy3d51lgATfo2hqJPdOAyWuWoEYv5yyXUjz6H2vxmN2kkeObzAO2t1qs_RN0zlb2adiHvwFqBDvK
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQuXBBlGegICMhAYeoiV9JjrRstSCoKtpKvUVjx2GBVYL20TM_gSt_r7-kM042bQQIcY3HTpSZ8XzjxzeMvTBV5goFSZyCdZSgVLEV3sbWYSyTUGkIVUs-HprpqXp_ps-u3eLv-CGGBTfyjDBfk4ODXe5ekYZCdU502xTQMqpkfZPu1xJ7vlBHV6ssWhI9C1WYw-w6lrlSG-bGROyOhxhFpkDg_yfU-fvhyeugNkSlgzvsdg8n-ZtO_9vshm_usu3eYZf8Vc8q_foe-zVpZmG3nx-icV_8-PmuqRd0-pwfzVpMvLuzsp63NSfujcWKWvyiPV_S-i4_phSY7_v5fMlPuto-_FO_kMjfhmMg1HVvPf-GY0_pkE37FWMmSfBJX2sHWwYydQyZ_AMQ4L_PTg8mJ_vTuK_LEDstCpxAK5dh_qo8mAKnemVMrVKroLBFbeosFUnuhJRZDnkGkEHi8PdKmzmPdgHayQdsq2kb_4hxYRMwWluHaSpmmolFQdCpzzWN4JOIxRudlK4nLafaGfOyo1sWJemwHHQYsZeD_PeOruOvknuk4kGKaLbDg3bxuey9tqxoFzm1QunEKpOaAhJZI-JTtfcA3kVsZ2MgZe_7-AqZiqwgXB2x50Mzei1txUDj23WQQWSslMwj9rCzp-FLJJUMEwX2zkaWNvrUcUvzZRaYwQ3CXSOxZxxs8h-_oETkc5xKKR7_p_wTdosedlcyd9jWarH2TxGbreyz4H6Xkt43uQ
  priority: 102
  providerName: Wiley-Blackwell
Title Enhanced Near‐Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulk‐Heterojunction Electron‐Transporting Layers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201901714
https://www.ncbi.nlm.nih.gov/pubmed/31728294
https://www.proquest.com/docview/2312799774
https://www.proquest.com/docview/2315084438
https://pubmed.ncbi.nlm.nih.gov/PMC6839634
https://doaj.org/article/d45841b2450b46169a03f7274feeaaec
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9swDBbW5rLLsO6ZtQs0YMC2g1FbkmX7NDRtimxog6Bpgd4MSZabbYHd5dFzf8Ku-3v7JSNlxWuw1zWiHNukxI8U_ZGQ17JITCZUGERKGwxQikAzqwNtwJdxVcTKdS05Hcnhhfh4GV_6hNvCl1Wu90S3URe1wRz5PuAQlmSIVt5ffw2waxServoWGlukA1twCsFXpz8Yjc9-ZVlijvQsa7bGkO2r4gZZutEPuk937ngjR9r_J6T5e8HkXSDrPNHxQ_LAQ0h60Oh8h9yz1SOy4xfpgr71TNLvHpPvg2rqTvjpCAz6x-23D1U5x4pzOp7WEGw39bGW1iVFvo35EkfsvL5ZYE6XTjDspYd2NlvQ86afDz3zyUN65Eo_cGp_NfsC1x5iYU39GfwkStCB768DIy2BOrhJeqIQ5D8hF8eD88Nh4HsxBCZmGWyahUkgZhVWyQy2dyFlKSItVKazUpZJxMLUMM6TVKWJUokKDbxerhNjwRZUbPhTsl3VlX1OKNOhknGsDYSmEF2GGgRVHNk0xivYsEuCtU5y44nKsV_GLG8ollmOOsxbHXbJm1b-uqHo-KtkH1XcSiG1tvuhnl_lfqXmBZ4cR5qJONRCRjJTIS8B5YnSWqWs6ZK9tYHkfr3DX7TW2SWv2mFYqXj8oipbr5wMoGEheNolzxp7au-EY5swlsHsZMPSNm51c6T6NHVs4BIgruQwM3A2-Z9XkAPamUScsxf_foxdch_nNF9d7pHt5XxlXwL8Wuoe2WJi3COdg6PTk0nPr7ieS2b8BKhaOBc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXRHkuFDASCDhETWzH2RwQYtutdul2VbVbqbdgOw4LrJKyjyJu_ASu_Al-FL-EGedBV7xOvcZjJ86M52GPvyHksUwjEwvle4HSBgOU1NPMak8bsGVcpaFyVUv2R7J_LF6fhCdr5Ht9FwbTKmud6BR1WhjcI98CP4RFMXorL08_elg1Ck9X6xIapVjs2c-fIGSbvxjsAH-fMLbbG2_3vaqqgGdCFsPyT00E0ZewSsagqISUmQi0ULGOM5lFAfM7hnEedVQnUipSvgkgkNORsTArFRoO414i64JDKNMi693e6ODw165OyBEOpkaH9NmWSs8QFRztrrsqdM76uSIBf_Jsf0_QPO84O8u3e41crVxW-qqUsQ2yZvPrZKNSCnP6rEKufn6DfOvlE5dRQEfwp358-TrIsxlmuNODSQHBfZmPa2mRUcT3mC2wxc6KsznuIdMjDLPptp1O53Rc1g-ih9VmJd1xqSbYtbucfoCx-5jIU7wHu4wUtFfV84GWBrAdzDIdKgwqbpLjC-HSLdLKi9zeIZRpX8kw1AZCYYhmfQ2EKgxsJ8QRrN8mXs2TxFTA6FifY5qUkM4sQR4mDQ_b5GlDf1pCgvyVsossbqgQyts9KGZvk0ozJCmeVAeaidDXQgYyVj7PwKsUmbVKWdMmm7WAJJV-gVc0q6FNHjXNoBnwuEfltlg6GvC-heCdNrldylPzJRzLkrEYekcrkrbyqast-buJQx-X4FJLDj09J5P_-QUJeFdHAefs7r-n8ZBc7o_3h8lwMNq7R65g__LG5yZpLWZLex9cv4V-UK03St5c9BL_CZ9PcOo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroS4IJZnYAEjgYBD1MRJnOaAEN22atmlqvYh7S1rOw4FqmTpYxE3fgJX_go_h1_CjOOErXid9hqPnTgznoc9_oaQxzyLVRIKz_WFVBigZK5kWrpSgS0LRBYJU7XkzZgPj8LXx9HxBvle34XBtMpaJxpFnZUK98jb4IewOEFvpZ3btIhJb_Dy9KOLFaTwpLUup1GJyK7-_AnCt8WLUQ94_YSxQf9wZ-jaCgOuilgCqiBTMURioRY8AaUVcp6HvgxFIpOc57HPvI5iQRB3RCcWIhae8iGok7HSMEMRqQDGvUQ2Y4iKvBbZ7PbHk_1fOzxRgNAwNVKkx9oiO0OEcLTB5trQOUtoCgb8ycv9PVnzvBNtrODgGrlq3Vf6qpK3LbKhi-tkyyqIBX1mUayf3yDf-sXUZBfQMfypH1--jop8jtnudDItIdCvcnM1LXOKWB_zJbboeXm2wP1keoAhN93Rs9mCHla1hOi-3bikPZN2gl27q9kHGHuIST3le7DRSEH7trYPtDTg7WCi6Z7AAOMmOboQLt0iraIs9B1CmfQEjyKpICyGyNaTQCgiX3ciHEF7DnFrnqTKgqRjrY5ZWsE7sxR5mDY8dMjThv60ggf5K2UXWdxQIay3eVDO36ZWS6QZnlr7koWRJ0Pu80R4QQ4eZphrLYRWDtmuBSS1ugZe0awMhzxqmkFL4NGPKHS5MjTgiYdh0HHI7Uqemi8JsEQZS6B3vCZpa5-63lK8mxokcg7uNQ-gp2tk8j-_IAVP68APAnb339N4SC7D0k73RuPde-QKdq8uf26T1nK-0vfBC1zKB3a5UXJy0Sv8J6MLdR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Near-Infrared+Photoresponse+of+Inverted+Perovskite+Solar+Cells+Through+Rational+Design+of+Bulk-Heterojunction+Electron-Transporting+Layers&rft.jtitle=Advanced+science&rft.au=Chen%2C+Chih-I&rft.au=Wu%2C+Shengfan&rft.au=Lu%2C+Yen-An&rft.au=Lee%2C+Chia-Chen&rft.date=2019-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=6&rft.issue=21&rft.spage=1901714&rft_id=info:doi/10.1002%2Fadvs.201901714&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon