Enhanced Near‐Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulk‐Heterojunction Electron‐Transporting Layers
How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an invert...
Saved in:
Published in | Advanced science Vol. 6; no. 21; pp. 1901714 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.11.2019
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs.
A low bandgap nonfullerene acceptor (NFA) is incorporated into fullerene electron‐transporting layer (ETL) of an inverted perovskite solar cell aiming to intercept the NIR light passing through the device. However, it cannot enhance the device's NIR photoresponse. Further adding a p‐type polymer effectively enhances the device's NIR photoresponse due to better cascade energy‐level alignment and increased hole mobility. |
---|---|
AbstractList | How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron-transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p-type polymer. The ternary bulk-heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade-energy-level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron-transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p-type polymer. The ternary bulk-heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade-energy-level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs.How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron-transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p-type polymer. The ternary bulk-heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade-energy-level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. Abstract How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. A low bandgap nonfullerene acceptor (NFA) is incorporated into fullerene electron‐transporting layer (ETL) of an inverted perovskite solar cell aiming to intercept the NIR light passing through the device. However, it cannot enhance the device's NIR photoresponse. Further adding a p‐type polymer effectively enhances the device's NIR photoresponse due to better cascade energy‐level alignment and increased hole mobility. How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject in this field since it can better harness the solar irradiation. Herein, the typical fullerene electron‐transporting layer (ETL) of an inverted PVSC is systematically engineered to enhance device's NIR photoresponse. A low bandgap nonfullerene acceptor (NFA) is incorporated into the fullerene ETL aiming to intercept the NIR light passing through the device. However, despite forming type II charge transfer with fullerene, the blended NFA cannot enhance the device's NIR photoresponse, as limited by the poor dissociation of photoexciton induced by NIR light. Fortunately, it can be addressed by adding a p‐type polymer. The ternary bulk‐heterojunction (BHJ) ETL is demonstrated to effectively enhance the device's NIR photoresponse due to the better cascade‐energy‐level alignment and increased hole mobility. By further optimizing the morphology of such a BHJ ETL, the derived PVSC is finally demonstrated to possess a 40% external quantum efficiency at 800 nm with photoresponse extended to the NIR region (to 950 nm), contributing ≈9% of the overall photocurrent. This study unveils an effective and simple approach for enhancing the NIR photoresponse of inverted PVSCs. A low bandgap nonfullerene acceptor (NFA) is incorporated into fullerene electron‐transporting layer (ETL) of an inverted perovskite solar cell aiming to intercept the NIR light passing through the device. However, it cannot enhance the device's NIR photoresponse. Further adding a p‐type polymer effectively enhances the device's NIR photoresponse due to better cascade energy‐level alignment and increased hole mobility. |
Author | Lu, Yen‐An Chen, Wen‐Chang Chueh, Chu‐Chen Lee, Chia‐Chen Chen, Chih‐I Zhu, Zonglong Ho, Kuo‐Chuan Wu, Shengfan |
AuthorAffiliation | 2 Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan 3 Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong 1 Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan |
AuthorAffiliation_xml | – name: 3 Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong – name: 2 Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan – name: 1 Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan |
Author_xml | – sequence: 1 givenname: Chih‐I surname: Chen fullname: Chen, Chih‐I organization: National Taiwan University – sequence: 2 givenname: Shengfan surname: Wu fullname: Wu, Shengfan organization: City University of Hong Kong – sequence: 3 givenname: Yen‐An surname: Lu fullname: Lu, Yen‐An organization: National Taiwan University – sequence: 4 givenname: Chia‐Chen surname: Lee fullname: Lee, Chia‐Chen organization: National Taiwan University – sequence: 5 givenname: Kuo‐Chuan surname: Ho fullname: Ho, Kuo‐Chuan organization: National Taiwan University – sequence: 6 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong email: zonglzhu@cityu.edu.hk organization: City University of Hong Kong – sequence: 7 givenname: Wen‐Chang surname: Chen fullname: Chen, Wen‐Chang organization: National Taiwan University – sequence: 8 givenname: Chu‐Chen orcidid: 0000-0003-1203-4227 surname: Chueh fullname: Chueh, Chu‐Chen email: cchueh@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31728294$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiJbSK0e0EhcuCf7a9fqCVNJAI0WAaOBqzTqzyaYbO9i7Qb3xE7jy9_gleJMStb305I9532fG43meHFlnMUleUjKkhLC3MN-GISNUESqpeJKcMKqKAS-EOLqzP07OQlgRQmjGpaDFs-SYU8kKpsRJ8mdsl2ANztNPCP7vr98TW3nw8fxl6VrnMWycDZi6Kp3YLfq2j6B323Bdt5heuQZ8OsKmCels6V23WKZfoa2dhSa9wFAvbG993zXXkX2JbbSuOmt6RTpu0LTe2RiZebAxk29ru0incIM-vEieVtAEPLtdT5NvH8az0eVg-vnjZHQ-HZiMKTYo5kZmjAuEXGFJRZ5XgpYCVKmqvJKUkcIwzmUBhQSQQEzsFS-lQWkUZIafJpM9d-5gpTe-XoO_0Q5qvbtwfqEh1mUa1HORFRHOREZKkdNcAeGVZFJUiADYs97tWZuuXOPcoG09NPeg9yO2XuqF2-q84CrnIgLe3AK8-9FhaPW6Dia2Fyy6LmjGaUbin_IiSl8_kK5c52PfdyomlZKyB766W9GhlP8TEAXDvcB4F4LH6iChRPdTpvsp04cpiwbxwGDqdvfl8UV186jtZ93gzSNJ9PnF9yvKOeP_ANg46_I |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c01893 crossref_primary_10_1016_j_cej_2022_134792 crossref_primary_10_1002_advs_201903331 crossref_primary_10_1002_aenm_202404552 crossref_primary_10_1002_nano_202000287 crossref_primary_10_1016_j_cej_2024_149280 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1002_admi_202002007 crossref_primary_10_1016_j_mtener_2024_101742 crossref_primary_10_1039_D2TC02110B crossref_primary_10_3390_electronics12153319 crossref_primary_10_1039_C9CS00733D crossref_primary_10_1016_j_cej_2021_129424 crossref_primary_10_1002_solr_202400185 crossref_primary_10_1007_s12598_020_01703_y crossref_primary_10_1063_5_0013912 crossref_primary_10_1016_j_cej_2023_141358 crossref_primary_10_1007_s10311_021_01364_y crossref_primary_10_1021_acsomega_2c03775 crossref_primary_10_1016_j_dyepig_2021_109385 crossref_primary_10_1016_j_optmat_2024_115243 crossref_primary_10_1063_5_0174262 crossref_primary_10_1002_aenm_202000361 crossref_primary_10_1007_s10825_025_02281_x crossref_primary_10_1002_admt_202100080 crossref_primary_10_1002_aelm_202000870 |
Cites_doi | 10.1021/acs.chemmater.6b03564 10.1038/ncomms8747 10.1016/j.scib.2019.06.005 10.1021/acs.jpcc.6b01728 10.1002/adma.201600281 10.1103/PhysRevB.55.R656 10.1021/acs.chemmater.7b04616 10.1002/adfm.200801286 10.1021/acsenergylett.6b00254 10.1002/adma.201602776 10.1016/j.nanoen.2015.04.029 10.1021/acsenergylett.6b00657 10.1016/j.scib.2018.02.015 10.1038/ncomms3242 10.1021/acsami.8b06256 10.1063/1.3294290 10.1002/adma.201504555 10.1021/acs.nanolett.7b02532 10.1002/adfm.200900775 10.1002/celc.201700498 10.1002/advs.201700792 10.1039/C4TA04482G 10.1002/aenm.201402321 10.1021/ma0618732 10.1021/jacs.5b07228 10.1002/adma.201704051 10.1039/C9TA03896E 10.1021/acs.jpclett.5b02686 10.1021/jacs.7b11278 10.1038/s41467-018-07255-1 10.1016/j.nanoen.2015.08.016 10.1103/PhysRevB.84.195209 10.1021/acs.chemrev.8b00539 10.1039/C5CS00113G 10.1021/ja710079w 10.1039/C6MH00508J 10.1002/adma.201707170 10.1039/C6EE03397K 10.1038/nmat2102 10.1039/C5EE00120J 10.1039/C4EE03322A 10.1016/j.scib.2017.11.003 10.1002/adma.201703980 10.1039/C6RA27944A 10.1063/1.4922150 10.1016/j.joule.2017.09.017 10.1002/advs.201700204 10.1021/acs.chemrev.8b00336 10.1021/nl504168q 10.1016/j.matchemphys.2011.06.007 10.1016/j.scib.2019.05.015 10.1038/nmat4014 10.1002/adma.201604545 10.1039/C7NR07933H 10.1002/adma.201805843 10.1126/sciadv.1700106 10.1126/science.aad5845 10.1002/advs.201500324 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201901714 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_d45841b2450b46169a03f7274feeaaec PMC6839634 31728294 10_1002_advs_201901714 ADVS1332 |
Genre | article Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 108‐3017‐F‐002‐002; MOST 106‐2218‐E‐002‐021‐MY2; 108‐2638‐E‐002‐003‐MY2 – fundername: Ministry of Education funderid: 108L9006 – fundername: Featured Area Research Center Program – fundername: National Taiwan University funderid: 108L7846 – fundername: ; grantid: MOST 108‐3017‐F‐002‐002; MOST 106‐2218‐E‐002‐021‐MY2; 108‐2638‐E‐002‐003‐MY2 – fundername: ; grantid: 108L7846 – fundername: ; grantid: 108L9006 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IAO IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5292-8dc75234ea69eb1466f41b4a9b9f6f71208c23378a87aa7a0c1713b7ce7c9a5c3 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 18:43:19 EDT 2025 Fri Jul 11 15:19:40 EDT 2025 Fri Jul 25 08:25:38 EDT 2025 Thu Apr 03 06:59:01 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 03:59:20 EDT 2025 Wed Jan 22 16:39:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | nonfullerene acceptors inverted perovskite solar cells bulk‐heterojunctions electron‐transporting layers NIR photoresponse |
Language | English |
License | Attribution 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5292-8dc75234ea69eb1466f41b4a9b9f6f71208c23378a87aa7a0c1713b7ce7c9a5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1203-4227 |
OpenAccessLink | https://www.proquest.com/docview/2312799774?pq-origsite=%requestingapplication% |
PMID | 31728294 |
PQID | 2312799774 |
PQPubID | 4365299 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d45841b2450b46169a03f7274feeaaec pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839634 proquest_miscellaneous_2315084438 proquest_journals_2312799774 pubmed_primary_31728294 crossref_primary_10_1002_advs_201901714 crossref_citationtrail_10_1002_advs_201901714 wiley_primary_10_1002_advs_201901714_ADVS1332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 62 2019; 7 2015; 15 2017; 7 2017; 1 2015; 6 2015; 5 2017; 2 2013; 4 2017; 3 2017; 4 2015; 3 2011; 84 2008; 7 2018; 63 2017; 29 2015; 106 2015; 8 2016; 120 2017; 139 2018; 9 2016; 7 2016; 1 2018; 5 2011; 129 2016; 3 2019; 64 1997; 55 2015; 137 2017; 17 2017; 10 2015; 44 2016; 20 2019; 29 2014; 13 2019; 119 2018; 30 2007; 40 2016; 28 2009; 19 2018; 10 2016; 351 2008; 130 2010; 96 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 2891 year: 2017 publication-title: ChemElectroChem – volume: 4 start-page: 2242 year: 2013 publication-title: Nat. Commun. – volume: 62 start-page: 1562 year: 2017 publication-title: Sci. Bull. – volume: 2 start-page: 782 year: 2017 publication-title: ACS Energy Lett. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 119 start-page: 3036 year: 2019 publication-title: Chem. Rev. – volume: 8 start-page: 1602 year: 2015 publication-title: Energy Environ. Sci. – volume: 28 start-page: 8631 year: 2016 publication-title: Chem. Mater. – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 4734 year: 2016 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 10 start-page: 710 year: 2017 publication-title: Energy Environ. Sci. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 3619 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3028 year: 2009 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 5140 year: 2017 publication-title: Nano Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 3 start-page: 9063 year: 2015 publication-title: J. Mater. Chem. A – volume: 44 start-page: 5371 year: 2015 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 769 year: 2017 publication-title: Joule – volume: 28 start-page: 3159 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 275 year: 2015 publication-title: Nano Energy – volume: 15 start-page: 662 year: 2015 publication-title: Nano Lett. – volume: 29 year: 2017 publication-title: Chem. Mater. – volume: 7 start-page: 161 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 63 start-page: 340 year: 2018 publication-title: Sci. Bull. – volume: 129 start-page: 1207 year: 2011 publication-title: Mater. Chem. Phys. – volume: 28 start-page: 9423 year: 2016 publication-title: Adv. Mater. – volume: 40 start-page: 1353 year: 2007 publication-title: Macromolecules – volume: 20 start-page: 126 year: 2016 publication-title: Nano Energy – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 10 start-page: 3245 year: 2018 publication-title: Nanoscale – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 64 start-page: 1083 year: 2019 publication-title: Sci. Bull. – volume: 4 start-page: 242 year: 2017 publication-title: Mater. Horiz. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 55 start-page: R656 year: 1997 publication-title: Phys. Rev. B – volume: 120 start-page: 8023 year: 2016 publication-title: J. Phys. Chem. C – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 1 start-page: 474 year: 2016 publication-title: ACS Energy Lett. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 7476 year: 2017 publication-title: RSC Adv. – volume: 19 start-page: 1227 year: 2009 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 9 start-page: 5265 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 158 year: 2008 publication-title: Nat. Mater. – volume: 8 start-page: 956 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 64 start-page: 885 year: 2019 publication-title: Sci. Bull. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 3418 year: 2019 publication-title: Chem. Rev. – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemmater.6b03564 – ident: e_1_2_7_59_1 doi: 10.1038/ncomms8747 – ident: e_1_2_7_32_1 doi: 10.1016/j.scib.2019.06.005 – ident: e_1_2_7_53_1 doi: 10.1021/acs.jpcc.6b01728 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201600281 – ident: e_1_2_7_41_1 doi: 10.1103/PhysRevB.55.R656 – ident: e_1_2_7_39_1 doi: 10.1021/acs.chemmater.7b04616 – ident: e_1_2_7_50_1 doi: 10.1002/adfm.200801286 – ident: e_1_2_7_14_1 doi: 10.1021/acsenergylett.6b00254 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201602776 – ident: e_1_2_7_58_1 doi: 10.1016/j.nanoen.2015.04.029 – ident: e_1_2_7_34_1 doi: 10.1021/acsenergylett.6b00657 – ident: e_1_2_7_31_1 doi: 10.1016/j.scib.2018.02.015 – ident: e_1_2_7_55_1 doi: 10.1038/ncomms3242 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.8b06256 – ident: e_1_2_7_52_1 doi: 10.1063/1.3294290 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201504555 – ident: e_1_2_7_26_1 doi: 10.1021/acs.nanolett.7b02532 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.200900775 – ident: e_1_2_7_54_1 doi: 10.1002/celc.201700498 – ident: e_1_2_7_10_1 doi: 10.1002/advs.201700792 – ident: e_1_2_7_27_1 doi: 10.1039/C4TA04482G – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201402321 – ident: e_1_2_7_46_1 doi: 10.1021/ma0618732 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.5b07228 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201704051 – ident: e_1_2_7_5_1 doi: 10.1039/C9TA03896E – ident: e_1_2_7_15_1 doi: 10.1021/acs.jpclett.5b02686 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.7b11278 – ident: e_1_2_7_7_1 doi: 10.1038/s41467-018-07255-1 – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2015.08.016 – ident: e_1_2_7_40_1 doi: 10.1103/PhysRevB.84.195209 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_7_4_1 doi: 10.1039/C5CS00113G – ident: e_1_2_7_44_1 doi: 10.1021/ja710079w – ident: e_1_2_7_28_1 doi: 10.1039/C6MH00508J – ident: e_1_2_7_37_1 doi: 10.1002/adma.201707170 – ident: e_1_2_7_1_1 doi: 10.1039/C6EE03397K – ident: e_1_2_7_51_1 doi: 10.1038/nmat2102 – ident: e_1_2_7_56_1 doi: 10.1039/C5EE00120J – ident: e_1_2_7_16_1 doi: 10.1039/C4EE03322A – ident: e_1_2_7_30_1 doi: 10.1016/j.scib.2017.11.003 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201703980 – ident: e_1_2_7_45_1 doi: 10.1039/C6RA27944A – ident: e_1_2_7_9_1 doi: 10.1063/1.4922150 – ident: e_1_2_7_11_1 doi: 10.1016/j.joule.2017.09.017 – ident: e_1_2_7_13_1 doi: 10.1002/advs.201700204 – ident: e_1_2_7_8_1 doi: 10.1021/acs.chemrev.8b00336 – ident: e_1_2_7_19_1 doi: 10.1021/nl504168q – ident: e_1_2_7_49_1 doi: 10.1016/j.matchemphys.2011.06.007 – ident: e_1_2_7_18_1 doi: 10.1016/j.scib.2019.05.015 – ident: e_1_2_7_57_1 doi: 10.1038/nmat4014 – ident: e_1_2_7_47_1 doi: 10.1002/adma.201604545 – ident: e_1_2_7_6_1 – ident: e_1_2_7_22_1 doi: 10.1039/C7NR07933H – ident: e_1_2_7_25_1 doi: 10.1002/adma.201805843 – ident: e_1_2_7_48_1 doi: 10.1126/sciadv.1700106 – ident: e_1_2_7_17_1 doi: 10.1126/science.aad5845 – ident: e_1_2_7_3_1 doi: 10.1002/advs.201500324 |
SSID | ssj0001537418 |
Score | 2.2853112 |
Snippet | How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research subject... How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near-infrared (NIR)/infrared light has become an appealing research subject... Abstract How to extend the photoresponse of perovskite solar cells (PVSCs) to the region of near‐infrared (NIR)/infrared light has become an appealing research... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1901714 |
SubjectTerms | bulk‐heterojunctions electron‐transporting layers inverted perovskite solar cells Light Morphology NIR photoresponse nonfullerene acceptors Photovoltaic cells Polymers Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoyEhIwCFq4leSIy1bLQgqRFupt2jsOFpglaB99MxP4Mrf45cwY2ejXQHqhet67LU8nz0z8fgbxp6bpnCVgizNwToKUJrUCm9T69CWSWg0hKolH07N9EK9u9SXW6W-KCcs0gPHhTts6CIvt0LpzCqTmwoy2aLRVa33AN7R6Ys2byuYiu-DJdGybFgaM3EIzRWxc5P9C092tqxQIOv_m4f5Z6LktgMbLNDJbXZrcB356zjlfXbDd3fY_rA5l_zlwCD96i77Oelm4WafnyKQf33_8bZrF5Rpzj_OegyyY16s533LiWdjsaIWv-ivlvQtl59RuMuP_Xy-5Oexjg__NHw05G9Cygd1PVrPv-LYU0qo6b-gfSQJPhnq6mDLSJyO5pG_B3Lu77GLk8n58TQdajCkTosKD8vGFRirKg-mwmNdGdOiNhRUtmpNW-QiK52QsiihLAAKyBwur7SF84gB0E7eZ3td3_mHjAubgdHaOgxJMarMLAqCzn2paQSfJSzd6KR2A0E51cmY15FaWdSkw3rUYcJejPLfIjXHPyWPSMWjFFFqhx8QaPUAtPo6oCXsYAOQetjn-BcyF0VFPnTCno3NuEPp2gU636-DDHrBSskyYQ8insaZSCoPJirsXewgbWequy3d51lgATfo2hqJPdOAyWuWoEYv5yyXUjz6H2vxmN2kkeObzAO2t1qs_RN0zlb2adiHvwFqBDvK priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQuXBBlGegICMhAYeoiV9JjrRstSCoKtpKvUVjx2GBVYL20TM_gSt_r7-kM042bQQIcY3HTpSZ8XzjxzeMvTBV5goFSZyCdZSgVLEV3sbWYSyTUGkIVUs-HprpqXp_ps-u3eLv-CGGBTfyjDBfk4ODXe5ekYZCdU502xTQMqpkfZPu1xJ7vlBHV6ssWhI9C1WYw-w6lrlSG-bGROyOhxhFpkDg_yfU-fvhyeugNkSlgzvsdg8n-ZtO_9vshm_usu3eYZf8Vc8q_foe-zVpZmG3nx-icV_8-PmuqRd0-pwfzVpMvLuzsp63NSfujcWKWvyiPV_S-i4_phSY7_v5fMlPuto-_FO_kMjfhmMg1HVvPf-GY0_pkE37FWMmSfBJX2sHWwYydQyZ_AMQ4L_PTg8mJ_vTuK_LEDstCpxAK5dh_qo8mAKnemVMrVKroLBFbeosFUnuhJRZDnkGkEHi8PdKmzmPdgHayQdsq2kb_4hxYRMwWluHaSpmmolFQdCpzzWN4JOIxRudlK4nLafaGfOyo1sWJemwHHQYsZeD_PeOruOvknuk4kGKaLbDg3bxuey9tqxoFzm1QunEKpOaAhJZI-JTtfcA3kVsZ2MgZe_7-AqZiqwgXB2x50Mzei1txUDj23WQQWSslMwj9rCzp-FLJJUMEwX2zkaWNvrUcUvzZRaYwQ3CXSOxZxxs8h-_oETkc5xKKR7_p_wTdosedlcyd9jWarH2TxGbreyz4H6Xkt43uQ priority: 102 providerName: Wiley-Blackwell |
Title | Enhanced Near‐Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulk‐Heterojunction Electron‐Transporting Layers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201901714 https://www.ncbi.nlm.nih.gov/pubmed/31728294 https://www.proquest.com/docview/2312799774 https://www.proquest.com/docview/2315084438 https://pubmed.ncbi.nlm.nih.gov/PMC6839634 https://doaj.org/article/d45841b2450b46169a03f7274feeaaec |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9swDBbW5rLLsO6ZtQs0YMC2g1FbkmX7NDRtimxog6Bpgd4MSZabbYHd5dFzf8Ku-3v7JSNlxWuw1zWiHNukxI8U_ZGQ17JITCZUGERKGwxQikAzqwNtwJdxVcTKdS05Hcnhhfh4GV_6hNvCl1Wu90S3URe1wRz5PuAQlmSIVt5ffw2waxServoWGlukA1twCsFXpz8Yjc9-ZVlijvQsa7bGkO2r4gZZutEPuk937ngjR9r_J6T5e8HkXSDrPNHxQ_LAQ0h60Oh8h9yz1SOy4xfpgr71TNLvHpPvg2rqTvjpCAz6x-23D1U5x4pzOp7WEGw39bGW1iVFvo35EkfsvL5ZYE6XTjDspYd2NlvQ86afDz3zyUN65Eo_cGp_NfsC1x5iYU39GfwkStCB768DIy2BOrhJeqIQ5D8hF8eD88Nh4HsxBCZmGWyahUkgZhVWyQy2dyFlKSItVKazUpZJxMLUMM6TVKWJUokKDbxerhNjwRZUbPhTsl3VlX1OKNOhknGsDYSmEF2GGgRVHNk0xivYsEuCtU5y44nKsV_GLG8ollmOOsxbHXbJm1b-uqHo-KtkH1XcSiG1tvuhnl_lfqXmBZ4cR5qJONRCRjJTIS8B5YnSWqWs6ZK9tYHkfr3DX7TW2SWv2mFYqXj8oipbr5wMoGEheNolzxp7au-EY5swlsHsZMPSNm51c6T6NHVs4BIgruQwM3A2-Z9XkAPamUScsxf_foxdch_nNF9d7pHt5XxlXwL8Wuoe2WJi3COdg6PTk0nPr7ieS2b8BKhaOBc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXRHkuFDASCDhETWzH2RwQYtutdul2VbVbqbdgOw4LrJKyjyJu_ASu_Al-FL-EGedBV7xOvcZjJ86M52GPvyHksUwjEwvle4HSBgOU1NPMak8bsGVcpaFyVUv2R7J_LF6fhCdr5Ht9FwbTKmud6BR1WhjcI98CP4RFMXorL08_elg1Ck9X6xIapVjs2c-fIGSbvxjsAH-fMLbbG2_3vaqqgGdCFsPyT00E0ZewSsagqISUmQi0ULGOM5lFAfM7hnEedVQnUipSvgkgkNORsTArFRoO414i64JDKNMi693e6ODw165OyBEOpkaH9NmWSs8QFRztrrsqdM76uSIBf_Jsf0_QPO84O8u3e41crVxW-qqUsQ2yZvPrZKNSCnP6rEKufn6DfOvlE5dRQEfwp358-TrIsxlmuNODSQHBfZmPa2mRUcT3mC2wxc6KsznuIdMjDLPptp1O53Rc1g-ih9VmJd1xqSbYtbucfoCx-5jIU7wHu4wUtFfV84GWBrAdzDIdKgwqbpLjC-HSLdLKi9zeIZRpX8kw1AZCYYhmfQ2EKgxsJ8QRrN8mXs2TxFTA6FifY5qUkM4sQR4mDQ_b5GlDf1pCgvyVsossbqgQyts9KGZvk0ozJCmeVAeaidDXQgYyVj7PwKsUmbVKWdMmm7WAJJV-gVc0q6FNHjXNoBnwuEfltlg6GvC-heCdNrldylPzJRzLkrEYekcrkrbyqast-buJQx-X4FJLDj09J5P_-QUJeFdHAefs7r-n8ZBc7o_3h8lwMNq7R65g__LG5yZpLWZLex9cv4V-UK03St5c9BL_CZ9PcOo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWroS4IJZnYAEjgYBD1MRJnOaAEN22atmlqvYh7S1rOw4FqmTpYxE3fgJX_go_h1_CjOOErXid9hqPnTgznoc9_oaQxzyLVRIKz_WFVBigZK5kWrpSgS0LRBYJU7XkzZgPj8LXx9HxBvle34XBtMpaJxpFnZUK98jb4IewOEFvpZ3btIhJb_Dy9KOLFaTwpLUup1GJyK7-_AnCt8WLUQ94_YSxQf9wZ-jaCgOuilgCqiBTMURioRY8AaUVcp6HvgxFIpOc57HPvI5iQRB3RCcWIhae8iGok7HSMEMRqQDGvUQ2Y4iKvBbZ7PbHk_1fOzxRgNAwNVKkx9oiO0OEcLTB5trQOUtoCgb8ycv9PVnzvBNtrODgGrlq3Vf6qpK3LbKhi-tkyyqIBX1mUayf3yDf-sXUZBfQMfypH1--jop8jtnudDItIdCvcnM1LXOKWB_zJbboeXm2wP1keoAhN93Rs9mCHla1hOi-3bikPZN2gl27q9kHGHuIST3le7DRSEH7trYPtDTg7WCi6Z7AAOMmOboQLt0iraIs9B1CmfQEjyKpICyGyNaTQCgiX3ciHEF7DnFrnqTKgqRjrY5ZWsE7sxR5mDY8dMjThv60ggf5K2UXWdxQIay3eVDO36ZWS6QZnlr7koWRJ0Pu80R4QQ4eZphrLYRWDtmuBSS1ugZe0awMhzxqmkFL4NGPKHS5MjTgiYdh0HHI7Uqemi8JsEQZS6B3vCZpa5-63lK8mxokcg7uNQ-gp2tk8j-_IAVP68APAnb339N4SC7D0k73RuPde-QKdq8uf26T1nK-0vfBC1zKB3a5UXJy0Sv8J6MLdR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Near-Infrared+Photoresponse+of+Inverted+Perovskite+Solar+Cells+Through+Rational+Design+of+Bulk-Heterojunction+Electron-Transporting+Layers&rft.jtitle=Advanced+science&rft.au=Chen%2C+Chih-I&rft.au=Wu%2C+Shengfan&rft.au=Lu%2C+Yen-An&rft.au=Lee%2C+Chia-Chen&rft.date=2019-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=6&rft.issue=21&rft.spage=1901714&rft_id=info:doi/10.1002%2Fadvs.201901714&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |