A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution

Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 9; no. 14; pp. e2200524 - n/a
Main Authors Dai, Xian‐Yin, Hu, Yu‐Yang, Sun, Yonghui, Huo, Man, Dong, Xiaoyun, Liu, Yu
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. A highly reversible supramolecular photoswitch between room‐temperature phosphorescence (RTP) and delayed fluorescence is constructed. This photoswitch is based on a bromoisoquinoline cascaded assembly and is successfully prepared in the aqueous phase. It benefits from light‐driven supramolecular RTP energy transfer to exhibit multicolor tunable long‐lived emission, and is successfully applied to photocontrolled multicolor cell labeling.
AbstractList Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.
Abstract Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments.
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. A highly reversible supramolecular photoswitch between room‐temperature phosphorescence (RTP) and delayed fluorescence is constructed. This photoswitch is based on a bromoisoquinoline cascaded assembly and is successfully prepared in the aqueous phase. It benefits from light‐driven supramolecular RTP energy transfer to exhibit multicolor tunable long‐lived emission, and is successfully applied to photocontrolled multicolor cell labeling.
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments.
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G 3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G 3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. A highly reversible supramolecular photoswitch between room‐temperature phosphorescence (RTP) and delayed fluorescence is constructed. This photoswitch is based on a bromoisoquinoline cascaded assembly and is successfully prepared in the aqueous phase. It benefits from light‐driven supramolecular RTP energy transfer to exhibit multicolor tunable long‐lived emission, and is successfully applied to photocontrolled multicolor cell labeling.
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G 3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G 3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments.
Author Dong, Xiaoyun
Dai, Xian‐Yin
Liu, Yu
Hu, Yu‐Yang
Sun, Yonghui
Huo, Man
AuthorAffiliation 1 College of Chemistry State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin 300071 P. R. China
AuthorAffiliation_xml – name: 1 College of Chemistry State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin 300071 P. R. China
Author_xml – sequence: 1
  givenname: Xian‐Yin
  surname: Dai
  fullname: Dai, Xian‐Yin
  organization: Nankai University
– sequence: 2
  givenname: Yu‐Yang
  surname: Hu
  fullname: Hu, Yu‐Yang
  organization: Nankai University
– sequence: 3
  givenname: Yonghui
  surname: Sun
  fullname: Sun, Yonghui
  organization: Nankai University
– sequence: 4
  givenname: Man
  surname: Huo
  fullname: Huo, Man
  organization: Nankai University
– sequence: 5
  givenname: Xiaoyun
  surname: Dong
  fullname: Dong, Xiaoyun
  organization: Nankai University
– sequence: 6
  givenname: Yu
  orcidid: 0000-0001-8723-1896
  surname: Liu
  fullname: Liu, Yu
  email: yuliu@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35285166$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1PGzEQhlcVVaGUa4-VpV64JPhzvXupFFIoSEitlLZXy7FnEyPHDvYuKP-gP7tOQyPgwskf88w749fzvjoIMUBVfSR4TDCmZ9re5zHFlGIsKH9THVHSNiPWcH7wZH9YneR8izEmgklOmnfVIRO0EaSuj6o_E3TlFku_QRdd54yD0KMfy5jXy5ggGwgGzi79sD-g2bBOehU9mMHrhGYPrjdLdK4zWBQD0ug8xVV0Od4NLkTvAqCpzkbbEp_kDKt5qeUCmtwNEIeMZtEPvYvhQ_W20z7DyeN6XP26vPg5vRrdfP92PZ3cjIygLR2RmlLRgjC4A96RWkiiO8nn1jQ1kQYkFh0AYIkbJjEzFneYWc5sQxvAnLHj6nqna6O-VevkVjptVNRO_buIaaF06p3xoChwYYxopdSY14S2XIDhtZ53tp1baYvWl53WepivwBaD-qT9M9HnkeCWahHvVUtwU2NSBE4fBVLxC3KvVq747L0OW3MUrVnTcsJaWtDPL9DbOKRQrCpUzSVhhGypT0872rfy_8MLMN4BJsWcE3R7hGC1HSq1HSq1H6qSwF8kGNfr7Y-VFzn_atqD87B5pYiafP09Y7Km7C-0WeIi
CitedBy_id crossref_primary_10_1002_adom_202202588
crossref_primary_10_1002_ange_202409162
crossref_primary_10_1007_s11696_023_03074_x
crossref_primary_10_1016_j_matt_2023_04_006
crossref_primary_10_1002_adma_202415446
crossref_primary_10_1016_j_saa_2025_126111
crossref_primary_10_1021_acs_orglett_2c04314
crossref_primary_10_1002_asia_202300708
crossref_primary_10_1016_j_dyepig_2024_111951
crossref_primary_10_1002_cjoc_202200672
crossref_primary_10_1007_s11426_024_1971_4
crossref_primary_10_1021_acsami_2c16567
crossref_primary_10_1016_j_cej_2024_155612
crossref_primary_10_1021_acsmaterialslett_4c01788
crossref_primary_10_1039_D4TC04185B
crossref_primary_10_1016_j_trac_2023_117339
crossref_primary_10_1021_acsnano_2c07263
crossref_primary_10_1002_adma_202311922
crossref_primary_10_1038_s41570_023_00555_1
crossref_primary_10_1038_s42004_025_01465_7
crossref_primary_10_1002_anie_202409162
crossref_primary_10_1021_acs_iecr_3c02023
crossref_primary_10_1002_agt2_627
crossref_primary_10_1002_ange_202502782
crossref_primary_10_1002_cptc_202300140
crossref_primary_10_1002_adom_202201761
crossref_primary_10_1021_accountsmr_4c00157
crossref_primary_10_1002_anie_202213097
crossref_primary_10_1039_D3CC03487A
crossref_primary_10_1002_adma_202203534
crossref_primary_10_1039_D2TC05112E
crossref_primary_10_1007_s11426_024_2109_5
crossref_primary_10_1016_j_cej_2023_142506
crossref_primary_10_1039_D2SC01770A
crossref_primary_10_1002_ange_202213097
crossref_primary_10_1021_acsami_2c16693
crossref_primary_10_1038_s41467_024_49670_7
crossref_primary_10_1002_anie_202502782
crossref_primary_10_1016_j_cej_2023_147271
crossref_primary_10_6023_A23040171
crossref_primary_10_1021_acsami_3c17214
crossref_primary_10_1002_agt2_253
crossref_primary_10_1021_acsmaterialslett_2c01020
crossref_primary_10_1016_j_jcis_2024_07_062
crossref_primary_10_1002_adom_202401642
crossref_primary_10_1021_acsmaterialslett_2c00392
Cites_doi 10.1021/jacs.7b12800
10.1002/anie.201901882
10.1002/anie.202115265
10.1002/anie.202114100
10.1038/s41467-021-25174-6
10.31635/ccschem.021.202000609
10.1039/D0CS01463J
10.1038/nmat2509
10.1038/s41467-019-10986-4
10.1002/anie.202107295
10.1021/jacs.6b10550
10.1021/jacs.1c06741
10.1002/anie.202113577
10.1021/acs.iecr.9b06314
10.1038/s41467-020-18520-7
10.1038/s41467-021-25299-8
10.1002/anie.202003427
10.1002/adfm.202003693
10.1002/anie.201915433
10.1021/acs.accounts.8b00620
10.1039/C9CC00097F
10.1002/smll.202104073
10.1021/jacs.7b07738
10.1002/advs.202103041
10.1002/adma.202007571
10.1021/acs.chemrev.5b00341
10.1002/anie.201914513
10.1021/acs.accounts.1c00336
10.1002/anie.202007039
10.1021/acsnano.1c05234
10.1002/smll.202104514
10.1002/anie.202002555
10.1002/anie.202115748
10.1002/anie.202108025
10.1002/cphc.201500901
10.1039/D1SC00446H
10.1002/anie.202009797
10.1038/s41467-021-27914-0
10.1021/jacs.0c12659
10.1002/anie.202114264
10.1021/jacs.1c06377
10.1038/s41467-019-13994-6
10.1038/s41467-019-11650-7
10.1002/adma.202108163
10.1002/adfm.201802657
10.1021/ol035967x
10.1002/anie.202116511
10.1002/anie.202012298
10.1002/inf2.12107
10.1002/anie.201912155
10.1039/C6SC03515A
10.1002/anie.201906312
10.1002/adfm.201807599
10.1021/jacs.8b05425
10.1021/jacs.7b13364
10.1002/adma.202006752
10.1002/agt2.3
10.1002/anie.201404490
10.1021/jacs.1c05213
10.1021/jacs.1c08118
10.1021/jacs.9b00859
10.1002/anie.201708606
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202200524
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2e45cc5977a04612945ec46abfd9bd7d
PMC9108601
35285166
10_1002_advs_202200524
ADVS3762
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22131008
– fundername: National Natural Science Foundation of China
  grantid: 22131008
– fundername: ;
  grantid: 22131008
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5292-162259e5c0fe4f16571af74bdc8617ce705feee07083703cd0f03d43d828e0433
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:30:32 EDT 2025
Thu Aug 21 18:25:29 EDT 2025
Thu Jul 10 22:32:09 EDT 2025
Sun Jul 13 04:13:26 EDT 2025
Mon Jul 21 06:07:28 EDT 2025
Tue Jul 01 03:59:39 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:25:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords phosphorescence energy transfer
supramolecular assembly
delayed fluorescence
photoswitch
room-temperature phosphorescence
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5292-162259e5c0fe4f16571af74bdc8617ce705feee07083703cd0f03d43d828e0433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8723-1896
OpenAccessLink https://www.proquest.com/docview/2664713112?pq-origsite=%requestingapplication%
PMID 35285166
PQID 2664713112
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_2e45cc5977a04612945ec46abfd9bd7d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9108601
proquest_miscellaneous_2638941392
proquest_journals_2664713112
pubmed_primary_35285166
crossref_primary_10_1002_advs_202200524
crossref_citationtrail_10_1002_advs_202200524
wiley_primary_10_1002_advs_202200524_ADVS3762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018 2014; 140 53
2020 2018 2019 2022; 11 28 52 18
2015 2020; 115 60
2022 2021 2021; 13 12 143
2009 2020 2019; 8 59 58
2021 2020 2021; 60 30 143
2020 2022 2019; 59 61 29
2022; 61
2021 2021 2017 2021; 60 143 56 143
2021 2021 2021; 12 50 33
2021 2018 2020 2017 2019; 12 140 11 139 10
2021 2020; 54 59
2019 2019; 59 141
2020 2021; 32 15
2022; 34
2019 2020 2019; 55 59 58
2020; 59
2004; 6
2020 2020; 59 1
2020 2022 2022; 2 61 61
2021 2017 2022 2019 2022 2021 2022; 60 8 4 10 18 60 9
2016; 17
2018 2017 2021; 140 139 143
e_1_2_7_5_2
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_9_3
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_12_7
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_12_6
e_1_2_7_16_2
e_1_2_7_12_5
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 60 8 4 10 18 60 9
  start-page: 590 173 3735
  year: 2021 2017 2022 2019 2022 2021 2022
  publication-title: Angew. Chem., Int. Ed. Chem. Sci. CCS Chem. Nat. Commun. Small Angew. Chem., Int. Ed. Adv. Sci.
– volume: 60 30 143
  year: 2021 2020 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. J. Am. Chem. Soc.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 12 50 33
  start-page: 4216 5564
  year: 2021 2021 2021
  publication-title: Chem. Sci. Chem. Soc. Rev. Adv. Mater.
– volume: 140 53
  start-page: 1916
  year: 2018 2014
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 59 1
  start-page: 31
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Aggregate
– volume: 17
  start-page: 1934
  year: 2016
  publication-title: ChemPhysChem
– volume: 12 140 11 139 10
  start-page: 4993 1966 158 785 3089
  year: 2021 2018 2020 2017 2019
  publication-title: Nat. Commun. J. Am. Chem. Soc. Nat. Commun. J. Am. Chem. Soc. Nat. Commun.
– volume: 140 139 143
  start-page: 8671
  year: 2018 2017 2021
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 13 12 143
  start-page: 186 4883
  year: 2022 2021 2021
  publication-title: Nat. Commun. Nat. Commun. J. Am. Chem. Soc.
– volume: 2 61 61
  start-page: 791
  year: 2020 2022 2022
  publication-title: InfoMat Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 6
  start-page: 185
  year: 2004
  publication-title: Org. Lett.
– volume: 59 61 29
  start-page: 1578
  year: 2020 2022 2019
  publication-title: Ind. Eng. Chem. Res. Angew. Chem. Int. Ed. Adv. Funct. Mater.
– volume: 11 28 52 18
  start-page: 4655 738
  year: 2020 2018 2019 2022
  publication-title: Nat. Commun. Adv. Funct. Mater. Acc. Chem. Res. Small
– volume: 32 15
  year: 2020 2021
  publication-title: Adv. Mater. ACS Nano
– volume: 59 141
  start-page: 9293 5045
  year: 2019 2019
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 60 143 56 143
  start-page: 3459 2164
  year: 2021 2021 2017 2021
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 115 60
  start-page: 3870
  year: 2015 2020
  publication-title: Chem. Rev. Angew. Chem., Int. Ed.
– volume: 55 59 58
  start-page: 3156 9928 6028
  year: 2019 2020 2019
  publication-title: Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 59
  start-page: 9393
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8 59 58
  start-page: 747
  year: 2009 2020 2019
  publication-title: Nat. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 54 59
  start-page: 3403
  year: 2021 2020
  publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed.
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.7b12800
– ident: e_1_2_7_9_3
  doi: 10.1002/anie.201901882
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.202115265
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.202114100
– ident: e_1_2_7_4_2
  doi: 10.1038/s41467-021-25174-6
– ident: e_1_2_7_12_3
  doi: 10.31635/ccschem.021.202000609
– ident: e_1_2_7_2_2
  doi: 10.1039/D0CS01463J
– ident: e_1_2_7_3_1
  doi: 10.1038/nmat2509
– ident: e_1_2_7_1_5
  doi: 10.1038/s41467-019-10986-4
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.202107295
– ident: e_1_2_7_1_4
  doi: 10.1021/jacs.6b10550
– ident: e_1_2_7_4_3
  doi: 10.1021/jacs.1c06741
– ident: e_1_2_7_12_6
  doi: 10.1002/anie.202113577
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.iecr.9b06314
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-020-18520-7
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-021-25299-8
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.202003427
– ident: e_1_2_7_8_2
  doi: 10.1002/adfm.202003693
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201915433
– ident: e_1_2_7_11_3
  doi: 10.1021/acs.accounts.8b00620
– ident: e_1_2_7_9_1
  doi: 10.1039/C9CC00097F
– ident: e_1_2_7_11_4
  doi: 10.1002/smll.202104073
– ident: e_1_2_7_24_2
  doi: 10.1021/jacs.7b07738
– ident: e_1_2_7_12_7
  doi: 10.1002/advs.202103041
– ident: e_1_2_7_2_3
  doi: 10.1002/adma.202007571
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.chemrev.5b00341
– ident: e_1_2_7_9_2
  doi: 10.1002/anie.201914513
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.accounts.1c00336
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.202007039
– ident: e_1_2_7_13_2
  doi: 10.1021/acsnano.1c05234
– ident: e_1_2_7_12_5
  doi: 10.1002/smll.202104514
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202002555
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202115748
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.202108025
– ident: e_1_2_7_20_1
  doi: 10.1002/cphc.201500901
– ident: e_1_2_7_2_1
  doi: 10.1039/D1SC00446H
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.202009797
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-021-27914-0
– ident: e_1_2_7_6_2
  doi: 10.1021/jacs.0c12659
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.202114264
– ident: e_1_2_7_24_3
  doi: 10.1021/jacs.1c06377
– ident: e_1_2_7_1_3
  doi: 10.1038/s41467-019-13994-6
– ident: e_1_2_7_12_4
  doi: 10.1038/s41467-019-11650-7
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202108163
– ident: e_1_2_7_11_2
  doi: 10.1002/adfm.201802657
– ident: e_1_2_7_22_1
  doi: 10.1021/ol035967x
– ident: e_1_2_7_16_3
  doi: 10.1002/anie.202116511
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202012298
– ident: e_1_2_7_16_1
  doi: 10.1002/inf2.12107
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.201912155
– ident: e_1_2_7_12_2
  doi: 10.1039/C6SC03515A
– ident: e_1_2_7_3_3
  doi: 10.1002/anie.201906312
– ident: e_1_2_7_14_3
  doi: 10.1002/adfm.201807599
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.8b05425
– ident: e_1_2_7_1_2
  doi: 10.1021/jacs.7b13364
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202006752
– ident: e_1_2_7_23_2
  doi: 10.1002/agt2.3
– ident: e_1_2_7_7_2
  doi: 10.1002/anie.201404490
– ident: e_1_2_7_8_3
  doi: 10.1021/jacs.1c05213
– ident: e_1_2_7_6_4
  doi: 10.1021/jacs.1c08118
– ident: e_1_2_7_5_2
  doi: 10.1021/jacs.9b00859
– ident: e_1_2_7_6_3
  doi: 10.1002/anie.201708606
SSID ssj0001537418
Score 2.4458294
Snippet Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed...
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed...
Abstract Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200524
SubjectTerms Aqueous solutions
delayed fluorescence
Fluorescence
Luminescence
Nanoparticles
Optical properties
phosphorescence energy transfer
photoswitch
Radiation
room‐temperature phosphorescence
supramolecular assembly
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9tAEICXklMvpXm0VZuGDRTaHoSl1WrlPdohJvRQCm4gN7HaHWGBIxkrbuk_yM_uzOqBTVty6dHWIK3noZm1Rt8w9iHDGrR0sQoFRBBKF5vQJIUN3dRlQoIuNfgG2a_q5lZ-uUvv9kZ9UU9YhwfuFDcRIFNriZJmiA0utEzBSmWK0unCZY7uvpjz9jZT3fvBCWFZBkpjJCbG_SA6t_CkIXmQhTys_28V5p-NkvsFrM9Ai5fsRV868lm35GP2DOoTdtwHZ8s_9QTpz6fsccapf2P9i197QgSel39bNe1m1Ww9vsnCZLHejR_4crfZmvthUi5f_qzQmHyOGc7xpuaGz6lrr2px5VVNY36AX5mWWusdp8fG9wVeq6r5DH9Zs2v58GfbGbtdXH-_ugn7kQuhTYUWYawwvjWkNipBlrFKs9iUmSycnWKpYyGL0hIA8D5B0JzEuqiMEicThxs3IBbaK3ZUNzW8YTx2Stt4WiagaFsVFcLQe7TWSYMmgCxg4WCC3PY8chqLsc47krLIyWT5aLKAfRzlNx2J45-Sc7LoKEUEbf8F-lXe-1X-lF8F7Hzwh7wPa7yEUpjME6xRA3Y5HsaApKcspiYNowzWgFgaaJR53bnPuBJC6aSxUgHLDhzrYKmHR-pq5aHfmkZiRTFqzbvgEyrIsahZYu4Qb_-HLt6x53Tmrs_znB09bHfwHmuxh-LCh91v4WsyuA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1La9wwEIBFm156KU2fTtKiQqHtwawty_L6uBuyhB5KYBvIzcjSuGvY2Ms625B_kJ_dGfmRmLaEHG0PtqzReEby6BvGPicYgxY2VL6AAHxpQ-3rKDe-ndpESEiLFFyC7A91ei6_X8QX93bxt3yIYcGNLMN9r8nAdd5M7qCh2v4m3LZw6CD5lD2j_bWU1Cfk2d0qSxwRnoUqzOHs2o-mUvbkxkBMxrcYeSYH8P9X1Pl38uT9oNZ5pcVL9qILJ_ms1f8-ewLVK7bfGWzDv3ZU6W-v2e2MU07H-oafOGoE3pefrepms6q3DulkYLJY74YDvtxttvqyr57Ll9clKpjP0etZXldc8zll8pUNtrysqPQP8GPdULq95fQr-TLHZ5UVn-Gb1buG9wtwb9j54uTn8anflWHwTSxS4YcKbT6F2AQFyCJUcRLqIpG5NVMMfwwkQVwAAH47CKQTGRsUQWRlZHEyB8RHe8v2qrqC94yHVqUmnBYRKJpqBbnQtLfWWKlRBZB4zO9VkJmOUU6lMtZZS1cWGaksG1TmsS-D_Kalc_xXck4aHaSIqu1O1NtfWWekmQAZG0NEPk0cepHKGIxUOi9smtvEeuyoHw9ZZ-r4CKXQwUcYt3rs03AZjZT-vOiKehhlMC7EcCFFmXft8BlaQnidOFTKY8loYI2aOr5SlSsHAk-pTFYQYq-5IfhAF2QY6CzRn4iDR8ofsud0sk3zPGJ7V9sdfMBQ7Cr_6KztD3BhLiE
  priority: 102
  providerName: Wiley-Blackwell
Title A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202200524
https://www.ncbi.nlm.nih.gov/pubmed/35285166
https://www.proquest.com/docview/2664713112
https://www.proquest.com/docview/2638941392
https://pubmed.ncbi.nlm.nih.gov/PMC9108601
https://doaj.org/article/2e45cc5977a04612945ec46abfd9bd7d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwEB6x7YULYnkGlspISMAhauI4SXNC7dJqhWBVUVbaW-TYzrZSNynNFsQ_4Gcz4zqBitexyaRxPA9_GU--AXiRIgYtdZj43ATGFzqUvowK5euRTrkwWZkZWyB7npxdiHeX8aVLuDWurLKNiTZQ61pRjnyICwnG0QjhwZvNZ5-6RtHuqmuhcQR9DMGjUQ_6k-n5_OPPLEscET1Ly9YY8KHUX4ilm1vGIXGwGlnS_j8hzd8LJn8FsnYlmt2FOw5CsvFe58dwy1T34Ng5acNeOSbp1_fh-5hRHcf6G5tapgj8XzZf1s1mWW8tjZMyw9l61_1gi91mK6_bjrls8XWFSmUTXOk0qysm2YSq91YNjnxVUbsfw05lQyX2mtH28XWB91pVbIxPVu8a1ibdHsDFbPrp9Mx3rRd8FfOM-2GCfp6ZWAWlEWWYxGkoy1QUWo0Q8iiTBnFpjMF4QeQ5kdJBGURaRBpf4Axxoj2EXlVX5jGwUCeZCkdlZBJ6vQoKLul7WqWFRBWY1AO_VUGuHC85tcdY53tGZZ6TyvJOZR687OQ3e0aOv0pOSKOdFDFp2wP19ip3jplzI2KliIVPEvc8z0RslEhkUeqs0Kn24KS1h9y5N96iM0YPnnen0TFpt0VWNMMog1gQIUKGMo_25tONhCh14jBJPEgPDOtgqIdnqtXSkn9n1BorCHHWrAn-ZwpyBDcLXEP4k38_xlO4TdfsKzlPoHez3ZlniLZuigEccTEfQH_89sP7xcA52MDmLn4AJdEuYg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCiwSCDhYsddrOz4glJREKS1RRVqpN7PeXZNIqR3ihqr_gF_Db2TGL4h4nXq0PbbXO7Mz3-6OvwF4HiIGTbUb2Nw4xhbalbb0EmXrng65MFEamTJBdhKMT8T7U_90C743_8JQWmXjE0tHrXNFa-RdDCToRz2EB2-XX2yqGkW7q00JjcosDszlBU7Zijf771C_LzgfDY_3xnZdVcBWPo-47QZowpHxlZMakbqBH7oyDUWiVQ-juTKh46fGGBwKxAvjKe2kjqeFp3FuYojuC597DbaFFzi8A9uD4eTo489VHd8jOpiGHdLhXam_Eis4LxmOxEb0K4sE_AnZ_p6g-StwLiPf6BbcrCEr61c2tgNbJrsNO7VTKNirmrn69R341meUN7K4ZMOSmQKfy45mebGc5auSNkqZ7mixbg_YdL1cybOmQi-bXszRiNgAI6tmecYkG1C24LzAls8zKi9k2J4sKKVfM9quPkvwXfOM9fHL8nXBmkW-u3ByJUq5B50sz8wDYK4OIuX2Us8ENJ1zEi7p_12lhUQVmNACu1FBrGoedCrHsYgrBmcek8riVmUWvGzllxUDyF8lB6TRVoqYu8sT-epzXDuCmBvhK0Wsf5K47nkkfKNEIJNUR4kOtQW7jT3EtTvBV7TGb8Gz9jI6AtrdkRn1MMog9kRIEqHM_cp82pYQhY_vBoEF4YZhbTR180o2n5Vk4xGV4nJc7LXSBP_TBTGCqSnGLP7w35_xFK6Pjz8cxof7k4NHcIPur7JId6Fzvlqbx4j0zpMn9fBi8OmqR_QP6ptmYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEOOaMcBIIOAhauI4SfOAULu12hiqKsqkvQXHPqGVuqRrVqb9A34Tv45zcoOK29Mek5zYjs_V9sl3GHsRYgyaGjewBThgS-MqW3mJtk3PhEJClEZQJsiOg8MT-f7UP91i35t_YSitsrGJpaE2uaY98i46ErSjHoYH3bROi5gcjN4tz22qIEUnrU05jUpEjuHqEpdvxdujA-T1SyFGw0_7h3ZdYcDWvoiE7QYozhH42klBpm7gh65KQ5kY3UPPriF0_BQAUC0II8bTxkkdz0jP4DoFCPoL273BtkNaFXXY9mA4nnz8ucPjewQN0yBFOqKrzFdCCBcl2pHc8IRlwYA_Rbm_J2v-GkSXXnB0h92uw1fer-Rth21Bdpft1Aai4K9rFOs399i3PqccksUVH5YoFdgun8zyYjnLVyWElIbuaLFuL_h0vVyps6ZaL59ezlGg-AC9rOF5xhUfUObgvMCRzzMqNQR8XxWU3m84HV2fJdjXPON9_LJ8XfBmw-8-O7kWpjxgnSzP4BHjrgki7fZSDwJa2jmJUPQvrzZSIQsgtJjdsCDWNSY6leZYxBWas4iJZXHLMou9aumXFRrIXykHxNGWilC8yxv56ktcG4VYgPS1JgRARbj3IpI-aBmoJDVRYkJjsb1GHuLatGAXrSJY7Hn7GI0CnfSojGYYaTAOxfAkQpqHlfi0IyE4H98NAouFG4K1MdTNJ9l8VgKPR1SWy3Fx1koR_M8UxBhYTdF_id1_f8YzdhM1Of5wND5-zG7R61VC6R7rXKzW8ASDvovkaa1dnH2-boX-AanVapg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Efficient+Phosphorescence%2FFluorescence+Supramolecular+Switch+Based+on+a+Bromoisoquinoline+Cascaded+Assembly+in+Aqueous+Solution&rft.jtitle=Advanced+science&rft.au=Xian%E2%80%90Yin+Dai&rft.au=Yu%E2%80%90Yang+Hu&rft.au=Sun%2C+Yonghui&rft.au=Huo%2C+Man&rft.date=2022-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=14&rft_id=info:doi/10.1002%2Fadvs.202200524&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon