A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported,...
Saved in:
Published in | Advanced science Vol. 9; no. 14; pp. e2200524 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.05.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments.
A highly reversible supramolecular photoswitch between room‐temperature phosphorescence (RTP) and delayed fluorescence is constructed. This photoswitch is based on a bromoisoquinoline cascaded assembly and is successfully prepared in the aqueous phase. It benefits from light‐driven supramolecular RTP energy transfer to exhibit multicolor tunable long‐lived emission, and is successfully applied to photocontrolled multicolor cell labeling. |
---|---|
AbstractList | Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G
), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G
. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments. Abstract Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments. Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. A highly reversible supramolecular photoswitch between room‐temperature phosphorescence (RTP) and delayed fluorescence is constructed. This photoswitch is based on a bromoisoquinoline cascaded assembly and is successfully prepared in the aqueous phase. It benefits from light‐driven supramolecular RTP energy transfer to exhibit multicolor tunable long‐lived emission, and is successfully applied to photocontrolled multicolor cell labeling. Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G3), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3. This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G 3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G 3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. A highly reversible supramolecular photoswitch between room‐temperature phosphorescence (RTP) and delayed fluorescence is constructed. This photoswitch is based on a bromoisoquinoline cascaded assembly and is successfully prepared in the aqueous phase. It benefits from light‐driven supramolecular RTP energy transfer to exhibit multicolor tunable long‐lived emission, and is successfully applied to photocontrolled multicolor cell labeling. Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP‐fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6‐bromoisoquinoline derivative (G 3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G 3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light‐driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP–fluorescence photoswitching property accompanied by multicolor tunable long‐lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light‐responsive RTP materials in aqueous environments. |
Author | Dong, Xiaoyun Dai, Xian‐Yin Liu, Yu Hu, Yu‐Yang Sun, Yonghui Huo, Man |
AuthorAffiliation | 1 College of Chemistry State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin 300071 P. R. China |
AuthorAffiliation_xml | – name: 1 College of Chemistry State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin 300071 P. R. China |
Author_xml | – sequence: 1 givenname: Xian‐Yin surname: Dai fullname: Dai, Xian‐Yin organization: Nankai University – sequence: 2 givenname: Yu‐Yang surname: Hu fullname: Hu, Yu‐Yang organization: Nankai University – sequence: 3 givenname: Yonghui surname: Sun fullname: Sun, Yonghui organization: Nankai University – sequence: 4 givenname: Man surname: Huo fullname: Huo, Man organization: Nankai University – sequence: 5 givenname: Xiaoyun surname: Dong fullname: Dong, Xiaoyun organization: Nankai University – sequence: 6 givenname: Yu orcidid: 0000-0001-8723-1896 surname: Liu fullname: Liu, Yu email: yuliu@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35285166$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1PGzEQhlcVVaGUa4-VpV64JPhzvXupFFIoSEitlLZXy7FnEyPHDvYuKP-gP7tOQyPgwskf88w749fzvjoIMUBVfSR4TDCmZ9re5zHFlGIsKH9THVHSNiPWcH7wZH9YneR8izEmgklOmnfVIRO0EaSuj6o_E3TlFku_QRdd54yD0KMfy5jXy5ggGwgGzi79sD-g2bBOehU9mMHrhGYPrjdLdK4zWBQD0ug8xVV0Od4NLkTvAqCpzkbbEp_kDKt5qeUCmtwNEIeMZtEPvYvhQ_W20z7DyeN6XP26vPg5vRrdfP92PZ3cjIygLR2RmlLRgjC4A96RWkiiO8nn1jQ1kQYkFh0AYIkbJjEzFneYWc5sQxvAnLHj6nqna6O-VevkVjptVNRO_buIaaF06p3xoChwYYxopdSY14S2XIDhtZ53tp1baYvWl53WepivwBaD-qT9M9HnkeCWahHvVUtwU2NSBE4fBVLxC3KvVq747L0OW3MUrVnTcsJaWtDPL9DbOKRQrCpUzSVhhGypT0872rfy_8MLMN4BJsWcE3R7hGC1HSq1HSq1H6qSwF8kGNfr7Y-VFzn_atqD87B5pYiafP09Y7Km7C-0WeIi |
CitedBy_id | crossref_primary_10_1002_adom_202202588 crossref_primary_10_1002_ange_202409162 crossref_primary_10_1007_s11696_023_03074_x crossref_primary_10_1016_j_matt_2023_04_006 crossref_primary_10_1002_adma_202415446 crossref_primary_10_1016_j_saa_2025_126111 crossref_primary_10_1021_acs_orglett_2c04314 crossref_primary_10_1002_asia_202300708 crossref_primary_10_1016_j_dyepig_2024_111951 crossref_primary_10_1002_cjoc_202200672 crossref_primary_10_1007_s11426_024_1971_4 crossref_primary_10_1021_acsami_2c16567 crossref_primary_10_1016_j_cej_2024_155612 crossref_primary_10_1021_acsmaterialslett_4c01788 crossref_primary_10_1039_D4TC04185B crossref_primary_10_1016_j_trac_2023_117339 crossref_primary_10_1021_acsnano_2c07263 crossref_primary_10_1002_adma_202311922 crossref_primary_10_1038_s41570_023_00555_1 crossref_primary_10_1038_s42004_025_01465_7 crossref_primary_10_1002_anie_202409162 crossref_primary_10_1021_acs_iecr_3c02023 crossref_primary_10_1002_agt2_627 crossref_primary_10_1002_ange_202502782 crossref_primary_10_1002_cptc_202300140 crossref_primary_10_1002_adom_202201761 crossref_primary_10_1021_accountsmr_4c00157 crossref_primary_10_1002_anie_202213097 crossref_primary_10_1039_D3CC03487A crossref_primary_10_1002_adma_202203534 crossref_primary_10_1039_D2TC05112E crossref_primary_10_1007_s11426_024_2109_5 crossref_primary_10_1016_j_cej_2023_142506 crossref_primary_10_1039_D2SC01770A crossref_primary_10_1002_ange_202213097 crossref_primary_10_1021_acsami_2c16693 crossref_primary_10_1038_s41467_024_49670_7 crossref_primary_10_1002_anie_202502782 crossref_primary_10_1016_j_cej_2023_147271 crossref_primary_10_6023_A23040171 crossref_primary_10_1021_acsami_3c17214 crossref_primary_10_1002_agt2_253 crossref_primary_10_1021_acsmaterialslett_2c01020 crossref_primary_10_1016_j_jcis_2024_07_062 crossref_primary_10_1002_adom_202401642 crossref_primary_10_1021_acsmaterialslett_2c00392 |
Cites_doi | 10.1021/jacs.7b12800 10.1002/anie.201901882 10.1002/anie.202115265 10.1002/anie.202114100 10.1038/s41467-021-25174-6 10.31635/ccschem.021.202000609 10.1039/D0CS01463J 10.1038/nmat2509 10.1038/s41467-019-10986-4 10.1002/anie.202107295 10.1021/jacs.6b10550 10.1021/jacs.1c06741 10.1002/anie.202113577 10.1021/acs.iecr.9b06314 10.1038/s41467-020-18520-7 10.1038/s41467-021-25299-8 10.1002/anie.202003427 10.1002/adfm.202003693 10.1002/anie.201915433 10.1021/acs.accounts.8b00620 10.1039/C9CC00097F 10.1002/smll.202104073 10.1021/jacs.7b07738 10.1002/advs.202103041 10.1002/adma.202007571 10.1021/acs.chemrev.5b00341 10.1002/anie.201914513 10.1021/acs.accounts.1c00336 10.1002/anie.202007039 10.1021/acsnano.1c05234 10.1002/smll.202104514 10.1002/anie.202002555 10.1002/anie.202115748 10.1002/anie.202108025 10.1002/cphc.201500901 10.1039/D1SC00446H 10.1002/anie.202009797 10.1038/s41467-021-27914-0 10.1021/jacs.0c12659 10.1002/anie.202114264 10.1021/jacs.1c06377 10.1038/s41467-019-13994-6 10.1038/s41467-019-11650-7 10.1002/adma.202108163 10.1002/adfm.201802657 10.1021/ol035967x 10.1002/anie.202116511 10.1002/anie.202012298 10.1002/inf2.12107 10.1002/anie.201912155 10.1039/C6SC03515A 10.1002/anie.201906312 10.1002/adfm.201807599 10.1021/jacs.8b05425 10.1021/jacs.7b13364 10.1002/adma.202006752 10.1002/agt2.3 10.1002/anie.201404490 10.1021/jacs.1c05213 10.1021/jacs.1c08118 10.1021/jacs.9b00859 10.1002/anie.201708606 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202200524 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2e45cc5977a04612945ec46abfd9bd7d PMC9108601 35285166 10_1002_advs_202200524 ADVS3762 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22131008 – fundername: National Natural Science Foundation of China grantid: 22131008 – fundername: ; grantid: 22131008 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5292-162259e5c0fe4f16571af74bdc8617ce705feee07083703cd0f03d43d828e0433 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Thu Aug 21 18:25:29 EDT 2025 Thu Jul 10 22:32:09 EDT 2025 Sun Jul 13 04:13:26 EDT 2025 Mon Jul 21 06:07:28 EDT 2025 Tue Jul 01 03:59:39 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:25:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | phosphorescence energy transfer supramolecular assembly delayed fluorescence photoswitch room-temperature phosphorescence |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5292-162259e5c0fe4f16571af74bdc8617ce705feee07083703cd0f03d43d828e0433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8723-1896 |
OpenAccessLink | https://www.proquest.com/docview/2664713112?pq-origsite=%requestingapplication% |
PMID | 35285166 |
PQID | 2664713112 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e45cc5977a04612945ec46abfd9bd7d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9108601 proquest_miscellaneous_2638941392 proquest_journals_2664713112 pubmed_primary_35285166 crossref_primary_10_1002_advs_202200524 crossref_citationtrail_10_1002_advs_202200524 wiley_primary_10_1002_advs_202200524_ADVS3762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018 2014; 140 53 2020 2018 2019 2022; 11 28 52 18 2015 2020; 115 60 2022 2021 2021; 13 12 143 2009 2020 2019; 8 59 58 2021 2020 2021; 60 30 143 2020 2022 2019; 59 61 29 2022; 61 2021 2021 2017 2021; 60 143 56 143 2021 2021 2021; 12 50 33 2021 2018 2020 2017 2019; 12 140 11 139 10 2021 2020; 54 59 2019 2019; 59 141 2020 2021; 32 15 2022; 34 2019 2020 2019; 55 59 58 2020; 59 2004; 6 2020 2020; 59 1 2020 2022 2022; 2 61 61 2021 2017 2022 2019 2022 2021 2022; 60 8 4 10 18 60 9 2016; 17 2018 2017 2021; 140 139 143 e_1_2_7_5_2 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_9_3 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_12_7 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_12_6 e_1_2_7_16_2 e_1_2_7_12_5 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 60 8 4 10 18 60 9 start-page: 590 173 3735 year: 2021 2017 2022 2019 2022 2021 2022 publication-title: Angew. Chem., Int. Ed. Chem. Sci. CCS Chem. Nat. Commun. Small Angew. Chem., Int. Ed. Adv. Sci. – volume: 60 30 143 year: 2021 2020 2021 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. J. Am. Chem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 12 50 33 start-page: 4216 5564 year: 2021 2021 2021 publication-title: Chem. Sci. Chem. Soc. Rev. Adv. Mater. – volume: 140 53 start-page: 1916 year: 2018 2014 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 59 1 start-page: 31 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Aggregate – volume: 17 start-page: 1934 year: 2016 publication-title: ChemPhysChem – volume: 12 140 11 139 10 start-page: 4993 1966 158 785 3089 year: 2021 2018 2020 2017 2019 publication-title: Nat. Commun. J. Am. Chem. Soc. Nat. Commun. J. Am. Chem. Soc. Nat. Commun. – volume: 140 139 143 start-page: 8671 year: 2018 2017 2021 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 13 12 143 start-page: 186 4883 year: 2022 2021 2021 publication-title: Nat. Commun. Nat. Commun. J. Am. Chem. Soc. – volume: 2 61 61 start-page: 791 year: 2020 2022 2022 publication-title: InfoMat Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 6 start-page: 185 year: 2004 publication-title: Org. Lett. – volume: 59 61 29 start-page: 1578 year: 2020 2022 2019 publication-title: Ind. Eng. Chem. Res. Angew. Chem. Int. Ed. Adv. Funct. Mater. – volume: 11 28 52 18 start-page: 4655 738 year: 2020 2018 2019 2022 publication-title: Nat. Commun. Adv. Funct. Mater. Acc. Chem. Res. Small – volume: 32 15 year: 2020 2021 publication-title: Adv. Mater. ACS Nano – volume: 59 141 start-page: 9293 5045 year: 2019 2019 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 60 143 56 143 start-page: 3459 2164 year: 2021 2021 2017 2021 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 115 60 start-page: 3870 year: 2015 2020 publication-title: Chem. Rev. Angew. Chem., Int. Ed. – volume: 55 59 58 start-page: 3156 9928 6028 year: 2019 2020 2019 publication-title: Chem. Commun. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 59 start-page: 9393 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 59 58 start-page: 747 year: 2009 2020 2019 publication-title: Nat. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 54 59 start-page: 3403 year: 2021 2020 publication-title: Acc. Chem. Res. Angew. Chem., Int. Ed. – ident: e_1_2_7_7_1 doi: 10.1021/jacs.7b12800 – ident: e_1_2_7_9_3 doi: 10.1002/anie.201901882 – ident: e_1_2_7_14_2 doi: 10.1002/anie.202115265 – ident: e_1_2_7_16_2 doi: 10.1002/anie.202114100 – ident: e_1_2_7_4_2 doi: 10.1038/s41467-021-25174-6 – ident: e_1_2_7_12_3 doi: 10.31635/ccschem.021.202000609 – ident: e_1_2_7_2_2 doi: 10.1039/D0CS01463J – ident: e_1_2_7_3_1 doi: 10.1038/nmat2509 – ident: e_1_2_7_1_5 doi: 10.1038/s41467-019-10986-4 – ident: e_1_2_7_12_1 doi: 10.1002/anie.202107295 – ident: e_1_2_7_1_4 doi: 10.1021/jacs.6b10550 – ident: e_1_2_7_4_3 doi: 10.1021/jacs.1c06741 – ident: e_1_2_7_12_6 doi: 10.1002/anie.202113577 – ident: e_1_2_7_14_1 doi: 10.1021/acs.iecr.9b06314 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-020-18520-7 – ident: e_1_2_7_1_1 doi: 10.1038/s41467-021-25299-8 – ident: e_1_2_7_23_1 doi: 10.1002/anie.202003427 – ident: e_1_2_7_8_2 doi: 10.1002/adfm.202003693 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201915433 – ident: e_1_2_7_11_3 doi: 10.1021/acs.accounts.8b00620 – ident: e_1_2_7_9_1 doi: 10.1039/C9CC00097F – ident: e_1_2_7_11_4 doi: 10.1002/smll.202104073 – ident: e_1_2_7_24_2 doi: 10.1021/jacs.7b07738 – ident: e_1_2_7_12_7 doi: 10.1002/advs.202103041 – ident: e_1_2_7_2_3 doi: 10.1002/adma.202007571 – ident: e_1_2_7_21_1 doi: 10.1021/acs.chemrev.5b00341 – ident: e_1_2_7_9_2 doi: 10.1002/anie.201914513 – ident: e_1_2_7_10_1 doi: 10.1021/acs.accounts.1c00336 – ident: e_1_2_7_3_2 doi: 10.1002/anie.202007039 – ident: e_1_2_7_13_2 doi: 10.1021/acsnano.1c05234 – ident: e_1_2_7_12_5 doi: 10.1002/smll.202104514 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202002555 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202115748 – ident: e_1_2_7_8_1 doi: 10.1002/anie.202108025 – ident: e_1_2_7_20_1 doi: 10.1002/cphc.201500901 – ident: e_1_2_7_2_1 doi: 10.1039/D1SC00446H – ident: e_1_2_7_21_2 doi: 10.1002/anie.202009797 – ident: e_1_2_7_4_1 doi: 10.1038/s41467-021-27914-0 – ident: e_1_2_7_6_2 doi: 10.1021/jacs.0c12659 – ident: e_1_2_7_17_1 doi: 10.1002/anie.202114264 – ident: e_1_2_7_24_3 doi: 10.1021/jacs.1c06377 – ident: e_1_2_7_1_3 doi: 10.1038/s41467-019-13994-6 – ident: e_1_2_7_12_4 doi: 10.1038/s41467-019-11650-7 – ident: e_1_2_7_19_1 doi: 10.1002/adma.202108163 – ident: e_1_2_7_11_2 doi: 10.1002/adfm.201802657 – ident: e_1_2_7_22_1 doi: 10.1021/ol035967x – ident: e_1_2_7_16_3 doi: 10.1002/anie.202116511 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202012298 – ident: e_1_2_7_16_1 doi: 10.1002/inf2.12107 – ident: e_1_2_7_5_1 doi: 10.1002/anie.201912155 – ident: e_1_2_7_12_2 doi: 10.1039/C6SC03515A – ident: e_1_2_7_3_3 doi: 10.1002/anie.201906312 – ident: e_1_2_7_14_3 doi: 10.1002/adfm.201807599 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.8b05425 – ident: e_1_2_7_1_2 doi: 10.1021/jacs.7b13364 – ident: e_1_2_7_13_1 doi: 10.1002/adma.202006752 – ident: e_1_2_7_23_2 doi: 10.1002/agt2.3 – ident: e_1_2_7_7_2 doi: 10.1002/anie.201404490 – ident: e_1_2_7_8_3 doi: 10.1021/jacs.1c05213 – ident: e_1_2_7_6_4 doi: 10.1021/jacs.1c08118 – ident: e_1_2_7_5_2 doi: 10.1021/jacs.9b00859 – ident: e_1_2_7_6_3 doi: 10.1002/anie.201708606 |
SSID | ssj0001537418 |
Score | 2.4458294 |
Snippet | Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and delayed... Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed... Abstract Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room‐temperature phosphorescence (RTP) and... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200524 |
SubjectTerms | Aqueous solutions delayed fluorescence Fluorescence Luminescence Nanoparticles Optical properties phosphorescence energy transfer photoswitch Radiation room‐temperature phosphorescence supramolecular assembly Temperature |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9tAEICXklMvpXm0VZuGDRTaHoSl1WrlPdohJvRQCm4gN7HaHWGBIxkrbuk_yM_uzOqBTVty6dHWIK3noZm1Rt8w9iHDGrR0sQoFRBBKF5vQJIUN3dRlQoIuNfgG2a_q5lZ-uUvv9kZ9UU9YhwfuFDcRIFNriZJmiA0utEzBSmWK0unCZY7uvpjz9jZT3fvBCWFZBkpjJCbG_SA6t_CkIXmQhTys_28V5p-NkvsFrM9Ai5fsRV868lm35GP2DOoTdtwHZ8s_9QTpz6fsccapf2P9i197QgSel39bNe1m1Ww9vsnCZLHejR_4crfZmvthUi5f_qzQmHyOGc7xpuaGz6lrr2px5VVNY36AX5mWWusdp8fG9wVeq6r5DH9Zs2v58GfbGbtdXH-_ugn7kQuhTYUWYawwvjWkNipBlrFKs9iUmSycnWKpYyGL0hIA8D5B0JzEuqiMEicThxs3IBbaK3ZUNzW8YTx2Stt4WiagaFsVFcLQe7TWSYMmgCxg4WCC3PY8chqLsc47krLIyWT5aLKAfRzlNx2J45-Sc7LoKEUEbf8F-lXe-1X-lF8F7Hzwh7wPa7yEUpjME6xRA3Y5HsaApKcspiYNowzWgFgaaJR53bnPuBJC6aSxUgHLDhzrYKmHR-pq5aHfmkZiRTFqzbvgEyrIsahZYu4Qb_-HLt6x53Tmrs_znB09bHfwHmuxh-LCh91v4WsyuA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1La9wwEIBFm156KU2fTtKiQqHtwawty_L6uBuyhB5KYBvIzcjSuGvY2Ms625B_kJ_dGfmRmLaEHG0PtqzReEby6BvGPicYgxY2VL6AAHxpQ-3rKDe-ndpESEiLFFyC7A91ei6_X8QX93bxt3yIYcGNLMN9r8nAdd5M7qCh2v4m3LZw6CD5lD2j_bWU1Cfk2d0qSxwRnoUqzOHs2o-mUvbkxkBMxrcYeSYH8P9X1Pl38uT9oNZ5pcVL9qILJ_ms1f8-ewLVK7bfGWzDv3ZU6W-v2e2MU07H-oafOGoE3pefrepms6q3DulkYLJY74YDvtxttvqyr57Ll9clKpjP0etZXldc8zll8pUNtrysqPQP8GPdULq95fQr-TLHZ5UVn-Gb1buG9wtwb9j54uTn8anflWHwTSxS4YcKbT6F2AQFyCJUcRLqIpG5NVMMfwwkQVwAAH47CKQTGRsUQWRlZHEyB8RHe8v2qrqC94yHVqUmnBYRKJpqBbnQtLfWWKlRBZB4zO9VkJmOUU6lMtZZS1cWGaksG1TmsS-D_Kalc_xXck4aHaSIqu1O1NtfWWekmQAZG0NEPk0cepHKGIxUOi9smtvEeuyoHw9ZZ-r4CKXQwUcYt3rs03AZjZT-vOiKehhlMC7EcCFFmXft8BlaQnidOFTKY8loYI2aOr5SlSsHAk-pTFYQYq-5IfhAF2QY6CzRn4iDR8ofsud0sk3zPGJ7V9sdfMBQ7Cr_6KztD3BhLiE priority: 102 providerName: Wiley-Blackwell |
Title | A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202200524 https://www.ncbi.nlm.nih.gov/pubmed/35285166 https://www.proquest.com/docview/2664713112 https://www.proquest.com/docview/2638941392 https://pubmed.ncbi.nlm.nih.gov/PMC9108601 https://doaj.org/article/2e45cc5977a04612945ec46abfd9bd7d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwEB6x7YULYnkGlspISMAhauI4SXNC7dJqhWBVUVbaW-TYzrZSNynNFsQ_4Gcz4zqBitexyaRxPA9_GU--AXiRIgYtdZj43ATGFzqUvowK5euRTrkwWZkZWyB7npxdiHeX8aVLuDWurLKNiTZQ61pRjnyICwnG0QjhwZvNZ5-6RtHuqmuhcQR9DMGjUQ_6k-n5_OPPLEscET1Ly9YY8KHUX4ilm1vGIXGwGlnS_j8hzd8LJn8FsnYlmt2FOw5CsvFe58dwy1T34Ng5acNeOSbp1_fh-5hRHcf6G5tapgj8XzZf1s1mWW8tjZMyw9l61_1gi91mK6_bjrls8XWFSmUTXOk0qysm2YSq91YNjnxVUbsfw05lQyX2mtH28XWB91pVbIxPVu8a1ibdHsDFbPrp9Mx3rRd8FfOM-2GCfp6ZWAWlEWWYxGkoy1QUWo0Q8iiTBnFpjMF4QeQ5kdJBGURaRBpf4Axxoj2EXlVX5jGwUCeZCkdlZBJ6vQoKLul7WqWFRBWY1AO_VUGuHC85tcdY53tGZZ6TyvJOZR687OQ3e0aOv0pOSKOdFDFp2wP19ip3jplzI2KliIVPEvc8z0RslEhkUeqs0Kn24KS1h9y5N96iM0YPnnen0TFpt0VWNMMog1gQIUKGMo_25tONhCh14jBJPEgPDOtgqIdnqtXSkn9n1BorCHHWrAn-ZwpyBDcLXEP4k38_xlO4TdfsKzlPoHez3ZlniLZuigEccTEfQH_89sP7xcA52MDmLn4AJdEuYg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCiwSCDhYsddrOz4glJREKS1RRVqpN7PeXZNIqR3ihqr_gF_Db2TGL4h4nXq0PbbXO7Mz3-6OvwF4HiIGTbUb2Nw4xhbalbb0EmXrng65MFEamTJBdhKMT8T7U_90C743_8JQWmXjE0tHrXNFa-RdDCToRz2EB2-XX2yqGkW7q00JjcosDszlBU7Zijf771C_LzgfDY_3xnZdVcBWPo-47QZowpHxlZMakbqBH7oyDUWiVQ-juTKh46fGGBwKxAvjKe2kjqeFp3FuYojuC597DbaFFzi8A9uD4eTo489VHd8jOpiGHdLhXam_Eis4LxmOxEb0K4sE_AnZ_p6g-StwLiPf6BbcrCEr61c2tgNbJrsNO7VTKNirmrn69R341meUN7K4ZMOSmQKfy45mebGc5auSNkqZ7mixbg_YdL1cybOmQi-bXszRiNgAI6tmecYkG1C24LzAls8zKi9k2J4sKKVfM9quPkvwXfOM9fHL8nXBmkW-u3ByJUq5B50sz8wDYK4OIuX2Us8ENJ1zEi7p_12lhUQVmNACu1FBrGoedCrHsYgrBmcek8riVmUWvGzllxUDyF8lB6TRVoqYu8sT-epzXDuCmBvhK0Wsf5K47nkkfKNEIJNUR4kOtQW7jT3EtTvBV7TGb8Gz9jI6AtrdkRn1MMog9kRIEqHM_cp82pYQhY_vBoEF4YZhbTR180o2n5Vk4xGV4nJc7LXSBP_TBTGCqSnGLP7w35_xFK6Pjz8cxof7k4NHcIPur7JId6Fzvlqbx4j0zpMn9fBi8OmqR_QP6ptmYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEOOaMcBIIOAhauI4SfOAULu12hiqKsqkvQXHPqGVuqRrVqb9A34Tv45zcoOK29Mek5zYjs_V9sl3GHsRYgyaGjewBThgS-MqW3mJtk3PhEJClEZQJsiOg8MT-f7UP91i35t_YSitsrGJpaE2uaY98i46ErSjHoYH3bROi5gcjN4tz22qIEUnrU05jUpEjuHqEpdvxdujA-T1SyFGw0_7h3ZdYcDWvoiE7QYozhH42klBpm7gh65KQ5kY3UPPriF0_BQAUC0II8bTxkkdz0jP4DoFCPoL273BtkNaFXXY9mA4nnz8ucPjewQN0yBFOqKrzFdCCBcl2pHc8IRlwYA_Rbm_J2v-GkSXXnB0h92uw1fer-Rth21Bdpft1Aai4K9rFOs399i3PqccksUVH5YoFdgun8zyYjnLVyWElIbuaLFuL_h0vVyps6ZaL59ezlGg-AC9rOF5xhUfUObgvMCRzzMqNQR8XxWU3m84HV2fJdjXPON9_LJ8XfBmw-8-O7kWpjxgnSzP4BHjrgki7fZSDwJa2jmJUPQvrzZSIQsgtJjdsCDWNSY6leZYxBWas4iJZXHLMou9aumXFRrIXykHxNGWilC8yxv56ktcG4VYgPS1JgRARbj3IpI-aBmoJDVRYkJjsb1GHuLatGAXrSJY7Hn7GI0CnfSojGYYaTAOxfAkQpqHlfi0IyE4H98NAouFG4K1MdTNJ9l8VgKPR1SWy3Fx1koR_M8UxBhYTdF_id1_f8YzdhM1Of5wND5-zG7R61VC6R7rXKzW8ASDvovkaa1dnH2-boX-AanVapg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly+Efficient+Phosphorescence%2FFluorescence+Supramolecular+Switch+Based+on+a+Bromoisoquinoline+Cascaded+Assembly+in+Aqueous+Solution&rft.jtitle=Advanced+science&rft.au=Xian%E2%80%90Yin+Dai&rft.au=Yu%E2%80%90Yang+Hu&rft.au=Sun%2C+Yonghui&rft.au=Huo%2C+Man&rft.date=2022-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=9&rft.issue=14&rft_id=info:doi/10.1002%2Fadvs.202200524&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |