SRSF5‐Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host‐Directed Target Against Influenza Virus
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splic...
Saved in:
Published in | Advanced science Vol. 9; no. 34; pp. e2203088 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.12.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host‐derived antiviral target.
Influenza A viruses (IAVs) must depend on the host splicing machinery to syntheses various essential proteins. The study uncovers the important role of host protein SRSF5 in activating the splicing of influenza viral M messenger RNA. Using a virtual structure‐based drug screening, anidulafungin is identified to target SRSF5 and shows potential for the inhibition of IAVs infections. |
---|---|
AbstractList | Abstract Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host‐derived antiviral target. Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host‐derived antiviral target. Influenza A viruses (IAVs) must depend on the host splicing machinery to syntheses various essential proteins. The study uncovers the important role of host protein SRSF5 in activating the splicing of influenza viral M messenger RNA. Using a virtual structure‐based drug screening, anidulafungin is identified to target SRSF5 and shows potential for the inhibition of IAVs infections. Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target. Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target. Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host‐derived antiviral target. Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host‐derived antiviral target. Influenza A viruses (IAVs) must depend on the host splicing machinery to syntheses various essential proteins. The study uncovers the important role of host protein SRSF5 in activating the splicing of influenza viral M messenger RNA. Using a virtual structure‐based drug screening, anidulafungin is identified to target SRSF5 and shows potential for the inhibition of IAVs infections. |
Author | Gao, Xintao Pu, Juan Li, Qiuchen Chang, Kin‐Chow Chen, Saini Sun, Yipeng Tong, Qi Sun, Honglei Liu, Litao Jiang, Zhimin Song, Zhimin Guo, Hui Meng, Fanfeng Liu, Jinhua Zhu, Junda Ren, Shuning |
AuthorAffiliation | 4 School of Veterinary Medicine and Science University of Nottingham Sutton Bonington Campus Sutton Bonington LE12 5RD UK 2 Chinese Academy of Sciences Key Laboratory of Infection and Immunity Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China 3 Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing 100081 China 1 Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases Key Laboratory of Animal Epidemiology Ministry of Agriculture College of Veterinary Medicine China Agricultural University Beijing 100193 China |
AuthorAffiliation_xml | – name: 2 Chinese Academy of Sciences Key Laboratory of Infection and Immunity Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China – name: 4 School of Veterinary Medicine and Science University of Nottingham Sutton Bonington Campus Sutton Bonington LE12 5RD UK – name: 3 Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing 100081 China – name: 1 Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases Key Laboratory of Animal Epidemiology Ministry of Agriculture College of Veterinary Medicine China Agricultural University Beijing 100193 China |
Author_xml | – sequence: 1 givenname: Qiuchen surname: Li fullname: Li, Qiuchen organization: China Agricultural University – sequence: 2 givenname: Zhimin orcidid: 0000-0002-9797-6493 surname: Jiang fullname: Jiang, Zhimin organization: Chinese Academy of Sciences – sequence: 3 givenname: Shuning surname: Ren fullname: Ren, Shuning organization: China Agricultural University – sequence: 4 givenname: Hui surname: Guo fullname: Guo, Hui organization: Chinese Academy of Sciences – sequence: 5 givenname: Zhimin surname: Song fullname: Song, Zhimin organization: Chinese Academy of Sciences – sequence: 6 givenname: Saini surname: Chen fullname: Chen, Saini organization: China Agricultural University – sequence: 7 givenname: Xintao surname: Gao fullname: Gao, Xintao organization: Chinese Academy of Agricultural Sciences – sequence: 8 givenname: Fanfeng surname: Meng fullname: Meng, Fanfeng organization: China Agricultural University – sequence: 9 givenname: Junda surname: Zhu fullname: Zhu, Junda organization: China Agricultural University – sequence: 10 givenname: Litao surname: Liu fullname: Liu, Litao organization: China Agricultural University – sequence: 11 givenname: Qi surname: Tong fullname: Tong, Qi organization: China Agricultural University – sequence: 12 givenname: Honglei surname: Sun fullname: Sun, Honglei organization: China Agricultural University – sequence: 13 givenname: Yipeng surname: Sun fullname: Sun, Yipeng organization: China Agricultural University – sequence: 14 givenname: Juan surname: Pu fullname: Pu, Juan organization: China Agricultural University – sequence: 15 givenname: Kin‐Chow surname: Chang fullname: Chang, Kin‐Chow organization: University of Nottingham – sequence: 16 givenname: Jinhua surname: Liu fullname: Liu, Jinhua email: ljh@cau.edu.cn organization: China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36257906$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstqGzEUhoeS0qRptl0WQTfd2NV1ZtRFweRqSCjEabZCozlyZcaSI824pKs-Qp6xT9LxJcEJlK4kjv7_Owf9522254OHLHtP8JBgTD_repmGFFOKGS7LV9kBJbIcsJLzvZ37fnaU0gxjTAQrOCnfZPssp6KQOD_IHibXkzPx5_fDFdROt1CjUdNC9Lp1S0CTReOM81MULLpC5-ABuYROUwLfOt0gGyIae9t04H9pNEK3LnYJXcPK1hOC_9IXL0Jq-wYnLoJZNbjRcQotGk2186nd8a_d77LXVjcJjrbnYfb97PTm-GJw-e18fDy6HBhBJR7klakM1xWrSyotAVpYC2BYbklpa8ZKYcDwSkvMhAbCK5MXuBDSlsAwM4IdZuMNtw56phbRzXW8V0E7tS6EOFU6ts40oEpuJZeFMKQgvC6YtpQZSXFOgUElVqyvG9aiq-ZQm_53om6eQZ-_ePdDTcNSyYKRXPIe8GkLiOGug9SquUsGmkZ7CF1StKA5x2Vesl768YV0Fro-r2al4oUUkoi8V33YnehplMfgewHfCEwMKUWwyrh2HVk_oGsUwWq1Ymq1YuppxXrb8IXtkfxPw7bPT9fA_X_UanRyO-GiD-gvsHblhw |
CitedBy_id | crossref_primary_10_1021_acs_jcim_4c02214 crossref_primary_10_1002_wrna_1871 crossref_primary_10_1016_j_mcpro_2024_100856 crossref_primary_10_1371_journal_ppat_1011535 crossref_primary_10_1002_jmv_29396 crossref_primary_10_1002_pro_5117 crossref_primary_10_1186_s12985_023_02098_9 |
Cites_doi | 10.1128/JVI.01679-20 10.1073/pnas.0403533101 10.1073/pnas.1719169115 10.1128/mBio.02551-19 10.3390/v13020234 10.1093/nar/9.12.2727 10.15252/embj.2021107640 10.1016/j.cell.2021.02.013 10.1371/journal.ppat.1002998 10.1126/sciadv.aaz5764 10.1371/journal.ppat.1003460 10.1038/nmicrobiol.2016.69 10.1038/s41467-018-04815-3 10.1371/journal.ppat.1008307 10.1016/j.antiviral.2019.06.003 10.1080/21505594.2021.2006960 10.1042/BJ20081501 10.1016/j.cell.2020.04.026 10.1002/j.1460-2075.1996.tb00925.x 10.1002/9781118636817 10.1038/s41577-019-0195-7 10.1126/scisignal.aaz3381 10.1016/S0955-0674(03)00048-6 10.1111/j.1742-4658.2011.08274.x 10.1016/j.chom.2016.09.014 10.14348/molcells.2017.2294 10.1056/NEJMoa1716197 10.1073/pnas.78.7.4170 10.1038/s41586-021-03511-5 10.1093/emboj/20.4.864 10.1371/journal.ppat.1008062 10.1038/ncomms14751 10.3390/v12101093 10.1093/nar/28.24.4822 10.1038/s41467-020-17246-w 10.1016/j.antiviral.2021.105188 10.1038/nmicrobiol.2016.100 10.7554/eLife.37419 10.1016/j.isci.2021.103097 10.1056/NEJMoa066906 10.1111/j.1550-7408.2006.00195.x 10.1083/jcb.201610051 10.1073/pnas.2018251118 10.1371/journal.ppat.1004164 10.1128/mBio.00070-14 10.7554/eLife.55500 10.1073/pnas.1901214116 10.1128/JVI.00506-08 10.1261/rna.075135.120 10.1038/s41564-021-00907-x 10.1136/gutjnl-2017-314983 10.1016/j.celrep.2012.12.010 10.1016/j.virol.2011.10.004 10.1038/s41564-019-0609-0 10.1038/381535a0 10.1093/nar/gkz099 10.1016/j.cell.2020.02.052 10.1128/JVI.03073-15 10.1128/JVI.78.12.6517-6526.2004 10.1038/s41467-018-04779-4 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202203088 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_84f94975c1714d73af23c92062e3eb55 PMC9731694 36257906 10_1002_advs_202203088 ADVS4530 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32030106; 32192450; 32102661 – fundername: China Postdoctoral Science Foundation funderid: 2021M693329 – fundername: National Natural Science Foundation of China grantid: 32030106 – fundername: National Natural Science Foundation of China grantid: 32102661 – fundername: National Natural Science Foundation of China grantid: 32192450 – fundername: China Postdoctoral Science Foundation grantid: 2021M693329 – fundername: ; grantid: 2021M693329 – fundername: ; grantid: 32030106; 32192450; 32102661 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY COVID MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5290-6bcbc4ab3d829f1e27ffeec36f18fd3385cec4ba9035ae14bc670759f8e303c53 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:29:59 EDT 2025 Thu Aug 21 18:39:42 EDT 2025 Thu Jul 10 22:05:10 EDT 2025 Fri Jul 25 07:55:59 EDT 2025 Thu Apr 03 07:08:41 EDT 2025 Tue Jul 01 03:59:45 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:22:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | influenza A viruses anidulafungin SRSF5 alternative splicing U1 snRNP |
Language | English |
License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5290-6bcbc4ab3d829f1e27ffeec36f18fd3385cec4ba9035ae14bc670759f8e303c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9797-6493 |
OpenAccessLink | https://doaj.org/article/84f94975c1714d73af23c92062e3eb55 |
PMID | 36257906 |
PQID | 2747959156 |
PQPubID | 4365299 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_84f94975c1714d73af23c92062e3eb55 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9731694 proquest_miscellaneous_2726408683 proquest_journals_2747959156 pubmed_primary_36257906 crossref_citationtrail_10_1002_advs_202203088 crossref_primary_10_1002_advs_202203088 wiley_primary_10_1002_advs_202203088_ADVS4530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 40 2021; 24 2021; 6 2011; 278 2017; 8 2013 2018; 3 9 2006; 53 2020 2020 2018 2020; 11 95 379 5 2004 2018; 101 7 2019; 10 2020; 181 2019; 15 2020; 16 2019; 168 2019; 19 2014 1981 2020; 5 9 6 2020 2021 2021; 12 13 12 2020; 13 1981 2012; 78 8 2012; 422 2009; 417 2003 2018; 15 115 1996; 15 2017; 216 2013; 9 2007; 356 2018; 9 2021 2020; 41 26 2016; 90 2019; 68 2021 2020 2019; 184 181 116 2004; 78 2020; 9 2016; 20 2021; 195 2001 2000 1996; 20 28 381 2021; 593 2013 2016 2016; 1 1 2019 2021; 47 118 2008; 82 2014; 10 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 Jobbins A. M. (e_1_2_8_24_1) 2021; 41 |
References_xml | – volume: 90 start-page: 5047 year: 2016 publication-title: J. Virol. – volume: 9 year: 2013 publication-title: PLoS Pathog. – volume: 78 start-page: 6517 year: 2004 publication-title: J. Virol. – volume: 101 7 start-page: 9666 year: 2004 2018 publication-title: Proc. Natl. Acad. Sci. USA Elife – volume: 12 13 12 start-page: 1093 234 2946 year: 2020 2021 2021 publication-title: Viruses Viruses Virulence – volume: 15 year: 2019 publication-title: PLoS Pathog. – volume: 20 28 381 start-page: 864 4822 535 year: 2001 2000 1996 publication-title: EMBO J. Nucl. Acids Res. Nature – volume: 9 year: 2020 publication-title: Elife – volume: 10 year: 2014 publication-title: PLoS Pathog. – volume: 181 start-page: 1036 year: 2020 publication-title: Cell – volume: 13 year: 2020 publication-title: Sci Signal – volume: 593 start-page: 362 year: 2021 publication-title: Nature – volume: 6 start-page: 932 year: 2021 publication-title: Nat. Microbiol. – volume: 82 year: 2008 publication-title: J. Virol. – volume: 417 start-page: 15 year: 2009 publication-title: Biochem. J. – volume: 278 start-page: 3246 year: 2011 publication-title: FEBS J. – volume: 19 start-page: 675 year: 2019 publication-title: Nat. Rev. Immunol. – volume: 53 start-page: S114 year: 2006 publication-title: J. Eukaryot Microbiol. – volume: 168 start-page: 187 year: 2019 publication-title: Antiviral Res. – volume: 195 year: 2021 publication-title: Antiviral Res. – volume: 422 start-page: 46 year: 2012 publication-title: Virology – volume: 11 95 379 5 start-page: 3418 913 27 year: 2020 2020 2018 2020 publication-title: Nat. Commun. J. Virol. N. Engl. J. Med. Nat. Microbiol. – volume: 356 start-page: 2472 year: 2007 publication-title: N. Engl. J. Med. – volume: 15 115 start-page: 326 year: 2003 2018 publication-title: Curr. Opin. Cell Biol. Proc. Natl. Acad. Sci. USA – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 68 start-page: 118 year: 2019 publication-title: Gut – volume: 3 9 start-page: 23 2407 year: 2013 2018 publication-title: Cell Rep. Nat. Commun. – volume: 41 26 start-page: 1389 year: 2021 2020 publication-title: EMBO J. RNA – volume: 40 start-page: 73 year: 2017 publication-title: Mol. Cells – volume: 216 start-page: 1993 year: 2017 publication-title: J. Cell Biol. – volume: 5 9 6 start-page: 2727 year: 2014 1981 2020 publication-title: mBio Nucl. Acids Res. Sci. Adv. – volume: 24 year: 2021 publication-title: iScience – volume: 10 year: 2019 publication-title: mBio – volume: 20 start-page: 674 year: 2016 publication-title: Cell Host Microbe – volume: 47 118 start-page: 4181 year: 2019 2021 publication-title: Nucl. Acids Res. Proc. Natl. Acad. Sci. USA – volume: 78 8 start-page: 4170 year: 1981 2012 publication-title: Proc. Natl. Acad. Sci. USA PLoS Pathog. – volume: 15 start-page: 5415 year: 1996 publication-title: EMBO J. – volume: 184 181 116 start-page: 1604 271 year: 2021 2020 2019 publication-title: Cell Cell Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 2464 year: 2018 publication-title: Nat. Commun. – volume: 16 year: 2020 publication-title: PLoS Pathog. – volume: 1 1 year: 2016 2016 publication-title: Nat. Microbiol. Nat. Microbiol. – year: 2013 – ident: e_1_2_8_2_2 doi: 10.1128/JVI.01679-20 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.0403533101 – ident: e_1_2_8_28_2 doi: 10.1073/pnas.1719169115 – ident: e_1_2_8_15_1 doi: 10.1128/mBio.02551-19 – ident: e_1_2_8_4_2 doi: 10.3390/v13020234 – ident: e_1_2_8_8_2 doi: 10.1093/nar/9.12.2727 – volume: 41 start-page: 107640 year: 2021 ident: e_1_2_8_24_1 publication-title: EMBO J. doi: 10.15252/embj.2021107640 – ident: e_1_2_8_3_1 doi: 10.1016/j.cell.2021.02.013 – ident: e_1_2_8_7_2 doi: 10.1371/journal.ppat.1002998 – ident: e_1_2_8_8_3 doi: 10.1126/sciadv.aaz5764 – ident: e_1_2_8_36_1 doi: 10.1371/journal.ppat.1003460 – ident: e_1_2_8_6_2 doi: 10.1038/nmicrobiol.2016.69 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-018-04815-3 – ident: e_1_2_8_16_1 doi: 10.1371/journal.ppat.1008307 – ident: e_1_2_8_26_1 doi: 10.1016/j.antiviral.2019.06.003 – ident: e_1_2_8_4_3 doi: 10.1080/21505594.2021.2006960 – ident: e_1_2_8_10_1 doi: 10.1042/BJ20081501 – ident: e_1_2_8_29_1 doi: 10.1016/j.cell.2020.04.026 – ident: e_1_2_8_32_1 doi: 10.1002/j.1460-2075.1996.tb00925.x – ident: e_1_2_8_1_1 doi: 10.1002/9781118636817 – ident: e_1_2_8_37_1 doi: 10.1038/s41577-019-0195-7 – ident: e_1_2_8_30_1 doi: 10.1126/scisignal.aaz3381 – ident: e_1_2_8_28_1 doi: 10.1016/S0955-0674(03)00048-6 – ident: e_1_2_8_21_1 doi: 10.1111/j.1742-4658.2011.08274.x – ident: e_1_2_8_42_1 doi: 10.1016/j.chom.2016.09.014 – ident: e_1_2_8_12_1 doi: 10.14348/molcells.2017.2294 – ident: e_1_2_8_2_3 doi: 10.1056/NEJMoa1716197 – ident: e_1_2_8_7_1 doi: 10.1073/pnas.78.7.4170 – ident: e_1_2_8_5_1 doi: 10.1038/s41586-021-03511-5 – ident: e_1_2_8_13_1 doi: 10.1093/emboj/20.4.864 – ident: e_1_2_8_41_1 doi: 10.1371/journal.ppat.1008062 – ident: e_1_2_8_34_1 doi: 10.1038/ncomms14751 – ident: e_1_2_8_4_1 doi: 10.3390/v12101093 – ident: e_1_2_8_13_2 doi: 10.1093/nar/28.24.4822 – ident: e_1_2_8_2_1 doi: 10.1038/s41467-020-17246-w – ident: e_1_2_8_39_1 doi: 10.1016/j.antiviral.2021.105188 – ident: e_1_2_8_6_1 doi: 10.1038/nmicrobiol.2016.100 – ident: e_1_2_8_20_2 doi: 10.7554/eLife.37419 – ident: e_1_2_8_18_1 doi: 10.1016/j.isci.2021.103097 – ident: e_1_2_8_25_1 doi: 10.1056/NEJMoa066906 – ident: e_1_2_8_40_1 doi: 10.1111/j.1550-7408.2006.00195.x – ident: e_1_2_8_22_1 doi: 10.1083/jcb.201610051 – ident: e_1_2_8_23_2 doi: 10.1073/pnas.2018251118 – ident: e_1_2_8_35_1 doi: 10.1371/journal.ppat.1004164 – ident: e_1_2_8_8_1 doi: 10.1128/mBio.00070-14 – ident: e_1_2_8_31_1 doi: 10.7554/eLife.55500 – ident: e_1_2_8_3_3 doi: 10.1073/pnas.1901214116 – ident: e_1_2_8_33_1 doi: 10.1128/JVI.00506-08 – ident: e_1_2_8_24_2 doi: 10.1261/rna.075135.120 – ident: e_1_2_8_17_1 doi: 10.1038/s41564-021-00907-x – ident: e_1_2_8_38_1 doi: 10.1136/gutjnl-2017-314983 – ident: e_1_2_8_9_1 doi: 10.1016/j.celrep.2012.12.010 – ident: e_1_2_8_27_1 doi: 10.1016/j.virol.2011.10.004 – ident: e_1_2_8_2_4 doi: 10.1038/s41564-019-0609-0 – ident: e_1_2_8_13_3 doi: 10.1038/381535a0 – ident: e_1_2_8_23_1 doi: 10.1093/nar/gkz099 – ident: e_1_2_8_3_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_2_8_14_1 doi: 10.1128/JVI.03073-15 – ident: e_1_2_8_11_1 doi: 10.1128/JVI.78.12.6517-6526.2004 – ident: e_1_2_8_9_2 doi: 10.1038/s41467-018-04779-4 |
SSID | ssj0001537418 |
Score | 2.3211884 |
Snippet | Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated... Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated... Abstract Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2203088 |
SubjectTerms | Alternative Splicing anidulafungin Animals Experiments Genes Infections Influenza Influenza A virus influenza A viruses Kinases Mice Orthomyxoviridae Infections Pandemics Plasmids Protein expression Proteins RNA, Messenger Severe acute respiratory syndrome coronavirus 2 SRSF5 U1 snRNP Virus Replication Viruses |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeuGCKM9AQYuEBBysOvuwvVxQihIFpFSoaVFv1nofbaTKLnHSAyd-Qn8jv4QZe20a8braO1rbM7Pzzez6G0JeKWm54kJG3GYyEobZqOAijayzKYZEn8X47_D8MJmdiE-n8jQU3OpwrLJbE5uF2lYGa-T7mD0pqSDdeH_5NcKuUbi7Glpo3CY7sARn2YDsHEwOPx_9qrJIjvQsHVtjzPa1vUKWbsaQqCXbikYNaf-fkObvByZvAtkmEk3vkbsBQtJxq_NdcsuV98lucNKavglM0m8fkOvF0WIqf3y_njcNOZyl44tQALxydIFb1xC5aOXpnKIUXdZ0UuPvSGCVFOAs_dj2MPmm6Zh-Wa42NQXE3tX53sHFWVWvYYJ25YQJjpuT5XR8ppcAPG_IN9IPycl0cvxhFoUWDJGRTEFiWZjCCF2AJpnyI8dS750zPPGjzFtIb6VxRhRaxVxqNxKFSVIAIcpnDmKjkfwRGZRV6Z4QmsAQwewodgw55OLCc-O0KkY21iyzfEiiThW5Cfzk2CbjIm-ZlVmOqst71Q3J6378ZcvM8deRB6jZfhQyajcXqtVZHhw0z4RXQqXSYEd4m3LtGTeKxQlz3BVSDsleZxd5cHOYojfKIXnZ3wYHxV0XXbpqg2MAc0LimMEbPm7NqH8SQA8yVTFIp1sGtvWo23fK5XlDAt60HFMCvlpjiv_5BDmAnIWQPH7679d4Ru6gTHteZ48M1quNew6oa128CK71E804Ldc priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BuXBBlGegoEVCAg5WnX3YXm4BNQpIQYi0qDdrn22kykZx0gMnfkJ_I7-EmbXjxgKEuK5nvbZnxvPNPr4h5KWSjisuZMJdIRNhmUsMF3nivMsxJIYixbPD80_Z7ER8PJWnO6f4W36IfsINPSP-r9HBtWkOr0lDtbtEum3GkHGluElu4fla3NTHxOfrWRbJkZ4FK8xBdp3wQogtc2PKDoe3GESmSOD_J9T5--bJXVAbo9L0LrnTwUk6afW_T2746h7Z7xy2oa87Vuk398nV4stiKn_-uJrH4hze0clFNxl46ekCl7EhitE60DnFXnTZ0KMGjyaBhVKAtvRDW8_ku6YT-nW52jQU0Pt2zu8tNM7qZg0DtH9RGOA47jKnkzO9BBC60z_2fkBOpkfH72dJV44hsZIpSDKNNVZoA1plKow9y0Pw3vIsjIvgINWV1lthtEq51H4sjM1yACQqFB7ipJX8Idmr6so_JjQDEcHcOPUM-eRSE7j1WpmxSzUrHB-RZKuK0nZc5Vgy46JsWZZZiaore9WNyKte_lvL0vFXyXeo2V4K2bVjQ706KztnLQsRlFC5tFgd3uVcB8atYmnGPPdGyhE52NpF2bk8DAGJmZIK8uERedFfBmfFFRhd-XqDMoA_IYks4A0ftWbUPwkgCZmrFHrnAwMbPOrwSrU8j4TgsfyYEvDVoin-4xOUAHgWQvL0yX_KPyW3sbHdzHNA9tarjX8GkGxtnkev-wV2_TDU priority: 102 providerName: Wiley-Blackwell |
Title | SRSF5‐Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host‐Directed Target Against Influenza Virus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202203088 https://www.ncbi.nlm.nih.gov/pubmed/36257906 https://www.proquest.com/docview/2747959156 https://www.proquest.com/docview/2726408683 https://pubmed.ncbi.nlm.nih.gov/PMC9731694 https://doaj.org/article/84f94975c1714d73af23c92062e3eb55 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggynNpWRkJCThEzfqRxNxS2NWC2KpqWtRb5CesVGWrZrcHTvyE_kZ-CWM7G-0KUC-cItnj2PGMM98k9jcIvRbcUEEZT6gpeMI0MYmiLE-MNbl3ia5I_dnh2VE2PWOfz_n5Rqovvycs0gPHiTsomBNM5Fz7TN0mp9IRqgVJM2KpVTywl4LP2wim4vlg6mlZ1iyNKTmQ5tqzcxPiCVqKLS8UyPr_hjD_3Ci5CWCDB5o8RA866IjLOORddMc2j9Butzhb_LZjkH73GN1UJ9WE__p5MwuJOKzB5UX34e_a4sr_sgaPhRcOz7BvhectHrf-GBJYIwYYiz_F3CU_JC7x1_nVqsWA1Nff995D4XTRLqGD-MaEDk7DjnJcfpNzAJwb7UPrJ-hsMj79ME261AuJ5kRAQKm00kwq0CARbmRJ7py1mmZuVDgDYS3XVjMlRUq5tCOmdJYD-BCusOATNadP0U6zaOxzhDMQYcSMUks8d1yqHNVWCjUyqSSFoQOUrFVR646X3KfHuKgjozKpverqXnUD9KaXv4yMHP-UPPSa7aU8k3YoAPuqO_uqb7OvAdpf20XdLW_oAoIwwQXEvgP0qq-Ghen_tsjGLlZeBrAmBIwFPOGzaEb9SAA18Fyk0DrfMrCtoW7XNPPvgfw7pBoTDGYtmOItU1ADuKkYp-mL_zEXe-i-v3PczbOPdpZXK_sSMNlSDdFdwo6H6F75cfalguvh-Oj4ZBgW5W_H5Tfq |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5V7QEuiLIGCgwSCDhYdWaxPUgIpZAooU2EmhT15tqzlEhVXOKkCE78hP4SfhS_hPe80Yjt1Ks9TzP2e_OWWb6PkCdKGq64kB43kfSEZsZLuQg9Y02IIdFFPt4dHo6C_oF4dygP18j3-i4MHqusfWLhqE2mcY18G6snJRWUG69PP3nIGoW7qzWFRmkWu_bLZyjZ8leDt6Dfp4z1upM3fa9iFfC0ZApqpVSnWiQpDI4p17YsdM5azQPXjpyBik1qq0WaKJ_LxLZFqoMQ4qpykQV3r5ElAlz-huCBz9bJxk539H7_16qO5AgHU6ND-mw7MWeICs4YAsNEK9GvIAn4U2b7-wHNi4lzEfl618m1KmWlndLGNsmand0gm5VTyOnzCrn6xU1yPt4f9-SPb-fDggDEGto5qRYczywd41Y5REqaOTqkKEWnOe3meP0JZgGF9JkOSs6Urwnt0A_T-TKnUCHU64ov4WE_yxfQQempoYNJcZKddo6TKSS6F-QL6Vvk4FKUc5usz7KZvUtoAE0EM23fMsSs81PHtU1U2jZ-wiLDW8SrVRHrCg8daTlO4hLJmcWourhRXYs8a9qflkggf225g5ptWiGCd_Egmx_HlUOII-GUUKHUyEBvQp44xrVifsAst6mULbJV20VcuRXoopkELfK4eQ0OAXd5kpnNltgGclwoVCP4wjulGTUjgWxFhsoH6XDFwFaGuvpmNv1YgI4XFGdKwF8rTPE_vyCGpGosJPfv_fszHpEr_clwL94bjHbvk6soX54V2iLri_nSPoCMb5E-rKYZJUeXPbN_Ap6Ha-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VqYS4IMoaWmCQQMDBijNL7EFCKKWJEkqiqmlRb8aepUSq4jZOiuDET-jv4efwS3jPG43YTr3a8zRjv33mzfcIeaqk4YoL6XETSk9oZryEi8Az1gToEl3o493h0bgzOBTvjuTRGvle3YXBssrKJuaG2qQa98hbmD0pqSDdaLmyLGJvp__m9MzDDlJ40lq10yhEZNd--QzpW_Z6uAO8fsZYv3fwduCVHQY8LZmCvCnRiRZxAgtlyrUtC5yzVvOOa4fOQPYmtdUiiZXPZWzbItGdAHyscqEF06-xYwSY__UAs6IGWd_ujff2f-3wSI7QMBVSpM9asTlHhHDGECQmXPGEecOAP0W5vxdrXg6icy_Yv0lulOEr7RbytkHW7OwW2SgNREZflCjWL2-Ti8n-pC9_fLsY5c1ArKHdk3Lz8dzSCR6bg9ekqaMjilR0mtFehlehQCMohNJ0WPRP-RrTLv0wnS8zCtlCtcf4Ch4O0mwBExRWGyY4yKvaafc4nkLQe4k-p75DDq-EOXdJY5bO7H1COzBEMNP2LUP8Oj9xXNtYJW3jxyw0vEm8ihWRLrHRsUXHSVSgOrMIWRfVrGuS5_X40wIV5K8jt5Gz9ShE884fpPPjqDQOUSicEiqQGrvRm4DHjnGtmN9hlttEyibZquQiKk0MTFErRJM8qV-DccATn3hm0yWOgXgXktYQvvBeIUb1SiBykYHygTpYEbCVpa6-mU0_5QDkebszJeCv5aL4n18QQYA1EZL7D_79GY_JNdDo6P1wvLtJriN5UTa0RRqL-dI-hOBvkTwqtYySj1et2D8BdZRwGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SRSF5%E2%80%90Mediated+Alternative+Splicing+of+M+Gene+is+Essential+for+Influenza+A+Virus+Replication%3A+A+Host%E2%80%90Directed+Target+Against+Influenza+Virus&rft.jtitle=Advanced+science&rft.au=Qiuchen+Li&rft.au=Zhimin+Jiang&rft.au=Shuning+Ren&rft.au=Hui+Guo&rft.date=2022-12-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=9&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202203088&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_84f94975c1714d73af23c92062e3eb55 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |