Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries
The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse tha...
Saved in:
Published in | Microbiome Vol. 3; no. 1; p. 69 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
19.12.2015
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone.
In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities.
Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions. |
---|---|
AbstractList | The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions. The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions. Background The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. Results In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Conclusions Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions. Keywords: Metaproteomics, Dental caries, Dysbiosis, Sucrose, Microcosm models, Oral biofilm, Taxonomic diversity The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone.BACKGROUNDThe etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone.In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities.RESULTSIn this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities.Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.CONCLUSIONSOur findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions. |
ArticleNumber | 69 |
Audience | Academic |
Author | Rudney, Joel D. Higgins, LeeAnn Johnson, James E. Markowski, Todd W. Jagtap, Pratik D. Reilly, Cavan S. Chen, Ruoqiong Griffin, Timothy J. |
Author_xml | – sequence: 1 givenname: Joel D. surname: Rudney fullname: Rudney, Joel D. – sequence: 2 givenname: Pratik D. surname: Jagtap fullname: Jagtap, Pratik D. – sequence: 3 givenname: Cavan S. surname: Reilly fullname: Reilly, Cavan S. – sequence: 4 givenname: Ruoqiong surname: Chen fullname: Chen, Ruoqiong – sequence: 5 givenname: Todd W. surname: Markowski fullname: Markowski, Todd W. – sequence: 6 givenname: LeeAnn surname: Higgins fullname: Higgins, LeeAnn – sequence: 7 givenname: James E. surname: Johnson fullname: Johnson, James E. – sequence: 8 givenname: Timothy J. surname: Griffin fullname: Griffin, Timothy J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26684897$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhSNUREvpD2CDLLEpixTbeTkbpKriUakSiMfacpzrqSvHHmxn6PQP8Te5w7TQqSBRlOjmO8fOyXla7PngoSieM3rCmGhfp5qyVpSUNXhVbXnzqDjgtO5L3jKxd-95vzhK6Yri0bO6q8WTYp-3rahF3x0UPz_FkMF6EsGpbFdA1DD7UXkNZKlyhugTUSkFbVWGkfyw-ZKkWceQoLR-nDUOx3UabEgWyQhEB58grnCuNlgiWV0HHyarlXNrMuIiMQEJUTmCwxh0SBNBA2PdRKYwgkskGDKCz4hoFS2kZ8Vjo1yCo9v7YfHt3duvZx_Ki4_vz89OL0rdcJFLY2DgRtNRc9M1vDW04lVvmtYoAFX3igqqDaUVKDGwptaNEBUzlQYzqH6k1WHxZuu7nIcJRo17wH3KZbSTimsZlJW7b7y9lIuwkjUm2tIGDY5vDWL4PkPKcrJJg3PKQ5iTZF3DWN9y3iP68gF6Febo8fOQ6pioKG-av9RCOZDWm4Dr6o2pPK0b1naU8hqpk39QeI6AGWNzMFzYFbzaESCT4Tov1JySPP_yeZd9cT-UP2nc1QiBbgv8_uERjNQ2Y53CJiPrJKNy01m57azEzspNZ-UNKtkD5Z35_zW_AOzv8qo |
CitedBy_id | crossref_primary_10_1039_D0BM00155D crossref_primary_10_1111_jcpe_12679 crossref_primary_10_1186_s12903_024_04181_1 crossref_primary_10_1021_acs_jproteome_0c00926 crossref_primary_10_1016_j_mcpro_2021_100126 crossref_primary_10_1080_20002297_2022_2123624 crossref_primary_10_1038_s41598_017_07791_8 crossref_primary_10_1038_s41598_018_29092_4 crossref_primary_10_3238_OPKZH_2019_157_168 crossref_primary_10_5867_medwave_2020_06_7974 crossref_primary_10_3389_fcimb_2021_599467 crossref_primary_10_3389_froh_2024_1475361 crossref_primary_10_1016_j_jdent_2017_08_009 crossref_primary_10_1038_s41467_021_27542_8 crossref_primary_10_1371_journal_pone_0241503 crossref_primary_10_3390_ijms22052423 crossref_primary_10_1021_acs_jproteome_8b00761 crossref_primary_10_1186_s12903_018_0595_2 crossref_primary_10_3389_fcimb_2022_887907 crossref_primary_10_1111_jcpe_12788 crossref_primary_10_1186_s12903_020_01104_8 crossref_primary_10_1371_journal_pone_0235283 crossref_primary_10_3389_fmars_2023_1337886 crossref_primary_10_3389_fmicb_2018_02009 crossref_primary_10_3390_proteomes6010007 crossref_primary_10_1021_acs_jproteome_9b00478 crossref_primary_10_1080_14789450_2023_2265062 crossref_primary_10_34133_2022_9781578 crossref_primary_10_1111_odi_12509 crossref_primary_10_1038_s41598_018_32544_6 crossref_primary_10_1177_0022034517698096 crossref_primary_10_1007_s00784_020_03691_w crossref_primary_10_12688_f1000research_16450_1 crossref_primary_10_1074_mcp_RA118_001240 crossref_primary_10_1080_09637486_2021_1913102 crossref_primary_10_12688_f1000research_16450_2 crossref_primary_10_1590_pboci_2020_131 crossref_primary_10_1016_j_bj_2018_12_001 |
Cites_doi | 10.1177/00220345960750040201 10.1371/journal.ppat.1002623 10.1007/s11064-013-1089-x 10.1159/000320158 10.1002/pmic.201500074 10.1111/j.1365-2672.2012.05439.x 10.1074/mcp.T600050-MCP200 10.1128/JCM.38.4.1615-1622.2000 10.1586/epr.12.15 10.1111/idj.12082 10.1016/j.resmic.2008.11.002 10.1021/pr200805u 10.1007/s00784-014-1200-y 10.1021/ac026117i 10.1093/nar/gkt1103 10.1177/0022034511415415 10.1128/mBio.01012-14 10.1093/nar/gki866 10.1136/gutjnl-2012-303786 10.1128/JCM.02427-10 10.1159/000351663 10.1016/B978-0-12-407863-5.00021-6 10.1186/gb-2012-13-6-r42 10.1177/0022034513508954 10.1177/0022034511421201 10.1371/journal.pone.0047722 10.1093/nar/gks1262 10.1016/j.tim.2014.10.010 10.1371/journal.pone.0045795 10.1177/0022034515590377 10.1021/pr070492f 10.1128/JB.06737-11 10.1099/mic.0.26888-0 10.1074/jbc.M112.405761 10.1111/omi.12044 10.1159/000104801 10.1177/0022034512449462 10.1002/pmic.201200352 10.1128/AEM.70.1.191-201.2004 10.1159/000261220 10.1128/AEM.02622-09 10.1128/AEM.00309-11 10.1093/nar/gks042 10.1002/pmic.201500041 10.1016/j.actbio.2013.08.034 10.1186/1471-2164-15-311 10.1111/j.1365-2672.2012.05434.x 10.1128/JB.00276-08 10.1038/nmeth.f.303 10.1159/000324598 10.1177/00220345930720020701 10.1002/pmic.201100503 10.1159/000345367 10.1099/mic.0.066134-0 10.1021/pr500812t 10.1128/MMBR.00034-07 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 BioMed Central Ltd. Copyright BioMed Central 2015 Rudney et al. 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Copyright BioMed Central 2015 – notice: Rudney et al. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/s40168-015-0136-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
ExternalDocumentID | PMC4684605 3977083831 A451670024 26684897 10_1186_s40168_015_0136_z |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE017734 – fundername: NIDCR NIH HHS grantid: 5R01DE17734 – fundername: NIDCR NIH HHS grantid: R01 DE021366 – fundername: ; grantid: 5R01DE17734 – fundername: ; grantid: 1147079 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EJD FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c528t-ffeb2fc0dc2f7526f03239f56faeea49a080cf003ea8b154c58831f3cefba9d03 |
IEDL.DBID | 7X7 |
ISSN | 2049-2618 |
IngestDate | Thu Aug 21 18:09:03 EDT 2025 Thu Jul 10 23:46:21 EDT 2025 Fri Jul 25 12:01:32 EDT 2025 Tue Jun 17 22:05:34 EDT 2025 Tue Jun 10 21:06:45 EDT 2025 Fri Jun 27 06:08:37 EDT 2025 Thu Apr 03 07:04:43 EDT 2025 Tue Jul 01 04:16:33 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-ffeb2fc0dc2f7526f03239f56faeea49a080cf003ea8b154c58831f3cefba9d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1771830255?pq-origsite=%requestingapplication% |
PMID | 26684897 |
PQID | 1771830255 |
PQPubID | 2040205 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4684605 proquest_miscellaneous_1751196229 proquest_journals_1771830255 gale_infotracmisc_A451670024 gale_infotracacademiconefile_A451670024 gale_incontextgauss_ISR_A451670024 pubmed_primary_26684897 crossref_citationtrail_10_1186_s40168_015_0136_z crossref_primary_10_1186_s40168_015_0136_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-19 |
PublicationDateYYYYMMDD | 2015-12-19 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2015 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | 136_CR60 R Caspi (136_CR41) 2014; 42 136_CR5 DJ McCarthy (136_CR28) 2012; 40 P Engel (136_CR51) 2014; 39 136_CR21 A Benitez-Paez (136_CR18) 2014; 15 RA Burne (136_CR29) 2012; 24 P Jagtap (136_CR32) 2012; 12 136_CR17 C Feehily (136_CR49) 2013; 114 DH Huson (136_CR35) 2013; 531 JA Vizcaíno (136_CR61) 2013; 41 C Ayala-Castro (136_CR46) 2008; 72 PJ Moynihan (136_CR3) 2014; 93 C Sansone (136_CR12) 1993; 72 SL Cotton (136_CR27) 2013; 92 J Kreth (136_CR45) 2008; 190 JG Caporaso (136_CR39) 2010; 7 136_CR52 ACR Tanner (136_CR16) 2011; 90 P-M Chen (136_CR50) 2010; 76 136_CR59 136_CR58 WH Tang (136_CR34) 2008; 7 L Zheng (136_CR44) 2011; 77 EG Smith (136_CR7) 2012; 91 K Igarashi (136_CR26) 1989; 23 JA Lemos (136_CR8) 2013; 159 E Freeman (136_CR53) 2011; 10 IV Shilov (136_CR57) 2007; 6 J Rappsilber (136_CR55) 2003; 75 B Santiago (136_CR47) 2012; 194 EL Gross (136_CR10) 2012; 7 A Simón-Soro (136_CR2) 2015; 23 PD Jagtap (136_CR30) 2014; 13 E Kanasi (136_CR14) 2010; 44 Y Lin-Moshier (136_CR56) 2013; 288 N Segata (136_CR20) 2012; 13 E Helgason (136_CR38) 2000; 38 ACR Tanner (136_CR15) 2011; 49 WH Bowen (136_CR6) 2011; 45 Á Simón-Soro (136_CR19) 2013; 47 Y Li (136_CR24) 2014; 10 MM Nascimento (136_CR13) 2013; 29 JD Rudney (136_CR23) 2012; 113 R Overbeek (136_CR40) 2005; 33 F Yang (136_CR54) 2012; 9 ACL Len (136_CR48) 2004; 150 J Van Houte (136_CR11) 1996; 75 J Xiao (136_CR9) 2012; 8 MI Klein (136_CR43) 2012; 7 136_CR33 E Helgason (136_CR37) 2004; 70 DJ Bradshaw (136_CR4) 2013; 63 CH Sissons (136_CR25) 2007; 41 JAC Lemos (136_CR42) 2005; 7 C Juste (136_CR22) 2014; 63 B Nyvad (136_CR1) 2013; 47 P Jagtap (136_CR31) 2013; 13 HA Hong (136_CR36) 2009; 160 25301683 - J Proteome Res. 2014 Dec 5;13(12):5898-908 26260998 - Proteomics. 2015 Oct;15(20):3532-43 8708129 - J Dent Res. 1996 Apr;75(4):1008-14 23412978 - Proteomics. 2013 Apr;13(8):1352-7 24060133 - Methods Enzymol. 2013;531:465-85 18441055 - J Bacteriol. 2008 Jul;190(13):4632-40 17533153 - Mol Cell Proteomics. 2007 Sep;6(9):1638-55 26261186 - J Dent Res. 2015 Oct;94(10):1341-7 25435135 - Trends Microbiol. 2015 Feb;23(2):76-82 21743034 - J Dent Res. 2012 Feb;91(2):133-41 16214803 - Nucleic Acids Res. 2005;33(17):5691-702 20173059 - Appl Environ Microbiol. 2010 Apr;76(8):2478-86 24767457 - BMC Genomics. 2014;15:311 22522805 - Proteomics. 2012 Apr;12(7):992-1001 21346355 - Caries Res. 2011;45(1):69-86 23148228 - J Biol Chem. 2013 Jan 4;288(1):355-67 10747152 - J Clin Microbiol. 2000 Apr;38(4):1615-22 12585499 - Anal Chem. 2003 Feb 1;75(3):663-70 23049864 - PLoS One. 2012;7(9):e45795 24436141 - Gut. 2014 Oct;63(10):1566-77 22496649 - PLoS Pathog. 2012;8(4):e1002623 19068230 - Res Microbiol. 2009 Mar;160(2):134-43 23091642 - PLoS One. 2012;7(10):e47722 24532386 - Clin Oral Investig. 2014 Dec;18(9):2087-94 24289808 - Mol Oral Microbiol. 2014 Feb;29(1):45-54 18322036 - Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents 15580782 - Curr Issues Mol Biol. 2005 Jan;7(1):95-107 8423248 - J Dent Res. 1993 Feb;72(2):508-16 17713343 - Caries Res. 2007;41(5):413-22 20383131 - Nat Methods. 2010 May;7(5):335-6 23203882 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9 24008178 - Acta Biomater. 2014 Jan;10(1):375-83 24323509 - J Dent Res. 2014 Jan;93(1):8-18 23761034 - Neurochem Res. 2014;39(3):426-32 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97 18700793 - J Proteome Res. 2008 Sep;7(9):3661-7 20861633 - Caries Res. 2010;44(5):485-97 22029901 - J Proteome Res. 2011 Dec 2;10(12):5536-46 24283286 - Int Dent J. 2013 Dec;63 Suppl 2:64-72 24225315 - Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71 22924898 - J Appl Microbiol. 2013 Jan;114(1):11-24 24692635 - MBio. 2014;5(2):e01012-14 22899685 - Adv Dent Res. 2012 Sep;24(2):77-80 2598230 - Caries Res. 1989;23(6):417-22 22698087 - Genome Biol. 2012;13(6):R42 21868693 - J Dent Res. 2011 Nov;90(11):1298-305 22328677 - J Bacteriol. 2012 Apr;194(8):2010-9 23207320 - Caries Res. 2013;47(2):89-102 23393147 - Microbiology. 2013 Mar;159(Pt 3):436-45 22925110 - J Appl Microbiol. 2012 Dec;113(6):1540-53 21289150 - J Clin Microbiol. 2011 Apr;49(4):1464-74 14711642 - Appl Environ Microbiol. 2004 Jan;70(1):191-201 26058579 - Proteomics. 2015 Oct;15(20):3553-65 21571883 - Appl Environ Microbiol. 2011 Jul;77(13):4318-28 24080530 - Caries Res. 2013;47(6):591-600 15133097 - Microbiology. 2004 May;150(Pt 5):1353-66 22462785 - Expert Rev Proteomics. 2012 Apr;9(2):129-34 |
References_xml | – volume: 75 start-page: 1008 issue: 4 year: 1996 ident: 136_CR11 publication-title: J Dent Res doi: 10.1177/00220345960750040201 – volume: 8 start-page: e1002623 issue: 4 year: 2012 ident: 136_CR9 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002623 – volume: 39 start-page: 426 issue: 3 year: 2014 ident: 136_CR51 publication-title: Neurochem Res doi: 10.1007/s11064-013-1089-x – volume: 44 start-page: 485 issue: 5 year: 2010 ident: 136_CR14 publication-title: Caries Res doi: 10.1159/000320158 – ident: 136_CR33 doi: 10.1002/pmic.201500074 – volume: 113 start-page: 1540 issue: 6 year: 2012 ident: 136_CR23 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2012.05439.x – volume: 6 start-page: 1638 issue: 9 year: 2007 ident: 136_CR57 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.T600050-MCP200 – volume: 38 start-page: 1615 issue: 4 year: 2000 ident: 136_CR38 publication-title: J Clin Microbiol doi: 10.1128/JCM.38.4.1615-1622.2000 – volume: 9 start-page: 129 issue: 2 year: 2012 ident: 136_CR54 publication-title: Expert Rev Proteomics doi: 10.1586/epr.12.15 – volume: 7 start-page: 95 issue: 1 year: 2005 ident: 136_CR42 publication-title: Curr Issues Mol Biol – ident: 136_CR52 – volume: 63 start-page: 64 year: 2013 ident: 136_CR4 publication-title: Int Dent J doi: 10.1111/idj.12082 – volume: 160 start-page: 134 issue: 2 year: 2009 ident: 136_CR36 publication-title: Res Microbiol doi: 10.1016/j.resmic.2008.11.002 – volume: 10 start-page: 5536 issue: 12 year: 2011 ident: 136_CR53 publication-title: J Proteome Res doi: 10.1021/pr200805u – ident: 136_CR17 doi: 10.1007/s00784-014-1200-y – volume: 75 start-page: 663 issue: 3 year: 2003 ident: 136_CR55 publication-title: Anal Chem doi: 10.1021/ac026117i – volume: 42 start-page: D459 issue: D1 year: 2014 ident: 136_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1103 – volume: 91 start-page: 133 issue: 2 year: 2012 ident: 136_CR7 publication-title: J Dent Res doi: 10.1177/0022034511415415 – ident: 136_CR21 doi: 10.1128/mBio.01012-14 – volume: 33 start-page: 5691 issue: 17 year: 2005 ident: 136_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki866 – volume: 63 start-page: 1566 issue: 10 year: 2014 ident: 136_CR22 publication-title: Gut doi: 10.1136/gutjnl-2012-303786 – volume: 92 start-page: 3828 year: 2013 ident: 136_CR27 publication-title: J Dent Res Spec Issue A – volume: 49 start-page: 1464 issue: 4 year: 2011 ident: 136_CR15 publication-title: J Clin Microbiol doi: 10.1128/JCM.02427-10 – volume: 47 start-page: 591 issue: 6 year: 2013 ident: 136_CR19 publication-title: Caries Res doi: 10.1159/000351663 – volume: 531 start-page: 465 year: 2013 ident: 136_CR35 publication-title: Methods Enzymol doi: 10.1016/B978-0-12-407863-5.00021-6 – volume: 13 start-page: R42 issue: 6 year: 2012 ident: 136_CR20 publication-title: Genome Biol doi: 10.1186/gb-2012-13-6-r42 – volume: 93 start-page: 8 issue: 1 year: 2014 ident: 136_CR3 publication-title: J Dent Res doi: 10.1177/0022034513508954 – volume: 90 start-page: 1298 issue: 11 year: 2011 ident: 136_CR16 publication-title: J Dent Res doi: 10.1177/0022034511421201 – volume: 7 start-page: e47722 issue: 10 year: 2012 ident: 136_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0047722 – volume: 41 start-page: D1063 issue: D1 year: 2013 ident: 136_CR61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1262 – volume: 23 start-page: 76 issue: 2 year: 2015 ident: 136_CR2 publication-title: Trends Microbiol doi: 10.1016/j.tim.2014.10.010 – volume: 7 start-page: e45795 issue: 9 year: 2012 ident: 136_CR43 publication-title: PLoS One doi: 10.1371/journal.pone.0045795 – ident: 136_CR5 doi: 10.1177/0022034515590377 – volume: 7 start-page: 3661 issue: 9 year: 2008 ident: 136_CR34 publication-title: J Proteome Res doi: 10.1021/pr070492f – volume: 194 start-page: 2010 issue: 8 year: 2012 ident: 136_CR47 publication-title: J Bacteriol doi: 10.1128/JB.06737-11 – volume: 150 start-page: 1353 issue: Pt 5 year: 2004 ident: 136_CR48 publication-title: Microbiol doi: 10.1099/mic.0.26888-0 – volume: 288 start-page: 355 issue: 1 year: 2013 ident: 136_CR56 publication-title: J Biol Chem doi: 10.1074/jbc.M112.405761 – volume: 29 start-page: 45 issue: 1 year: 2013 ident: 136_CR13 publication-title: Mol Oral Microbiol doi: 10.1111/omi.12044 – volume: 41 start-page: 413 issue: 5 year: 2007 ident: 136_CR25 publication-title: Caries Res doi: 10.1159/000104801 – volume: 24 start-page: 77 issue: 2 year: 2012 ident: 136_CR29 publication-title: Adv Dent Res doi: 10.1177/0022034512449462 – volume: 13 start-page: 1352 issue: 8 year: 2013 ident: 136_CR31 publication-title: Proteomics doi: 10.1002/pmic.201200352 – volume: 70 start-page: 191 issue: 1 year: 2004 ident: 136_CR37 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.1.191-201.2004 – volume: 23 start-page: 417 issue: 6 year: 1989 ident: 136_CR26 publication-title: Caries Res doi: 10.1159/000261220 – ident: 136_CR60 – volume: 76 start-page: 2478 issue: 8 year: 2010 ident: 136_CR50 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02622-09 – volume: 77 start-page: 4318 issue: 13 year: 2011 ident: 136_CR44 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00309-11 – volume: 40 start-page: 4288 issue: 10 year: 2012 ident: 136_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks042 – ident: 136_CR58 doi: 10.1002/pmic.201500041 – volume: 10 start-page: 375 issue: 1 year: 2014 ident: 136_CR24 publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.08.034 – volume: 15 start-page: 311 year: 2014 ident: 136_CR18 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-311 – ident: 136_CR59 – volume: 114 start-page: 11 issue: 1 year: 2013 ident: 136_CR49 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2012.05434.x – volume: 190 start-page: 4632 issue: 13 year: 2008 ident: 136_CR45 publication-title: J Bacteriol doi: 10.1128/JB.00276-08 – volume: 7 start-page: 335 issue: 5 year: 2010 ident: 136_CR39 publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 45 start-page: 69 issue: 1 year: 2011 ident: 136_CR6 publication-title: Caries Res doi: 10.1159/000324598 – volume: 72 start-page: 508 issue: 2 year: 1993 ident: 136_CR12 publication-title: J Dent Res doi: 10.1177/00220345930720020701 – volume: 12 start-page: 992 issue: 7 year: 2012 ident: 136_CR32 publication-title: Proteomics doi: 10.1002/pmic.201100503 – volume: 47 start-page: 89 issue: 2 year: 2013 ident: 136_CR1 publication-title: Caries Res doi: 10.1159/000345367 – volume: 159 start-page: 436 issue: Pt 3 year: 2013 ident: 136_CR8 publication-title: Microbiol doi: 10.1099/mic.0.066134-0 – volume: 13 start-page: 5898 issue: 12 year: 2014 ident: 136_CR30 publication-title: J Proteome Res doi: 10.1021/pr500812t – volume: 72 start-page: 110 issue: 1 year: 2008 ident: 136_CR46 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00034-07 – reference: 24532386 - Clin Oral Investig. 2014 Dec;18(9):2087-94 – reference: 8423248 - J Dent Res. 1993 Feb;72(2):508-16 – reference: 22522805 - Proteomics. 2012 Apr;12(7):992-1001 – reference: 24436141 - Gut. 2014 Oct;63(10):1566-77 – reference: 19068230 - Res Microbiol. 2009 Mar;160(2):134-43 – reference: 21289150 - J Clin Microbiol. 2011 Apr;49(4):1464-74 – reference: 25301683 - J Proteome Res. 2014 Dec 5;13(12):5898-908 – reference: 22328677 - J Bacteriol. 2012 Apr;194(8):2010-9 – reference: 18441055 - J Bacteriol. 2008 Jul;190(13):4632-40 – reference: 24289808 - Mol Oral Microbiol. 2014 Feb;29(1):45-54 – reference: 12585499 - Anal Chem. 2003 Feb 1;75(3):663-70 – reference: 26058579 - Proteomics. 2015 Oct;15(20):3553-65 – reference: 24692635 - MBio. 2014;5(2):e01012-14 – reference: 25435135 - Trends Microbiol. 2015 Feb;23(2):76-82 – reference: 23203882 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9 – reference: 23761034 - Neurochem Res. 2014;39(3):426-32 – reference: 22899685 - Adv Dent Res. 2012 Sep;24(2):77-80 – reference: 23412978 - Proteomics. 2013 Apr;13(8):1352-7 – reference: 10747152 - J Clin Microbiol. 2000 Apr;38(4):1615-22 – reference: 22496649 - PLoS Pathog. 2012;8(4):e1002623 – reference: 23091642 - PLoS One. 2012;7(10):e47722 – reference: 21743034 - J Dent Res. 2012 Feb;91(2):133-41 – reference: 22698087 - Genome Biol. 2012;13(6):R42 – reference: 21868693 - J Dent Res. 2011 Nov;90(11):1298-305 – reference: 26260998 - Proteomics. 2015 Oct;15(20):3532-43 – reference: 24060133 - Methods Enzymol. 2013;531:465-85 – reference: 24225315 - Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71 – reference: 22029901 - J Proteome Res. 2011 Dec 2;10(12):5536-46 – reference: 24008178 - Acta Biomater. 2014 Jan;10(1):375-83 – reference: 18700793 - J Proteome Res. 2008 Sep;7(9):3661-7 – reference: 23049864 - PLoS One. 2012;7(9):e45795 – reference: 23148228 - J Biol Chem. 2013 Jan 4;288(1):355-67 – reference: 22925110 - J Appl Microbiol. 2012 Dec;113(6):1540-53 – reference: 21571883 - Appl Environ Microbiol. 2011 Jul;77(13):4318-28 – reference: 23393147 - Microbiology. 2013 Mar;159(Pt 3):436-45 – reference: 20861633 - Caries Res. 2010;44(5):485-97 – reference: 15133097 - Microbiology. 2004 May;150(Pt 5):1353-66 – reference: 2598230 - Caries Res. 1989;23(6):417-22 – reference: 18322036 - Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents – reference: 26261186 - J Dent Res. 2015 Oct;94(10):1341-7 – reference: 20173059 - Appl Environ Microbiol. 2010 Apr;76(8):2478-86 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 22462785 - Expert Rev Proteomics. 2012 Apr;9(2):129-34 – reference: 24283286 - Int Dent J. 2013 Dec;63 Suppl 2:64-72 – reference: 15580782 - Curr Issues Mol Biol. 2005 Jan;7(1):95-107 – reference: 23207320 - Caries Res. 2013;47(2):89-102 – reference: 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97 – reference: 24323509 - J Dent Res. 2014 Jan;93(1):8-18 – reference: 16214803 - Nucleic Acids Res. 2005;33(17):5691-702 – reference: 14711642 - Appl Environ Microbiol. 2004 Jan;70(1):191-201 – reference: 8708129 - J Dent Res. 1996 Apr;75(4):1008-14 – reference: 17533153 - Mol Cell Proteomics. 2007 Sep;6(9):1638-55 – reference: 22924898 - J Appl Microbiol. 2013 Jan;114(1):11-24 – reference: 24767457 - BMC Genomics. 2014;15:311 – reference: 21346355 - Caries Res. 2011;45(1):69-86 – reference: 24080530 - Caries Res. 2013;47(6):591-600 – reference: 17713343 - Caries Res. 2007;41(5):413-22 |
SSID | ssj0000914748 |
Score | 2.2375748 |
Snippet | The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the... Background The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 69 |
SubjectTerms | Analysis Bacterial Proteins - analysis Biofilms - drug effects Biofilms - growth & development Biomarkers Dental caries Dental Caries - etiology Dental Caries - microbiology Dental Caries - prevention & control Dental Plaque - chemistry Dental Plaque - microbiology Dysbiosis - chemically induced Dysbiosis - metabolism Dysbiosis - microbiology Glucose metabolism Glycolysis - drug effects Humans Microbial Consortia - drug effects Microbial Consortia - genetics Microbial Consortia - physiology Microbiota (Symbiotic organisms) Microbiota - drug effects Microbiota - genetics Microbiota - physiology Physiological aspects Proteins Proteins - analysis Proteomics RNA RNA, Ribosomal, 16S - genetics Saliva - microbiology Sucrose - administration & dosage Sucrose - pharmacology Sugars |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7riuCLeLe6ShRBEKq9JG3yILKIyyqsiDqwbyFNk7XQadfJzLKzf8i_6TlpZ9jKsq_NyTSdLyfnfO25EPI6sVJXklcx2vqYVY7HYPRErAvMoiwNs6GLwtG34nDGvh7z4x2yaW81_oH-SmqH_aRmi_bd-Z_1R1D4D0HhRfHeA0coMCQLw9DyIr64QW6CYSqxocHR6O2Hg1mmrGRi_LZ55cyJdfr_jL5kpKYBlJcs0sFdcmd0Jen-gP09smO7--TW0Fxy_YD8_Y4lGJqODukqZ5bqCtM-AGV6Gqpqdp7qER1bU3wjS_0KF2ZjYOqAeU3rta-a3jcgubDUYOj14gyu67B-utTnQ16zbts1rUOMh6WY9E_nGOlnej-n8AOuaec0NN3xtHe0DjmY1ASe_pDMDj7_-nQYj20ZYsMzsYydAzbuTFKbzJU8K1ySZ7l0vHDaWs2kBifUODgtrBYVeGiGC5GnLjfWVVrWSf6I7HZ9Z58QajOd1gnmQQANZEyKXHOuS85FwkxRm4gkGziUGWuWY-uMVgXuIgo1IKgAQYUIqouIvN1OOR0Kdlwn_AoxVlgIo8NImxO98l59-flD7WMH4xJdmIi8GYVcDzc3ekxcgEfA2lkTyb2JJGiqmQ5vtpLabHSVluAd5MjsIvJyO4wzMfqts_0KZfBrb5FlMiKPh523fTZwsAQTsoxIOdmTWwGsHz4d6ZrfoY44g5nAZp9ev6xn5HaGCpJmcSr3yO5ysbLPwRFbVi-Cev0DoGE0mw priority: 102 providerName: Scholars Portal |
Title | Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26684897 https://www.proquest.com/docview/1771830255 https://www.proquest.com/docview/1751196229 https://pubmed.ncbi.nlm.nih.gov/PMC4684605 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IJWSFwQbwJlZRASEpLVPOzEOaGCWgpSq6pQaW-W49hlpd1kWe9WbH-I32TGyS4Nh15yiMeJrRnPy_Mg5F1sS12VomIo6xmvnGAg9CTTOWZRFobb0EXh5DQ_vuDfxmLcO9x8H1a54YmBUdetQR_5flIAF81QA_44_8WwaxTervYtNO6SXSxdhlRdjIutjwVkIS-47C8zE5nvezAncozewoi1LGfXA3H0P1O-IZWGEZM3RNDRQ_Kg1x3pQYfsR-SObR6Te103yfUT8ucMay5MGtrlp1xZqivM8wC00nkoo9l4qnt02JqiC5b6FS7MMjDNAck1rde-mrR-ApALSw3GWi-u4L0O66dL_btLZNbT6ZrWIajDUszypzMM7TOtn1H4gJtMZzR02fG0dbQOSZfUBMP8Kbk4Ovzx-Zj1fRiYEalcMufA_HYmrk3qCpHmLs7SrHQid9pazUsNWqdxwB6slhWoZEZImSUuM9ZVuqzj7BnZadrGviDUpjqpY0x8ALuP81JmWghdCCFjbvLaRCTeoEOZvkg59sqYqmCsyFx1GFSAQYUYVNcR-bCdMu8qdNwG_BZxrLDyRYOhNZd65b36-v1cHWDL4gJ1loi874FcCz83us9UgC1gsawB5N4AEo6mGQ5vSEn1rMGrf4QckTfbYZyJ4W6NbVcIg9e7eZqWEXneUd52b6BRSS7LIiLFgCa3AFgwfDjSTH6GwuEcZoL5-vL2Zb0i91M8IEnKknKP7CwXK_saNK9lNQrHa0R2Px2enp2Pgv8Cnl_GCTxPuPwLWXM1vA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJKSoediJc0CoAqpd-hCCVtqb6_gBkXaTZbNb2P4hbvxGZpLs0nDordd4nDia8TzsmW8IeRnYTOUZz3209T7LHffB6AlfJVhFmWpmmy4KB4fJ4Jh9GvHRBvmzqoXBtMqVTmwUtak0npFvhylo0Rg94HfTHz52jcLb1VULjVYs9uzyJ4Rs9dvhB-Dvqyja_Xj0fuB3XQV8zSMx952DYNLpwOjIpTxKXBBHceZ44pS1imUKfCjtQNitEjk4GJoLEYcu1tblKjNBDO-9Qq6C4Q0w2EtH6fpMB2wvS5noLk9DkWzXEL4kmC2GGXJx4p_1zN__RuCcFexnaJ4zebu3yM3OV6U7rXDdJhu2vEOutd0rl3fJ78-I8VCUtK2HObVU5VhXAmJEpw1sZ1lT1bHfGopHvrRe4MKsX5QGhMpQs6zzoqoLoJxZqjG3e3YKz1WzfjpXv9rCaTUeL6lpkkgsRVQBOsFUQl3VEwovcMV4QpuuPjWtHDVNkSfVzUHAPXJ8KRy6TzbLqrQPCbWRCk2AhRYQZzKWiVhxrlLORcB0YrRHghU7pO5A0bE3x1g2wZFIZMtBCRyUyEF55pE36ynTFhHkIuIXyGOJSBslpvJ8U4u6lsOvX-QOtkhO0UfyyOuOyFXwca26ygj4BQTn6lFu9ShBFej-8EqUZKeKavlv43jk-XoYZ2J6XWmrBdLgdXISRZlHHrSSt_438OAEE1nqkbQnk2sCBCjvj5TF9waonMFMCJcfXbysZ-T64OhgX-4PD_cekxsRbpYw8sNsi2zOZwv7BLy-ef602WqUnFz23v4LIsBwMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+relative+abundance+patterns+associated+with+sucrose-induced+dysbiosis+are+conserved+across+taxonomically+diverse+oral+microcosm+biofilm+models+of+dental+caries&rft.jtitle=Microbiome&rft.au=Rudney%2C+Joel+D&rft.au=Jagtap%2C+Pratik+D&rft.au=Reilly%2C+Cavan+S&rft.au=Chen%2C+Ruoqiong&rft.date=2015-12-19&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=3&rft_id=info:doi/10.1186%2Fs40168-015-0136-z&rft.externalDocID=3977083831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |