Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries

The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse tha...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 3; no. 1; p. 69
Main Authors Rudney, Joel D., Jagtap, Pratik D., Reilly, Cavan S., Chen, Ruoqiong, Markowski, Todd W., Higgins, LeeAnn, Johnson, James E., Griffin, Timothy J.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 19.12.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.
AbstractList The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.
The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.
Background The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone. Results In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities. Conclusions Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions. Keywords: Metaproteomics, Dental caries, Dysbiosis, Sucrose, Microcosm models, Oral biofilm, Taxonomic diversity
The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone.BACKGROUNDThe etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the supragingival microbiota in the direction of dysbiosis. Recent 16S rRNA-based studies indicated that caries-associated communities were less diverse than healthy supragingival plaque but still displayed considerable taxonomic diversity between individuals. Metagenomic studies likewise have found that healthy oral sites from different people were broadly similar with respect to gene function, even though there was an extensive individual variation in their taxonomic profiles. That pattern may also extend to dysbiotic communities. In that case, shifts in community-wide protein relative abundance might provide better biomarkers of dysbiosis that can be achieved through taxonomy alone.In this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities.RESULTSIn this study, we used a paired oral microcosm biofilm model of dental caries to investigate differences in community composition and protein relative abundance in the presence and absence of sucrose. This approach provided large quantities of protein, which facilitated deep metaproteomic analysis. Community composition was evaluated using 16S rRNA sequencing and metaproteomic approaches. Although taxonomic diversity was reduced by sucrose pulsing, considerable inter-subject variation in community composition remained. By contrast, functional analysis using the SEED ontology found that sucrose induced changes in protein relative abundance patterns for pathways involving glycolysis, lactate production, aciduricity, and ammonia/glutamate metabolism that were conserved across taxonomically diverse dysbiotic oral microcosm biofilm communities.Our findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.CONCLUSIONSOur findings support the concept of using function-based changes in protein relative abundance as indicators of dysbiosis. Our microcosm model cannot replicate all aspects of the oral environment, but the deep level of metaproteomic analysis it allows makes it suitable for discovering which proteins are most consistently abundant during dysbiosis. It then may be possible to define biomarkers that could be used to detect at-risk tooth surfaces before the development of overt carious lesions.
ArticleNumber 69
Audience Academic
Author Rudney, Joel D.
Higgins, LeeAnn
Johnson, James E.
Markowski, Todd W.
Jagtap, Pratik D.
Reilly, Cavan S.
Chen, Ruoqiong
Griffin, Timothy J.
Author_xml – sequence: 1
  givenname: Joel D.
  surname: Rudney
  fullname: Rudney, Joel D.
– sequence: 2
  givenname: Pratik D.
  surname: Jagtap
  fullname: Jagtap, Pratik D.
– sequence: 3
  givenname: Cavan S.
  surname: Reilly
  fullname: Reilly, Cavan S.
– sequence: 4
  givenname: Ruoqiong
  surname: Chen
  fullname: Chen, Ruoqiong
– sequence: 5
  givenname: Todd W.
  surname: Markowski
  fullname: Markowski, Todd W.
– sequence: 6
  givenname: LeeAnn
  surname: Higgins
  fullname: Higgins, LeeAnn
– sequence: 7
  givenname: James E.
  surname: Johnson
  fullname: Johnson, James E.
– sequence: 8
  givenname: Timothy J.
  surname: Griffin
  fullname: Griffin, Timothy J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26684897$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSNUREvpD2CDLLEpixTbeTkbpKriUakSiMfacpzrqSvHHmxn6PQP8Te5w7TQqSBRlOjmO8fOyXla7PngoSieM3rCmGhfp5qyVpSUNXhVbXnzqDjgtO5L3jKxd-95vzhK6Yri0bO6q8WTYp-3rahF3x0UPz_FkMF6EsGpbFdA1DD7UXkNZKlyhugTUSkFbVWGkfyw-ZKkWceQoLR-nDUOx3UabEgWyQhEB58grnCuNlgiWV0HHyarlXNrMuIiMQEJUTmCwxh0SBNBA2PdRKYwgkskGDKCz4hoFS2kZ8Vjo1yCo9v7YfHt3duvZx_Ki4_vz89OL0rdcJFLY2DgRtNRc9M1vDW04lVvmtYoAFX3igqqDaUVKDGwptaNEBUzlQYzqH6k1WHxZuu7nIcJRo17wH3KZbSTimsZlJW7b7y9lIuwkjUm2tIGDY5vDWL4PkPKcrJJg3PKQ5iTZF3DWN9y3iP68gF6Febo8fOQ6pioKG-av9RCOZDWm4Dr6o2pPK0b1naU8hqpk39QeI6AGWNzMFzYFbzaESCT4Tov1JySPP_yeZd9cT-UP2nc1QiBbgv8_uERjNQ2Y53CJiPrJKNy01m57azEzspNZ-UNKtkD5Z35_zW_AOzv8qo
CitedBy_id crossref_primary_10_1039_D0BM00155D
crossref_primary_10_1111_jcpe_12679
crossref_primary_10_1186_s12903_024_04181_1
crossref_primary_10_1021_acs_jproteome_0c00926
crossref_primary_10_1016_j_mcpro_2021_100126
crossref_primary_10_1080_20002297_2022_2123624
crossref_primary_10_1038_s41598_017_07791_8
crossref_primary_10_1038_s41598_018_29092_4
crossref_primary_10_3238_OPKZH_2019_157_168
crossref_primary_10_5867_medwave_2020_06_7974
crossref_primary_10_3389_fcimb_2021_599467
crossref_primary_10_3389_froh_2024_1475361
crossref_primary_10_1016_j_jdent_2017_08_009
crossref_primary_10_1038_s41467_021_27542_8
crossref_primary_10_1371_journal_pone_0241503
crossref_primary_10_3390_ijms22052423
crossref_primary_10_1021_acs_jproteome_8b00761
crossref_primary_10_1186_s12903_018_0595_2
crossref_primary_10_3389_fcimb_2022_887907
crossref_primary_10_1111_jcpe_12788
crossref_primary_10_1186_s12903_020_01104_8
crossref_primary_10_1371_journal_pone_0235283
crossref_primary_10_3389_fmars_2023_1337886
crossref_primary_10_3389_fmicb_2018_02009
crossref_primary_10_3390_proteomes6010007
crossref_primary_10_1021_acs_jproteome_9b00478
crossref_primary_10_1080_14789450_2023_2265062
crossref_primary_10_34133_2022_9781578
crossref_primary_10_1111_odi_12509
crossref_primary_10_1038_s41598_018_32544_6
crossref_primary_10_1177_0022034517698096
crossref_primary_10_1007_s00784_020_03691_w
crossref_primary_10_12688_f1000research_16450_1
crossref_primary_10_1074_mcp_RA118_001240
crossref_primary_10_1080_09637486_2021_1913102
crossref_primary_10_12688_f1000research_16450_2
crossref_primary_10_1590_pboci_2020_131
crossref_primary_10_1016_j_bj_2018_12_001
Cites_doi 10.1177/00220345960750040201
10.1371/journal.ppat.1002623
10.1007/s11064-013-1089-x
10.1159/000320158
10.1002/pmic.201500074
10.1111/j.1365-2672.2012.05439.x
10.1074/mcp.T600050-MCP200
10.1128/JCM.38.4.1615-1622.2000
10.1586/epr.12.15
10.1111/idj.12082
10.1016/j.resmic.2008.11.002
10.1021/pr200805u
10.1007/s00784-014-1200-y
10.1021/ac026117i
10.1093/nar/gkt1103
10.1177/0022034511415415
10.1128/mBio.01012-14
10.1093/nar/gki866
10.1136/gutjnl-2012-303786
10.1128/JCM.02427-10
10.1159/000351663
10.1016/B978-0-12-407863-5.00021-6
10.1186/gb-2012-13-6-r42
10.1177/0022034513508954
10.1177/0022034511421201
10.1371/journal.pone.0047722
10.1093/nar/gks1262
10.1016/j.tim.2014.10.010
10.1371/journal.pone.0045795
10.1177/0022034515590377
10.1021/pr070492f
10.1128/JB.06737-11
10.1099/mic.0.26888-0
10.1074/jbc.M112.405761
10.1111/omi.12044
10.1159/000104801
10.1177/0022034512449462
10.1002/pmic.201200352
10.1128/AEM.70.1.191-201.2004
10.1159/000261220
10.1128/AEM.02622-09
10.1128/AEM.00309-11
10.1093/nar/gks042
10.1002/pmic.201500041
10.1016/j.actbio.2013.08.034
10.1186/1471-2164-15-311
10.1111/j.1365-2672.2012.05434.x
10.1128/JB.00276-08
10.1038/nmeth.f.303
10.1159/000324598
10.1177/00220345930720020701
10.1002/pmic.201100503
10.1159/000345367
10.1099/mic.0.066134-0
10.1021/pr500812t
10.1128/MMBR.00034-07
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Copyright BioMed Central 2015
Rudney et al. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Copyright BioMed Central 2015
– notice: Rudney et al. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/s40168-015-0136-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
ExternalDocumentID PMC4684605
3977083831
A451670024
26684897
10_1186_s40168_015_0136_z
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE017734
– fundername: NIDCR NIH HHS
  grantid: 5R01DE17734
– fundername: NIDCR NIH HHS
  grantid: R01 DE021366
– fundername: ;
  grantid: 5R01DE17734
– fundername: ;
  grantid: 1147079
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c528t-ffeb2fc0dc2f7526f03239f56faeea49a080cf003ea8b154c58831f3cefba9d03
IEDL.DBID 7X7
ISSN 2049-2618
IngestDate Thu Aug 21 18:09:03 EDT 2025
Thu Jul 10 23:46:21 EDT 2025
Fri Jul 25 12:01:32 EDT 2025
Tue Jun 17 22:05:34 EDT 2025
Tue Jun 10 21:06:45 EDT 2025
Fri Jun 27 06:08:37 EDT 2025
Thu Apr 03 07:04:43 EDT 2025
Tue Jul 01 04:16:33 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-ffeb2fc0dc2f7526f03239f56faeea49a080cf003ea8b154c58831f3cefba9d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1771830255?pq-origsite=%requestingapplication%
PMID 26684897
PQID 1771830255
PQPubID 2040205
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4684605
proquest_miscellaneous_1751196229
proquest_journals_1771830255
gale_infotracmisc_A451670024
gale_infotracacademiconefile_A451670024
gale_incontextgauss_ISR_A451670024
pubmed_primary_26684897
crossref_citationtrail_10_1186_s40168_015_0136_z
crossref_primary_10_1186_s40168_015_0136_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-19
PublicationDateYYYYMMDD 2015-12-19
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References 136_CR60
R Caspi (136_CR41) 2014; 42
136_CR5
DJ McCarthy (136_CR28) 2012; 40
P Engel (136_CR51) 2014; 39
136_CR21
A Benitez-Paez (136_CR18) 2014; 15
RA Burne (136_CR29) 2012; 24
P Jagtap (136_CR32) 2012; 12
136_CR17
C Feehily (136_CR49) 2013; 114
DH Huson (136_CR35) 2013; 531
JA Vizcaíno (136_CR61) 2013; 41
C Ayala-Castro (136_CR46) 2008; 72
PJ Moynihan (136_CR3) 2014; 93
C Sansone (136_CR12) 1993; 72
SL Cotton (136_CR27) 2013; 92
J Kreth (136_CR45) 2008; 190
JG Caporaso (136_CR39) 2010; 7
136_CR52
ACR Tanner (136_CR16) 2011; 90
P-M Chen (136_CR50) 2010; 76
136_CR59
136_CR58
WH Tang (136_CR34) 2008; 7
L Zheng (136_CR44) 2011; 77
EG Smith (136_CR7) 2012; 91
K Igarashi (136_CR26) 1989; 23
JA Lemos (136_CR8) 2013; 159
E Freeman (136_CR53) 2011; 10
IV Shilov (136_CR57) 2007; 6
J Rappsilber (136_CR55) 2003; 75
B Santiago (136_CR47) 2012; 194
EL Gross (136_CR10) 2012; 7
A Simón-Soro (136_CR2) 2015; 23
PD Jagtap (136_CR30) 2014; 13
E Kanasi (136_CR14) 2010; 44
Y Lin-Moshier (136_CR56) 2013; 288
N Segata (136_CR20) 2012; 13
E Helgason (136_CR38) 2000; 38
ACR Tanner (136_CR15) 2011; 49
WH Bowen (136_CR6) 2011; 45
Á Simón-Soro (136_CR19) 2013; 47
Y Li (136_CR24) 2014; 10
MM Nascimento (136_CR13) 2013; 29
JD Rudney (136_CR23) 2012; 113
R Overbeek (136_CR40) 2005; 33
F Yang (136_CR54) 2012; 9
ACL Len (136_CR48) 2004; 150
J Van Houte (136_CR11) 1996; 75
J Xiao (136_CR9) 2012; 8
MI Klein (136_CR43) 2012; 7
136_CR33
E Helgason (136_CR37) 2004; 70
DJ Bradshaw (136_CR4) 2013; 63
CH Sissons (136_CR25) 2007; 41
JAC Lemos (136_CR42) 2005; 7
C Juste (136_CR22) 2014; 63
B Nyvad (136_CR1) 2013; 47
P Jagtap (136_CR31) 2013; 13
HA Hong (136_CR36) 2009; 160
25301683 - J Proteome Res. 2014 Dec 5;13(12):5898-908
26260998 - Proteomics. 2015 Oct;15(20):3532-43
8708129 - J Dent Res. 1996 Apr;75(4):1008-14
23412978 - Proteomics. 2013 Apr;13(8):1352-7
24060133 - Methods Enzymol. 2013;531:465-85
18441055 - J Bacteriol. 2008 Jul;190(13):4632-40
17533153 - Mol Cell Proteomics. 2007 Sep;6(9):1638-55
26261186 - J Dent Res. 2015 Oct;94(10):1341-7
25435135 - Trends Microbiol. 2015 Feb;23(2):76-82
21743034 - J Dent Res. 2012 Feb;91(2):133-41
16214803 - Nucleic Acids Res. 2005;33(17):5691-702
20173059 - Appl Environ Microbiol. 2010 Apr;76(8):2478-86
24767457 - BMC Genomics. 2014;15:311
22522805 - Proteomics. 2012 Apr;12(7):992-1001
21346355 - Caries Res. 2011;45(1):69-86
23148228 - J Biol Chem. 2013 Jan 4;288(1):355-67
10747152 - J Clin Microbiol. 2000 Apr;38(4):1615-22
12585499 - Anal Chem. 2003 Feb 1;75(3):663-70
23049864 - PLoS One. 2012;7(9):e45795
24436141 - Gut. 2014 Oct;63(10):1566-77
22496649 - PLoS Pathog. 2012;8(4):e1002623
19068230 - Res Microbiol. 2009 Mar;160(2):134-43
23091642 - PLoS One. 2012;7(10):e47722
24532386 - Clin Oral Investig. 2014 Dec;18(9):2087-94
24289808 - Mol Oral Microbiol. 2014 Feb;29(1):45-54
18322036 - Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents
15580782 - Curr Issues Mol Biol. 2005 Jan;7(1):95-107
8423248 - J Dent Res. 1993 Feb;72(2):508-16
17713343 - Caries Res. 2007;41(5):413-22
20383131 - Nat Methods. 2010 May;7(5):335-6
23203882 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9
24008178 - Acta Biomater. 2014 Jan;10(1):375-83
24323509 - J Dent Res. 2014 Jan;93(1):8-18
23761034 - Neurochem Res. 2014;39(3):426-32
22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97
18700793 - J Proteome Res. 2008 Sep;7(9):3661-7
20861633 - Caries Res. 2010;44(5):485-97
22029901 - J Proteome Res. 2011 Dec 2;10(12):5536-46
24283286 - Int Dent J. 2013 Dec;63 Suppl 2:64-72
24225315 - Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71
22924898 - J Appl Microbiol. 2013 Jan;114(1):11-24
24692635 - MBio. 2014;5(2):e01012-14
22899685 - Adv Dent Res. 2012 Sep;24(2):77-80
2598230 - Caries Res. 1989;23(6):417-22
22698087 - Genome Biol. 2012;13(6):R42
21868693 - J Dent Res. 2011 Nov;90(11):1298-305
22328677 - J Bacteriol. 2012 Apr;194(8):2010-9
23207320 - Caries Res. 2013;47(2):89-102
23393147 - Microbiology. 2013 Mar;159(Pt 3):436-45
22925110 - J Appl Microbiol. 2012 Dec;113(6):1540-53
21289150 - J Clin Microbiol. 2011 Apr;49(4):1464-74
14711642 - Appl Environ Microbiol. 2004 Jan;70(1):191-201
26058579 - Proteomics. 2015 Oct;15(20):3553-65
21571883 - Appl Environ Microbiol. 2011 Jul;77(13):4318-28
24080530 - Caries Res. 2013;47(6):591-600
15133097 - Microbiology. 2004 May;150(Pt 5):1353-66
22462785 - Expert Rev Proteomics. 2012 Apr;9(2):129-34
References_xml – volume: 75
  start-page: 1008
  issue: 4
  year: 1996
  ident: 136_CR11
  publication-title: J Dent Res
  doi: 10.1177/00220345960750040201
– volume: 8
  start-page: e1002623
  issue: 4
  year: 2012
  ident: 136_CR9
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002623
– volume: 39
  start-page: 426
  issue: 3
  year: 2014
  ident: 136_CR51
  publication-title: Neurochem Res
  doi: 10.1007/s11064-013-1089-x
– volume: 44
  start-page: 485
  issue: 5
  year: 2010
  ident: 136_CR14
  publication-title: Caries Res
  doi: 10.1159/000320158
– ident: 136_CR33
  doi: 10.1002/pmic.201500074
– volume: 113
  start-page: 1540
  issue: 6
  year: 2012
  ident: 136_CR23
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2012.05439.x
– volume: 6
  start-page: 1638
  issue: 9
  year: 2007
  ident: 136_CR57
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.T600050-MCP200
– volume: 38
  start-page: 1615
  issue: 4
  year: 2000
  ident: 136_CR38
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.38.4.1615-1622.2000
– volume: 9
  start-page: 129
  issue: 2
  year: 2012
  ident: 136_CR54
  publication-title: Expert Rev Proteomics
  doi: 10.1586/epr.12.15
– volume: 7
  start-page: 95
  issue: 1
  year: 2005
  ident: 136_CR42
  publication-title: Curr Issues Mol Biol
– ident: 136_CR52
– volume: 63
  start-page: 64
  year: 2013
  ident: 136_CR4
  publication-title: Int Dent J
  doi: 10.1111/idj.12082
– volume: 160
  start-page: 134
  issue: 2
  year: 2009
  ident: 136_CR36
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2008.11.002
– volume: 10
  start-page: 5536
  issue: 12
  year: 2011
  ident: 136_CR53
  publication-title: J Proteome Res
  doi: 10.1021/pr200805u
– ident: 136_CR17
  doi: 10.1007/s00784-014-1200-y
– volume: 75
  start-page: 663
  issue: 3
  year: 2003
  ident: 136_CR55
  publication-title: Anal Chem
  doi: 10.1021/ac026117i
– volume: 42
  start-page: D459
  issue: D1
  year: 2014
  ident: 136_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1103
– volume: 91
  start-page: 133
  issue: 2
  year: 2012
  ident: 136_CR7
  publication-title: J Dent Res
  doi: 10.1177/0022034511415415
– ident: 136_CR21
  doi: 10.1128/mBio.01012-14
– volume: 33
  start-page: 5691
  issue: 17
  year: 2005
  ident: 136_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki866
– volume: 63
  start-page: 1566
  issue: 10
  year: 2014
  ident: 136_CR22
  publication-title: Gut
  doi: 10.1136/gutjnl-2012-303786
– volume: 92
  start-page: 3828
  year: 2013
  ident: 136_CR27
  publication-title: J Dent Res Spec Issue A
– volume: 49
  start-page: 1464
  issue: 4
  year: 2011
  ident: 136_CR15
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02427-10
– volume: 47
  start-page: 591
  issue: 6
  year: 2013
  ident: 136_CR19
  publication-title: Caries Res
  doi: 10.1159/000351663
– volume: 531
  start-page: 465
  year: 2013
  ident: 136_CR35
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-407863-5.00021-6
– volume: 13
  start-page: R42
  issue: 6
  year: 2012
  ident: 136_CR20
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-6-r42
– volume: 93
  start-page: 8
  issue: 1
  year: 2014
  ident: 136_CR3
  publication-title: J Dent Res
  doi: 10.1177/0022034513508954
– volume: 90
  start-page: 1298
  issue: 11
  year: 2011
  ident: 136_CR16
  publication-title: J Dent Res
  doi: 10.1177/0022034511421201
– volume: 7
  start-page: e47722
  issue: 10
  year: 2012
  ident: 136_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047722
– volume: 41
  start-page: D1063
  issue: D1
  year: 2013
  ident: 136_CR61
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1262
– volume: 23
  start-page: 76
  issue: 2
  year: 2015
  ident: 136_CR2
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2014.10.010
– volume: 7
  start-page: e45795
  issue: 9
  year: 2012
  ident: 136_CR43
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045795
– ident: 136_CR5
  doi: 10.1177/0022034515590377
– volume: 7
  start-page: 3661
  issue: 9
  year: 2008
  ident: 136_CR34
  publication-title: J Proteome Res
  doi: 10.1021/pr070492f
– volume: 194
  start-page: 2010
  issue: 8
  year: 2012
  ident: 136_CR47
  publication-title: J Bacteriol
  doi: 10.1128/JB.06737-11
– volume: 150
  start-page: 1353
  issue: Pt 5
  year: 2004
  ident: 136_CR48
  publication-title: Microbiol
  doi: 10.1099/mic.0.26888-0
– volume: 288
  start-page: 355
  issue: 1
  year: 2013
  ident: 136_CR56
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.405761
– volume: 29
  start-page: 45
  issue: 1
  year: 2013
  ident: 136_CR13
  publication-title: Mol Oral Microbiol
  doi: 10.1111/omi.12044
– volume: 41
  start-page: 413
  issue: 5
  year: 2007
  ident: 136_CR25
  publication-title: Caries Res
  doi: 10.1159/000104801
– volume: 24
  start-page: 77
  issue: 2
  year: 2012
  ident: 136_CR29
  publication-title: Adv Dent Res
  doi: 10.1177/0022034512449462
– volume: 13
  start-page: 1352
  issue: 8
  year: 2013
  ident: 136_CR31
  publication-title: Proteomics
  doi: 10.1002/pmic.201200352
– volume: 70
  start-page: 191
  issue: 1
  year: 2004
  ident: 136_CR37
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.1.191-201.2004
– volume: 23
  start-page: 417
  issue: 6
  year: 1989
  ident: 136_CR26
  publication-title: Caries Res
  doi: 10.1159/000261220
– ident: 136_CR60
– volume: 76
  start-page: 2478
  issue: 8
  year: 2010
  ident: 136_CR50
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02622-09
– volume: 77
  start-page: 4318
  issue: 13
  year: 2011
  ident: 136_CR44
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00309-11
– volume: 40
  start-page: 4288
  issue: 10
  year: 2012
  ident: 136_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks042
– ident: 136_CR58
  doi: 10.1002/pmic.201500041
– volume: 10
  start-page: 375
  issue: 1
  year: 2014
  ident: 136_CR24
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2013.08.034
– volume: 15
  start-page: 311
  year: 2014
  ident: 136_CR18
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-311
– ident: 136_CR59
– volume: 114
  start-page: 11
  issue: 1
  year: 2013
  ident: 136_CR49
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2012.05434.x
– volume: 190
  start-page: 4632
  issue: 13
  year: 2008
  ident: 136_CR45
  publication-title: J Bacteriol
  doi: 10.1128/JB.00276-08
– volume: 7
  start-page: 335
  issue: 5
  year: 2010
  ident: 136_CR39
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 45
  start-page: 69
  issue: 1
  year: 2011
  ident: 136_CR6
  publication-title: Caries Res
  doi: 10.1159/000324598
– volume: 72
  start-page: 508
  issue: 2
  year: 1993
  ident: 136_CR12
  publication-title: J Dent Res
  doi: 10.1177/00220345930720020701
– volume: 12
  start-page: 992
  issue: 7
  year: 2012
  ident: 136_CR32
  publication-title: Proteomics
  doi: 10.1002/pmic.201100503
– volume: 47
  start-page: 89
  issue: 2
  year: 2013
  ident: 136_CR1
  publication-title: Caries Res
  doi: 10.1159/000345367
– volume: 159
  start-page: 436
  issue: Pt 3
  year: 2013
  ident: 136_CR8
  publication-title: Microbiol
  doi: 10.1099/mic.0.066134-0
– volume: 13
  start-page: 5898
  issue: 12
  year: 2014
  ident: 136_CR30
  publication-title: J Proteome Res
  doi: 10.1021/pr500812t
– volume: 72
  start-page: 110
  issue: 1
  year: 2008
  ident: 136_CR46
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00034-07
– reference: 24532386 - Clin Oral Investig. 2014 Dec;18(9):2087-94
– reference: 8423248 - J Dent Res. 1993 Feb;72(2):508-16
– reference: 22522805 - Proteomics. 2012 Apr;12(7):992-1001
– reference: 24436141 - Gut. 2014 Oct;63(10):1566-77
– reference: 19068230 - Res Microbiol. 2009 Mar;160(2):134-43
– reference: 21289150 - J Clin Microbiol. 2011 Apr;49(4):1464-74
– reference: 25301683 - J Proteome Res. 2014 Dec 5;13(12):5898-908
– reference: 22328677 - J Bacteriol. 2012 Apr;194(8):2010-9
– reference: 18441055 - J Bacteriol. 2008 Jul;190(13):4632-40
– reference: 24289808 - Mol Oral Microbiol. 2014 Feb;29(1):45-54
– reference: 12585499 - Anal Chem. 2003 Feb 1;75(3):663-70
– reference: 26058579 - Proteomics. 2015 Oct;15(20):3553-65
– reference: 24692635 - MBio. 2014;5(2):e01012-14
– reference: 25435135 - Trends Microbiol. 2015 Feb;23(2):76-82
– reference: 23203882 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9
– reference: 23761034 - Neurochem Res. 2014;39(3):426-32
– reference: 22899685 - Adv Dent Res. 2012 Sep;24(2):77-80
– reference: 23412978 - Proteomics. 2013 Apr;13(8):1352-7
– reference: 10747152 - J Clin Microbiol. 2000 Apr;38(4):1615-22
– reference: 22496649 - PLoS Pathog. 2012;8(4):e1002623
– reference: 23091642 - PLoS One. 2012;7(10):e47722
– reference: 21743034 - J Dent Res. 2012 Feb;91(2):133-41
– reference: 22698087 - Genome Biol. 2012;13(6):R42
– reference: 21868693 - J Dent Res. 2011 Nov;90(11):1298-305
– reference: 26260998 - Proteomics. 2015 Oct;15(20):3532-43
– reference: 24060133 - Methods Enzymol. 2013;531:465-85
– reference: 24225315 - Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71
– reference: 22029901 - J Proteome Res. 2011 Dec 2;10(12):5536-46
– reference: 24008178 - Acta Biomater. 2014 Jan;10(1):375-83
– reference: 18700793 - J Proteome Res. 2008 Sep;7(9):3661-7
– reference: 23049864 - PLoS One. 2012;7(9):e45795
– reference: 23148228 - J Biol Chem. 2013 Jan 4;288(1):355-67
– reference: 22925110 - J Appl Microbiol. 2012 Dec;113(6):1540-53
– reference: 21571883 - Appl Environ Microbiol. 2011 Jul;77(13):4318-28
– reference: 23393147 - Microbiology. 2013 Mar;159(Pt 3):436-45
– reference: 20861633 - Caries Res. 2010;44(5):485-97
– reference: 15133097 - Microbiology. 2004 May;150(Pt 5):1353-66
– reference: 2598230 - Caries Res. 1989;23(6):417-22
– reference: 18322036 - Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents
– reference: 26261186 - J Dent Res. 2015 Oct;94(10):1341-7
– reference: 20173059 - Appl Environ Microbiol. 2010 Apr;76(8):2478-86
– reference: 20383131 - Nat Methods. 2010 May;7(5):335-6
– reference: 22462785 - Expert Rev Proteomics. 2012 Apr;9(2):129-34
– reference: 24283286 - Int Dent J. 2013 Dec;63 Suppl 2:64-72
– reference: 15580782 - Curr Issues Mol Biol. 2005 Jan;7(1):95-107
– reference: 23207320 - Caries Res. 2013;47(2):89-102
– reference: 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97
– reference: 24323509 - J Dent Res. 2014 Jan;93(1):8-18
– reference: 16214803 - Nucleic Acids Res. 2005;33(17):5691-702
– reference: 14711642 - Appl Environ Microbiol. 2004 Jan;70(1):191-201
– reference: 8708129 - J Dent Res. 1996 Apr;75(4):1008-14
– reference: 17533153 - Mol Cell Proteomics. 2007 Sep;6(9):1638-55
– reference: 22924898 - J Appl Microbiol. 2013 Jan;114(1):11-24
– reference: 24767457 - BMC Genomics. 2014;15:311
– reference: 21346355 - Caries Res. 2011;45(1):69-86
– reference: 24080530 - Caries Res. 2013;47(6):591-600
– reference: 17713343 - Caries Res. 2007;41(5):413-22
SSID ssj0000914748
Score 2.2375748
Snippet The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the...
Background The etiology of dental caries is multifactorial, but frequent consumption of free sugars, notably sucrose, appears to be a major factor driving the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 69
SubjectTerms Analysis
Bacterial Proteins - analysis
Biofilms - drug effects
Biofilms - growth & development
Biomarkers
Dental caries
Dental Caries - etiology
Dental Caries - microbiology
Dental Caries - prevention & control
Dental Plaque - chemistry
Dental Plaque - microbiology
Dysbiosis - chemically induced
Dysbiosis - metabolism
Dysbiosis - microbiology
Glucose metabolism
Glycolysis - drug effects
Humans
Microbial Consortia - drug effects
Microbial Consortia - genetics
Microbial Consortia - physiology
Microbiota (Symbiotic organisms)
Microbiota - drug effects
Microbiota - genetics
Microbiota - physiology
Physiological aspects
Proteins
Proteins - analysis
Proteomics
RNA
RNA, Ribosomal, 16S - genetics
Saliva - microbiology
Sucrose - administration & dosage
Sucrose - pharmacology
Sugars
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7riuCLeLe6ShRBEKq9JG3yILKIyyqsiDqwbyFNk7XQadfJzLKzf8i_6TlpZ9jKsq_NyTSdLyfnfO25EPI6sVJXklcx2vqYVY7HYPRErAvMoiwNs6GLwtG34nDGvh7z4x2yaW81_oH-SmqH_aRmi_bd-Z_1R1D4D0HhRfHeA0coMCQLw9DyIr64QW6CYSqxocHR6O2Hg1mmrGRi_LZ55cyJdfr_jL5kpKYBlJcs0sFdcmd0Jen-gP09smO7--TW0Fxy_YD8_Y4lGJqODukqZ5bqCtM-AGV6Gqpqdp7qER1bU3wjS_0KF2ZjYOqAeU3rta-a3jcgubDUYOj14gyu67B-utTnQ16zbts1rUOMh6WY9E_nGOlnej-n8AOuaec0NN3xtHe0DjmY1ASe_pDMDj7_-nQYj20ZYsMzsYydAzbuTFKbzJU8K1ySZ7l0vHDaWs2kBifUODgtrBYVeGiGC5GnLjfWVVrWSf6I7HZ9Z58QajOd1gnmQQANZEyKXHOuS85FwkxRm4gkGziUGWuWY-uMVgXuIgo1IKgAQYUIqouIvN1OOR0Kdlwn_AoxVlgIo8NImxO98l59-flD7WMH4xJdmIi8GYVcDzc3ekxcgEfA2lkTyb2JJGiqmQ5vtpLabHSVluAd5MjsIvJyO4wzMfqts_0KZfBrb5FlMiKPh523fTZwsAQTsoxIOdmTWwGsHz4d6ZrfoY44g5nAZp9ev6xn5HaGCpJmcSr3yO5ysbLPwRFbVi-Cev0DoGE0mw
  priority: 102
  providerName: Scholars Portal
Title Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries
URI https://www.ncbi.nlm.nih.gov/pubmed/26684897
https://www.proquest.com/docview/1771830255
https://www.proquest.com/docview/1751196229
https://pubmed.ncbi.nlm.nih.gov/PMC4684605
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IJWSFwQbwJlZRASEpLVPOzEOaGCWgpSq6pQaW-W49hlpd1kWe9WbH-I32TGyS4Nh15yiMeJrRnPy_Mg5F1sS12VomIo6xmvnGAg9CTTOWZRFobb0EXh5DQ_vuDfxmLcO9x8H1a54YmBUdetQR_5flIAF81QA_44_8WwaxTervYtNO6SXSxdhlRdjIutjwVkIS-47C8zE5nvezAncozewoi1LGfXA3H0P1O-IZWGEZM3RNDRQ_Kg1x3pQYfsR-SObR6Te103yfUT8ucMay5MGtrlp1xZqivM8wC00nkoo9l4qnt02JqiC5b6FS7MMjDNAck1rde-mrR-ApALSw3GWi-u4L0O66dL_btLZNbT6ZrWIajDUszypzMM7TOtn1H4gJtMZzR02fG0dbQOSZfUBMP8Kbk4Ovzx-Zj1fRiYEalcMufA_HYmrk3qCpHmLs7SrHQid9pazUsNWqdxwB6slhWoZEZImSUuM9ZVuqzj7BnZadrGviDUpjqpY0x8ALuP81JmWghdCCFjbvLaRCTeoEOZvkg59sqYqmCsyFx1GFSAQYUYVNcR-bCdMu8qdNwG_BZxrLDyRYOhNZd65b36-v1cHWDL4gJ1loi874FcCz83us9UgC1gsawB5N4AEo6mGQ5vSEn1rMGrf4QckTfbYZyJ4W6NbVcIg9e7eZqWEXneUd52b6BRSS7LIiLFgCa3AFgwfDjSTH6GwuEcZoL5-vL2Zb0i91M8IEnKknKP7CwXK_saNK9lNQrHa0R2Px2enp2Pgv8Cnl_GCTxPuPwLWXM1vA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJKSoediJc0CoAqpd-hCCVtqb6_gBkXaTZbNb2P4hbvxGZpLs0nDordd4nDia8TzsmW8IeRnYTOUZz3209T7LHffB6AlfJVhFmWpmmy4KB4fJ4Jh9GvHRBvmzqoXBtMqVTmwUtak0npFvhylo0Rg94HfTHz52jcLb1VULjVYs9uzyJ4Rs9dvhB-Dvqyja_Xj0fuB3XQV8zSMx952DYNLpwOjIpTxKXBBHceZ44pS1imUKfCjtQNitEjk4GJoLEYcu1tblKjNBDO-9Qq6C4Q0w2EtH6fpMB2wvS5noLk9DkWzXEL4kmC2GGXJx4p_1zN__RuCcFexnaJ4zebu3yM3OV6U7rXDdJhu2vEOutd0rl3fJ78-I8VCUtK2HObVU5VhXAmJEpw1sZ1lT1bHfGopHvrRe4MKsX5QGhMpQs6zzoqoLoJxZqjG3e3YKz1WzfjpXv9rCaTUeL6lpkkgsRVQBOsFUQl3VEwovcMV4QpuuPjWtHDVNkSfVzUHAPXJ8KRy6TzbLqrQPCbWRCk2AhRYQZzKWiVhxrlLORcB0YrRHghU7pO5A0bE3x1g2wZFIZMtBCRyUyEF55pE36ynTFhHkIuIXyGOJSBslpvJ8U4u6lsOvX-QOtkhO0UfyyOuOyFXwca26ygj4BQTn6lFu9ShBFej-8EqUZKeKavlv43jk-XoYZ2J6XWmrBdLgdXISRZlHHrSSt_438OAEE1nqkbQnk2sCBCjvj5TF9waonMFMCJcfXbysZ-T64OhgX-4PD_cekxsRbpYw8sNsi2zOZwv7BLy-ef602WqUnFz23v4LIsBwMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+relative+abundance+patterns+associated+with+sucrose-induced+dysbiosis+are+conserved+across+taxonomically+diverse+oral+microcosm+biofilm+models+of+dental+caries&rft.jtitle=Microbiome&rft.au=Rudney%2C+Joel+D&rft.au=Jagtap%2C+Pratik+D&rft.au=Reilly%2C+Cavan+S&rft.au=Chen%2C+Ruoqiong&rft.date=2015-12-19&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=3&rft_id=info:doi/10.1186%2Fs40168-015-0136-z&rft.externalDocID=3977083831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon