Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2...
Saved in:
Published in | Frontiers in microbiology Vol. 8; p. 945 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
29.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type,
,
, and
increased whereas
, β
, and
declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla
,
, and
largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. |
---|---|
AbstractList | Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type,
,
, and
increased whereas
, β
, and
declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla
,
, and
largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. |
Author | Deng, Ye He, Ji-Zheng Wang, Jun-Tao Zhang, Li-Mei Feng, Kai Bai, Ren |
AuthorAffiliation | 3 College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China 1 State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences Beijing, China 4 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne VIC, Australia 2 Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences Beijing, China – name: 3 College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China – name: 2 Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China – name: 4 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne VIC, Australia |
Author_xml | – sequence: 1 givenname: Ren surname: Bai fullname: Bai, Ren – sequence: 2 givenname: Jun-Tao surname: Wang fullname: Wang, Jun-Tao – sequence: 3 givenname: Ye surname: Deng fullname: Deng, Ye – sequence: 4 givenname: Ji-Zheng surname: He fullname: He, Ji-Zheng – sequence: 5 givenname: Kai surname: Feng fullname: Feng, Kai – sequence: 6 givenname: Li-Mei surname: Zhang fullname: Zhang, Li-Mei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28611747$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9vFCEUxyemxtbauyfD0cuuMDA_uJjorq1N1mhsNd4IA48tzQyswJjM_-MfKrNbm9ZEDjzyeJ_vg7zv8-LIeQdF8ZLgJaUtf2MGq7pliUmzxJiz6klxQuqaLSgufxw9OB8XZzHe4rwYLvP-rDgu25qQhjUnxe9PVgXfWdmjlR-G0dk0Iek0Oh-dSta7fHGVwqjSGABd2a2zxirpUj-h7zJY0EgO3m3R2sZkM4Kupx1E5A36IrWe0JW3fUTvx4S-Qtx5pzOxtsZAgL2I7Gf6Ikhtc2IPzghawy7doI2cIMQXxVMj-whnd_G0-Hb-4Xr1cbH5fHG5erdZqKps0wI04ayRlJccOMiqYzXhFIghvOIU10YCdJLrHEpd1qyBqqyYqVRHADdg6GlxedDVXt6KXbCDDJPw0op9woetkCFZ1YNoSWsq3FFGO82UrFtmaKNw2VQdV61iWevtQWs3dgNolT8XZP9I9PGNszdi63-JirEGt7PA6zuB4H-OEJMYbFTQ99KBH6MgHPOG0YbxXPrqYa_7Jn_HnAvwoSDPOsYA5r6EYDGbSezNJGYzib2ZMlL_gyib5OyI_Frb_x_8A2_I06A |
CitedBy_id | crossref_primary_10_3389_fmicb_2017_02127 crossref_primary_10_3389_fpls_2021_792002 crossref_primary_10_1128_msystems_00298_20 crossref_primary_10_1111_are_15496 crossref_primary_10_1111_geb_13313 crossref_primary_10_1111_ejss_13056 crossref_primary_10_1016_j_scitotenv_2020_140699 crossref_primary_10_1016_j_ecolind_2021_107989 crossref_primary_10_1002_ldr_4022 crossref_primary_10_3389_fmars_2023_1131713 crossref_primary_10_3390_agronomy12102295 crossref_primary_10_1016_j_isci_2022_105851 crossref_primary_10_1016_j_soilbio_2019_107546 crossref_primary_10_1093_hr_uhae018 crossref_primary_10_3390_microorganisms12091751 crossref_primary_10_3389_fmicb_2018_01295 crossref_primary_10_1007_s10653_024_01951_2 crossref_primary_10_1016_j_scitotenv_2022_161360 crossref_primary_10_3390_f10070550 crossref_primary_10_1007_s00374_023_01743_3 crossref_primary_10_1002_mbo3_983 crossref_primary_10_1093_ismeco_ycae132 crossref_primary_10_1111_pbi_13950 crossref_primary_10_1016_j_scitotenv_2022_154378 crossref_primary_10_1016_j_pedobi_2019_150589 crossref_primary_10_1016_j_jwpe_2023_103697 crossref_primary_10_3389_fmicb_2024_1468344 crossref_primary_10_3390_ijerph192214782 crossref_primary_10_1038_s41598_023_41401_0 crossref_primary_10_3389_fpls_2021_779302 crossref_primary_10_3390_f14040803 crossref_primary_10_5194_soil_9_55_2023 crossref_primary_10_1016_j_catena_2022_106430 crossref_primary_10_3390_microorganisms10030540 crossref_primary_10_1016_j_soilbio_2019_01_023 crossref_primary_10_3389_fmicb_2019_00023 crossref_primary_10_3389_fmicb_2019_01752 crossref_primary_10_1371_journal_pone_0253970 crossref_primary_10_1007_s10342_019_01208_z crossref_primary_10_3390_su162310496 crossref_primary_10_1128_msystems_01047_21 crossref_primary_10_3389_fmicb_2023_1114388 crossref_primary_10_3390_f15112004 crossref_primary_10_1016_j_apsoil_2022_104490 crossref_primary_10_1016_j_scitotenv_2024_171269 crossref_primary_10_1016_j_jhazmat_2022_128557 crossref_primary_10_1016_j_apsoil_2022_104574 crossref_primary_10_1111_1462_2920_16607 crossref_primary_10_1002_ldr_5417 crossref_primary_10_3390_microorganisms10112127 crossref_primary_10_3389_frmbi_2023_1078024 crossref_primary_10_1002_jobm_201800314 crossref_primary_10_1134_S1064229323602640 crossref_primary_10_1016_j_agee_2024_108958 crossref_primary_10_3389_fmicb_2021_659079 crossref_primary_10_3389_fmicb_2024_1329647 crossref_primary_10_1016_j_scitotenv_2021_152458 crossref_primary_10_1016_j_envint_2024_108588 crossref_primary_10_1007_s00792_019_01128_1 crossref_primary_10_1016_j_jclepro_2023_139380 crossref_primary_10_1021_acsestwater_4c00968 crossref_primary_10_1371_journal_pone_0211310 crossref_primary_10_1002_agj2_21239 crossref_primary_10_1016_j_scitotenv_2024_177057 crossref_primary_10_1016_j_scitotenv_2024_169911 crossref_primary_10_1016_j_agee_2021_107561 crossref_primary_10_1007_s42729_024_01740_x crossref_primary_10_1016_j_foreco_2020_118874 crossref_primary_10_1080_13102818_2019_1697364 crossref_primary_10_1016_j_agee_2022_107932 crossref_primary_10_1007_s42770_024_01455_2 crossref_primary_10_1016_j_geoderma_2019_05_010 crossref_primary_10_1038_s41598_022_25807_w |
Cites_doi | 10.1111/mec.12786 10.3389/fmicb.2012.00348 10.1186/1471-2105-13-113 10.1016/j.soilbio.2014.04.023 10.1111/j.1574-6941.2011.01280.x 10.3390/su4123248 10.1111/j.1462-2920.2011.02480.x 10.1038/ismej.2015.59 10.1186/1471-2180-13-72 10.1111/mec.13384 10.1016/j.soilbio.2012.03.011 10.1038/srep14345 10.1371/journal.pone.0135627 10.1016/j.apsoil.2014.06.009 10.1007/s12665-014-3236-3 10.3389/fmicb.2015.01013 10.1038/ismej.2011.124 10.1111/j.1747-0765.2005.tb00122.x 10.1038/nature10433 10.1128/aem.69.3.1800-1809.2003 10.1111/1462-2920.13370 10.1128/AEM.00335-09 10.1016/j.soilbio.2015.08.040 10.1016/j.soilbio.2015.05.004 10.1007/s00248-012-0028-8 10.1007/s00284-011-0031-1 10.1007/BF02180318 10.1016/j.soilbio.2016.12.028 10.1016/S0038-0717(02)00251-1 10.1371/journal.pone.0123179 10.1111/1462-2920.12659 10.1038/ismej.2007.24 10.1016/j.soilbio.2012.01.002 10.1073/pnas.1322132111 10.1016/j.soilbio.2013.06.008 10.1016/j.soilbio.2016.06.026 10.1016/j.soilbio.2014.10.019 10.1111/1574-6941.12376 10.3389/fmicb.2015.01339 10.1038/nrmicro1341 10.1111/ejss.12365 10.1016/j.soilbio.2013.04.003 10.4141/cjss-2014-062 10.1111/1574-6941.12152 10.1007/s11368-014-1058-2 10.3389/fmicb.2015.01058 10.1093/femsec/fiu010 10.1016/j.geoderma.2010.03.009 10.1016/j.catena.2015.05.024 10.1080/01490451.2015.1039674 10.1111/j.1462-2920.2009.02008.x 10.1111/1462-2920.12553 10.1016/j.copbio.2011.11.001 10.1111/mec.13010 10.1016/j.jtbi.2005.09.014 10.1128/AEM.66.2.754-762.2000 10.3354/ame01294 10.1128/AEM.01787-07 10.1016/j.apsoil.2015.06.005 10.1128/mSystems.00075-16 10.1111/1574-6941.12143 10.1128/AEM.01063-10 10.1111/j.1574-6941.2011.01192.x 10.1609/icwsm.v3i1.13937 10.1890/09-0848.1 10.1016/j.jhazmat.2015.05.049 10.1111/1758-2229.12251 10.1038/ismej.2012.57 10.1111/j.1462-2920.2004.00700.x 10.1111/gcb.12065 10.1016/j.soilbio.2015.06.012 10.3389/fmicb.2015.01539 10.1007/s00253-012-4496-z 10.1038/ismej.2010.46 10.1890/06-1746.1 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Bai, Wang, Deng, He, Feng and Zhang. 2017 Bai, Wang, Deng, He, Feng and Zhang |
Copyright_xml | – notice: Copyright © 2017 Bai, Wang, Deng, He, Feng and Zhang. 2017 Bai, Wang, Deng, He, Feng and Zhang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2017.00945 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_818f50b343bd4ca684f37c0275b9c8c4 PMC5447084 28611747 10_3389_fmicb_2017_00945 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-ed1947a3929e9ea5b46193e1f1959306faeeba9daee2d2647e5254f5cb1e07ef3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:20:17 EDT 2025 Thu Aug 21 18:15:09 EDT 2025 Fri Jul 11 10:10:30 EDT 2025 Thu Jan 02 22:21:15 EST 2025 Tue Jul 01 00:54:41 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | paddy soil soil profile microbial community soil type Mi-Seq sequencing network analysis GeoChip |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-ed1947a3929e9ea5b46193e1f1959306faeeba9daee2d2647e5254f5cb1e07ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Florence Abram, NUI Galway, Ireland Reviewed by: Hamed Azarbad, Institut National de la Recherche Scientifique – Institut Armand-Frappier, Canada; Weidong Kong, Institute of Tibetan Plateau Research (CAS), China This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.00945 |
PMID | 28611747 |
PQID | 1909743749 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_818f50b343bd4ca684f37c0275b9c8c4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5447084 proquest_miscellaneous_1909743749 pubmed_primary_28611747 crossref_primary_10_3389_fmicb_2017_00945 crossref_citationtrail_10_3389_fmicb_2017_00945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-29 |
PublicationDateYYYYMMDD | 2017-05-29 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Nie (B46) 2012; 64 Paula (B49) 2014; 23 Sagova-Mareckova (B53) 2016; 101 Lu (B39) 2015; 6 Mao (B41) 2015; 133 Deng (B11) 2012; 13 He (B24) 2010; 4 Kang (B32) 2013; 86 Tong (B64) 2015; 298 Carpenter (B7) 2012; 4 Wang (B67) 2015; 5 Hugoni (B30) 2015; 7 Herfort (B26) 2009; 55 Li (B37) 2015; 9 Noll (B47) 2005; 7 Tripathi (B66) 2015; 88 Yergeau (B73) 2007; 1 He (B25) 2012; 23 Schimel (B54) 2012; 3 Reim (B51) 2012; 6 Ding (B12) 2015; 24 Fierer (B16) 2007; 88 Yan (B70) 2013; 65 Kuramae (B34) 2012; 79 Schneider (B55) 2015; 6 Steven (B58) 2013; 86 Zhang (B74) 2013; 13 Fierer (B17) 2003; 35 Comte (B10) 2010; 91 Cao (B6) 2012; 80 Eilers (B15) 2012; 50 Hernández-Torres (B27) 2015; 33 Anderson (B1) 1988; 5 Asghar (B2) 2012; 47 Teng (B62) 2014; 72 Wang (B68) 2014; 84 Martiny (B42) 2006; 4 Sheng (B56) 2015; 15 Bai (B4) 2013; 97 Dopheide (B13) 2015; 10 Lazar (B36) 2015; 17 Mendes (B43) 2015; 95 Hu (B29) 2013; 64 Saavedra (B52) 2011; 478 Girvan (B18) 2003; 69 Thomson (B63) 2015; 88 Yang (B71) 2013; 19 Lauber (B35) 2009; 75 Lüdemann (B40) 2000; 66 Sun (B61) 2015; 91 Bai (B3) 2015; 91 Stone (B59) 2015; 80 Olesen (B48) 2006; 240 Yergeau (B72) 2012; 6 Soffer (B57) 2015; 17 Kögel-Knabner (B33) 2010; 157 Hawley (B22) 2014; 111 Durán (B14) 2017; 107 Tripathi (B65) 2012; 64 Mikkonen (B44) 2014; 90 Will (B69) 2010; 76 Morrissey (B45) 2015; 6 Zhao (B75) 2016; 1 Li (B38) 2014; 75 Haynes (B23) 2015; 95 Chronakova (B9) 2015; 10 Hartmann (B21) 2009; 11 Qin (B50) 2016; 67 Chong (B8) 2015; 6 Bastian (B5) 2009 Griffiths (B19) 2011; 13 Hansel (B20) 2008; 74 Hu (B28) 2016; 18 Su (B60) 2015; 24 Imaya (B31) 2005; 51 24806276 - Mol Ecol. 2014 Jun;23(12):2988-99 19659501 - Environ Microbiol. 2009 Dec;11(12):3045-62 23537200 - BMC Microbiol. 2013 Mar 29;13:72 25472601 - Environ Microbiol Rep. 2015 Apr;7(2):321-9 26483777 - Front Microbiol. 2015 Sep 30;6:1058 27207327 - Environ Microbiol. 2016 Nov;18(11):3896-3909 24986450 - FEMS Microbiol Ecol. 2014 Oct;90(1):103-14 22220938 - FEMS Microbiol Ecol. 2012 Apr;80(1):146-58 20729324 - Appl Environ Microbiol. 2010 Oct;76(20):6751-9 23055998 - Front Microbiol. 2012 Sep 26;3:348 22695859 - ISME J. 2012 Nov;6(11):2128-39 16274698 - J Theor Biol. 2006 May 21;240(2):270-6 26363284 - Mol Ecol. 2015 Oct;24(20):5175-85 25331558 - Environ Microbiol. 2015 Jul;17(7):2228-38 26483764 - Front Microbiol. 2015 Oct 02;6:1013 25039472 - Environ Microbiol. 2015 Apr;17(4):1203-18 21993713 - Curr Microbiol. 2012 Jan;64(1):34-42 15683399 - Environ Microbiol. 2005 Mar;7(3):382-95 21918515 - Nature. 2011 Sep 14;478(7368):233-5 21938020 - ISME J. 2012 Mar;6(3):692-702 22100036 - Curr Opin Biotechnol. 2012 Feb;23(1):49-55 18043626 - ISME J. 2007 Jun;1(2):163-79 23504798 - Glob Chang Biol. 2013 Feb;19(2):637-48 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12 26396042 - Sci Rep. 2015 Sep 23;5:14345 12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9 27822546 - mSystems. 2016 Jul 12;1(4):null 25849814 - PLoS One. 2015 Apr 07;10(4):e0123179 20428223 - ISME J. 2010 Sep;4(9):1167-79 26696965 - Front Microbiol. 2015 Dec 08;6:1339 10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62 25053816 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11395-400 25918831 - ISME J. 2015 Nov;9(11):2490-502 26073380 - J Hazard Mater. 2015 Nov 15;298:252-60 21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54 22066695 - FEMS Microbiol Ecol. 2012 Jan;79(1):12-24 22395784 - Microb Ecol. 2012 Aug;64(2):474-84 25764534 - FEMS Microbiol Ecol. 2015 Jan;91(1):1-10 26274496 - PLoS One. 2015 Aug 14;10(8):e0135627 20503878 - Ecology. 2010 May;91(5):1466-76 22646978 - BMC Bioinformatics. 2012 May 30;13:113 18192411 - Appl Environ Microbiol. 2008 Mar;74(5):1620-33 26834709 - Front Microbiol. 2016 Jan 20;6:1539 23135227 - Appl Microbiol Biotechnol. 2013 Aug;97(15):7035-48 23710534 - FEMS Microbiol Ecol. 2013 Nov;86(2):200-14 25410123 - Mol Ecol. 2015 Jan;24(1):136-50 17918395 - Ecology. 2007 Sep;88(9):2162-73 23621290 - FEMS Microbiol Ecol. 2013 Oct;86(1):101-13 |
References_xml | – volume: 23 start-page: 2988 year: 2014 ident: B49 article-title: Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. publication-title: Mol. Ecol. doi: 10.1111/mec.12786 – volume: 3 year: 2012 ident: B54 article-title: Microbial control over carbon cycling in soil. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00348 – volume: 13 year: 2012 ident: B11 article-title: Molecular ecological network analyses. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-113 – volume: 75 start-page: 264 year: 2014 ident: B38 article-title: Change in deep soil microbial communities due to long-term fertilization. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.04.023 – volume: 80 start-page: 146 year: 2012 ident: B6 article-title: Distribution and diversity of archaeal communities in selected Chinese soils. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01280.x – volume: 4 start-page: 3248 year: 2012 ident: B7 article-title: General resilience to cope with extreme events. publication-title: Sustainability doi: 10.3390/su4123248 – volume: 13 start-page: 1642 year: 2011 ident: B19 article-title: The bacterial biogeography of British soils. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02480.x – volume: 9 start-page: 2490 year: 2015 ident: B37 article-title: Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. publication-title: ISME J. doi: 10.1038/ismej.2015.59 – volume: 13 year: 2013 ident: B74 article-title: Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau. publication-title: BMC Microbiol. doi: 10.1186/1471-2180-13-72 – volume: 24 start-page: 5175 year: 2015 ident: B12 article-title: Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. publication-title: Mol. Ecol. doi: 10.1111/mec.13384 – volume: 50 start-page: 58 year: 2012 ident: B15 article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.03.011 – volume: 5 year: 2015 ident: B67 article-title: Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. publication-title: Sci. Rep. doi: 10.1038/srep14345 – volume: 10 year: 2015 ident: B9 article-title: Response of archaeal and bacterial soil communities to changes associated with outdoor cattle overwintering. publication-title: PLoS ONE doi: 10.1371/journal.pone.0135627 – volume: 84 start-page: 38 year: 2014 ident: B68 article-title: Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.06.009 – volume: 72 start-page: 3329 year: 2014 ident: B62 article-title: Soil microbial community response to seawater intrusion into coastal aquifer of Donghai Island, South China. publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3236-3 – volume: 6 year: 2015 ident: B45 article-title: Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01013 – volume: 6 start-page: 692 year: 2012 ident: B72 article-title: Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. publication-title: ISME J. doi: 10.1038/ismej.2011.124 – volume: 51 start-page: 873 year: 2005 ident: B31 article-title: General chemical properties of brown forest soils developed from different parent materials in the submontane zone of the Kanto and Chubu Districts, Japan. publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2005.tb00122.x – volume: 478 start-page: 233 year: 2011 ident: B52 article-title: Strong contributors to network persistence are the most vulnerable to extinction. publication-title: Nature doi: 10.1038/nature10433 – volume: 69 start-page: 1800 year: 2003 ident: B18 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.69.3.1800-1809.2003 – volume: 18 start-page: 3896 year: 2016 ident: B28 article-title: Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13370 – volume: 75 start-page: 5111 year: 2009 ident: B35 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00335-09 – volume: 91 start-page: 212 year: 2015 ident: B3 article-title: Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.08.040 – volume: 88 start-page: 1 year: 2015 ident: B66 article-title: Soil pH and biome are both key determinants of soil archaeal community structure. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.05.004 – volume: 64 start-page: 474 year: 2012 ident: B65 article-title: Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. publication-title: Microb. Ecol. doi: 10.1007/s00248-012-0028-8 – volume: 64 start-page: 34 year: 2012 ident: B46 article-title: Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China. publication-title: Curr. Microbiol. doi: 10.1007/s00284-011-0031-1 – volume: 5 start-page: 71 year: 1988 ident: B1 article-title: The effect of parent material and soil development on nutrient cycling in temperate ecosystems. publication-title: Biogeochemistry doi: 10.1007/BF02180318 – volume: 107 start-page: 77 year: 2017 ident: B14 article-title: Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.028 – volume: 35 start-page: 167 year: 2003 ident: B17 article-title: Variations in microbial community composition through two soil depth profiles. publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00251-1 – volume: 10 year: 2015 ident: B13 article-title: Functional gene composition, diversity and redundancy in microbial stream biofilm communities. publication-title: PLoS ONE doi: 10.1371/journal.pone.0123179 – volume: 17 start-page: 2228 year: 2015 ident: B36 article-title: Environmental controls on intragroup diversity of the uncultured benthic archaea of the miscellaneous Crenarchaeotal group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12659 – volume: 1 start-page: 163 year: 2007 ident: B73 article-title: Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. publication-title: ISME J. doi: 10.1038/ismej.2007.24 – volume: 47 start-page: 175 year: 2012 ident: B2 article-title: Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.01.002 – volume: 111 start-page: 11395 year: 2014 ident: B22 article-title: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1322132111 – volume: 65 start-page: 322 year: 2013 ident: B70 article-title: Response of soil respiration and microbial biomass to changing EC in saline soils. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.06.008 – volume: 101 start-page: 65 year: 2016 ident: B53 article-title: The structure of bacterial communities along two vertical profiles of a deep colluvial soil. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.06.026 – volume: 80 start-page: 273 year: 2015 ident: B59 article-title: Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.019 – volume: 90 start-page: 103 year: 2014 ident: B44 article-title: Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12376 – volume: 6 year: 2015 ident: B55 article-title: Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01339 – volume: 4 start-page: 102 year: 2006 ident: B42 article-title: Microbial biogeography: putting microorganisms on the map. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1341 – volume: 67 start-page: 650 year: 2016 ident: B50 article-title: Change from paddy rice to vegetable growing changes nitrogen-cycling microbial communities and their variation with depth in the soil. publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12365 – volume: 64 start-page: 18 year: 2013 ident: B29 article-title: Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.04.003 – volume: 95 start-page: 219 year: 2015 ident: B23 article-title: Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy. publication-title: Can. J. Soil Sci. doi: 10.4141/cjss-2014-062 – volume: 86 start-page: 200 year: 2013 ident: B32 article-title: Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12152 – volume: 15 start-page: 982 year: 2015 ident: B56 article-title: Bacterial succession in paddy soils derived from different parent materials. publication-title: J. Soils Sediments doi: 10.1007/s11368-014-1058-2 – volume: 6 year: 2015 ident: B8 article-title: Emerging spatial patterns in Antarctic prokaryotes. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01058 – volume: 91 start-page: 1 year: 2015 ident: B61 article-title: Parental material and cultivation determine soil bacterial community structure and fertility. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiu010 – volume: 157 start-page: 1 year: 2010 ident: B33 article-title: Biogeochemistry of paddy soils. publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.009 – volume: 133 start-page: 233 year: 2015 ident: B41 article-title: Effects of copper on methane emission, methanogens and methanotrophs in the rhizosphere and bulk soil of rice paddy. publication-title: Catena doi: 10.1016/j.catena.2015.05.024 – volume: 33 start-page: 110 year: 2015 ident: B27 article-title: Prokaryotic community characterization in a mesothermic and water- flooded oil reservoir in Colombia. publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2015.1039674 – volume: 11 start-page: 3045 year: 2009 ident: B21 article-title: Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2009.02008.x – volume: 17 start-page: 1203 year: 2015 ident: B57 article-title: Phage-bacteria network analysis and its implication for the understanding of coral disease. publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12553 – volume: 23 start-page: 49 year: 2012 ident: B25 article-title: Development of functional gene microarrays for microbial community analysis. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.11.001 – volume: 24 start-page: 136 year: 2015 ident: B60 article-title: Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. publication-title: Mol. Ecol. doi: 10.1111/mec.13010 – volume: 240 start-page: 270 year: 2006 ident: B48 article-title: The smallest of all worlds: pollination networks. publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2005.09.014 – volume: 66 start-page: 754 year: 2000 ident: B40 article-title: Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.2.754-762.2000 – volume: 55 start-page: 189 year: 2009 ident: B26 article-title: Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt. publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame01294 – volume: 74 start-page: 1620 year: 2008 ident: B20 article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01787-07 – volume: 95 start-page: 151 year: 2015 ident: B43 article-title: Land-use system shapes soil bacterial communities in Southeastern Amazon region. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.06.005 – volume: 1 year: 2016 ident: B75 article-title: Zonal soil type determines soil microbial responses to maize cropping and fertilization. publication-title: mSystems doi: 10.1128/mSystems.00075-16 – volume: 86 start-page: 101 year: 2013 ident: B58 article-title: Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12143 – volume: 76 start-page: 6751 year: 2010 ident: B69 article-title: Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01063-10 – volume: 79 start-page: 12 year: 2012 ident: B34 article-title: Soil characteristics more strongly influence soil bacterial communities than land-use type. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2011.01192.x – year: 2009 ident: B5 article-title: “Gephi: an open source software for exploring and manipulating networks,” in publication-title: Proceedings of the International AAAI Conference on Weblogs and Social Media doi: 10.1609/icwsm.v3i1.13937 – volume: 91 start-page: 1466 year: 2010 ident: B10 article-title: Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients. publication-title: Ecology doi: 10.1890/09-0848.1 – volume: 298 start-page: 252 year: 2015 ident: B64 article-title: The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.05.049 – volume: 7 start-page: 321 year: 2015 ident: B30 article-title: Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes. publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12251 – volume: 6 start-page: 2128 year: 2012 ident: B51 article-title: One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. publication-title: ISME J. doi: 10.1038/ismej.2012.57 – volume: 7 start-page: 382 year: 2005 ident: B47 article-title: Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2004.00700.x – volume: 19 start-page: 637 year: 2013 ident: B71 article-title: Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. publication-title: Glob. Change Biol. doi: 10.1111/gcb.12065 – volume: 88 start-page: 403 year: 2015 ident: B63 article-title: Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.06.012 – volume: 6 year: 2015 ident: B39 article-title: Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01539 – volume: 97 start-page: 7035 year: 2013 ident: B4 article-title: GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4496-z – volume: 4 start-page: 1167 year: 2010 ident: B24 article-title: GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. publication-title: ISME J. doi: 10.1038/ismej.2010.46 – volume: 88 start-page: 2162 year: 2007 ident: B16 article-title: Environmental controls on the landscape-scale biogeography of stream bacterial communities. publication-title: Ecology doi: 10.1890/06-1746.1 – reference: 18192411 - Appl Environ Microbiol. 2008 Mar;74(5):1620-33 – reference: 23135227 - Appl Microbiol Biotechnol. 2013 Aug;97(15):7035-48 – reference: 25053816 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11395-400 – reference: 26073380 - J Hazard Mater. 2015 Nov 15;298:252-60 – reference: 22646978 - BMC Bioinformatics. 2012 May 30;13:113 – reference: 25764534 - FEMS Microbiol Ecol. 2015 Jan;91(1):1-10 – reference: 25849814 - PLoS One. 2015 Apr 07;10(4):e0123179 – reference: 26363284 - Mol Ecol. 2015 Oct;24(20):5175-85 – reference: 16274698 - J Theor Biol. 2006 May 21;240(2):270-6 – reference: 15683399 - Environ Microbiol. 2005 Mar;7(3):382-95 – reference: 22395784 - Microb Ecol. 2012 Aug;64(2):474-84 – reference: 26696965 - Front Microbiol. 2015 Dec 08;6:1339 – reference: 25472601 - Environ Microbiol Rep. 2015 Apr;7(2):321-9 – reference: 24806276 - Mol Ecol. 2014 Jun;23(12):2988-99 – reference: 21993713 - Curr Microbiol. 2012 Jan;64(1):34-42 – reference: 27822546 - mSystems. 2016 Jul 12;1(4):null – reference: 20729324 - Appl Environ Microbiol. 2010 Oct;76(20):6751-9 – reference: 20503878 - Ecology. 2010 May;91(5):1466-76 – reference: 21918515 - Nature. 2011 Sep 14;478(7368):233-5 – reference: 25331558 - Environ Microbiol. 2015 Jul;17(7):2228-38 – reference: 21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54 – reference: 10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62 – reference: 26396042 - Sci Rep. 2015 Sep 23;5:14345 – reference: 26274496 - PLoS One. 2015 Aug 14;10(8):e0135627 – reference: 25410123 - Mol Ecol. 2015 Jan;24(1):136-50 – reference: 21938020 - ISME J. 2012 Mar;6(3):692-702 – reference: 23621290 - FEMS Microbiol Ecol. 2013 Oct;86(1):101-13 – reference: 23537200 - BMC Microbiol. 2013 Mar 29;13:72 – reference: 26483777 - Front Microbiol. 2015 Sep 30;6:1058 – reference: 20428223 - ISME J. 2010 Sep;4(9):1167-79 – reference: 26483764 - Front Microbiol. 2015 Oct 02;6:1013 – reference: 18043626 - ISME J. 2007 Jun;1(2):163-79 – reference: 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12 – reference: 22695859 - ISME J. 2012 Nov;6(11):2128-39 – reference: 12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9 – reference: 25918831 - ISME J. 2015 Nov;9(11):2490-502 – reference: 23710534 - FEMS Microbiol Ecol. 2013 Nov;86(2):200-14 – reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 – reference: 24986450 - FEMS Microbiol Ecol. 2014 Oct;90(1):103-14 – reference: 22066695 - FEMS Microbiol Ecol. 2012 Jan;79(1):12-24 – reference: 22220938 - FEMS Microbiol Ecol. 2012 Apr;80(1):146-58 – reference: 23055998 - Front Microbiol. 2012 Sep 26;3:348 – reference: 26834709 - Front Microbiol. 2016 Jan 20;6:1539 – reference: 19659501 - Environ Microbiol. 2009 Dec;11(12):3045-62 – reference: 22100036 - Curr Opin Biotechnol. 2012 Feb;23(1):49-55 – reference: 23504798 - Glob Chang Biol. 2013 Feb;19(2):637-48 – reference: 27207327 - Environ Microbiol. 2016 Nov;18(11):3896-3909 – reference: 17918395 - Ecology. 2007 Sep;88(9):2162-73 – reference: 25039472 - Environ Microbiol. 2015 Apr;17(4):1203-18 |
SSID | ssj0000402000 |
Score | 2.4516509 |
Snippet | Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 945 |
SubjectTerms | GeoChip Mi-Seq sequencing microbial community Microbiology paddy soil soil profile soil type |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpDw0SFw6r5uHEybFlWSpEEWIp6s3yY0wjrbJVN3vY_9MfyoyTrnYRggunSIknsTxjz3zx-Bsh3iJhLhMwEEyNR3JcNTGKUKu3aKs0FKWLJVnOvlSn5_LTRXmxU-qLc8IGeuBh4I7IoYQytYUsrJfOVLUMhXK82WYbV7vIBEo-bwdMxTWYYVGaDvuShMIaUlPrLKdyMWVhw6eXdvxQpOv_U4z5e6rkju-ZPRD3x6ARjofOPhR3sHsk7g5lJDePxc1ZG-mUqMl43qPfgOk8zMhpDf_6YB55YtfXCPP2Z8f5QTSkiw38YKzsIdYcgilPeBIBRqcrWAb4SgvTBubLdrGCk3UP32JKrSeJ6VhZhV9iFiz98Tqmj_VRkEVgilf9JXw2HNY_EeezD9_fn07G6gsTV-Z1P0GfNVIZjp-wQVNaSVirwCwwHQ0BjWAQrWk8XXJPYZXCksBmKJ3NMFUYiqfioFt2-FyAD3kVsE4tBaMy1NZUuc0qK12do1Q2S8TRrS60G6nJuULGQhNEYe3pqD3N2tNRe4l4t5W4Gmg5_tL2hNW7bceE2vEGmZkezUz_y8wS8ebWODRNQN5VMR0u1ytNERVhskLJJhHPBmPZfiqvq4wgn0qE2jOjvb7sP-nay0jyXUqp0loe_o_OvxD3eDg46SFvXooDsjh8RbFUb1_HafMLeS0hSQ priority: 102 providerName: Directory of Open Access Journals |
Title | Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28611747 https://www.proquest.com/docview/1909743749 https://pubmed.ncbi.nlm.nih.gov/PMC5447084 https://doaj.org/article/818f50b343bd4ca684f37c0275b9c8c4 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVgERIXxDfhY2UkLhwKTeLYyQEhltJdIYoQpai3yHbGu5GiZGlTifwffigzTlooKlxaqfU4bWZsvxeP3zD2HJBzaQcOaao_kmPlSCtkrYUBI8cuTqwvyTL7JM8W4sMyWf4-Hj3cwPVBakf1pBar6uWP790bHPCviXHieoseKK2hLC1SI8xEcpVdw3VJUT2D2QD2_bxMVMmfSQmlpO2AaNnvWx7shFSCUxkiYFd7S5ZX9j8ER__OqvxjmZreYjcHfMnf9gFxm12B-g673lec7O6yn7PSKy9hk-FoSNtxXRd8iutb_1iQz72k7GYFfF6e15RKhHe_6vg3otUF9-WJ-ITmBjThRGTXvHH8M85hHZ83ZbXmJ5uWf_HZtwVaTIYiLNSJrsj6dOUzzVpvSCZ8ApftBf-oiQHcY4vp-6_vzkZDoYaRTaK0HUERZkJpglqQgU6MQFoWQ-hIuQY5idMARmcFvkUFIjAFCfJSl1gTwliBi--zo7qp4SHjhYukg3RsELcKlxotIxNKI2wagVAmDNirrS9yO6iYUzGNKkc2Q47MvSNzcmTuHRmwFzuLy17B4z9tT8i9u3akve0_aFbn-TCUc4Q4LhmbWMSmEFbLVLhYWdr-NZlNrQjYs21w5DhWaQNG19Bs1jmCL6RvsRJZwB70wbK71DbYAqb2wmjvt-x_U5cXXg88EUKNU_Hon30-ZjfoP1LSQ5Q9YUcYRvAUsVRrjv0zCHw9XYbHfrj8AqsOIFY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Community+and+Functional+Structure+Significantly+Varied+among+Distinct+Types+of+Paddy+Soils+But+Responded+Differently+along+Gradients+of+Soil+Depth+Layers&rft.jtitle=Frontiers+in+microbiology&rft.au=Bai%2C+Ren&rft.au=Wang%2C+Jun-Tao&rft.au=Deng%2C+Ye&rft.au=He%2C+Ji-Zheng&rft.date=2017-05-29&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft.spage=945&rft_id=info:doi/10.3389%2Ffmicb.2017.00945&rft_id=info%3Apmid%2F28611747&rft.externalDocID=28611747 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |