Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 8; p. 945
Main Authors Bai, Ren, Wang, Jun-Tao, Deng, Ye, He, Ji-Zheng, Feng, Kai, Zhang, Li-Mei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 29.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, , , and increased whereas , β , and declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla , , and largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
AbstractList Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, , , and increased whereas , β , and declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla , , and largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Author Deng, Ye
He, Ji-Zheng
Wang, Jun-Tao
Zhang, Li-Mei
Feng, Kai
Bai, Ren
AuthorAffiliation 3 College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
1 State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences Beijing, China
4 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne VIC, Australia
2 Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences Beijing, China
– name: 3 College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
– name: 2 Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
– name: 4 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne VIC, Australia
Author_xml – sequence: 1
  givenname: Ren
  surname: Bai
  fullname: Bai, Ren
– sequence: 2
  givenname: Jun-Tao
  surname: Wang
  fullname: Wang, Jun-Tao
– sequence: 3
  givenname: Ye
  surname: Deng
  fullname: Deng, Ye
– sequence: 4
  givenname: Ji-Zheng
  surname: He
  fullname: He, Ji-Zheng
– sequence: 5
  givenname: Kai
  surname: Feng
  fullname: Feng, Kai
– sequence: 6
  givenname: Li-Mei
  surname: Zhang
  fullname: Zhang, Li-Mei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28611747$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9vFCEUxyemxtbauyfD0cuuMDA_uJjorq1N1mhsNd4IA48tzQyswJjM_-MfKrNbm9ZEDjzyeJ_vg7zv8-LIeQdF8ZLgJaUtf2MGq7pliUmzxJiz6klxQuqaLSgufxw9OB8XZzHe4rwYLvP-rDgu25qQhjUnxe9PVgXfWdmjlR-G0dk0Iek0Oh-dSta7fHGVwqjSGABd2a2zxirpUj-h7zJY0EgO3m3R2sZkM4Kupx1E5A36IrWe0JW3fUTvx4S-Qtx5pzOxtsZAgL2I7Gf6Ikhtc2IPzghawy7doI2cIMQXxVMj-whnd_G0-Hb-4Xr1cbH5fHG5erdZqKps0wI04ayRlJccOMiqYzXhFIghvOIU10YCdJLrHEpd1qyBqqyYqVRHADdg6GlxedDVXt6KXbCDDJPw0op9woetkCFZ1YNoSWsq3FFGO82UrFtmaKNw2VQdV61iWevtQWs3dgNolT8XZP9I9PGNszdi63-JirEGt7PA6zuB4H-OEJMYbFTQ99KBH6MgHPOG0YbxXPrqYa_7Jn_HnAvwoSDPOsYA5r6EYDGbSezNJGYzib2ZMlL_gyib5OyI_Frb_x_8A2_I06A
CitedBy_id crossref_primary_10_3389_fmicb_2017_02127
crossref_primary_10_3389_fpls_2021_792002
crossref_primary_10_1128_msystems_00298_20
crossref_primary_10_1111_are_15496
crossref_primary_10_1111_geb_13313
crossref_primary_10_1111_ejss_13056
crossref_primary_10_1016_j_scitotenv_2020_140699
crossref_primary_10_1016_j_ecolind_2021_107989
crossref_primary_10_1002_ldr_4022
crossref_primary_10_3389_fmars_2023_1131713
crossref_primary_10_3390_agronomy12102295
crossref_primary_10_1016_j_isci_2022_105851
crossref_primary_10_1016_j_soilbio_2019_107546
crossref_primary_10_1093_hr_uhae018
crossref_primary_10_3390_microorganisms12091751
crossref_primary_10_3389_fmicb_2018_01295
crossref_primary_10_1007_s10653_024_01951_2
crossref_primary_10_1016_j_scitotenv_2022_161360
crossref_primary_10_3390_f10070550
crossref_primary_10_1007_s00374_023_01743_3
crossref_primary_10_1002_mbo3_983
crossref_primary_10_1093_ismeco_ycae132
crossref_primary_10_1111_pbi_13950
crossref_primary_10_1016_j_scitotenv_2022_154378
crossref_primary_10_1016_j_pedobi_2019_150589
crossref_primary_10_1016_j_jwpe_2023_103697
crossref_primary_10_3389_fmicb_2024_1468344
crossref_primary_10_3390_ijerph192214782
crossref_primary_10_1038_s41598_023_41401_0
crossref_primary_10_3389_fpls_2021_779302
crossref_primary_10_3390_f14040803
crossref_primary_10_5194_soil_9_55_2023
crossref_primary_10_1016_j_catena_2022_106430
crossref_primary_10_3390_microorganisms10030540
crossref_primary_10_1016_j_soilbio_2019_01_023
crossref_primary_10_3389_fmicb_2019_00023
crossref_primary_10_3389_fmicb_2019_01752
crossref_primary_10_1371_journal_pone_0253970
crossref_primary_10_1007_s10342_019_01208_z
crossref_primary_10_3390_su162310496
crossref_primary_10_1128_msystems_01047_21
crossref_primary_10_3389_fmicb_2023_1114388
crossref_primary_10_3390_f15112004
crossref_primary_10_1016_j_apsoil_2022_104490
crossref_primary_10_1016_j_scitotenv_2024_171269
crossref_primary_10_1016_j_jhazmat_2022_128557
crossref_primary_10_1016_j_apsoil_2022_104574
crossref_primary_10_1111_1462_2920_16607
crossref_primary_10_1002_ldr_5417
crossref_primary_10_3390_microorganisms10112127
crossref_primary_10_3389_frmbi_2023_1078024
crossref_primary_10_1002_jobm_201800314
crossref_primary_10_1134_S1064229323602640
crossref_primary_10_1016_j_agee_2024_108958
crossref_primary_10_3389_fmicb_2021_659079
crossref_primary_10_3389_fmicb_2024_1329647
crossref_primary_10_1016_j_scitotenv_2021_152458
crossref_primary_10_1016_j_envint_2024_108588
crossref_primary_10_1007_s00792_019_01128_1
crossref_primary_10_1016_j_jclepro_2023_139380
crossref_primary_10_1021_acsestwater_4c00968
crossref_primary_10_1371_journal_pone_0211310
crossref_primary_10_1002_agj2_21239
crossref_primary_10_1016_j_scitotenv_2024_177057
crossref_primary_10_1016_j_scitotenv_2024_169911
crossref_primary_10_1016_j_agee_2021_107561
crossref_primary_10_1007_s42729_024_01740_x
crossref_primary_10_1016_j_foreco_2020_118874
crossref_primary_10_1080_13102818_2019_1697364
crossref_primary_10_1016_j_agee_2022_107932
crossref_primary_10_1007_s42770_024_01455_2
crossref_primary_10_1016_j_geoderma_2019_05_010
crossref_primary_10_1038_s41598_022_25807_w
Cites_doi 10.1111/mec.12786
10.3389/fmicb.2012.00348
10.1186/1471-2105-13-113
10.1016/j.soilbio.2014.04.023
10.1111/j.1574-6941.2011.01280.x
10.3390/su4123248
10.1111/j.1462-2920.2011.02480.x
10.1038/ismej.2015.59
10.1186/1471-2180-13-72
10.1111/mec.13384
10.1016/j.soilbio.2012.03.011
10.1038/srep14345
10.1371/journal.pone.0135627
10.1016/j.apsoil.2014.06.009
10.1007/s12665-014-3236-3
10.3389/fmicb.2015.01013
10.1038/ismej.2011.124
10.1111/j.1747-0765.2005.tb00122.x
10.1038/nature10433
10.1128/aem.69.3.1800-1809.2003
10.1111/1462-2920.13370
10.1128/AEM.00335-09
10.1016/j.soilbio.2015.08.040
10.1016/j.soilbio.2015.05.004
10.1007/s00248-012-0028-8
10.1007/s00284-011-0031-1
10.1007/BF02180318
10.1016/j.soilbio.2016.12.028
10.1016/S0038-0717(02)00251-1
10.1371/journal.pone.0123179
10.1111/1462-2920.12659
10.1038/ismej.2007.24
10.1016/j.soilbio.2012.01.002
10.1073/pnas.1322132111
10.1016/j.soilbio.2013.06.008
10.1016/j.soilbio.2016.06.026
10.1016/j.soilbio.2014.10.019
10.1111/1574-6941.12376
10.3389/fmicb.2015.01339
10.1038/nrmicro1341
10.1111/ejss.12365
10.1016/j.soilbio.2013.04.003
10.4141/cjss-2014-062
10.1111/1574-6941.12152
10.1007/s11368-014-1058-2
10.3389/fmicb.2015.01058
10.1093/femsec/fiu010
10.1016/j.geoderma.2010.03.009
10.1016/j.catena.2015.05.024
10.1080/01490451.2015.1039674
10.1111/j.1462-2920.2009.02008.x
10.1111/1462-2920.12553
10.1016/j.copbio.2011.11.001
10.1111/mec.13010
10.1016/j.jtbi.2005.09.014
10.1128/AEM.66.2.754-762.2000
10.3354/ame01294
10.1128/AEM.01787-07
10.1016/j.apsoil.2015.06.005
10.1128/mSystems.00075-16
10.1111/1574-6941.12143
10.1128/AEM.01063-10
10.1111/j.1574-6941.2011.01192.x
10.1609/icwsm.v3i1.13937
10.1890/09-0848.1
10.1016/j.jhazmat.2015.05.049
10.1111/1758-2229.12251
10.1038/ismej.2012.57
10.1111/j.1462-2920.2004.00700.x
10.1111/gcb.12065
10.1016/j.soilbio.2015.06.012
10.3389/fmicb.2015.01539
10.1007/s00253-012-4496-z
10.1038/ismej.2010.46
10.1890/06-1746.1
ContentType Journal Article
Copyright Copyright © 2017 Bai, Wang, Deng, He, Feng and Zhang. 2017 Bai, Wang, Deng, He, Feng and Zhang
Copyright_xml – notice: Copyright © 2017 Bai, Wang, Deng, He, Feng and Zhang. 2017 Bai, Wang, Deng, He, Feng and Zhang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2017.00945
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_818f50b343bd4ca684f37c0275b9c8c4
PMC5447084
28611747
10_3389_fmicb_2017_00945
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-ed1947a3929e9ea5b46193e1f1959306faeeba9daee2d2647e5254f5cb1e07ef3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:20:17 EDT 2025
Thu Aug 21 18:15:09 EDT 2025
Fri Jul 11 10:10:30 EDT 2025
Thu Jan 02 22:21:15 EST 2025
Tue Jul 01 00:54:41 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords paddy soil
soil profile
microbial community
soil type
Mi-Seq sequencing
network analysis
GeoChip
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-ed1947a3929e9ea5b46193e1f1959306faeeba9daee2d2647e5254f5cb1e07ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Florence Abram, NUI Galway, Ireland
Reviewed by: Hamed Azarbad, Institut National de la Recherche Scientifique – Institut Armand-Frappier, Canada; Weidong Kong, Institute of Tibetan Plateau Research (CAS), China
This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.00945
PMID 28611747
PQID 1909743749
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_818f50b343bd4ca684f37c0275b9c8c4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5447084
proquest_miscellaneous_1909743749
pubmed_primary_28611747
crossref_primary_10_3389_fmicb_2017_00945
crossref_citationtrail_10_3389_fmicb_2017_00945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-29
PublicationDateYYYYMMDD 2017-05-29
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-29
  day: 29
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Nie (B46) 2012; 64
Paula (B49) 2014; 23
Sagova-Mareckova (B53) 2016; 101
Lu (B39) 2015; 6
Mao (B41) 2015; 133
Deng (B11) 2012; 13
He (B24) 2010; 4
Kang (B32) 2013; 86
Tong (B64) 2015; 298
Carpenter (B7) 2012; 4
Wang (B67) 2015; 5
Hugoni (B30) 2015; 7
Herfort (B26) 2009; 55
Li (B37) 2015; 9
Noll (B47) 2005; 7
Tripathi (B66) 2015; 88
Yergeau (B73) 2007; 1
He (B25) 2012; 23
Schimel (B54) 2012; 3
Reim (B51) 2012; 6
Ding (B12) 2015; 24
Fierer (B16) 2007; 88
Yan (B70) 2013; 65
Kuramae (B34) 2012; 79
Schneider (B55) 2015; 6
Steven (B58) 2013; 86
Zhang (B74) 2013; 13
Fierer (B17) 2003; 35
Comte (B10) 2010; 91
Cao (B6) 2012; 80
Eilers (B15) 2012; 50
Hernández-Torres (B27) 2015; 33
Anderson (B1) 1988; 5
Asghar (B2) 2012; 47
Teng (B62) 2014; 72
Wang (B68) 2014; 84
Martiny (B42) 2006; 4
Sheng (B56) 2015; 15
Bai (B4) 2013; 97
Dopheide (B13) 2015; 10
Lazar (B36) 2015; 17
Mendes (B43) 2015; 95
Hu (B29) 2013; 64
Saavedra (B52) 2011; 478
Girvan (B18) 2003; 69
Thomson (B63) 2015; 88
Yang (B71) 2013; 19
Lauber (B35) 2009; 75
Lüdemann (B40) 2000; 66
Sun (B61) 2015; 91
Bai (B3) 2015; 91
Stone (B59) 2015; 80
Olesen (B48) 2006; 240
Yergeau (B72) 2012; 6
Soffer (B57) 2015; 17
Kögel-Knabner (B33) 2010; 157
Hawley (B22) 2014; 111
Durán (B14) 2017; 107
Tripathi (B65) 2012; 64
Mikkonen (B44) 2014; 90
Will (B69) 2010; 76
Morrissey (B45) 2015; 6
Zhao (B75) 2016; 1
Li (B38) 2014; 75
Haynes (B23) 2015; 95
Chronakova (B9) 2015; 10
Hartmann (B21) 2009; 11
Qin (B50) 2016; 67
Chong (B8) 2015; 6
Bastian (B5) 2009
Griffiths (B19) 2011; 13
Hansel (B20) 2008; 74
Hu (B28) 2016; 18
Su (B60) 2015; 24
Imaya (B31) 2005; 51
24806276 - Mol Ecol. 2014 Jun;23(12):2988-99
19659501 - Environ Microbiol. 2009 Dec;11(12):3045-62
23537200 - BMC Microbiol. 2013 Mar 29;13:72
25472601 - Environ Microbiol Rep. 2015 Apr;7(2):321-9
26483777 - Front Microbiol. 2015 Sep 30;6:1058
27207327 - Environ Microbiol. 2016 Nov;18(11):3896-3909
24986450 - FEMS Microbiol Ecol. 2014 Oct;90(1):103-14
22220938 - FEMS Microbiol Ecol. 2012 Apr;80(1):146-58
20729324 - Appl Environ Microbiol. 2010 Oct;76(20):6751-9
23055998 - Front Microbiol. 2012 Sep 26;3:348
22695859 - ISME J. 2012 Nov;6(11):2128-39
16274698 - J Theor Biol. 2006 May 21;240(2):270-6
26363284 - Mol Ecol. 2015 Oct;24(20):5175-85
25331558 - Environ Microbiol. 2015 Jul;17(7):2228-38
26483764 - Front Microbiol. 2015 Oct 02;6:1013
25039472 - Environ Microbiol. 2015 Apr;17(4):1203-18
21993713 - Curr Microbiol. 2012 Jan;64(1):34-42
15683399 - Environ Microbiol. 2005 Mar;7(3):382-95
21918515 - Nature. 2011 Sep 14;478(7368):233-5
21938020 - ISME J. 2012 Mar;6(3):692-702
22100036 - Curr Opin Biotechnol. 2012 Feb;23(1):49-55
18043626 - ISME J. 2007 Jun;1(2):163-79
23504798 - Glob Chang Biol. 2013 Feb;19(2):637-48
19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12
26396042 - Sci Rep. 2015 Sep 23;5:14345
12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9
27822546 - mSystems. 2016 Jul 12;1(4):null
25849814 - PLoS One. 2015 Apr 07;10(4):e0123179
20428223 - ISME J. 2010 Sep;4(9):1167-79
26696965 - Front Microbiol. 2015 Dec 08;6:1339
10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62
25053816 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11395-400
25918831 - ISME J. 2015 Nov;9(11):2490-502
26073380 - J Hazard Mater. 2015 Nov 15;298:252-60
21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54
22066695 - FEMS Microbiol Ecol. 2012 Jan;79(1):12-24
22395784 - Microb Ecol. 2012 Aug;64(2):474-84
25764534 - FEMS Microbiol Ecol. 2015 Jan;91(1):1-10
26274496 - PLoS One. 2015 Aug 14;10(8):e0135627
20503878 - Ecology. 2010 May;91(5):1466-76
22646978 - BMC Bioinformatics. 2012 May 30;13:113
18192411 - Appl Environ Microbiol. 2008 Mar;74(5):1620-33
26834709 - Front Microbiol. 2016 Jan 20;6:1539
23135227 - Appl Microbiol Biotechnol. 2013 Aug;97(15):7035-48
23710534 - FEMS Microbiol Ecol. 2013 Nov;86(2):200-14
25410123 - Mol Ecol. 2015 Jan;24(1):136-50
17918395 - Ecology. 2007 Sep;88(9):2162-73
23621290 - FEMS Microbiol Ecol. 2013 Oct;86(1):101-13
References_xml – volume: 23
  start-page: 2988
  year: 2014
  ident: B49
  article-title: Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities.
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12786
– volume: 3
  year: 2012
  ident: B54
  article-title: Microbial control over carbon cycling in soil.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00348
– volume: 13
  year: 2012
  ident: B11
  article-title: Molecular ecological network analyses.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-113
– volume: 75
  start-page: 264
  year: 2014
  ident: B38
  article-title: Change in deep soil microbial communities due to long-term fertilization.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.04.023
– volume: 80
  start-page: 146
  year: 2012
  ident: B6
  article-title: Distribution and diversity of archaeal communities in selected Chinese soils.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01280.x
– volume: 4
  start-page: 3248
  year: 2012
  ident: B7
  article-title: General resilience to cope with extreme events.
  publication-title: Sustainability
  doi: 10.3390/su4123248
– volume: 13
  start-page: 1642
  year: 2011
  ident: B19
  article-title: The bacterial biogeography of British soils.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02480.x
– volume: 9
  start-page: 2490
  year: 2015
  ident: B37
  article-title: Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.59
– volume: 13
  year: 2013
  ident: B74
  article-title: Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau.
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-13-72
– volume: 24
  start-page: 5175
  year: 2015
  ident: B12
  article-title: Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13384
– volume: 50
  start-page: 58
  year: 2012
  ident: B15
  article-title: Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.03.011
– volume: 5
  year: 2015
  ident: B67
  article-title: Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.
  publication-title: Sci. Rep.
  doi: 10.1038/srep14345
– volume: 10
  year: 2015
  ident: B9
  article-title: Response of archaeal and bacterial soil communities to changes associated with outdoor cattle overwintering.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0135627
– volume: 84
  start-page: 38
  year: 2014
  ident: B68
  article-title: Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.06.009
– volume: 72
  start-page: 3329
  year: 2014
  ident: B62
  article-title: Soil microbial community response to seawater intrusion into coastal aquifer of Donghai Island, South China.
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3236-3
– volume: 6
  year: 2015
  ident: B45
  article-title: Evolutionary history influences the salinity preference of bacterial taxa in wetland soils.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01013
– volume: 6
  start-page: 692
  year: 2012
  ident: B72
  article-title: Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments.
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.124
– volume: 51
  start-page: 873
  year: 2005
  ident: B31
  article-title: General chemical properties of brown forest soils developed from different parent materials in the submontane zone of the Kanto and Chubu Districts, Japan.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2005.tb00122.x
– volume: 478
  start-page: 233
  year: 2011
  ident: B52
  article-title: Strong contributors to network persistence are the most vulnerable to extinction.
  publication-title: Nature
  doi: 10.1038/nature10433
– volume: 69
  start-page: 1800
  year: 2003
  ident: B18
  article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.69.3.1800-1809.2003
– volume: 18
  start-page: 3896
  year: 2016
  ident: B28
  article-title: Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils.
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13370
– volume: 75
  start-page: 5111
  year: 2009
  ident: B35
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00335-09
– volume: 91
  start-page: 212
  year: 2015
  ident: B3
  article-title: Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.08.040
– volume: 88
  start-page: 1
  year: 2015
  ident: B66
  article-title: Soil pH and biome are both key determinants of soil archaeal community structure.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.05.004
– volume: 64
  start-page: 474
  year: 2012
  ident: B65
  article-title: Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-012-0028-8
– volume: 64
  start-page: 34
  year: 2012
  ident: B46
  article-title: Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-011-0031-1
– volume: 5
  start-page: 71
  year: 1988
  ident: B1
  article-title: The effect of parent material and soil development on nutrient cycling in temperate ecosystems.
  publication-title: Biogeochemistry
  doi: 10.1007/BF02180318
– volume: 107
  start-page: 77
  year: 2017
  ident: B14
  article-title: Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.028
– volume: 35
  start-page: 167
  year: 2003
  ident: B17
  article-title: Variations in microbial community composition through two soil depth profiles.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00251-1
– volume: 10
  year: 2015
  ident: B13
  article-title: Functional gene composition, diversity and redundancy in microbial stream biofilm communities.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0123179
– volume: 17
  start-page: 2228
  year: 2015
  ident: B36
  article-title: Environmental controls on intragroup diversity of the uncultured benthic archaea of the miscellaneous Crenarchaeotal group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA).
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12659
– volume: 1
  start-page: 163
  year: 2007
  ident: B73
  article-title: Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.
  publication-title: ISME J.
  doi: 10.1038/ismej.2007.24
– volume: 47
  start-page: 175
  year: 2012
  ident: B2
  article-title: Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.01.002
– volume: 111
  start-page: 11395
  year: 2014
  ident: B22
  article-title: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1322132111
– volume: 65
  start-page: 322
  year: 2013
  ident: B70
  article-title: Response of soil respiration and microbial biomass to changing EC in saline soils.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.06.008
– volume: 101
  start-page: 65
  year: 2016
  ident: B53
  article-title: The structure of bacterial communities along two vertical profiles of a deep colluvial soil.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.06.026
– volume: 80
  start-page: 273
  year: 2015
  ident: B59
  article-title: Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.019
– volume: 90
  start-page: 103
  year: 2014
  ident: B44
  article-title: Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12376
– volume: 6
  year: 2015
  ident: B55
  article-title: Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia).
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01339
– volume: 4
  start-page: 102
  year: 2006
  ident: B42
  article-title: Microbial biogeography: putting microorganisms on the map.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1341
– volume: 67
  start-page: 650
  year: 2016
  ident: B50
  article-title: Change from paddy rice to vegetable growing changes nitrogen-cycling microbial communities and their variation with depth in the soil.
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12365
– volume: 64
  start-page: 18
  year: 2013
  ident: B29
  article-title: Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.04.003
– volume: 95
  start-page: 219
  year: 2015
  ident: B23
  article-title: Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy.
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss-2014-062
– volume: 86
  start-page: 200
  year: 2013
  ident: B32
  article-title: Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12152
– volume: 15
  start-page: 982
  year: 2015
  ident: B56
  article-title: Bacterial succession in paddy soils derived from different parent materials.
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-014-1058-2
– volume: 6
  year: 2015
  ident: B8
  article-title: Emerging spatial patterns in Antarctic prokaryotes.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01058
– volume: 91
  start-page: 1
  year: 2015
  ident: B61
  article-title: Parental material and cultivation determine soil bacterial community structure and fertility.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiu010
– volume: 157
  start-page: 1
  year: 2010
  ident: B33
  article-title: Biogeochemistry of paddy soils.
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.009
– volume: 133
  start-page: 233
  year: 2015
  ident: B41
  article-title: Effects of copper on methane emission, methanogens and methanotrophs in the rhizosphere and bulk soil of rice paddy.
  publication-title: Catena
  doi: 10.1016/j.catena.2015.05.024
– volume: 33
  start-page: 110
  year: 2015
  ident: B27
  article-title: Prokaryotic community characterization in a mesothermic and water- flooded oil reservoir in Colombia.
  publication-title: Geomicrobiol. J.
  doi: 10.1080/01490451.2015.1039674
– volume: 11
  start-page: 3045
  year: 2009
  ident: B21
  article-title: Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2009.02008.x
– volume: 17
  start-page: 1203
  year: 2015
  ident: B57
  article-title: Phage-bacteria network analysis and its implication for the understanding of coral disease.
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12553
– volume: 23
  start-page: 49
  year: 2012
  ident: B25
  article-title: Development of functional gene microarrays for microbial community analysis.
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.11.001
– volume: 24
  start-page: 136
  year: 2015
  ident: B60
  article-title: Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil.
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13010
– volume: 240
  start-page: 270
  year: 2006
  ident: B48
  article-title: The smallest of all worlds: pollination networks.
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.09.014
– volume: 66
  start-page: 754
  year: 2000
  ident: B40
  article-title: Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.2.754-762.2000
– volume: 55
  start-page: 189
  year: 2009
  ident: B26
  article-title: Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt.
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01294
– volume: 74
  start-page: 1620
  year: 2008
  ident: B20
  article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01787-07
– volume: 95
  start-page: 151
  year: 2015
  ident: B43
  article-title: Land-use system shapes soil bacterial communities in Southeastern Amazon region.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.06.005
– volume: 1
  year: 2016
  ident: B75
  article-title: Zonal soil type determines soil microbial responses to maize cropping and fertilization.
  publication-title: mSystems
  doi: 10.1128/mSystems.00075-16
– volume: 86
  start-page: 101
  year: 2013
  ident: B58
  article-title: Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12143
– volume: 76
  start-page: 6751
  year: 2010
  ident: B69
  article-title: Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01063-10
– volume: 79
  start-page: 12
  year: 2012
  ident: B34
  article-title: Soil characteristics more strongly influence soil bacterial communities than land-use type.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01192.x
– year: 2009
  ident: B5
  article-title: “Gephi: an open source software for exploring and manipulating networks,” in
  publication-title: Proceedings of the International AAAI Conference on Weblogs and Social Media
  doi: 10.1609/icwsm.v3i1.13937
– volume: 91
  start-page: 1466
  year: 2010
  ident: B10
  article-title: Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients.
  publication-title: Ecology
  doi: 10.1890/09-0848.1
– volume: 298
  start-page: 252
  year: 2015
  ident: B64
  article-title: The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.05.049
– volume: 7
  start-page: 321
  year: 2015
  ident: B30
  article-title: Temporal dynamics of active Archaea in oxygen-depleted zones of two deep lakes.
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12251
– volume: 6
  start-page: 2128
  year: 2012
  ident: B51
  article-title: One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.57
– volume: 7
  start-page: 382
  year: 2005
  ident: B47
  article-title: Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2004.00700.x
– volume: 19
  start-page: 637
  year: 2013
  ident: B71
  article-title: Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland.
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12065
– volume: 88
  start-page: 403
  year: 2015
  ident: B63
  article-title: Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.012
– volume: 6
  year: 2015
  ident: B39
  article-title: Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01539
– volume: 97
  start-page: 7035
  year: 2013
  ident: B4
  article-title: GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4496-z
– volume: 4
  start-page: 1167
  year: 2010
  ident: B24
  article-title: GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity.
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.46
– volume: 88
  start-page: 2162
  year: 2007
  ident: B16
  article-title: Environmental controls on the landscape-scale biogeography of stream bacterial communities.
  publication-title: Ecology
  doi: 10.1890/06-1746.1
– reference: 18192411 - Appl Environ Microbiol. 2008 Mar;74(5):1620-33
– reference: 23135227 - Appl Microbiol Biotechnol. 2013 Aug;97(15):7035-48
– reference: 25053816 - Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11395-400
– reference: 26073380 - J Hazard Mater. 2015 Nov 15;298:252-60
– reference: 22646978 - BMC Bioinformatics. 2012 May 30;13:113
– reference: 25764534 - FEMS Microbiol Ecol. 2015 Jan;91(1):1-10
– reference: 25849814 - PLoS One. 2015 Apr 07;10(4):e0123179
– reference: 26363284 - Mol Ecol. 2015 Oct;24(20):5175-85
– reference: 16274698 - J Theor Biol. 2006 May 21;240(2):270-6
– reference: 15683399 - Environ Microbiol. 2005 Mar;7(3):382-95
– reference: 22395784 - Microb Ecol. 2012 Aug;64(2):474-84
– reference: 26696965 - Front Microbiol. 2015 Dec 08;6:1339
– reference: 25472601 - Environ Microbiol Rep. 2015 Apr;7(2):321-9
– reference: 24806276 - Mol Ecol. 2014 Jun;23(12):2988-99
– reference: 21993713 - Curr Microbiol. 2012 Jan;64(1):34-42
– reference: 27822546 - mSystems. 2016 Jul 12;1(4):null
– reference: 20729324 - Appl Environ Microbiol. 2010 Oct;76(20):6751-9
– reference: 20503878 - Ecology. 2010 May;91(5):1466-76
– reference: 21918515 - Nature. 2011 Sep 14;478(7368):233-5
– reference: 25331558 - Environ Microbiol. 2015 Jul;17(7):2228-38
– reference: 21507180 - Environ Microbiol. 2011 Jun;13(6):1642-54
– reference: 10653747 - Appl Environ Microbiol. 2000 Feb;66(2):754-62
– reference: 26396042 - Sci Rep. 2015 Sep 23;5:14345
– reference: 26274496 - PLoS One. 2015 Aug 14;10(8):e0135627
– reference: 25410123 - Mol Ecol. 2015 Jan;24(1):136-50
– reference: 21938020 - ISME J. 2012 Mar;6(3):692-702
– reference: 23621290 - FEMS Microbiol Ecol. 2013 Oct;86(1):101-13
– reference: 23537200 - BMC Microbiol. 2013 Mar 29;13:72
– reference: 26483777 - Front Microbiol. 2015 Sep 30;6:1058
– reference: 20428223 - ISME J. 2010 Sep;4(9):1167-79
– reference: 26483764 - Front Microbiol. 2015 Oct 02;6:1013
– reference: 18043626 - ISME J. 2007 Jun;1(2):163-79
– reference: 16415926 - Nat Rev Microbiol. 2006 Feb;4(2):102-12
– reference: 22695859 - ISME J. 2012 Nov;6(11):2128-39
– reference: 12620873 - Appl Environ Microbiol. 2003 Mar;69(3):1800-9
– reference: 25918831 - ISME J. 2015 Nov;9(11):2490-502
– reference: 23710534 - FEMS Microbiol Ecol. 2013 Nov;86(2):200-14
– reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
– reference: 24986450 - FEMS Microbiol Ecol. 2014 Oct;90(1):103-14
– reference: 22066695 - FEMS Microbiol Ecol. 2012 Jan;79(1):12-24
– reference: 22220938 - FEMS Microbiol Ecol. 2012 Apr;80(1):146-58
– reference: 23055998 - Front Microbiol. 2012 Sep 26;3:348
– reference: 26834709 - Front Microbiol. 2016 Jan 20;6:1539
– reference: 19659501 - Environ Microbiol. 2009 Dec;11(12):3045-62
– reference: 22100036 - Curr Opin Biotechnol. 2012 Feb;23(1):49-55
– reference: 23504798 - Glob Chang Biol. 2013 Feb;19(2):637-48
– reference: 27207327 - Environ Microbiol. 2016 Nov;18(11):3896-3909
– reference: 17918395 - Ecology. 2007 Sep;88(9):2162-73
– reference: 25039472 - Environ Microbiol. 2015 Apr;17(4):1203-18
SSID ssj0000402000
Score 2.4516509
Snippet Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 945
SubjectTerms GeoChip
Mi-Seq sequencing
microbial community
Microbiology
paddy soil
soil profile
soil type
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpDw0SFw6r5uHEybFlWSpEEWIp6s3yY0wjrbJVN3vY_9MfyoyTrnYRggunSIknsTxjz3zx-Bsh3iJhLhMwEEyNR3JcNTGKUKu3aKs0FKWLJVnOvlSn5_LTRXmxU-qLc8IGeuBh4I7IoYQytYUsrJfOVLUMhXK82WYbV7vIBEo-bwdMxTWYYVGaDvuShMIaUlPrLKdyMWVhw6eXdvxQpOv_U4z5e6rkju-ZPRD3x6ARjofOPhR3sHsk7g5lJDePxc1ZG-mUqMl43qPfgOk8zMhpDf_6YB55YtfXCPP2Z8f5QTSkiw38YKzsIdYcgilPeBIBRqcrWAb4SgvTBubLdrGCk3UP32JKrSeJ6VhZhV9iFiz98Tqmj_VRkEVgilf9JXw2HNY_EeezD9_fn07G6gsTV-Z1P0GfNVIZjp-wQVNaSVirwCwwHQ0BjWAQrWk8XXJPYZXCksBmKJ3NMFUYiqfioFt2-FyAD3kVsE4tBaMy1NZUuc0qK12do1Q2S8TRrS60G6nJuULGQhNEYe3pqD3N2tNRe4l4t5W4Gmg5_tL2hNW7bceE2vEGmZkezUz_y8wS8ebWODRNQN5VMR0u1ytNERVhskLJJhHPBmPZfiqvq4wgn0qE2jOjvb7sP-nay0jyXUqp0loe_o_OvxD3eDg46SFvXooDsjh8RbFUb1_HafMLeS0hSQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers
URI https://www.ncbi.nlm.nih.gov/pubmed/28611747
https://www.proquest.com/docview/1909743749
https://pubmed.ncbi.nlm.nih.gov/PMC5447084
https://doaj.org/article/818f50b343bd4ca684f37c0275b9c8c4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVgERIXxDfhY2UkLhwKTeLYyQEhltJdIYoQpai3yHbGu5GiZGlTifwffigzTlooKlxaqfU4bWZsvxeP3zD2HJBzaQcOaao_kmPlSCtkrYUBI8cuTqwvyTL7JM8W4sMyWf4-Hj3cwPVBakf1pBar6uWP790bHPCviXHieoseKK2hLC1SI8xEcpVdw3VJUT2D2QD2_bxMVMmfSQmlpO2AaNnvWx7shFSCUxkiYFd7S5ZX9j8ER__OqvxjmZreYjcHfMnf9gFxm12B-g673lec7O6yn7PSKy9hk-FoSNtxXRd8iutb_1iQz72k7GYFfF6e15RKhHe_6vg3otUF9-WJ-ITmBjThRGTXvHH8M85hHZ83ZbXmJ5uWf_HZtwVaTIYiLNSJrsj6dOUzzVpvSCZ8ApftBf-oiQHcY4vp-6_vzkZDoYaRTaK0HUERZkJpglqQgU6MQFoWQ-hIuQY5idMARmcFvkUFIjAFCfJSl1gTwliBi--zo7qp4SHjhYukg3RsELcKlxotIxNKI2wagVAmDNirrS9yO6iYUzGNKkc2Q47MvSNzcmTuHRmwFzuLy17B4z9tT8i9u3akve0_aFbn-TCUc4Q4LhmbWMSmEFbLVLhYWdr-NZlNrQjYs21w5DhWaQNG19Bs1jmCL6RvsRJZwB70wbK71DbYAqb2wmjvt-x_U5cXXg88EUKNU_Hon30-ZjfoP1LSQ5Q9YUcYRvAUsVRrjv0zCHw9XYbHfrj8AqsOIFY
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Community+and+Functional+Structure+Significantly+Varied+among+Distinct+Types+of+Paddy+Soils+But+Responded+Differently+along+Gradients+of+Soil+Depth+Layers&rft.jtitle=Frontiers+in+microbiology&rft.au=Bai%2C+Ren&rft.au=Wang%2C+Jun-Tao&rft.au=Deng%2C+Ye&rft.au=He%2C+Ji-Zheng&rft.date=2017-05-29&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft.spage=945&rft_id=info:doi/10.3389%2Ffmicb.2017.00945&rft_id=info%3Apmid%2F28611747&rft.externalDocID=28611747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon