Three-dimensional morphology of the distal femur based on surgical epicondylar axis in the normal elderly population
•The distal femoral morphology was automatically calculated with high accuracy.•201 cross–sectional planes were analysed in increments of 1° from −60° to 140°.•The constant radius of sagittal curvature was 0°–80° for medial femoral condyle.•The constant radius of sagittal curvature was 0°–65° for la...
Saved in:
Published in | The knee Vol. 30; pp. 125 - 133 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The distal femoral morphology was automatically calculated with high accuracy.•201 cross–sectional planes were analysed in increments of 1° from −60° to 140°.•The constant radius of sagittal curvature was 0°–80° for medial femoral condyle.•The constant radius of sagittal curvature was 0°–65° for lateral femoral condyle.•The distal femur possessed asymmetrical morphologies three-dimensionally.
We aimed to analyze the surface morphology of the distal femur in three dimensions for the healthy elderly, based on the concept that the surgical epicondylar axis (SEA) is a better surrogate for the flexion–extension axis of the knee joint.
We studied 77 healthy elderly volunteers (40 males and 37 females; age, 68 ± 6 years). The medial and lateral contact lines were calculated three-dimensionally, using the highest points of the medial and lateral condyles in 201 cross-sectional planes around the SEA (every 1°, −60° (hyperextension) to 140° (flexion)). A piecewise fitting function consisting of two linear segments was applied to detect the inflection point of the constant radii in the sagittal plane. The main assessment parameters were knee flexion angle at the inflection point of the radius (inflection angle), mean radius from 0° to the inflection angle (constant radius), and coronal tilt angle of the contact line.
The inflection angles, constant radii, and coronal tilt angles were 78.2 ± 8.6°, 26.1 ± 2.3 mm, and −0.6 ± 3.2° and 65.6 ± 9.2°, 23.9 ± 2.2 mm, and 6.2 ± 3.2° in the medial and lateral condyles, respectively (all, P < 0.001). The coronal alignment was 88.7 ± 2.2°.
The medial and lateral femoral condyles showed asymmetrical morphologies with the almost ‘constant’ radius of sagittal curvature from 0° to around 80° and 65° of knee flexion, respectively. |
---|---|
AbstractList | •The distal femoral morphology was automatically calculated with high accuracy.•201 cross–sectional planes were analysed in increments of 1° from −60° to 140°.•The constant radius of sagittal curvature was 0°–80° for medial femoral condyle.•The constant radius of sagittal curvature was 0°–65° for lateral femoral condyle.•The distal femur possessed asymmetrical morphologies three-dimensionally.
We aimed to analyze the surface morphology of the distal femur in three dimensions for the healthy elderly, based on the concept that the surgical epicondylar axis (SEA) is a better surrogate for the flexion–extension axis of the knee joint.
We studied 77 healthy elderly volunteers (40 males and 37 females; age, 68 ± 6 years). The medial and lateral contact lines were calculated three-dimensionally, using the highest points of the medial and lateral condyles in 201 cross-sectional planes around the SEA (every 1°, −60° (hyperextension) to 140° (flexion)). A piecewise fitting function consisting of two linear segments was applied to detect the inflection point of the constant radii in the sagittal plane. The main assessment parameters were knee flexion angle at the inflection point of the radius (inflection angle), mean radius from 0° to the inflection angle (constant radius), and coronal tilt angle of the contact line.
The inflection angles, constant radii, and coronal tilt angles were 78.2 ± 8.6°, 26.1 ± 2.3 mm, and −0.6 ± 3.2° and 65.6 ± 9.2°, 23.9 ± 2.2 mm, and 6.2 ± 3.2° in the medial and lateral condyles, respectively (all, P < 0.001). The coronal alignment was 88.7 ± 2.2°.
The medial and lateral femoral condyles showed asymmetrical morphologies with the almost ‘constant’ radius of sagittal curvature from 0° to around 80° and 65° of knee flexion, respectively. We aimed to analyze the surface morphology of the distal femur in three dimensions for the healthy elderly, based on the concept that the surgical epicondylar axis (SEA) is a better surrogate for the flexion-extension axis of the knee joint. We studied 77 healthy elderly volunteers (40 males and 37 females; age, 68 ± 6 years). The medial and lateral contact lines were calculated three-dimensionally, using the highest points of the medial and lateral condyles in 201 cross-sectional planes around the SEA (every 1°, -60° (hyperextension) to 140° (flexion)). A piecewise fitting function consisting of two linear segments was applied to detect the inflection point of the constant radii in the sagittal plane. The main assessment parameters were knee flexion angle at the inflection point of the radius (inflection angle), mean radius from 0° to the inflection angle (constant radius), and coronal tilt angle of the contact line. The inflection angles, constant radii, and coronal tilt angles were 78.2 ± 8.6°, 26.1 ± 2.3 mm, and -0.6 ± 3.2° and 65.6 ± 9.2°, 23.9 ± 2.2 mm, and 6.2 ± 3.2° in the medial and lateral condyles, respectively (all, P < 0.001). The coronal alignment was 88.7 ± 2.2°. The medial and lateral femoral condyles showed asymmetrical morphologies with the almost 'constant' radius of sagittal curvature from 0° to around 80° and 65° of knee flexion, respectively. We aimed to analyze the surface morphology of the distal femur in three dimensions for the healthy elderly, based on the concept that the surgical epicondylar axis (SEA) is a better surrogate for the flexion-extension axis of the knee joint.BACKGROUNDWe aimed to analyze the surface morphology of the distal femur in three dimensions for the healthy elderly, based on the concept that the surgical epicondylar axis (SEA) is a better surrogate for the flexion-extension axis of the knee joint.We studied 77 healthy elderly volunteers (40 males and 37 females; age, 68 ± 6 years). The medial and lateral contact lines were calculated three-dimensionally, using the highest points of the medial and lateral condyles in 201 cross-sectional planes around the SEA (every 1°, -60° (hyperextension) to 140° (flexion)). A piecewise fitting function consisting of two linear segments was applied to detect the inflection point of the constant radii in the sagittal plane. The main assessment parameters were knee flexion angle at the inflection point of the radius (inflection angle), mean radius from 0° to the inflection angle (constant radius), and coronal tilt angle of the contact line.METHODSWe studied 77 healthy elderly volunteers (40 males and 37 females; age, 68 ± 6 years). The medial and lateral contact lines were calculated three-dimensionally, using the highest points of the medial and lateral condyles in 201 cross-sectional planes around the SEA (every 1°, -60° (hyperextension) to 140° (flexion)). A piecewise fitting function consisting of two linear segments was applied to detect the inflection point of the constant radii in the sagittal plane. The main assessment parameters were knee flexion angle at the inflection point of the radius (inflection angle), mean radius from 0° to the inflection angle (constant radius), and coronal tilt angle of the contact line.The inflection angles, constant radii, and coronal tilt angles were 78.2 ± 8.6°, 26.1 ± 2.3 mm, and -0.6 ± 3.2° and 65.6 ± 9.2°, 23.9 ± 2.2 mm, and 6.2 ± 3.2° in the medial and lateral condyles, respectively (all, P < 0.001). The coronal alignment was 88.7 ± 2.2°.RESULTSThe inflection angles, constant radii, and coronal tilt angles were 78.2 ± 8.6°, 26.1 ± 2.3 mm, and -0.6 ± 3.2° and 65.6 ± 9.2°, 23.9 ± 2.2 mm, and 6.2 ± 3.2° in the medial and lateral condyles, respectively (all, P < 0.001). The coronal alignment was 88.7 ± 2.2°.The medial and lateral femoral condyles showed asymmetrical morphologies with the almost 'constant' radius of sagittal curvature from 0° to around 80° and 65° of knee flexion, respectively.CONCLUSIONSThe medial and lateral femoral condyles showed asymmetrical morphologies with the almost 'constant' radius of sagittal curvature from 0° to around 80° and 65° of knee flexion, respectively. Highlights:•The distal femoral morphology was automatically calculated with high accuracy. •201 cross–sectional planes were analysed in increments of 1° from -60° to 140°. •The constant radius of sagittal curvature was 0°–80° for medial femoral condyle. •The constant radius of sagittal curvature was 0°–65° for lateral femoral condyle. •The distal femur possessed asymmetrical morphologies three-dimensionally. |
Author | Mochizuki, Tomoharu Sato, Takashi |
Author_xml | – sequence: 1 givenname: Takashi surname: Sato fullname: Sato, Takashi email: takuukat2032@gmail.com organization: Department of Orthopedic Surgery, Niigata Medical Center, Niigata, Japan – sequence: 2 givenname: Tomoharu orcidid: 0000-0003-2565-0221 surname: Mochizuki fullname: Mochizuki, Tomoharu organization: Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33895611$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFL8AB5cglYWyvNwlCSFXFP6kSB8rZcuxJ11vHDnaCyLfH6baXSpTTSOP3eyPPmzNy4oNHQl5TqCjQ3btDdesRKwaMVsArYOwZ2dCm5qVoAE7IBtpdU2YlnJKzlA4AsGu34gU55bxpxY7SDZmu9xGxNHZAn2zwyhVDiOM-uHCzFKEvpj0WxqYpP_Q4zLHoVEJTBF-kOd5Ynfs4Wh28WZyKhfpjU2H9HeZDHNZnZzC6pRjDODs15SEvyfNeuYSv7us5-fn50_Xl1_Lq-5dvlxdXpRasmUrkHbSsU6bTgiqtact73jAtes2F6DhFw4xuapXbvTactzXWpqu7rTBgjODn5O3Rd4zh14xpkoNNGp1THsOcJBN5W1uaS5a-uZfO3YBGjtEOKi7yYVNZ0BwFOoaUIvZS2-nuN1NU1kkKcg1FHuQailxDkcBlDiWj7BH64P4k9OEIYV7Qb4tRJm3RazQ2op6kCfZp_OMjXDvr17huccF0CHPMWSdJZWIS5I_1VNZLYRSAgmiywft_G_xv-l-o_9Cl |
CitedBy_id | crossref_primary_10_1007_s00402_022_04613_z crossref_primary_10_1007_s10439_021_02871_3 crossref_primary_10_1111_os_13545 crossref_primary_10_1186_s40634_023_00686_w crossref_primary_10_1002_ksa_12255 crossref_primary_10_1007_s00167_022_07248_0 crossref_primary_10_1111_os_13770 crossref_primary_10_3389_fbioe_2022_904012 crossref_primary_10_1177_09592989251315369 |
Cites_doi | 10.1016/0021-9290(87)90247-8 10.1097/00003086-200107000-00023 10.1016/j.arth.2014.10.024 10.1016/j.arth.2004.08.005 10.1097/01.blo.0000072904.36018.79 10.1007/s11999-009-1016-2 10.1007/s00167-014-2867-y 10.1097/CORR.0000000000000611 10.2106/00004623-200100021-00010 10.1016/j.jbiomech.2004.02.006 10.1097/00003086-199811000-00016 10.1007/s00776-009-1414-z 10.1097/00003086-199301000-00008 10.1016/j.jbiomech.2009.08.022 10.1302/0301-620X.82B8.0821189 10.1016/j.arth.2018.02.009 10.1007/s00776-011-0149-9 10.1007/s00167-008-0551-9 10.1007/s00776-014-0536-0 10.1016/j.arth.2003.12.063 10.1016/0021-9290(85)90663-3 10.2106/JBJS.H.00434 10.1097/00003086-199305000-00033 10.1016/j.arth.2006.06.020 10.1016/j.arth.2009.12.009 10.2106/00004623-197153050-00010 10.1016/j.clinbiomech.2015.12.006 10.1007/s00167-020-05856-2 10.1007/PL00003679 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.knee.2021.03.022 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-5800 |
EndPage | 133 |
ExternalDocumentID | 33895611 10_1016_j_knee_2021_03_022 S0968016021001058 1_s2_0_S0968016021001058 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5RE 5VS 6PF 7-5 71M 8FE 8FH 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFS ACIEU ACIUM ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM LK8 M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ SV3 T5K UHS UPT WOW WUQ YQT Z5R ~G- 3V. 7RV 7X7 8FI AACTN AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR BHPHI FYUFA GUQSH HCIFZ M1P M2O M7P AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c528t-e3b092badbc51acc193f382c5fc355b31ed2dc87a3f3fcd3397e7db7b45d0dd53 |
IEDL.DBID | .~1 |
ISSN | 0968-0160 1873-5800 |
IngestDate | Tue Aug 05 09:55:54 EDT 2025 Mon Jul 21 05:33:54 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Jul 01 02:05:02 EDT 2025 Fri Feb 23 02:44:44 EST 2024 Tue Feb 25 19:54:27 EST 2025 Tue Aug 26 17:11:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surgical epicondylar axis Constant radius Three dimensions Distal femur Morphology |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-e3b092badbc51acc193f382c5fc355b31ed2dc87a3f3fcd3397e7db7b45d0dd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2565-0221 |
PMID | 33895611 |
PQID | 2518741251 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2518741251 pubmed_primary_33895611 crossref_citationtrail_10_1016_j_knee_2021_03_022 crossref_primary_10_1016_j_knee_2021_03_022 elsevier_sciencedirect_doi_10_1016_j_knee_2021_03_022 elsevier_clinicalkeyesjournals_1_s2_0_S0968016021001058 elsevier_clinicalkey_doi_10_1016_j_knee_2021_03_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The knee |
PublicationTitleAlternate | Knee |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bellemans, Carpentier, Vandenneucker, Vanlauwe, Victor (b0070) 2010; 468 Feng, Tsai, Li, Rubash, Li, Freiberg (b0110) 2016; 32 Kobayashi, Akamatsu, Kumagai, Kusayama, Ishigatsubo, Muramatsu (b0145) 2014; 22 Sato, Koga, Sobue, Omori, Tanabe, Sakamoto (b0065) 2007; 22 Shiavi, Limbird, Frazer, Stivers, Strauss, Abramovitz (b0010) 1987; 20 Sato, Koga, Omori (b0095) 2004; 19 Freeman, Pinskerova (b0135) 2005; 38 Berger, Rubash, Seel, Thompson, Crossett (b0035) 1993; 286 Katsumi, Mochizuki, Sato, Kobayashi, Watanabe, Tanifuji (b0085) 2018;5:32 Asano, Akagi, Nakamura (b0055) 2005; 20 Iwaki, Pinskerova, Freeman (b0050) 2000; 82 Mochizuki, Sato, Tanifuji, Watanabe, Kobayashi, Endo (b0060) 2018; 33 Churchill, Incavo, Johnson, Beynnon (b0040) 1998; 356 Varadarajan, Rubash, Li (b0100) 2011; 26 Meier, Zingde, Steinert, Kurtz, Koeck, Beckmann (b0130) 2019; 477 Frankel, Burstein, Brooks (b0005) 1971; 53 Lustig, Lavoie, Selmi, Servien, Neyret (b0075) 2008; 16 Kobayashi, Akamatsu, Kumagai, Kusayama, Aratake, Saito (b0105) 2015; 30 Mahoney, Kinsey (b0125) 2010; 92 Tanifuji, Sato, Kobayashi (b0140) 2011; 16 Hokari, Tanifuji, Kobayashi, Mochizuki, Katsumi, Sato (b0115) 2020; 28 Kobayashi, Sakamoto, Tanabe, Ariumi, Sato, Omori (b0090) 2009; 42 Matsuda, Miura, Nagamine, Urabe, Mawatari, Iwamoto (b0150) 2003; 414 Ariumi, Sato, Kobayashi, Koga, Omori, Minato (b0080) 2010; 15 Pinskerova, Iwaki, Freeman (b0120) 2000; 29 Hollister, Jatana, Singh, Sullivan, Lupichuk (b0015) 1993; 290 Kurosawa, Walker, Abe, Garg, Hunter (b0025) 1985; 18 Asano, Akagi, Tanaka, Tamura, Nakamura (b0030) 2001; 388 Mochizuki, Sato, Blaha, Tanifuji, Kobayashi, Yamagiwa (b0045) 2014; 19 Eckhoff DG, Dwyer TF, Bach JM, Spitzer VM, Reinig KD. Three-dimensional morphology of the distal part of the femur viewed in virtual reality. J Bone Joint Surg Am. 2001;83-A:43-50. https://doi:10.2106/00004623-200100021-00010. Sato (10.1016/j.knee.2021.03.022_b0065) 2007; 22 Kobayashi (10.1016/j.knee.2021.03.022_b0090) 2009; 42 Kobayashi (10.1016/j.knee.2021.03.022_b0105) 2015; 30 10.1016/j.knee.2021.03.022_b0020 Freeman (10.1016/j.knee.2021.03.022_b0135) 2005; 38 Frankel (10.1016/j.knee.2021.03.022_b0005) 1971; 53 Katsumi (10.1016/j.knee.2021.03.022_b0085) 2018532 Pinskerova (10.1016/j.knee.2021.03.022_b0120) 2000; 29 Varadarajan (10.1016/j.knee.2021.03.022_b0100) 2011; 26 Churchill (10.1016/j.knee.2021.03.022_b0040) 1998; 356 Hokari (10.1016/j.knee.2021.03.022_b0115) 2020; 28 Ariumi (10.1016/j.knee.2021.03.022_b0080) 2010; 15 Mochizuki (10.1016/j.knee.2021.03.022_b0045) 2014; 19 Bellemans (10.1016/j.knee.2021.03.022_b0070) 2010; 468 Kobayashi (10.1016/j.knee.2021.03.022_b0145) 2014; 22 Hollister (10.1016/j.knee.2021.03.022_b0015) 1993; 290 Asano (10.1016/j.knee.2021.03.022_b0055) 2005; 20 Mahoney (10.1016/j.knee.2021.03.022_b0125) 2010; 92 Sato (10.1016/j.knee.2021.03.022_b0095) 2004; 19 Kurosawa (10.1016/j.knee.2021.03.022_b0025) 1985; 18 Iwaki (10.1016/j.knee.2021.03.022_b0050) 2000; 82 Meier (10.1016/j.knee.2021.03.022_b0130) 2019; 477 Tanifuji (10.1016/j.knee.2021.03.022_b0140) 2011; 16 Shiavi (10.1016/j.knee.2021.03.022_b0010) 1987; 20 Feng (10.1016/j.knee.2021.03.022_b0110) 2016; 32 Asano (10.1016/j.knee.2021.03.022_b0030) 2001; 388 Lustig (10.1016/j.knee.2021.03.022_b0075) 2008; 16 Matsuda (10.1016/j.knee.2021.03.022_b0150) 2003; 414 Mochizuki (10.1016/j.knee.2021.03.022_b0060) 2018; 33 Berger (10.1016/j.knee.2021.03.022_b0035) 1993; 286 |
References_xml | – volume: 29 start-page: S3 year: 2000 end-page: S5 ident: b0120 article-title: The shapes and relative movements of the femur and tibia at the knee publication-title: Orthopade – volume: 92 start-page: 1115 year: 2010 end-page: 1121 ident: b0125 article-title: Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences publication-title: J Bone Joint Surg Am – volume: 20 start-page: 459 year: 1987 end-page: 469 ident: b0010 article-title: Helical motion analysis of the knee – 1. Methodology for studying kinematics during locomotion publication-title: J Biomech – reference: Eckhoff DG, Dwyer TF, Bach JM, Spitzer VM, Reinig KD. Three-dimensional morphology of the distal part of the femur viewed in virtual reality. J Bone Joint Surg Am. 2001;83-A:43-50. https://doi:10.2106/00004623-200100021-00010. – volume: 19 start-page: 620 year: 2004 end-page: 628 ident: b0095 article-title: Three-dimensional lower extremity alignment assessment system – Application to evaluation of component position after total knee arthroplasty publication-title: J Arthroplasty – volume: 15 start-page: 64 year: 2010 end-page: 70 ident: b0080 article-title: Three-dimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects publication-title: J Orthop Sci – year: 2018;5:32 ident: b0085 article-title: Contribution of sex and body constitution to three-dimensional lower extremity alignment for healthy, elderly, non-obese humans in a Japanese population publication-title: J Exp Orthop – volume: 38 start-page: 197 year: 2005 end-page: 208 ident: b0135 article-title: The movement of the normal tibio-femoral joint publication-title: J Biomech – volume: 42 start-page: 2818 year: 2009 end-page: 2822 ident: b0090 article-title: Automated image registration for assessing three-dimensional alignment of entire lower extremity and implant position using bi-plane radiography publication-title: J Biomech – volume: 290 start-page: 259 year: 1993 end-page: 268 ident: b0015 article-title: The axis of rotation of the knee publication-title: Clin Orthop Relat Res – volume: 18 start-page: 487 year: 1985 end-page: 499 ident: b0025 article-title: Geometry and motion of the knee for implant and orthotic design publication-title: J Biomech – volume: 20 start-page: 1060 year: 2005 end-page: 1067 ident: b0055 article-title: The functional flexion–extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique publication-title: J Arthroplasty – volume: 33 start-page: 2100 year: 2018 end-page: 2110 ident: b0060 article-title: Extrinsic factors as component positions to bone and intrinsic factors affecting postoperative rotational limb alignment in total knee arthroplasty publication-title: J Arthroplasty – volume: 30 start-page: 479 year: 2015 end-page: 483 ident: b0105 article-title: Is the surgical epicondylar axis the centre of rotation in the osteoarthritic knee? publication-title: J Arthroplasty – volume: 22 start-page: 560 year: 2007 end-page: 568 ident: b0065 article-title: Quantitative 3-dimensional analysis of preoperative and postoperative joint lines in total knee arthroplasty: a new concept for evaluation of component alignment publication-title: J Arthroplasty – volume: 477 start-page: 561 year: 2019 end-page: 570 ident: b0130 article-title: What is the possible impact of high variability of distal femoral geometry on TKA? A CT data analysis of 24,042 knees publication-title: Clin Orthop Relat Res – volume: 28 start-page: 3858 year: 2020 end-page: 3864 ident: b0115 article-title: The inclination of the femoral medial posterior condyle was almost vertical and that of the lateral was tilted medially publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 53 start-page: 945 year: 1971 end-page: 962 ident: b0005 article-title: Biomechanics of internal derangement of knee. Pathomechanics as determined by analysis of the instant centre of motion publication-title: J Bone Joint Surg Am – volume: 388 start-page: 157 year: 2001 end-page: 166 ident: b0030 article-title: In vivo three-dimensional knee kinematics using a biplanar image-matching technique publication-title: Clin Orthop Relat Res – volume: 468 start-page: 29 year: 2010 end-page: 36 ident: b0070 article-title: The John Insall Award. Both morphotype and gender influence the shape of the knee in patients undergoing TKA publication-title: Clin Orthop Relat Res – volume: 26 start-page: 274 year: 2011 end-page: 281 ident: b0100 article-title: Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? publication-title: J Arthroplasty – volume: 356 start-page: 111 year: 1998 end-page: 118 ident: b0040 article-title: The transepicondylar axis approximates the optimal flexion axis of the knee publication-title: Clin Orthop Relat Res – volume: 32 start-page: 102 year: 2016 end-page: 107 ident: b0110 article-title: In-vivo analysis of flexion axes of the knee: femoral condylar motion during dynamic knee flexion publication-title: Clin Biomech (Bristol, Avon) – volume: 22 start-page: 2947 year: 2014 end-page: 2953 ident: b0145 article-title: The surgical epicondylar axis is a consistent reference of the distal femur in the coronal and axial planes publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 16 start-page: 710 year: 2011 end-page: 718 ident: b0140 article-title: Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy publication-title: J Orthop Sci – volume: 82 start-page: 1189 year: 2000 end-page: 1195 ident: b0050 article-title: Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee publication-title: J Bone Joint Surg Br – volume: 286 start-page: 40 year: 1993 end-page: 47 ident: b0035 article-title: Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis publication-title: Clin Orthop Relat Res – volume: 19 start-page: 451 year: 2014 end-page: 456 ident: b0045 article-title: The clinical epicondylar axis is not the functional flexion axis of the human knee publication-title: J Orthop Sci – volume: 16 start-page: 674 year: 2008 end-page: 682 ident: b0075 article-title: Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 414 start-page: 183 year: 2003 end-page: 188 ident: b0150 article-title: A comparison of rotational landmarks in the distal femur and the tibial shaft publication-title: Clin Orthop Relat Res – volume: 20 start-page: 459 year: 1987 ident: 10.1016/j.knee.2021.03.022_b0010 article-title: Helical motion analysis of the knee – 1. Methodology for studying kinematics during locomotion publication-title: J Biomech doi: 10.1016/0021-9290(87)90247-8 – volume: 388 start-page: 157 year: 2001 ident: 10.1016/j.knee.2021.03.022_b0030 article-title: In vivo three-dimensional knee kinematics using a biplanar image-matching technique publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-200107000-00023 – volume: 30 start-page: 479 year: 2015 ident: 10.1016/j.knee.2021.03.022_b0105 article-title: Is the surgical epicondylar axis the centre of rotation in the osteoarthritic knee? publication-title: J Arthroplasty doi: 10.1016/j.arth.2014.10.024 – volume: 20 start-page: 1060 year: 2005 ident: 10.1016/j.knee.2021.03.022_b0055 article-title: The functional flexion–extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique publication-title: J Arthroplasty doi: 10.1016/j.arth.2004.08.005 – volume: 414 start-page: 183 year: 2003 ident: 10.1016/j.knee.2021.03.022_b0150 article-title: A comparison of rotational landmarks in the distal femur and the tibial shaft publication-title: Clin Orthop Relat Res doi: 10.1097/01.blo.0000072904.36018.79 – volume: 468 start-page: 29 year: 2010 ident: 10.1016/j.knee.2021.03.022_b0070 article-title: The John Insall Award. Both morphotype and gender influence the shape of the knee in patients undergoing TKA publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-009-1016-2 – volume: 22 start-page: 2947 year: 2014 ident: 10.1016/j.knee.2021.03.022_b0145 article-title: The surgical epicondylar axis is a consistent reference of the distal femur in the coronal and axial planes publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-014-2867-y – volume: 477 start-page: 561 year: 2019 ident: 10.1016/j.knee.2021.03.022_b0130 article-title: What is the possible impact of high variability of distal femoral geometry on TKA? A CT data analysis of 24,042 knees publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000000611 – ident: 10.1016/j.knee.2021.03.022_b0020 doi: 10.2106/00004623-200100021-00010 – volume: 38 start-page: 197 year: 2005 ident: 10.1016/j.knee.2021.03.022_b0135 article-title: The movement of the normal tibio-femoral joint publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.02.006 – volume: 356 start-page: 111 year: 1998 ident: 10.1016/j.knee.2021.03.022_b0040 article-title: The transepicondylar axis approximates the optimal flexion axis of the knee publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199811000-00016 – volume: 15 start-page: 64 year: 2010 ident: 10.1016/j.knee.2021.03.022_b0080 article-title: Three-dimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects publication-title: J Orthop Sci doi: 10.1007/s00776-009-1414-z – volume: 286 start-page: 40 year: 1993 ident: 10.1016/j.knee.2021.03.022_b0035 article-title: Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199301000-00008 – volume: 42 start-page: 2818 year: 2009 ident: 10.1016/j.knee.2021.03.022_b0090 article-title: Automated image registration for assessing three-dimensional alignment of entire lower extremity and implant position using bi-plane radiography publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.08.022 – volume: 82 start-page: 1189 year: 2000 ident: 10.1016/j.knee.2021.03.022_b0050 article-title: Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.82B8.0821189 – volume: 33 start-page: 2100 year: 2018 ident: 10.1016/j.knee.2021.03.022_b0060 article-title: Extrinsic factors as component positions to bone and intrinsic factors affecting postoperative rotational limb alignment in total knee arthroplasty publication-title: J Arthroplasty doi: 10.1016/j.arth.2018.02.009 – volume: 16 start-page: 710 year: 2011 ident: 10.1016/j.knee.2021.03.022_b0140 article-title: Three-dimensional in vivo motion analysis of normal knees using single-plane fluoroscopy publication-title: J Orthop Sci doi: 10.1007/s00776-011-0149-9 – volume: 16 start-page: 674 year: 2008 ident: 10.1016/j.knee.2021.03.022_b0075 article-title: Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-008-0551-9 – year: 2018532 ident: 10.1016/j.knee.2021.03.022_b0085 article-title: Contribution of sex and body constitution to three-dimensional lower extremity alignment for healthy, elderly, non-obese humans in a Japanese population publication-title: J Exp Orthop – volume: 19 start-page: 451 year: 2014 ident: 10.1016/j.knee.2021.03.022_b0045 article-title: The clinical epicondylar axis is not the functional flexion axis of the human knee publication-title: J Orthop Sci doi: 10.1007/s00776-014-0536-0 – volume: 19 start-page: 620 year: 2004 ident: 10.1016/j.knee.2021.03.022_b0095 article-title: Three-dimensional lower extremity alignment assessment system – Application to evaluation of component position after total knee arthroplasty publication-title: J Arthroplasty doi: 10.1016/j.arth.2003.12.063 – volume: 18 start-page: 487 year: 1985 ident: 10.1016/j.knee.2021.03.022_b0025 article-title: Geometry and motion of the knee for implant and orthotic design publication-title: J Biomech doi: 10.1016/0021-9290(85)90663-3 – volume: 92 start-page: 1115 year: 2010 ident: 10.1016/j.knee.2021.03.022_b0125 article-title: Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences publication-title: J Bone Joint Surg Am doi: 10.2106/JBJS.H.00434 – volume: 290 start-page: 259 year: 1993 ident: 10.1016/j.knee.2021.03.022_b0015 article-title: The axis of rotation of the knee publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199305000-00033 – volume: 22 start-page: 560 year: 2007 ident: 10.1016/j.knee.2021.03.022_b0065 article-title: Quantitative 3-dimensional analysis of preoperative and postoperative joint lines in total knee arthroplasty: a new concept for evaluation of component alignment publication-title: J Arthroplasty doi: 10.1016/j.arth.2006.06.020 – volume: 26 start-page: 274 year: 2011 ident: 10.1016/j.knee.2021.03.022_b0100 article-title: Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? publication-title: J Arthroplasty doi: 10.1016/j.arth.2009.12.009 – volume: 53 start-page: 945 year: 1971 ident: 10.1016/j.knee.2021.03.022_b0005 article-title: Biomechanics of internal derangement of knee. Pathomechanics as determined by analysis of the instant centre of motion publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-197153050-00010 – volume: 32 start-page: 102 year: 2016 ident: 10.1016/j.knee.2021.03.022_b0110 article-title: In-vivo analysis of flexion axes of the knee: femoral condylar motion during dynamic knee flexion publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/j.clinbiomech.2015.12.006 – volume: 28 start-page: 3858 year: 2020 ident: 10.1016/j.knee.2021.03.022_b0115 article-title: The inclination of the femoral medial posterior condyle was almost vertical and that of the lateral was tilted medially publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-020-05856-2 – volume: 29 start-page: S3 year: 2000 ident: 10.1016/j.knee.2021.03.022_b0120 article-title: The shapes and relative movements of the femur and tibia at the knee publication-title: Orthopade doi: 10.1007/PL00003679 |
SSID | ssj0006945 |
Score | 2.3311865 |
Snippet | •The distal femoral morphology was automatically calculated with high accuracy.•201 cross–sectional planes were analysed in increments of 1° from −60° to... Highlights:•The distal femoral morphology was automatically calculated with high accuracy. •201 cross–sectional planes were analysed in increments of 1° from... We aimed to analyze the surface morphology of the distal femur in three dimensions for the healthy elderly, based on the concept that the surgical epicondylar... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Constant radius Distal femur Morphology Orthopedics Surgical epicondylar axis Three dimensions |
Title | Three-dimensional morphology of the distal femur based on surgical epicondylar axis in the normal elderly population |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0968016021001058 https://www.clinicalkey.es/playcontent/1-s2.0-S0968016021001058 https://dx.doi.org/10.1016/j.knee.2021.03.022 https://www.ncbi.nlm.nih.gov/pubmed/33895611 https://www.proquest.com/docview/2518741251 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7YUXBIyPwpiMhHhBoYnt1M5jVW3qBkwINmlvlmM7UkfrVE0rrS_87dw5SRGCDYknK7ZPTu7O55_j8x0hb9WoMAZmYOKkEYkomEwM4NakUN5bXgnJKjzR_Xwxml6J8-v8eo9M-rsw6FbZ2f7Wpkdr3dUMO24Ol7PZ8BuAb4Xx0VgW0zzihV8hJGr5hx-_3DxGRUxUjJ0T7N1dnGl9vL4Hj6EyWRYDnTJ21-J0F_iMi9DpI_KwQ4903L7gY7LnwxNyOA6wc15s6Tsa_Tnjj_JDsr4EMfnEYfj-NvQGXdTA1dhM64oC9KMO4eOcVn6xWVFc0RytA202q2gQqV-CogS3he0vNbezhs5CJAuIdKEZU3zPt3S5ywL2lFydnlxOpkmXYyGxOVPrxPMyLVhpXGnzzFgLeK7iitm8soBESp55x5xV0kB1ZR0H-OKlK2Upcpc6l_NnZD_Uwb8gVDHPvaiEcsBzrkThhDUSOnsjK5WaAcl65mrbBSDHPBhz3Xua3WgUiEaB6JRrEMiAvN_RLNvwG_f25r3MdH-xFEyhhtXhXir5NyrfdLO50ZlumE71Hxo3IPmO8jel_eeIb3qF0jCb8YjGBF9vGg1oUwHGg2JAnreatvtuDtgS0G728j9HfUUe4FPr53ZE9terjX8NiGpdHscpc0wOxpOvn75gefZxevEToI0i4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB622UN7Kd1uH-ljq0LppZjYkh3Lx7B0yb5yaRb2JmQ9INtEDnECzb_vSH5AaXcLezJIGmTPS5-s0QzAFz4upEQLjHQu0ygtaB5JxK1RwY1RzKY5tf5E93o2nt6kF7fZ7QGcdndhfFhl6_sbnx68ddsyark5Wi8Wox8IvrnPj0aTUOaRP4FDn50qG8Dh5PxyOusd8rgItYr9-MgTtHdnmjCvn874bJk0CblOKb1vfboPf4Z16OwFPG8BJJk073gEB8a9hOOJw83zak--khDSGf6VH8N2jpIykfYZ_JvsG2RVIWNDN6ksQfRHtEeQS2LNarchflHTpHKk3m2CTyRmjbri9B53wET-WtRk4QKZ82AXu32V7-WerPtCYK_g5uz7_HQatWUWIpVRvo0MK-OCllKXKkukUgjpLONUZVYhGClZYjTViucSm63SDBGMyXWZl2mmY60z9hoGrnLmLRBODTOpTblGnjOeFjpVMsfBRuaWx3IIScdcodoc5L4UxlJ0wWZ3wgtEeIGImAkUyBC-9TTrJgPHg6NZJzPR3S1FbyhwgXiQKv8Xlalbg65FImoqYvGX0g0h6yn_0Nv_zvi5UyiBBu1PaaQz1a4WCDg5wjx8DOFNo2n9dzOElwh4k3ePnPUTPJ3Or6_E1fns8j088z1N2NsHGGw3O_MRAda2PGkN6DdiQiP9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+morphology+of+the+distal+femur+based+on+surgical+epicondylar+axis+in+the+normal+elderly+population&rft.jtitle=The+knee&rft.au=Sato%2C+Takashi&rft.au=Mochizuki%2C+Tomoharu&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0968-0160&rft.volume=30&rft.spage=125&rft.epage=133&rft_id=info:doi/10.1016%2Fj.knee.2021.03.022&rft.externalDocID=S0968016021001058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-0160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-0160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-0160&client=summon |