The ferritin superfamily: Supramolecular templates for materials synthesis

Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1800; no. 8; pp. 834 - 845
Main Authors Uchida, Masaki, Kang, Sebyung, Reichhardt, Courtney, Harlen, Kevin, Douglas, Trevor
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
AbstractList Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.
Author Harlen, Kevin
Uchida, Masaki
Kang, Sebyung
Douglas, Trevor
Reichhardt, Courtney
AuthorAffiliation 1 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
2 Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717
AuthorAffiliation_xml – name: 2 Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717
– name: 1 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
Author_xml – sequence: 1
  givenname: Masaki
  surname: Uchida
  fullname: Uchida, Masaki
  organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA
– sequence: 2
  givenname: Sebyung
  surname: Kang
  fullname: Kang, Sebyung
  organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA
– sequence: 3
  givenname: Courtney
  surname: Reichhardt
  fullname: Reichhardt, Courtney
  organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA
– sequence: 4
  givenname: Kevin
  surname: Harlen
  fullname: Harlen, Kevin
  organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA
– sequence: 5
  givenname: Trevor
  surname: Douglas
  fullname: Douglas, Trevor
  email: tdouglas@chemistry.montana.edu
  organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20026386$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAUtFAR3Rb-AUK5cUrqjzh2ekBCFZ-qxIFythznpeuVYwfbqbT_Hq92qYBDeRc_Pc_Ms2cu0JkPHhB6TXBDMOmuds0w6HvwDcW4bwhtMObP0IZIQWuJcXeGNpjhtm5Jx8_RRUo7XIr3_AU6LxTaMdlt0Ne7LVQTxGiz9VVaF4iTnq3bX1ff1yXqOTgwq9OxyjAvTmdI1RRiNZcuWu1SlfY-byHZ9BI9n8oAXp3OS_Tj44e7m8_17bdPX27e39aGU5nrUcjOSKM55tIwzsnYD1QQOnACkvQjG2RLTQtioNAzrFshpBB07DUQaSbBLtG7o-6yDjOMBnyO2qkl2lnHvQraqr9vvN2q-_CgmOiY4LQIvD0JxPBzhZTVbJMB57SHsCYlWFv8kbItyDd_rnrc8du_AmiPABNDShGmRwjB6hCT2qljTAdOrwhVJYNCu_6HZmzW2YbDg637H_n0fygmP1iIKhkL3sBoI5isxmCfFvgFHEGxlw
CitedBy_id crossref_primary_10_1021_cr5004908
crossref_primary_10_1021_acs_biomac_5b01134
crossref_primary_10_1016_j_foodchem_2019_125097
crossref_primary_10_1021_acssynbio_0c00368
crossref_primary_10_1039_c1cc15221a
crossref_primary_10_1016_j_nantod_2025_102648
crossref_primary_10_1155_2019_9535708
crossref_primary_10_1016_j_cocis_2020_101395
crossref_primary_10_3390_pharmaceutics13020229
crossref_primary_10_3390_bios13030304
crossref_primary_10_1093_bulcsj_bcsj_20230224
crossref_primary_10_1016_j_jbiosc_2022_01_005
crossref_primary_10_1002_adfm_202104199
crossref_primary_10_1021_ic400484n
crossref_primary_10_1039_C4AN02400A
crossref_primary_10_1039_c3nj00546a
crossref_primary_10_1002_adfm_202002043
crossref_primary_10_1021_acsami_2c11263
crossref_primary_10_1021_acs_chemmater_3c00847
crossref_primary_10_1021_acsami_4c18072
crossref_primary_10_1007_s12274_022_4385_4
crossref_primary_10_1021_acsnano_8b06091
crossref_primary_10_7759_cureus_57365
crossref_primary_10_1039_D3BM01257C
crossref_primary_10_1038_ncomms9721
crossref_primary_10_1111_mmi_15330
crossref_primary_10_1021_acssuschemeng_2c03740
crossref_primary_10_1039_C3CC47847E
crossref_primary_10_1063_1_3609859
crossref_primary_10_1016_j_pmatsci_2017_08_001
crossref_primary_10_1021_acs_biochem_1c00515
crossref_primary_10_1002_mabi_201300019
crossref_primary_10_1039_C5CC10365G
crossref_primary_10_1002_anie_201006757
crossref_primary_10_1016_j_jbiotec_2022_02_005
crossref_primary_10_1002_mabi_201200178
crossref_primary_10_1021_acs_biomac_0c01790
crossref_primary_10_1002_anie_201106710
crossref_primary_10_1039_C5BM00052A
crossref_primary_10_1007_s10534_019_00208_1
crossref_primary_10_1021_ac5018327
crossref_primary_10_1039_D4SC07021F
crossref_primary_10_1016_j_jinorgbio_2012_09_003
crossref_primary_10_1116_1_4895688
crossref_primary_10_1002_ange_201006757
crossref_primary_10_1042_BJ20120514
crossref_primary_10_1039_C4MT00127C
crossref_primary_10_1021_acsnano_5b03607
crossref_primary_10_1002_adma_201100067
crossref_primary_10_1021_acsami_4c14505
crossref_primary_10_1039_C5RA16951H
crossref_primary_10_1088_0957_4484_26_19_195201
crossref_primary_10_1016_j_ijbiomac_2023_123206
crossref_primary_10_1021_acs_chemrev_1c00712
crossref_primary_10_1021_la300949y
crossref_primary_10_1039_c1jm10575b
crossref_primary_10_1103_PhysRevB_86_144402
crossref_primary_10_1186_s13567_024_01383_x
crossref_primary_10_1039_c2jm31620j
crossref_primary_10_1021_acscentsci_5b00315
crossref_primary_10_1039_D1RA03816H
crossref_primary_10_1007_s00775_024_02058_w
crossref_primary_10_1039_D1TB00234A
crossref_primary_10_1021_mp2001999
crossref_primary_10_1016_j_ijbiomac_2024_136479
crossref_primary_10_1021_acsami_7b18304
crossref_primary_10_1016_j_jinorgbio_2017_11_019
crossref_primary_10_1039_C9RA04785A
crossref_primary_10_1002_anie_201609517
crossref_primary_10_1021_bm301339s
crossref_primary_10_1007_s00775_011_0781_z
crossref_primary_10_1021_acsnano_8b02856
crossref_primary_10_1063_1_4816684
crossref_primary_10_1039_C4NR00915K
crossref_primary_10_1103_PhysRevB_90_174424
crossref_primary_10_1016_j_jiec_2019_09_027
crossref_primary_10_1007_s11051_013_1942_5
crossref_primary_10_3390_vaccines10111920
crossref_primary_10_1016_j_abb_2021_109031
crossref_primary_10_3390_biom14060624
crossref_primary_10_1039_C7SC01565H
crossref_primary_10_1021_acsnano_6b06235
crossref_primary_10_1002_anie_201909927
crossref_primary_10_1002_biot_202000087
crossref_primary_10_1021_acsbiomedchemau_2c00003
crossref_primary_10_1039_c1cc11759a
crossref_primary_10_1021_jacs_9b03705
crossref_primary_10_7774_cevr_2014_3_2_227
crossref_primary_10_1021_ja211011k
crossref_primary_10_1039_D0NR04520A
crossref_primary_10_1039_C3CC48000C
crossref_primary_10_1021_acs_analchem_3c04328
crossref_primary_10_1002_VIW_20200027
crossref_primary_10_1039_C6MB00235H
crossref_primary_10_1002_ijch_201600017
crossref_primary_10_1007_s00775_014_1103_z
crossref_primary_10_1016_j_jmmm_2011_05_017
crossref_primary_10_1039_C8NR04441D
crossref_primary_10_1002_smll_201100238
crossref_primary_10_1007_s00467_013_2600_y
crossref_primary_10_1021_acs_biomac_0c00030
crossref_primary_10_1039_C5NR08465B
crossref_primary_10_1039_c1cc11215e
crossref_primary_10_1039_C5CC06904A
crossref_primary_10_1088_2632_959X_ac2c93
crossref_primary_10_1186_1475_2859_10_92
crossref_primary_10_1002_ange_201609517
crossref_primary_10_1016_j_colsurfb_2024_114332
crossref_primary_10_1038_s41598_017_10297_y
crossref_primary_10_1021_acsanm_0c01563
crossref_primary_10_1088_1748_605X_adab5a
crossref_primary_10_1016_j_foodchem_2022_133680
crossref_primary_10_1039_D3TB00192J
crossref_primary_10_1002_mabi_201300528
crossref_primary_10_3390_ijms160510201
crossref_primary_10_1042_BJ20150787
crossref_primary_10_1680_jbibn_18_00038
crossref_primary_10_1002_ange_201909927
crossref_primary_10_1007_s11705_017_1620_8
crossref_primary_10_1016_j_bbagen_2016_12_011
crossref_primary_10_1016_j_apcatb_2023_123521
crossref_primary_10_1021_acs_inorgchem_2c03156
crossref_primary_10_1021_acsabm_4c01027
crossref_primary_10_1039_C8DT00860D
crossref_primary_10_1021_acsnano_5b04912
crossref_primary_10_2144_fsoa_2021_0031
crossref_primary_10_1002_ange_201106710
crossref_primary_10_1016_j_jinorgbio_2013_10_003
crossref_primary_10_1016_j_bbapap_2017_07_012
crossref_primary_10_1016_j_nano_2019_01_012
crossref_primary_10_1021_acs_biomac_5b01753
crossref_primary_10_1016_j_foodchem_2020_128879
crossref_primary_10_1039_C9BM00098D
crossref_primary_10_3389_fmolb_2022_976490
crossref_primary_10_1371_journal_pone_0119427
crossref_primary_10_1002_chem_201304070
crossref_primary_10_1016_j_foodchem_2020_126210
crossref_primary_10_3390_molecules29174221
crossref_primary_10_1039_c3nr04268e
crossref_primary_10_1016_j_foodhyd_2019_03_049
crossref_primary_10_1016_j_tem_2015_03_008
crossref_primary_10_1016_j_ijbiomac_2021_12_068
crossref_primary_10_1111_1750_3841_14581
crossref_primary_10_1002_smll_202203338
crossref_primary_10_12693_APhysPolA_121_1237
crossref_primary_10_3390_ma15072601
crossref_primary_10_1016_j_foodhyd_2022_108396
crossref_primary_10_7554_eLife_45807
crossref_primary_10_1074_jbc_M115_678375
crossref_primary_10_1016_j_apsusc_2021_151847
crossref_primary_10_1002_anbr_202000115
crossref_primary_10_1039_C7CS00818J
crossref_primary_10_1021_acs_biomac_0c01562
crossref_primary_10_1016_j_jprot_2012_03_013
crossref_primary_10_1002_wnan_1221
crossref_primary_10_1080_10408398_2016_1149690
crossref_primary_10_1021_ar500469e
crossref_primary_10_1039_C9CC03085A
crossref_primary_10_1016_j_tifs_2015_04_005
crossref_primary_10_1016_j_foodchem_2022_134586
crossref_primary_10_1039_c1sm06319g
crossref_primary_10_1134_S1023193519100094
crossref_primary_10_1002_ange_201800516
crossref_primary_10_1039_D4DT01839G
crossref_primary_10_3390_pharmaceutics13101621
crossref_primary_10_1016_j_polymer_2010_11_047
crossref_primary_10_1016_j_foodchem_2021_129144
crossref_primary_10_1021_acsomega_8b01033
crossref_primary_10_2217_nnm_15_175
crossref_primary_10_1039_C5RA19696E
crossref_primary_10_1016_j_ccr_2012_05_013
crossref_primary_10_1016_j_ijhydene_2012_10_091
crossref_primary_10_1039_C7DT02370G
crossref_primary_10_1016_j_ijbiomac_2018_04_142
crossref_primary_10_1016_j_jinorgbio_2011_12_004
crossref_primary_10_1002_cphc_201402722
crossref_primary_10_1016_j_foodres_2014_02_041
crossref_primary_10_1021_acs_biochem_5b00723
crossref_primary_10_1016_j_mssp_2019_104597
crossref_primary_10_1021_acs_cgd_7b00568
crossref_primary_10_1021_nl4015233
crossref_primary_10_3389_fmolb_2024_1403635
crossref_primary_10_1039_D0RA00341G
crossref_primary_10_1039_c0mt00095g
crossref_primary_10_1021_acsbiomaterials_7b00814
crossref_primary_10_1007_s00775_012_0959_z
crossref_primary_10_4161_biom_29507
crossref_primary_10_1364_OE_22_023290
crossref_primary_10_1039_C6NR01007E
crossref_primary_10_2217_nnm_2018_0017
crossref_primary_10_2217_nnm_2018_0259
crossref_primary_10_1038_am_2016_128
crossref_primary_10_1021_acs_biomac_1c00481
crossref_primary_10_1002_anie_201800516
crossref_primary_10_1002_smll_201303516
crossref_primary_10_1039_D0BM01726D
crossref_primary_10_1021_acs_analchem_2c04063
crossref_primary_10_1039_C6NR07315H
Cites_doi 10.1148/radiology.211.2.r99ma53489
10.1088/0957-4484/19/49/495601
10.1002/jmri.1880040343
10.1021/ja057069x
10.1021/ja901234j
10.1016/j.chembiol.2008.03.018
10.1038/177473a0
10.1038/71236
10.1002/anie.200900437
10.1143/JJAP.45.8946
10.1021/nl073079f
10.1088/0957-4484/19/25/255201
10.1007/s00792-005-0484-x
10.1021/ja077801n
10.1021/ic0502426
10.1016/j.jmb.2005.01.055
10.1143/JJAP.46.L804
10.1021/ja0655690
10.1039/B604860A
10.1021/ja807655t
10.1593/neo.04436
10.1126/science.1122716
10.1021/nl071921b
10.1039/b908742g
10.1006/abbi.1997.0523
10.1038/nmat1596
10.1063/1.2189566
10.1016/S0020-1693(99)00375-8
10.1016/j.crci.2008.09.003
10.1007/s007750050120
10.1126/science.279.5349.377
10.1016/0042-6822(69)90374-2
10.1021/la061318t
10.1021/ja0363718
10.1021/ja9035187
10.1016/0162-0134(94)00037-B
10.1021/bm700797b
10.1007/978-3-540-69379-6_1
10.1039/B918620D
10.1109/20.908658
10.1021/la0612062
10.1107/S1744309105011516
10.1002/bit.10748
10.1021/ja034479h
10.1529/biophysj.107.116145
10.1021/cm702732x
10.1074/jbc.272.6.3259
10.1143/JJAP.46.7549
10.1021/nl050795d
10.1104/pp.118.2.505
10.1039/b804023k
10.1039/b810190f
10.1126/science.261.5126.1286
10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W
10.1002/rcm.1290020802
10.1039/B614592B
10.1021/ja00071a076
10.1021/ja802463a
10.1016/j.chembiol.2005.11.007
10.1021/la7021424
10.1021/bi900387t
10.1002/anie.200802481
10.1021/nl9009028
10.1107/S0907444998012177
10.1002/mrm.10735
10.1126/science.2675315
10.1111/j.1574-6976.1996.tb00241.x
10.1073/pnas.0711620105
10.1016/S0167-4838(98)00218-0
10.1074/jbc.M202094200
10.1021/la0621362
10.1021/ja043827s
10.1002/cbic.200700555
10.1246/bcsj.78.2075
10.1126/science.269.5220.54
10.1039/b207853h
10.1021/ja046735b
10.1021/ic0343657
10.1021/cm970421o
10.1074/jbc.270.38.22478
10.1038/29106
10.1148/radiology.148.3.6192464
10.1126/science.1142525
10.1039/b813181c
10.1039/b808178f
10.1002/adma.19910030611
10.1016/j.mri.2005.10.009
10.1016/j.chembiol.2008.01.009
10.1021/ar00072a003
10.1038/nsb0498-294
10.1021/ic048819r
10.1063/1.2888357
10.1002/smll.200500433
10.1002/adma.19960081114
10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P
10.1021/ja0667561
10.1074/jbc.M302114200
10.1246/bcsj.81.1669
10.1042/bst0300713
10.1021/nl050556q
10.1126/science.1636086
10.1021/bi00273a026
10.1002/mrm.21761
10.1021/ic991269q
10.1143/APEX.1.034006
10.1073/pnas.0401821101
10.1063/1.1845973
10.1002/chem.200800203
10.1021/ic701740q
10.1038/nm1208
10.1021/nl0517619
10.1021/ic035415a
10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D
10.1143/JJAP.45.L1
10.1063/1.2162686
10.1073/pnas.0501497102
10.1143/JJAP.46.L713
10.1101/gad.6.12b.2646
10.1038/349541a0
10.1126/science.1123223
10.1038/nm1368
10.1246/cl.2004.1158
10.1021/nl060050n
10.1006/jmbi.1997.0970
10.1002/pro.5560070502
10.1006/jsbi.1999.4118
10.1021/ma802089h
10.1002/anie.200353436
10.1016/0005-2728(96)00022-9
10.1002/adma.200801209
10.1016/j.jinorgbio.2005.12.001
ContentType Journal Article
Copyright 2010 Elsevier B.V.
Copyright 2010 Elsevier B.V. All rights reserved.
2009 Elsevier B.V. All rights reserved. 2009
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: Copyright 2010 Elsevier B.V. All rights reserved.
– notice: 2009 Elsevier B.V. All rights reserved. 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bbagen.2009.12.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 845
ExternalDocumentID PMC3763752
20026386
10_1016_j_bbagen_2009_12_005
S0304416509003407
Genre Journal Article
Review
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB005364
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R21 EB005364 || EB
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
5PM
ID FETCH-LOGICAL-c528t-d786c8ca5058c3551d9b2712b51e819d3b842c4e7b2e930a4778772d9ae18cf73
IEDL.DBID AIKHN
ISSN 0304-4165
0006-3002
IngestDate Thu Aug 21 13:38:05 EDT 2025
Fri Jul 11 04:29:56 EDT 2025
Mon Jul 21 05:54:24 EDT 2025
Tue Jul 01 00:21:56 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:32:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Multifunctionalities
Nanoparticle
Janus particle
Biomimetic chemistry
Ferritin
Bio-template
Dps ( DNA binding protein from nutrient starved cells)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright 2010 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-d786c8ca5058c3551d9b2712b51e819d3b842c4e7b2e930a4778772d9ae18cf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3763752
PMID 20026386
PQID 734002884
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3763752
proquest_miscellaneous_734002884
pubmed_primary_20026386
crossref_primary_10_1016_j_bbagen_2009_12_005
crossref_citationtrail_10_1016_j_bbagen_2009_12_005
elsevier_sciencedirect_doi_10_1016_j_bbagen_2009_12_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Ceci, Ilari, Giangiacomo, Laue, Chiancone, Chasteen (bib9) 2002; 277
Kang, Suci, Broomell, Iwahori, Kobayashi, Yamashita, Young, Douglas (bib138) 2009; 9
Gossuin, Muller, Gillis, Bartel (bib73) 2005; 23
Galvez, Sanchez, Dominguez-Vera, Soriano-Portillo, Clemente-Leon, Coronado (bib60) 2006; 16
Fan, Boyle, Cheong, Ng, Orner (bib109) 2009; 48
Steinmetz, Calder, Lomonossoff, Evans (bib121) 2006; 22
Nam, Kim, Yoo, Chiang, Meethong, Hammond, Chiang, Belcher (bib116) 2006; 312
Douglas, Stark (bib43) 2000; 39
Iwahori, Yamashita (bib69) 2008; 19
Tatur, Hagedoorn, Overeijnder, Hagen (bib63) 2006; 10
Kang, Oltrogge, Broomell, Liepold, Prevelige, Young, Douglas (bib110) 2008; 130
Marjorette, Pena, Bullerjahn (bib32) 1995; 270
Suci, Varpness, Gillitzer, Douglas, Young (bib133) 2007; 23
Tsukamoto, Iwahor, Muraoka, Yamashita (bib44) 2005; 78
Mayer, Rohrer, Schoeller, Harris (bib18) 1983; 22
Almiron, Link, Furlong, Kolter (bib29) 1992; 6
Ilari, Stefanini, Chiancone, Tsernoglou (bib34) 2000; 7
Yamashita (bib91) 2008; 18
Yamada, Yoshii, Kumagai, Miura, Uraoka, Fuyuki, Yamashita (bib98) 2006; 1
Vymazal, Righini, Brooks, Canesi, Mariani, Leonardi, Pezzoli (bib74) 1999; 211
Atkins (bib26) 1998
Klem, Willits, Young, Douglas (bib136) 2003; 125
Ishikawa, Yamada, Kumagai, Sano, Shiba, Yamashita, Kobayashi (bib101) 2008; 1
Matias, Tatur, Carrondo, Hagen (bib14) 2005; 61
Meldrum, Douglas, Levi, Arosio, Mann (bib42) 1995; 58
Miermont, Barnhill, Strable, Lu, Wall, Wang, Finn, Huang (bib130) 2008; 14
Kurtz (bib16) 1997; 2
Allen, Willits, Mosolf, Young, Douglas (bib67) 2002; 14
Suzuki, Abe, Ueno, Abe, Goto, Toda, Akita, Yamadae, Watanabe (bib62) 2009
Fenn, Mann, Meng, Wong, Whitehouse (bib105) 1989; 246
Kumagai, Yoshii, Yamada, Matsukawa, Fujiwara, Iwahori, Yamashita (bib97) 2006; 88
Hikono, Matsumura, Miura, Uraoka, Fuyuki, Takeguchi, Yoshii, Yamashita (bib95) 2006; 88
Polanams, Ray, Watt (bib49) 2005; 44
Gratzel (bib107) 1981; 14
Ilari, Savino, Stefanini, Chiancone, Tsernoglou (bib31) 1999; 55
Wong, Douglas, Gider, Awschalom, Mann (bib39) 1998; 10
Cohen, Dafni, Meir, Harmelin, Neeman (bib76) 2005; 7
Ichikawa, Uraoka, Punchaipetch, Yano, Hatayama, Fuyuki, Yamashita (bib93) 2007; 46
Miura, Tsukamoto, Yoshii, Yamashita, Uraoka, Fuyuki (bib117) 2008; 19
Theil, Takagi, Small, He, Tipton, Danger (bib22) 2000; 297
Okuda, Kobayashi, Suzuki, Sonoda, Kondoh, Wagawa, Kondo, Yoshimura (bib48) 2005; 5
Cheung, Camarero, Woods, Lin, Johnson, De Yoreo (bib112) 2003; 125
Douglas, Dickson, Betteridge, Charnock, Garner, Mann (bib50) 1995; 269
Kang, Lucon, Varpness, Liepold, Uchida, Willits, Young, Douglas (bib70) 2008; 47
Ceci, Ilari, Falvo, Chiancone (bib30) 2003; 278
Sano, Yoshii, Yamashita, Shiba (bib119) 2007; 7
Uchida, Terashima, Cunningham, Suzuki, Willits, Willis, Yang, Tsao, McConnell, Young, Douglas (bib79) 2008; 60
Santambrogio, Levi, Cozzi, Corsi, Arosio (bib25) 1996; 314
Hempstead, Yewdall, Fernie, Lawson, Artymiuk, Rice, Ford, Harrison (bib15) 1997; 268
Michel, Ehm, Antao, Lee, Chupas, Liu, Strongin, Schoonen, Phillips, Parise (bib20) 2007; 316
Prasuhn, Kuzelka, Strable, Udit, Cho, Lander, Quispe, Diers, Bocian, Potter, Carragher, Finn (bib131) 2008; 15
Lewis, Destito, Zijlstra, Gonzalez, Quigley, Manchester, Stuhlmann (bib129) 2006; 12
Okuda, Iwahori, Yamashita, Yoshimura (bib46) 2003; 84
Gilmore, Idzerda, Klem, Allen, Douglas, Young (bib103) 2005; 97
Kaltgrad, O'Reilly, Liao, Han, Paulson, Finn (bib127) 2008; 130
Kang, Lander, Johnson, Prevelige (bib128) 2008; 9
Strable, Finn (bib132) 2009; 327
Warne, Kasyutich, Mayes, Wiggins, Wong (bib61) 2000; 36
Genove, Demarco, Xu, Goins, Ahrens (bib75) 2005; 11
Bennett, Shapiro, Sotak, Koretsky (bib77) 2008; 95
M. Terashima, M. Uchida, H. Kosuge, C.H. Cunningham, P. Tsao, M. Young, S.M. Conolly, T. Douglas, M.V. McConnell, Human ferritin protein cage nanoparticles as macrophage-targeted contrast agents for detecting inflammation in atherosclerosis, (in preparation).
Ramsay, Wiedenheft, Allen, Gauss, Lawrence, Young, Douglas (bib7) 2006; 100
Nam, Wartena, Yoo, Liau, Lee, Chiang, Hammond, Belcher (bib114) 2008; 105
Douglas, Young (bib82) 2006; 312
Miura, Hikono, Matsumura, Yano, Hatayama, Uraoka, Fuyuki, Yoshii, Yamashita (bib94) 2006; 45
Suci, Kang, Young, Douglas (bib137) 2009; 131
Bancroft, Bracker, Wagner (bib10) 1969; 38
Crick, Watson (bib11) 1956; 177
Yoo, Nam, Qi, Lee, Park, Belcher, Hammond (bib125) 2006; 5
Ueno, Suzuki, Goto, Matsumoto, Nagayama, Watanabe (bib54) 2004; 43
Koeck, Kagawa, Ellis, Hebert, Trent (bib1) 1998; 1429
Trent (bib2) 1996; 18
Harrison, Arosio (bib13) 1996; 1275
Chasteen, Harrison (bib23) 1999; 126
Wong, Mann (bib51) 1996; 8
Meldrum, Heywood, Mann (bib36) 1992; 257
Wiedenheft, Mosolf, Willits, Yeager, Dryden, Young, Douglas (bib8) 2005; 102
J. Swift, W.A. Wehbi, B.D. Kelly, X.F. Stowell, J.G. Saven, I.J. Dmochowski, Design of functional ferritin-like protein with hydrophobic cavities, J. Am. Chem. Soc. 128 (2006) 6611–6619.
Ensign, Young, Douglas (bib59) 2004; 43
Ceolin, Galvez, Dominguez-Vera (bib58) 2008; 10
Hayashi, Sano, Shiba, Kumashiro, Iwahori, Yamashita, Hara (bib100) 2006; 6
Sano, Yoshii, Yamashita, Shiba (bib102) 2007; 7
Gillitzer, Suci, Young, Douglas (bib108) 2006; 2
Juan, Aust (bib24) 1998; 350
Bard, Faulkner (bib28) 1980
Clemente-Leon, Coronado, Soriano-Portillo, Galvez, Dominguez-Vera (bib55) 2007; 17
Wood, Fassler, Meade (bib78) 2004; 51
Parker, Allen, Ramsay, Klem, Young, Douglas (bib64) 2008; 20
Bulte, Douglas, Mann, Frankel, Moskowitz, Brooks, Baumgarner, Vymazal, Strub, Frank (bib37) 1994; 4
Steinmetz, Bock, Richter, Spatz, Lomonossoff, Evans (bib120) 2008; 9
Yamada, Yoshii, Kumagai, Miura, Uraoka, Fuyuki, Yamashita (bib96) 2007; 1
Abe, Hirata, Ueno, Morino, Shimizu, Yamamoto, Takata, Yashima, Watanabe (bib88) 2009; 131
Berger, Synytska, Ionov, Eichhorn, Stamm (bib135) 2008; 41
Huang, Chiang, Lee, Gao, Hu, Yoreo, Belcher (bib115) 2005; 5
Yoo, Nam, Belchert, Hammond (bib124) 2008; 8
Douglas, Strable, Willits, Aitouchen, Libera, Young (bib12) 2002; 14
Mackle, Charnock, Garner, Meldrum, Mann (bib41) 1993; 115
Tanaka, Waki, Ido, Akita, Yoshida, Yoshida, Matsuo (bib106) 1988; 2
Miura, Uraoka, Fuyuki, Yoshii, Yamashita (bib118) 2008; 103
Mann, Meldrum (bib40) 1991; 3
Galvez, Fernandez, Valero, Sanchez, Cuesta, Dominguez-Vera (bib57) 2008; 11
Niemeyer, Abe, Hikage, Ueno, Erker, Watanabe (bib90) 2008
Kang, Jolley, Liepold, Young, Douglas (bib68) 2009; 48
Uchida, Willits, Muller, Willis, Jackiw, Jutila, Young, Porter, Douglas (bib86) 2009; 21
Kramer, Li, Carter, Stone, Naik (bib56) 2004; 126
Bozzi, Mignogna, Stefanini, Barra, Longhi, Valenti, Chiancone (bib4) 1997; 272
Mann, Archibald, Didymus, Douglas, Heywood, Meldrum, Reeves (bib38) 1993; 261
Allen, Willits, Young, Douglas (bib66) 2003; 42
Douglas, Ripoll (bib21) 1998; 7
Suci, Klem, Young, Douglas (bib122) 2008; 4
Zeth, Offermann, Essen, Oesterhelt (bib35) 2004; 101
Uchida, Flenniken, Allen, Willits, Crowley, Brumfield, Willis, Jackiw, Jutila, Young, Douglas (bib85) 2006; 128
Tsukamoto, Muraoka, Fukushige, Nakagawa, Kawaguchi, Nakatsuji, Yamashita (bib45) 2008; 81
Matsui, Matsukawa, Iwahori, Sano, Shiba, Yamashita (bib99) 2007; 23
Wang, Lin, Johnson, Finn (bib134) 2002; 9
Stark, Bass, Moss, Bacon, McKerrow, Cann, Brito, Goldberg (bib72) 1983; 148
Grant, Filman, Finkel, Kolter, Hogle (bib5) 1998; 5
Lawson, Artymiuk, Yewdall, Smith, Livingstone, Treffry, Luzzago, Levi, Arosio, Cesareni, Thomas, Shaw, Harrison (bib17) 1991; 349
M.T. Klem, M. Young, T. Douglas, Biomimetic synthesis of photoactive α-Fe2O3 templated by the hyperthermophilic ferritin from Pyrococus furiosus, J. Mater. Chem. 20 (2010) 65–67.
Flenniken, Willits, Harmsen, Liepold, Harmsen, Young, Douglas (bib83) 2006; 13
Abe, Niemeyer, Abe, Takezawa, Ueno, Hikage, Erker, Watanabe (bib89) 2008; 130
Varpness, Peters, Young, Douglas (bib87) 2005; 5
Grove, Wilkinson (bib6) 2005; 347
Matsui, Matsukawa, Iwahori, Sano, Shiba, Yamashita (bib92) 2007; 2
Kim, Kim, Kim (bib3) 1998; 394
Arap, Pasqualini, Ruoslahti (bib84) 1998; 279
Klem, Resnick, Gilmore, Young, Idzerda, Douglas (bib104) 2007; 129
Kinraide, Yermiyahu, Rytwo (bib27) 1998; 118
Reindel, Schmidt, Anemuller, Matzanke (bib33) 2002; 30
Gillitzer, Willits, Young, Douglas (bib126) 2002
Suci, Klem, Arce, Douglas, Young (bib123) 2006; 22
Painter, Jaya, Basha, Vierling, Robinson, Benesch (bib111) 2008; 15
McMillan, Howard, Zaluzec, Kagawa, Mogul, Li, Paavola, Trent (bib113) 2005; 127
Klem, Mosolf, Young, Douglas (bib47) 2008; 47
Iwahori, Yoshizawa, Muraoka, Yamashita (bib53) 2005; 44
Aime, Frullano, Crich (bib81) 2002; 41
Cornell, Schwertmann (bib19) 2003
Yamashita, Hayashi, Hara (bib52) 2004; 33
Gillitzer (10.1016/j.bbagen.2009.12.005_bib108) 2006; 2
Uchida (10.1016/j.bbagen.2009.12.005_bib85) 2006; 128
Yamada (10.1016/j.bbagen.2009.12.005_bib96) 2007; 1
Genove (10.1016/j.bbagen.2009.12.005_bib75) 2005; 11
Wang (10.1016/j.bbagen.2009.12.005_bib134) 2002; 9
Mann (10.1016/j.bbagen.2009.12.005_bib38) 1993; 261
Bard (10.1016/j.bbagen.2009.12.005_bib28) 1980
Sano (10.1016/j.bbagen.2009.12.005_bib102) 2007; 7
Fan (10.1016/j.bbagen.2009.12.005_bib109) 2009; 48
Kang (10.1016/j.bbagen.2009.12.005_bib68) 2009; 48
Stark (10.1016/j.bbagen.2009.12.005_bib72) 1983; 148
Mann (10.1016/j.bbagen.2009.12.005_bib40) 1991; 3
Gossuin (10.1016/j.bbagen.2009.12.005_bib73) 2005; 23
Ishikawa (10.1016/j.bbagen.2009.12.005_bib101) 2008; 1
Nam (10.1016/j.bbagen.2009.12.005_bib114) 2008; 105
Yoo (10.1016/j.bbagen.2009.12.005_bib124) 2008; 8
Galvez (10.1016/j.bbagen.2009.12.005_bib60) 2006; 16
Yamashita (10.1016/j.bbagen.2009.12.005_bib91) 2008; 18
Kang (10.1016/j.bbagen.2009.12.005_bib110) 2008; 130
Kim (10.1016/j.bbagen.2009.12.005_bib3) 1998; 394
Suci (10.1016/j.bbagen.2009.12.005_bib137) 2009; 131
Allen (10.1016/j.bbagen.2009.12.005_bib66) 2003; 42
Ensign (10.1016/j.bbagen.2009.12.005_bib59) 2004; 43
Vymazal (10.1016/j.bbagen.2009.12.005_bib74) 1999; 211
McMillan (10.1016/j.bbagen.2009.12.005_bib113) 2005; 127
Douglas (10.1016/j.bbagen.2009.12.005_bib82) 2006; 312
Tsukamoto (10.1016/j.bbagen.2009.12.005_bib44) 2005; 78
Suci (10.1016/j.bbagen.2009.12.005_bib123) 2006; 22
Grove (10.1016/j.bbagen.2009.12.005_bib6) 2005; 347
Zhao (10.1016/j.bbagen.2009.12.005_bib9) 2002; 277
Flenniken (10.1016/j.bbagen.2009.12.005_bib83) 2006; 13
Ichikawa (10.1016/j.bbagen.2009.12.005_bib93) 2007; 46
Okuda (10.1016/j.bbagen.2009.12.005_bib46) 2003; 84
Iwahori (10.1016/j.bbagen.2009.12.005_bib53) 2005; 44
Uchida (10.1016/j.bbagen.2009.12.005_bib79) 2008; 60
Hempstead (10.1016/j.bbagen.2009.12.005_bib15) 1997; 268
Yamashita (10.1016/j.bbagen.2009.12.005_bib52) 2004; 33
Abe (10.1016/j.bbagen.2009.12.005_bib88) 2009; 131
Theil (10.1016/j.bbagen.2009.12.005_bib22) 2000; 297
Bulte (10.1016/j.bbagen.2009.12.005_bib37) 1994; 4
Kaltgrad (10.1016/j.bbagen.2009.12.005_bib127) 2008; 130
Almiron (10.1016/j.bbagen.2009.12.005_bib29) 1992; 6
Ueno (10.1016/j.bbagen.2009.12.005_bib54) 2004; 43
Tsukamoto (10.1016/j.bbagen.2009.12.005_bib45) 2008; 81
Miura (10.1016/j.bbagen.2009.12.005_bib117) 2008; 19
Suci (10.1016/j.bbagen.2009.12.005_bib133) 2007; 23
Hikono (10.1016/j.bbagen.2009.12.005_bib95) 2006; 88
Sano (10.1016/j.bbagen.2009.12.005_bib119) 2007; 7
Klem (10.1016/j.bbagen.2009.12.005_bib104) 2007; 129
Cheung (10.1016/j.bbagen.2009.12.005_bib112) 2003; 125
Douglas (10.1016/j.bbagen.2009.12.005_bib21) 1998; 7
Varpness (10.1016/j.bbagen.2009.12.005_bib87) 2005; 5
Nam (10.1016/j.bbagen.2009.12.005_bib116) 2006; 312
Tanaka (10.1016/j.bbagen.2009.12.005_bib106) 1988; 2
Fenn (10.1016/j.bbagen.2009.12.005_bib105) 1989; 246
Iwahori (10.1016/j.bbagen.2009.12.005_bib69) 2008; 19
Lawson (10.1016/j.bbagen.2009.12.005_bib17) 1991; 349
Kinraide (10.1016/j.bbagen.2009.12.005_bib27) 1998; 118
Miura (10.1016/j.bbagen.2009.12.005_bib94) 2006; 45
Huang (10.1016/j.bbagen.2009.12.005_bib115) 2005; 5
Atkins (10.1016/j.bbagen.2009.12.005_bib26) 1998
Gilmore (10.1016/j.bbagen.2009.12.005_bib103) 2005; 97
Matias (10.1016/j.bbagen.2009.12.005_bib14) 2005; 61
Juan (10.1016/j.bbagen.2009.12.005_bib24) 1998; 350
Douglas (10.1016/j.bbagen.2009.12.005_bib43) 2000; 39
Koeck (10.1016/j.bbagen.2009.12.005_bib1) 1998; 1429
Douglas (10.1016/j.bbagen.2009.12.005_bib12) 2002; 14
Allen (10.1016/j.bbagen.2009.12.005_bib67) 2002; 14
Arap (10.1016/j.bbagen.2009.12.005_bib84) 1998; 279
Yoo (10.1016/j.bbagen.2009.12.005_bib125) 2006; 5
Kang (10.1016/j.bbagen.2009.12.005_bib70) 2008; 47
Klem (10.1016/j.bbagen.2009.12.005_bib136) 2003; 125
Ceci (10.1016/j.bbagen.2009.12.005_bib30) 2003; 278
Warne (10.1016/j.bbagen.2009.12.005_bib61) 2000; 36
Mackle (10.1016/j.bbagen.2009.12.005_bib41) 1993; 115
Gillitzer (10.1016/j.bbagen.2009.12.005_bib126) 2002
Miermont (10.1016/j.bbagen.2009.12.005_bib130) 2008; 14
Ceolin (10.1016/j.bbagen.2009.12.005_bib58) 2008; 10
Abe (10.1016/j.bbagen.2009.12.005_bib89) 2008; 130
Wiedenheft (10.1016/j.bbagen.2009.12.005_bib8) 2005; 102
Ramsay (10.1016/j.bbagen.2009.12.005_bib7) 2006; 100
Suzuki (10.1016/j.bbagen.2009.12.005_bib62) 2009
Ilari (10.1016/j.bbagen.2009.12.005_bib34) 2000; 7
Kang (10.1016/j.bbagen.2009.12.005_bib138) 2009; 9
Wong (10.1016/j.bbagen.2009.12.005_bib39) 1998; 10
Meldrum (10.1016/j.bbagen.2009.12.005_bib36) 1992; 257
10.1016/j.bbagen.2009.12.005_bib65
Aime (10.1016/j.bbagen.2009.12.005_bib81) 2002; 41
Kumagai (10.1016/j.bbagen.2009.12.005_bib97) 2006; 88
Miura (10.1016/j.bbagen.2009.12.005_bib118) 2008; 103
Strable (10.1016/j.bbagen.2009.12.005_bib132) 2009; 327
Uchida (10.1016/j.bbagen.2009.12.005_bib86) 2009; 21
Mayer (10.1016/j.bbagen.2009.12.005_bib18) 1983; 22
Lewis (10.1016/j.bbagen.2009.12.005_bib129) 2006; 12
Reindel (10.1016/j.bbagen.2009.12.005_bib33) 2002; 30
Bennett (10.1016/j.bbagen.2009.12.005_bib77) 2008; 95
Gratzel (10.1016/j.bbagen.2009.12.005_bib107) 1981; 14
Klem (10.1016/j.bbagen.2009.12.005_bib47) 2008; 47
Marjorette (10.1016/j.bbagen.2009.12.005_bib32) 1995; 270
Kurtz (10.1016/j.bbagen.2009.12.005_bib16) 1997; 2
Grant (10.1016/j.bbagen.2009.12.005_bib5) 1998; 5
Harrison (10.1016/j.bbagen.2009.12.005_bib13) 1996; 1275
Yamada (10.1016/j.bbagen.2009.12.005_bib98) 2006; 1
Okuda (10.1016/j.bbagen.2009.12.005_bib48) 2005; 5
Hayashi (10.1016/j.bbagen.2009.12.005_bib100) 2006; 6
Michel (10.1016/j.bbagen.2009.12.005_bib20) 2007; 316
10.1016/j.bbagen.2009.12.005_bib71
Prasuhn (10.1016/j.bbagen.2009.12.005_bib131) 2008; 15
Clemente-Leon (10.1016/j.bbagen.2009.12.005_bib55) 2007; 17
Santambrogio (10.1016/j.bbagen.2009.12.005_bib25) 1996; 314
Matsui (10.1016/j.bbagen.2009.12.005_bib92) 2007; 2
Galvez (10.1016/j.bbagen.2009.12.005_bib57) 2008; 11
Matsui (10.1016/j.bbagen.2009.12.005_bib99) 2007; 23
Ilari (10.1016/j.bbagen.2009.12.005_bib31) 1999; 55
Wong (10.1016/j.bbagen.2009.12.005_bib51) 1996; 8
Suci (10.1016/j.bbagen.2009.12.005_bib122) 2008; 4
Niemeyer (10.1016/j.bbagen.2009.12.005_bib90) 2008
Kramer (10.1016/j.bbagen.2009.12.005_bib56) 2004; 126
Kang (10.1016/j.bbagen.2009.12.005_bib128) 2008; 9
Zeth (10.1016/j.bbagen.2009.12.005_bib35) 2004; 101
Painter (10.1016/j.bbagen.2009.12.005_bib111) 2008; 15
Steinmetz (10.1016/j.bbagen.2009.12.005_bib121) 2006; 22
Trent (10.1016/j.bbagen.2009.12.005_bib2) 1996; 18
Cohen (10.1016/j.bbagen.2009.12.005_bib76) 2005; 7
10.1016/j.bbagen.2009.12.005_bib80
Bozzi (10.1016/j.bbagen.2009.12.005_bib4) 1997; 272
Tatur (10.1016/j.bbagen.2009.12.005_bib63) 2006; 10
Meldrum (10.1016/j.bbagen.2009.12.005_bib42) 1995; 58
Polanams (10.1016/j.bbagen.2009.12.005_bib49) 2005; 44
Berger (10.1016/j.bbagen.2009.12.005_bib135) 2008; 41
Chasteen (10.1016/j.bbagen.2009.12.005_bib23) 1999; 126
Douglas (10.1016/j.bbagen.2009.12.005_bib50) 1995; 269
Crick (10.1016/j.bbagen.2009.12.005_bib11) 1956; 177
Parker (10.1016/j.bbagen.2009.12.005_bib64) 2008; 20
Bancroft (10.1016/j.bbagen.2009.12.005_bib10) 1969; 38
Cornell (10.1016/j.bbagen.2009.12.005_bib19) 2003
Steinmetz (10.1016/j.bbagen.2009.12.005_bib120) 2008; 9
Wood (10.1016/j.bbagen.2009.12.005_bib78) 2004; 51
16704261 - J Am Chem Soc. 2006 May 24;128(20):6611-9
17787702 - Science. 1995 Jul 7;269(5220):54-7
12526579 - Inorg Chem. 2000 Apr 17;39(8):1828-30
12952458 - J Am Chem Soc. 2003 Sep 10;125(36):10806-7
15740085 - J Am Chem Soc. 2005 Mar 9;127(9):2800-1
19057765 - Chem Commun (Camb). 2008 Dec 28;(48):6519-21
17193150 - Small. 2006 Aug;2(8-9):962-6
8695634 - Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203
18767197 - Angew Chem Int Ed Engl. 2008;47(41):7845-8
19652809 - Chem Commun (Camb). 2009 Aug 28;(32):4871-3
16522054 - Nano Lett. 2006 Mar;6(3):515-9
9546221 - Nat Struct Biol. 1998 Apr;5(4):294-303
17177411 - J Am Chem Soc. 2006 Dec 27;128(51):16626-33
19453195 - J Am Chem Soc. 2009 May 27;131(20):6958-60
16601154 - Science. 2006 May 12;312(5775):885-8
9013563 - J Biol Chem. 1997 Feb 7;272(6):3259-65
18633553 - Phys Chem Chem Phys. 2008 Aug 7;10(29):4327-32
16489350 - Nat Mater. 2006 Mar;5(3):234-40
9765535 - Plant Physiol. 1998 Oct;118(2):505-12
15365182 - Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13780-5
21828646 - Nanotechnology. 2008 Jun 25;19(25):255201
12430455 - Chem Commun (Camb). 2002 Oct 21;(20):2390-1
16024730 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10551-6
16124819 - Inorg Chem. 2005 Sep 5;44(18):6393-400
17279636 - Langmuir. 2007 Feb 13;23(4):1615-8
1992356 - Nature. 1991 Feb 7;349(6309):541-4
19554690 - J Am Chem Soc. 2008 Dec 10;130(49):16527-9
18355056 - Nano Lett. 2008 Apr;8(4):1081-9
9159481 - J Mol Biol. 1997 May 2;268(2):424-48
16376184 - Magn Reson Imaging. 2005 Dec;23(10):1001-4
9473300 - Arch Biochem Biophys. 1998 Feb 15;350(2):259-65
21730676 - Nanotechnology. 2008 Dec 10;19(49):495601
19522495 - J Am Chem Soc. 2009 Jul 8;131(26):9164-5
10625425 - Nat Struct Biol. 2000 Jan;7(1):38-43
18636721 - J Am Chem Soc. 2008 Aug 13;130(32):10512-4
18341338 - J Am Chem Soc. 2008 Apr 9;130(14):4578-9
16511080 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 May 1;61(Pt 5):503-6
9707123 - Nature. 1998 Aug 6;394(6693):595-9
6838829 - Biochemistry. 1983 Feb 15;22(4):876-80
7738539 - J Inorg Biochem. 1995 Apr;58(1):59-68
12660233 - J Biol Chem. 2003 May 30;278(22):20319-26
18197628 - Biomacromolecules. 2008 Feb;9(2):456-62
15004804 - Magn Reson Med. 2004 Mar;51(3):607-11
18355724 - Chem Biol. 2008 Mar;15(3):246-53
17106996 - Langmuir. 2006 Nov 21;22(24):10032-7
17014132 - Langmuir. 2006 Oct 10;22(21):8891-6
15847428 - Inorg Chem. 2005 May 2;44(9):3203-9
17199299 - J Am Chem Soc. 2007 Jan 10;129(1):197-201
17525301 - Science. 2007 Jun 22;316(5832):1726-9
15884908 - Nano Lett. 2005 May;5(5):991-3
10228533 - Radiology. 1999 May;211(2):489-95
16690856 - Science. 2006 May 12;312(5775):873-5
19441792 - Nano Lett. 2009 Jun;9(6):2360-6
19455534 - Angew Chem Int Ed Engl. 2009;48(26):4772-6
8660274 - Biochem J. 1996 Feb 15;314 ( Pt 1):139-44
12491298 - Angew Chem Int Ed Engl. 2002 Mar 15;41(6):1017-9
7673237 - J Biol Chem. 1995 Sep 22;270(38):22478-82
10089376 - Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):552-3
15778721 - Nat Med. 2005 Apr;11(4):450-4
16412514 - J Inorg Biochem. 2006 May;100(5-6):1061-8
12016214 - J Biol Chem. 2002 Aug 2;277(31):27689-96
17731856 - Science. 1993 Sep 3;261(5126):1286-92
1340475 - Genes Dev. 1992 Dec;6(12B):2646-54
19405543 - Biochemistry. 2009 Jun 23;48(24):5623-30
1636086 - Science. 1992 Jul 24;257(5069):522-3
19198568 - Curr Top Microbiol Immunol. 2009;327:1-21
18307300 - Inorg Chem. 2008 Apr 7;47(7):2237-9
9920382 - Biochim Biophys Acta. 1998 Dec 8;1429(1):40-4
16341820 - Extremophiles. 2006 Apr;10(2):139-48
14514305 - Inorg Chem. 2003 Oct 6;42(20):6300-5
9605313 - Protein Sci. 1998 May;7(5):1083-91
10441528 - J Struct Biol. 1999 Jun 30;126(3):182-94
17824660 - Nano Lett. 2007 Oct;7(10):3200-2
18956458 - Magn Reson Med. 2008 Nov;60(5):1073-81
18326661 - Biophys J. 2008 Jul;95(1):342-51
2675315 - Science. 1989 Oct 6;246(4926):64-71
16501571 - Nat Med. 2006 Mar;12(3):354-60
16492564 - Chem Biol. 2006 Feb;13(2):161-70
12783520 - J Am Chem Soc. 2003 Jun 11;125(23):6848-9
16178252 - Nano Lett. 2005 Jul;5(7):1429-34
18753629 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17227-31
16277473 - Nano Lett. 2005 Nov;5(11):2306-9
9430587 - Science. 1998 Jan 16;279(5349):377-80
18213564 - Chembiochem. 2008 Mar 3;9(4):514-8
12196173 - Biochem Soc Trans. 2002 Aug;30(4):713-5
18431733 - Chemistry. 2008;14(16):4939-47
13309339 - Nature. 1956 Mar 10;177(4506):473-5
15802016 - Neoplasia. 2005 Feb;7(2):109-17
18482703 - Chem Biol. 2008 May;15(5):513-9
7802866 - J Magn Reson Imaging. 1994 May-Jun;4(3):497-505
5784855 - Virology. 1969 Jun;38(2):324-35
12144925 - Chem Biol. 2002 Jul;9(7):813-9
15755446 - J Mol Biol. 2005 Apr 1;347(3):495-508
17949022 - Langmuir. 2007 Nov 20;23(24):12280-6
6192464 - Radiology. 1983 Sep;148(3):743-51
12966575 - Biotechnol Bioeng. 2003 Oct 20;84(2):187-94
15127443 - Angew Chem Int Ed Engl. 2004 May 3;43(19):2527-30
15479082 - J Am Chem Soc. 2004 Oct 20;126(41):13282-6
15154806 - Inorg Chem. 2004 May 31;43(11):3441-6
References_xml – volume: 349
  start-page: 541
  year: 1991
  end-page: 544
  ident: bib17
  article-title: Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts
  publication-title: Nature
– volume: 278
  start-page: 20319
  year: 2003
  end-page: 20326
  ident: bib30
  article-title: The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 2527
  year: 2004
  end-page: 2530
  ident: bib54
  article-title: Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 450
  year: 2005
  end-page: 454
  ident: bib75
  article-title: A new transgene reporter for in vivo magnetic resonance imaging
  publication-title: Nat. Med.
– volume: 316
  start-page: 1726
  year: 2007
  end-page: 1729
  ident: bib20
  article-title: The structure of ferrihydrite, a nanocrystalline material
  publication-title: Science
– start-page: 2390
  year: 2002
  end-page: 2391
  ident: bib126
  article-title: Chemical modification of a viral cage for multivalent presentation
  publication-title: Chem. Commun.
– volume: 9
  start-page: 813
  year: 2002
  end-page: 819
  ident: bib134
  article-title: Natural supramolecular building blocks
  publication-title: Cysteine-Added Mutants of Cowpea Mosaic Virus, Chemistry and Biology
– start-page: 6519
  year: 2008
  end-page: 6521
  ident: bib90
  article-title: Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin
  publication-title: Chem. Commun.
– volume: 118
  start-page: 505
  year: 1998
  end-page: 512
  ident: bib27
  article-title: Computation of surface electrical potentials of plant cell membranes
  publication-title: Plant Physiol.
– volume: 44
  start-page: 6393
  year: 2005
  end-page: 6400
  ident: bib53
  article-title: Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system
  publication-title: Inorg. Chem.
– volume: 297
  start-page: 242
  year: 2000
  end-page: 251
  ident: bib22
  article-title: The ferritin iron entry and exit problem
  publication-title: Inorg. Chim. Acta
– year: 2003
  ident: bib19
  article-title: The Iron Oxides
– volume: 269
  start-page: 54
  year: 1995
  end-page: 57
  ident: bib50
  article-title: Synthesis and structure of an iron(Iii) sulfide-ferritin bioinorganic nanocomposite
  publication-title: Science
– reference: M. Terashima, M. Uchida, H. Kosuge, C.H. Cunningham, P. Tsao, M. Young, S.M. Conolly, T. Douglas, M.V. McConnell, Human ferritin protein cage nanoparticles as macrophage-targeted contrast agents for detecting inflammation in atherosclerosis, (in preparation).
– volume: 394
  start-page: 595
  year: 1998
  end-page: 599
  ident: bib3
  article-title: Crystal structure of a small heat-shock protein
  publication-title: Nature
– year: 1980
  ident: bib28
  article-title: Electrochemical Methods Fundamentals and Applications
– volume: 131
  start-page: 9164
  year: 2009
  end-page: 9165
  ident: bib137
  article-title: A streptavidin-protein cage Janus particle for polarized targeting and modular functionalization
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 161
  year: 2006
  end-page: 170
  ident: bib83
  article-title: Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture
  publication-title: Chem. Biol.
– volume: 277
  start-page: 27689
  year: 2002
  end-page: 27696
  ident: bib9
  article-title: Iron and hydrogen peroxide detoxification properties of Dps. A ferritin-like DNA binding protein of
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 415
  year: 2002
  end-page: 418
  ident: bib12
  article-title: Protein engineering of a viral cage for constrained nanomaterials synthesis
  publication-title: Adv. Mater.
– volume: 46
  start-page: L804
  year: 2007
  end-page: L806
  ident: bib93
  article-title: Low-temperature polycrystalline silicon thin film transistor flash memory with ferritin
  publication-title: Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett.
– volume: 42
  start-page: 6300
  year: 2003
  end-page: 6305
  ident: bib66
  article-title: Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua
  publication-title: Inorg. Chem.
– volume: 102
  start-page: 10551
  year: 2005
  end-page: 10556
  ident: bib8
  article-title: An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 130
  start-page: 4578
  year: 2008
  end-page: 4579
  ident: bib127
  article-title: On-virus construction of polyvalent glycan ligands for cell-surface receptors
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 991
  year: 2005
  end-page: 993
  ident: bib48
  article-title: Self-organized inorganic nanoparticle arrays on protein lattices
  publication-title: Nano Letters
– volume: 177
  start-page: 473
  year: 1956
  end-page: 475
  ident: bib11
  article-title: Structure of small viruses
  publication-title: Nature
– volume: 22
  start-page: 876
  year: 1983
  end-page: 880
  ident: bib18
  article-title: Fate of oxygen during ferritin iron incorporation
  publication-title: Biochemistry
– volume: 7
  start-page: 38
  year: 2000
  end-page: 43
  ident: bib34
  article-title: The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site
  publication-title: Nat. Struct. Biol.
– volume: 41
  start-page: 9669
  year: 2008
  end-page: 9676
  ident: bib135
  article-title: Stimuli-Responsive Bicomponent Polymer Janus Particles by “Grafting from”/“Grafting to” Approaches
  publication-title: Macromolecules
– start-page: 4871
  year: 2009
  end-page: 4873
  ident: bib62
  article-title: Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin
  publication-title: Chem. Commun.
– volume: 8
  start-page: 928
  year: 1996
  end-page: 932
  ident: bib51
  article-title: Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites
  publication-title: Adv. Mater.
– reference: J. Swift, W.A. Wehbi, B.D. Kelly, X.F. Stowell, J.G. Saven, I.J. Dmochowski, Design of functional ferritin-like protein with hydrophobic cavities, J. Am. Chem. Soc. 128 (2006) 6611–6619.
– volume: 61
  start-page: 503
  year: 2005
  end-page: 506
  ident: bib14
  article-title: Crystallization and preliminary x-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus
  publication-title: Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
– volume: 16
  start-page: 2757
  year: 2006
  end-page: 2761
  ident: bib60
  article-title: Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles
  publication-title: J. Mater. Chem.
– volume: 38
  start-page: 324
  year: 1969
  end-page: 335
  ident: bib10
  article-title: Structures derived from cowpea chlorotic mottle and brome mosaic virus protein
  publication-title: Virology
– volume: 115
  start-page: 8471
  year: 1993
  end-page: 8472
  ident: bib41
  article-title: Characterization of the manganese core of reconstituted ferritin by x-ray-absorption spectroscopy
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 10512
  year: 2008
  end-page: 10514
  ident: bib89
  article-title: Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 255201
  year: 2008
  ident: bib117
  article-title: Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template
  publication-title: Nanotechnology
– volume: 148
  start-page: 743
  year: 1983
  end-page: 751
  ident: bib72
  article-title: Nuclear magnetic resonance imaging of experimentally induced liver disease
  publication-title: Radiology
– volume: 88
  start-page: 153103
  year: 2006
  ident: bib97
  article-title: Electrostatic placement of single ferritin molecules
  publication-title: Appl Phys Lett
– volume: 1275
  start-page: 161
  year: 1996
  end-page: 203
  ident: bib13
  article-title: Ferritins: molecular properties, iron storage function and cellular regulation
  publication-title: Biochim. Biophys. Acta-Bioenerg.
– volume: 261
  start-page: 1286
  year: 1993
  end-page: 1292
  ident: bib38
  article-title: Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis
  publication-title: Science
– volume: 128
  start-page: 16626
  year: 2006
  end-page: 16633
  ident: bib85
  article-title: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles
  publication-title: J. Am. Chem. Soc
– volume: 101
  start-page: 13780
  year: 2004
  end-page: 13785
  ident: bib35
  article-title: Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 456
  year: 2008
  end-page: 462
  ident: bib120
  article-title: Assembly of multilayer arrays of viral nanoparticles via biospecific recognition: a quartz crystal microbalance with dissipation monitoring study
  publication-title: Biomacromolecules
– volume: 4
  start-page: 2519
  year: 2008
  end-page: 2523
  ident: bib122
  article-title: Signal ampflication using nanoplatform cluster formation
  publication-title: Soft Matter
– volume: 47
  start-page: 7845
  year: 2008
  end-page: 7848
  ident: bib70
  article-title: Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H
  publication-title: Angew. Chem. Int. Ed
– volume: 45
  start-page: L1
  year: 2006
  end-page: L3
  ident: bib94
  article-title: Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node
  publication-title: Jpn. J. Appl. Phys.
– volume: 314
  start-page: 139
  year: 1996
  end-page: 144
  ident: bib25
  article-title: Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 354
  year: 2006
  end-page: 360
  ident: bib129
  article-title: Viral nanoparticles as tools for intravital vascular imaging
  publication-title: Nat. Med.
– year: 1998
  ident: bib26
  article-title: Physical Chemistry
– volume: 6
  start-page: 2646
  year: 1992
  end-page: 2654
  ident: bib29
  article-title: A novel DNA-binding protein with regulatory and protective roles in starved
  publication-title: Genes Dev.
– volume: 105
  start-page: 17227
  year: 2008
  end-page: 17231
  ident: bib114
  article-title: Stamped microbattery electrodes based on self-assembled M13 viruses
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 131
  start-page: 6958
  year: 2009
  end-page: 6960
  ident: bib88
  article-title: Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin
  publication-title: J Am Chem Soc
– volume: 36
  start-page: 3009
  year: 2000
  end-page: 3011
  ident: bib61
  article-title: Self assembled nanoparticulate Co:Pt for data storage applications
  publication-title: IEEE Trans. Magn.
– volume: 257
  start-page: 522
  year: 1992
  end-page: 523
  ident: bib36
  article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein
  publication-title: Science
– volume: 44
  start-page: 3203
  year: 2005
  end-page: 3209
  ident: bib49
  article-title: Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin
  publication-title: Inorg. Chem.
– volume: 312
  start-page: 873
  year: 2006
  end-page: 875
  ident: bib82
  article-title: Viruses: making friends with old foes
  publication-title: Science
– volume: 7
  start-page: 3200
  year: 2007
  end-page: 3202
  ident: bib102
  article-title: In aqua structuralization of a three-dimensional configuration using biomolecules
  publication-title: Nano Lett.
– volume: 15
  start-page: 513
  year: 2008
  end-page: 519
  ident: bib131
  article-title: Polyvalent display of heme on hepatitis B virus capsid protein through coordination to hexahistidine tags
  publication-title: Chem. Biol.
– volume: 103
  start-page: 074503
  year: 2008
  ident: bib118
  article-title: Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node
  publication-title: J. Appl. Phys.
– volume: 97
  start-page: 10B301
  year: 2005
  ident: bib103
  article-title: Surface contribution to the anisotropy energy of spherical magnetite particles
  publication-title: J. Appl. Phys.
– volume: 312
  start-page: 885
  year: 2006
  end-page: 888
  ident: bib116
  article-title: Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
  publication-title: Science
– volume: 11
  start-page: 1207
  year: 2008
  end-page: 1212
  ident: bib57
  article-title: Apoferritin as a nanoreactor for preparing metallic nanoparticles
  publication-title: Comp. Rend. Chim.
– volume: 130
  start-page: 16527
  year: 2008
  end-page: 16529
  ident: bib110
  article-title: Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 294
  year: 1998
  end-page: 303
  ident: bib5
  article-title: The crystal structure of Dps, a ferritin homolog that binds and protects DNA
  publication-title: Nat. Struct. Biol.
– volume: 23
  start-page: 1615
  year: 2007
  end-page: 1618
  ident: bib99
  article-title: Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides
  publication-title: Langmuir
– volume: 7
  start-page: 1083
  year: 1998
  end-page: 1091
  ident: bib21
  article-title: Calculated electrostatic gradients in recombinant human H-chain ferritin
  publication-title: Protein Sci.
– volume: 2
  start-page: L713
  year: 2007
  end-page: L715
  ident: bib92
  article-title: Direct production of a two-dimensional ordered array of ferritin-nanoparticles on a silicon substrate
  publication-title: Jpn J Appl Phys
– volume: 125
  start-page: 10806
  year: 2003
  end-page: 10807
  ident: bib136
  article-title: 2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3813
  year: 2008
  end-page: 3820
  ident: bib91
  article-title: Biosupramolecules for nano-devices: biomineralization of nanoparticles and their applications
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 497
  year: 1994
  end-page: 505
  ident: bib37
  article-title: Magnetoferritin—characterization of a novel superparamagnetic MR contrast agent
  publication-title: J. Magn. Reson. Imaging
– volume: 17
  start-page: 49
  year: 2007
  end-page: 51
  ident: bib55
  article-title: Permanent magnetism in apoferritin-encapsulated Pd nanoparticles
  publication-title: J. Mater. Chem.
– volume: 78
  start-page: 2075
  year: 2005
  end-page: 2081
  ident: bib44
  article-title: Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 14
  start-page: 1562
  year: 2002
  end-page: 1565
  ident: bib67
  article-title: Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4327
  year: 2008
  end-page: 4332
  ident: bib58
  article-title: Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles
  publication-title: Phys Chem Chem Phys
– volume: 7
  start-page: 109
  year: 2005
  end-page: 117
  ident: bib76
  article-title: Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors
  publication-title: Neoplasia
– volume: 270
  start-page: 22478
  year: 1995
  end-page: 22482
  ident: bib32
  article-title: The DpsA protein of
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 3200
  year: 2007
  end-page: 3202
  ident: bib119
  article-title: In aqua structuralization of a three-dimensional configuration using biomolecules
  publication-title: Nano Lett.
– volume: 126
  start-page: 182
  year: 1999
  end-page: 194
  ident: bib23
  article-title: Mineralization in ferritin: an efficient means of iron storage
  publication-title: J. Struct. Biol.
– volume: 5
  start-page: 234
  year: 2006
  end-page: 240
  ident: bib125
  article-title: Spontaneous assembly of viruses on multilayered polymer surfaces
  publication-title: Nat. Mater.
– volume: 125
  start-page: 6848
  year: 2003
  end-page: 6849
  ident: bib112
  article-title: Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1081
  year: 2008
  end-page: 1089
  ident: bib124
  article-title: Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies
  publication-title: Nano Lett.
– volume: 5
  start-page: 2306
  year: 2005
  end-page: 2309
  ident: bib87
  article-title: Biomimetic synthesis of a H-2 catalyst using a protein cage architecture
  publication-title: Nano Lett.
– volume: 10
  start-page: 139
  year: 2006
  end-page: 148
  ident: bib63
  article-title: A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus
  publication-title: Extremophiles
– volume: 88
  start-page: 023108
  year: 2006
  ident: bib95
  article-title: Electron confinement in a metal nanodot monolayer embedded in silicon dioxide produced using ferritin protein
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 1541
  year: 2008
  end-page: 1547
  ident: bib64
  article-title: Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile Pyrococcus furiosus
  publication-title: Chem. Mater.
– volume: 39
  start-page: 1828
  year: 2000
  end-page: 1830
  ident: bib43
  article-title: Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 376
  year: 1981
  end-page: 384
  ident: bib107
  article-title: Artificial photosynthesis—water cleavage into hydrogen and oxygen by visible-light
  publication-title: Acc. Chem. Res.
– volume: 327
  start-page: 1
  year: 2009
  end-page: 21
  ident: bib132
  article-title: Chemical modification of viruses and virus-like particles
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 15
  start-page: 246
  year: 2008
  end-page: 253
  ident: bib111
  article-title: Real-time monitoring of protein complexes reveals their quaternary organization and dynamics
  publication-title: Chem. Biol.
– volume: 100
  start-page: 1061
  year: 2006
  end-page: 1068
  ident: bib7
  article-title: Dps-like protein from the hyperthermophilic archaeon
  publication-title: J. Inorg. Biochem.
– volume: 126
  start-page: 13282
  year: 2004
  end-page: 13286
  ident: bib56
  article-title: Engineered protein cages for nanomaterial synthesis
  publication-title: J. Am. Chem. Soc.
– volume: 95
  start-page: 342
  year: 2008
  end-page: 351
  ident: bib77
  article-title: Controlled aggregation of ferritin to modulate MRI relaxivity
  publication-title: Biophys J
– volume: 279
  start-page: 377
  year: 1998
  end-page: 380
  ident: bib84
  article-title: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model
  publication-title: Science
– volume: 51
  start-page: 607
  year: 2004
  end-page: 611
  ident: bib78
  article-title: Mimicking liver iron overload using liposomal ferritin preparations
  publication-title: Magn Reson Med
– volume: 3
  start-page: 316
  year: 1991
  end-page: 318
  ident: bib40
  article-title: Controlled synthesis of inorganic materials using supramolecular assemblies
  publication-title: Adv. Mater.
– volume: 47
  start-page: 2237
  year: 2008
  end-page: 2239
  ident: bib47
  article-title: Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 1429
  year: 2005
  end-page: 1434
  ident: bib115
  article-title: Programmable assembly of nanoarchitectures using genetically engineered viruses
  publication-title: Nano Lett.
– volume: 21
  start-page: 458
  year: 2009
  end-page: 462
  ident: bib86
  article-title: Intracellular distribution of macrophage targeting ferriti-iron oxide nanocomposite
  publication-title: Adv. Mater.
– volume: 211
  start-page: 489
  year: 1999
  end-page: 495
  ident: bib74
  article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content
  publication-title: Radiology
– volume: 1429
  start-page: 40
  year: 1998
  end-page: 44
  ident: bib1
  article-title: Two-dimensional crystals of reconstituted beta-subunits of the chaperonin TF55 from Sulfolobus shibatae
  publication-title: Biochim. Biophys. Acta
– volume: 48
  start-page: 5623
  year: 2009
  end-page: 5630
  ident: bib109
  article-title: A helix swapping study of two protein cages
  publication-title: Biochemistry
– volume: 2
  start-page: 151
  year: 1988
  end-page: 153
  ident: bib106
  article-title: Protein and polymer analyses up to m/z 100
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 350
  start-page: 259
  year: 1998
  end-page: 265
  ident: bib24
  article-title: The effect of putative nucleation sites on the loading and stability of iron in ferritin
  publication-title: Arch. Biochem. Biophys.
– volume: 6
  start-page: 515
  year: 2006
  end-page: 519
  ident: bib100
  article-title: Mechanism underlying specificity of proteins targeting inorganic materials
  publication-title: Nano Lett.
– volume: 1
  start-page: 8946
  year: 2006
  end-page: 8951
  ident: bib98
  article-title: Floating gate metal-oxide-semiconductor capacitor employing array of high-density nanodots produced by protein supramolecule
  publication-title: Jpn J Appl Phys
– volume: 127
  start-page: 2800
  year: 2005
  end-page: 2801
  ident: bib113
  article-title: A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 1017
  year: 2002
  end-page: 1019
  ident: bib81
  article-title: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 159
  year: 1997
  end-page: 167
  ident: bib16
  article-title: Structural similarity and functional diversity in diiron-oxo proteins, JBIC
  publication-title: J. Biol. Inorg. Chem.
– volume: 23
  start-page: 12280
  year: 2007
  end-page: 12286
  ident: bib133
  article-title: Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer
  publication-title: Langmuir
– volume: 30
  start-page: 713
  year: 2002
  end-page: 715
  ident: bib33
  article-title: Characterization of a non-haem ferritin of the archaeon Halobacterium salinarum, homologous to Dps (starvation-induced DNA-binding protein)
  publication-title: Biochem. Soc. Trans.
– volume: 272
  start-page: 3259
  year: 1997
  end-page: 3265
  ident: bib4
  article-title: A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in
  publication-title: J. Biol. Chem.
– volume: 81
  start-page: 1669
  year: 2008
  end-page: 1674
  ident: bib45
  article-title: Improvement Of Co3O4 nanoparticle synthesis in apoferritin cavity by outer surface PEGylation
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 60
  start-page: 1073
  year: 2008
  end-page: 1081
  ident: bib79
  article-title: A human ferritin iron oxide nano-composite magnetic resonance contrast agent
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1158
  year: 2004
  end-page: 1159
  ident: bib52
  article-title: Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin
  publication-title: Chem. Lett.
– volume: 268
  start-page: 424
  year: 1997
  end-page: 448
  ident: bib15
  article-title: Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution
  publication-title: J. Mol. Biol.
– volume: 19
  start-page: 495601
  year: 2008
  ident: bib69
  article-title: Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity
  publication-title: Nanotechnology
– volume: 22
  start-page: 8891
  year: 2006
  end-page: 8896
  ident: bib123
  article-title: Assembly of multilayer films incorporating a viral protein cage architecture
  publication-title: Langmuir
– volume: 347
  start-page: 495
  year: 2005
  end-page: 508
  ident: bib6
  article-title: Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans
  publication-title: J. Mol. Biol.
– volume: 55
  start-page: 552
  year: 1999
  end-page: 553
  ident: bib31
  article-title: Crystallization and preliminary x-ray crystallographic analysis of the unusual ferritin from Listeria innocua
  publication-title: Acta Crystallogr. Sect. D-Biol. Crystallogr.
– volume: 14
  start-page: 4939
  year: 2008
  end-page: 4947
  ident: bib130
  article-title: Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines
  publication-title: Chem. Eur. J.
– volume: 58
  start-page: 59
  year: 1995
  end-page: 68
  ident: bib42
  article-title: Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins
  publication-title: J. Inorg. Biochem.
– volume: 246
  start-page: 64
  year: 1989
  end-page: 71
  ident: bib105
  article-title: Electrospray ionization for mass spectrometry of large biomolecules
  publication-title: Science
– reference: M.T. Klem, M. Young, T. Douglas, Biomimetic synthesis of photoactive α-Fe2O3 templated by the hyperthermophilic ferritin from Pyrococus furiosus, J. Mater. Chem. 20 (2010) 65–67.
– volume: 129
  start-page: 197
  year: 2007
  end-page: 201
  ident: bib104
  article-title: Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 10032
  year: 2006
  end-page: 10037
  ident: bib121
  article-title: Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports
  publication-title: Langmuir
– volume: 2
  start-page: 962
  year: 2006
  end-page: 966
  ident: bib108
  article-title: Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly
  publication-title: Small
– volume: 23
  start-page: 1001
  year: 2005
  end-page: 1004
  ident: bib73
  article-title: Relaxivities of human liver and spleen ferritin
  publication-title: Magn. Reson. Imaging
– volume: 1
  start-page: 7549
  year: 2007
  end-page: 7553
  ident: bib96
  article-title: Effects of dot density and dot size on charge injection characteristics in nanodot array produced by protein supramolecules
  publication-title: Jpn J Appl Phys
– volume: 18
  start-page: 249
  year: 1996
  end-page: 258
  ident: bib2
  article-title: A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea
  publication-title: FEMS Microbiol. Rev.
– volume: 10
  start-page: 279
  year: 1998
  end-page: 285
  ident: bib39
  article-title: Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin)
  publication-title: Chem. Mater.
– volume: 1
  start-page: 034006
  year: 2008
  ident: bib101
  article-title: Adsorption properties of a gold-binding peptide assessed by its attachment to a recombinant apoferritin molecule
  publication-title: Appl. Phys. Exp.
– volume: 9
  start-page: 2360
  year: 2009
  end-page: 2366
  ident: bib138
  article-title: Janus-like protein cages, spatially controlled dual-functional surface modifications of protein cages
  publication-title: Nano Lett.
– volume: 48
  start-page: 4772
  year: 2009
  end-page: 4776
  ident: bib68
  article-title: Metal binding to nanoparticle formation; monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry
  publication-title: Angew. Chem. Int. Ed
– volume: 43
  start-page: 3441
  year: 2004
  end-page: 3446
  ident: bib59
  article-title: Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 514
  year: 2008
  end-page: 518
  ident: bib128
  article-title: Development of bacteriophage P22 as a platform for molecular display: genetic and chemical modifications of the procapsid exterior surface
  publication-title: Chembiochem
– volume: 84
  start-page: 187
  year: 2003
  end-page: 194
  ident: bib46
  article-title: Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin
  publication-title: Biotechnol. Bioeng.
– year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib26
– volume: 211
  start-page: 489
  year: 1999
  ident: 10.1016/j.bbagen.2009.12.005_bib74
  article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content
  publication-title: Radiology
  doi: 10.1148/radiology.211.2.r99ma53489
– volume: 19
  start-page: 495601
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib69
  article-title: Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/49/495601
– volume: 4
  start-page: 497
  year: 1994
  ident: 10.1016/j.bbagen.2009.12.005_bib37
  article-title: Magnetoferritin—characterization of a novel superparamagnetic MR contrast agent
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1880040343
– ident: 10.1016/j.bbagen.2009.12.005_bib71
  doi: 10.1021/ja057069x
– volume: 131
  start-page: 6958
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib88
  article-title: Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin
  publication-title: J Am Chem Soc
  doi: 10.1021/ja901234j
– volume: 15
  start-page: 513
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib131
  article-title: Polyvalent display of heme on hepatitis B virus capsid protein through coordination to hexahistidine tags
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2008.03.018
– volume: 177
  start-page: 473
  year: 1956
  ident: 10.1016/j.bbagen.2009.12.005_bib11
  article-title: Structure of small viruses
  publication-title: Nature
  doi: 10.1038/177473a0
– volume: 7
  start-page: 38
  year: 2000
  ident: 10.1016/j.bbagen.2009.12.005_bib34
  article-title: The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/71236
– volume: 48
  start-page: 4772
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib68
  article-title: Metal binding to nanoparticle formation; monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry
  publication-title: Angew. Chem. Int. Ed
  doi: 10.1002/anie.200900437
– volume: 1
  start-page: 8946
  issue: 45
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib98
  article-title: Floating gate metal-oxide-semiconductor capacitor employing array of high-density nanodots produced by protein supramolecule
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.45.8946
– volume: 8
  start-page: 1081
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib124
  article-title: Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies
  publication-title: Nano Lett.
  doi: 10.1021/nl073079f
– volume: 19
  start-page: 255201
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib117
  article-title: Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/25/255201
– volume: 10
  start-page: 139
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib63
  article-title: A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus
  publication-title: Extremophiles
  doi: 10.1007/s00792-005-0484-x
– volume: 130
  start-page: 4578
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib127
  article-title: On-virus construction of polyvalent glycan ligands for cell-surface receptors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077801n
– volume: 44
  start-page: 6393
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib53
  article-title: Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0502426
– volume: 347
  start-page: 495
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib6
  article-title: Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.01.055
– volume: 46
  start-page: L804
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib93
  article-title: Low-temperature polycrystalline silicon thin film transistor flash memory with ferritin
  publication-title: Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett.
  doi: 10.1143/JJAP.46.L804
– volume: 128
  start-page: 16626
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib85
  article-title: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0655690
– volume: 16
  start-page: 2757
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib60
  article-title: Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles
  publication-title: J. Mater. Chem.
  doi: 10.1039/B604860A
– volume: 130
  start-page: 16527
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib110
  article-title: Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807655t
– volume: 7
  start-page: 109
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib76
  article-title: Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors
  publication-title: Neoplasia
  doi: 10.1593/neo.04436
– volume: 312
  start-page: 885
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib116
  article-title: Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
  publication-title: Science
  doi: 10.1126/science.1122716
– volume: 7
  start-page: 3200
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib119
  article-title: In aqua structuralization of a three-dimensional configuration using biomolecules
  publication-title: Nano Lett.
  doi: 10.1021/nl071921b
– start-page: 4871
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib62
  article-title: Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin
  publication-title: Chem. Commun.
  doi: 10.1039/b908742g
– volume: 350
  start-page: 259
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib24
  article-title: The effect of putative nucleation sites on the loading and stability of iron in ferritin
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0523
– volume: 5
  start-page: 234
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib125
  article-title: Spontaneous assembly of viruses on multilayered polymer surfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1596
– volume: 88
  start-page: 153103
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib97
  article-title: Electrostatic placement of single ferritin molecules
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2189566
– volume: 297
  start-page: 242
  year: 2000
  ident: 10.1016/j.bbagen.2009.12.005_bib22
  article-title: The ferritin iron entry and exit problem
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(99)00375-8
– volume: 11
  start-page: 1207
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib57
  article-title: Apoferritin as a nanoreactor for preparing metallic nanoparticles
  publication-title: Comp. Rend. Chim.
  doi: 10.1016/j.crci.2008.09.003
– volume: 2
  start-page: 159
  year: 1997
  ident: 10.1016/j.bbagen.2009.12.005_bib16
  article-title: Structural similarity and functional diversity in diiron-oxo proteins, JBIC
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s007750050120
– volume: 279
  start-page: 377
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib84
  article-title: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model
  publication-title: Science
  doi: 10.1126/science.279.5349.377
– volume: 38
  start-page: 324
  year: 1969
  ident: 10.1016/j.bbagen.2009.12.005_bib10
  article-title: Structures derived from cowpea chlorotic mottle and brome mosaic virus protein
  publication-title: Virology
  doi: 10.1016/0042-6822(69)90374-2
– volume: 23
  start-page: 1615
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib99
  article-title: Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides
  publication-title: Langmuir
  doi: 10.1021/la061318t
– volume: 125
  start-page: 10806
  year: 2003
  ident: 10.1016/j.bbagen.2009.12.005_bib136
  article-title: 2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0363718
– volume: 131
  start-page: 9164
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib137
  article-title: A streptavidin-protein cage Janus particle for polarized targeting and modular functionalization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9035187
– volume: 58
  start-page: 59
  year: 1995
  ident: 10.1016/j.bbagen.2009.12.005_bib42
  article-title: Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/0162-0134(94)00037-B
– volume: 9
  start-page: 456
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib120
  article-title: Assembly of multilayer arrays of viral nanoparticles via biospecific recognition: a quartz crystal microbalance with dissipation monitoring study
  publication-title: Biomacromolecules
  doi: 10.1021/bm700797b
– volume: 327
  start-page: 1
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib132
  article-title: Chemical modification of viruses and virus-like particles
  publication-title: Curr. Top. Microbiol. Immunol.
  doi: 10.1007/978-3-540-69379-6_1
– ident: 10.1016/j.bbagen.2009.12.005_bib65
  doi: 10.1039/B918620D
– volume: 36
  start-page: 3009
  year: 2000
  ident: 10.1016/j.bbagen.2009.12.005_bib61
  article-title: Self assembled nanoparticulate Co:Pt for data storage applications
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.908658
– volume: 22
  start-page: 8891
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib123
  article-title: Assembly of multilayer films incorporating a viral protein cage architecture
  publication-title: Langmuir
  doi: 10.1021/la0612062
– volume: 61
  start-page: 503
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib14
  article-title: Crystallization and preliminary x-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus
  publication-title: Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309105011516
– volume: 9
  start-page: 813
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib134
  article-title: Natural supramolecular building blocks
  publication-title: Cysteine-Added Mutants of Cowpea Mosaic Virus, Chemistry and Biology
– volume: 84
  start-page: 187
  year: 2003
  ident: 10.1016/j.bbagen.2009.12.005_bib46
  article-title: Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10748
– volume: 125
  start-page: 6848
  year: 2003
  ident: 10.1016/j.bbagen.2009.12.005_bib112
  article-title: Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034479h
– volume: 95
  start-page: 342
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib77
  article-title: Controlled aggregation of ferritin to modulate MRI relaxivity
  publication-title: Biophys J
  doi: 10.1529/biophysj.107.116145
– volume: 20
  start-page: 1541
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib64
  article-title: Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile Pyrococcus furiosus
  publication-title: Chem. Mater.
  doi: 10.1021/cm702732x
– volume: 272
  start-page: 3259
  year: 1997
  ident: 10.1016/j.bbagen.2009.12.005_bib4
  article-title: A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.6.3259
– volume: 1
  start-page: 7549
  issue: 46
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib96
  article-title: Effects of dot density and dot size on charge injection characteristics in nanodot array produced by protein supramolecules
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.46.7549
– volume: 5
  start-page: 1429
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib115
  article-title: Programmable assembly of nanoarchitectures using genetically engineered viruses
  publication-title: Nano Lett.
  doi: 10.1021/nl050795d
– volume: 118
  start-page: 505
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib27
  article-title: Computation of surface electrical potentials of plant cell membranes
  publication-title: Plant Physiol.
  doi: 10.1104/pp.118.2.505
– volume: 7
  start-page: 3200
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib102
  article-title: In aqua structuralization of a three-dimensional configuration using biomolecules
  publication-title: Nano Lett.
  doi: 10.1021/nl071921b
– volume: 10
  start-page: 4327
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib58
  article-title: Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b804023k
– volume: 18
  start-page: 3813
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib91
  article-title: Biosupramolecules for nano-devices: biomineralization of nanoparticles and their applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/b810190f
– volume: 261
  start-page: 1286
  year: 1993
  ident: 10.1016/j.bbagen.2009.12.005_bib38
  article-title: Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis
  publication-title: Science
  doi: 10.1126/science.261.5126.1286
– volume: 14
  start-page: 415
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib12
  article-title: Protein engineering of a viral cage for constrained nanomaterials synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W
– volume: 2
  start-page: 151
  year: 1988
  ident: 10.1016/j.bbagen.2009.12.005_bib106
  article-title: Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.1290020802
– volume: 17
  start-page: 49
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib55
  article-title: Permanent magnetism in apoferritin-encapsulated Pd nanoparticles
  publication-title: J. Mater. Chem.
  doi: 10.1039/B614592B
– volume: 115
  start-page: 8471
  year: 1993
  ident: 10.1016/j.bbagen.2009.12.005_bib41
  article-title: Characterization of the manganese core of reconstituted ferritin by x-ray-absorption spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00071a076
– volume: 130
  start-page: 10512
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib89
  article-title: Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802463a
– volume: 13
  start-page: 161
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib83
  article-title: Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2005.11.007
– volume: 23
  start-page: 12280
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib133
  article-title: Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer
  publication-title: Langmuir
  doi: 10.1021/la7021424
– volume: 48
  start-page: 5623
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib109
  article-title: A helix swapping study of two protein cages
  publication-title: Biochemistry
  doi: 10.1021/bi900387t
– volume: 47
  start-page: 7845
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib70
  article-title: Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H2 production13
  publication-title: Angew. Chem. Int. Ed
  doi: 10.1002/anie.200802481
– volume: 9
  start-page: 2360
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib138
  article-title: Janus-like protein cages, spatially controlled dual-functional surface modifications of protein cages
  publication-title: Nano Lett.
  doi: 10.1021/nl9009028
– volume: 55
  start-page: 552
  year: 1999
  ident: 10.1016/j.bbagen.2009.12.005_bib31
  article-title: Crystallization and preliminary x-ray crystallographic analysis of the unusual ferritin from Listeria innocua
  publication-title: Acta Crystallogr. Sect. D-Biol. Crystallogr.
  doi: 10.1107/S0907444998012177
– volume: 51
  start-page: 607
  year: 2004
  ident: 10.1016/j.bbagen.2009.12.005_bib78
  article-title: Mimicking liver iron overload using liposomal ferritin preparations
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10735
– volume: 246
  start-page: 64
  year: 1989
  ident: 10.1016/j.bbagen.2009.12.005_bib105
  article-title: Electrospray ionization for mass spectrometry of large biomolecules
  publication-title: Science
  doi: 10.1126/science.2675315
– volume: 18
  start-page: 249
  year: 1996
  ident: 10.1016/j.bbagen.2009.12.005_bib2
  article-title: A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1996.tb00241.x
– volume: 105
  start-page: 17227
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib114
  article-title: Stamped microbattery electrodes based on self-assembled M13 viruses
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0711620105
– volume: 1429
  start-page: 40
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib1
  article-title: Two-dimensional crystals of reconstituted beta-subunits of the chaperonin TF55 from Sulfolobus shibatae
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4838(98)00218-0
– volume: 277
  start-page: 27689
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib9
  article-title: Iron and hydrogen peroxide detoxification properties of Dps. A ferritin-like DNA binding protein of Escherichia coli
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202094200
– volume: 22
  start-page: 10032
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib121
  article-title: Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports
  publication-title: Langmuir
  doi: 10.1021/la0621362
– volume: 127
  start-page: 2800
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib113
  article-title: A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043827s
– volume: 9
  start-page: 514
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib128
  article-title: Development of bacteriophage P22 as a platform for molecular display: genetic and chemical modifications of the procapsid exterior surface
  publication-title: Chembiochem
  doi: 10.1002/cbic.200700555
– volume: 78
  start-page: 2075
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib44
  article-title: Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.78.2075
– volume: 269
  start-page: 54
  year: 1995
  ident: 10.1016/j.bbagen.2009.12.005_bib50
  article-title: Synthesis and structure of an iron(Iii) sulfide-ferritin bioinorganic nanocomposite
  publication-title: Science
  doi: 10.1126/science.269.5220.54
– start-page: 2390
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib126
  article-title: Chemical modification of a viral cage for multivalent presentation
  publication-title: Chem. Commun.
  doi: 10.1039/b207853h
– volume: 126
  start-page: 13282
  year: 2004
  ident: 10.1016/j.bbagen.2009.12.005_bib56
  article-title: Engineered protein cages for nanomaterial synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046735b
– volume: 42
  start-page: 6300
  year: 2003
  ident: 10.1016/j.bbagen.2009.12.005_bib66
  article-title: Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0343657
– volume: 10
  start-page: 279
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib39
  article-title: Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin)
  publication-title: Chem. Mater.
  doi: 10.1021/cm970421o
– year: 1980
  ident: 10.1016/j.bbagen.2009.12.005_bib28
– volume: 270
  start-page: 22478
  year: 1995
  ident: 10.1016/j.bbagen.2009.12.005_bib32
  article-title: The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.38.22478
– volume: 394
  start-page: 595
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib3
  article-title: Crystal structure of a small heat-shock protein
  publication-title: Nature
  doi: 10.1038/29106
– volume: 148
  start-page: 743
  year: 1983
  ident: 10.1016/j.bbagen.2009.12.005_bib72
  article-title: Nuclear magnetic resonance imaging of experimentally induced liver disease
  publication-title: Radiology
  doi: 10.1148/radiology.148.3.6192464
– volume: 316
  start-page: 1726
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib20
  article-title: The structure of ferrihydrite, a nanocrystalline material
  publication-title: Science
  doi: 10.1126/science.1142525
– start-page: 6519
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib90
  article-title: Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin
  publication-title: Chem. Commun.
  doi: 10.1039/b813181c
– volume: 4
  start-page: 2519
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib122
  article-title: Signal ampflication using nanoplatform cluster formation
  publication-title: Soft Matter
  doi: 10.1039/b808178f
– volume: 3
  start-page: 316
  year: 1991
  ident: 10.1016/j.bbagen.2009.12.005_bib40
  article-title: Controlled synthesis of inorganic materials using supramolecular assemblies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19910030611
– volume: 23
  start-page: 1001
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib73
  article-title: Relaxivities of human liver and spleen ferritin
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2005.10.009
– volume: 15
  start-page: 246
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib111
  article-title: Real-time monitoring of protein complexes reveals their quaternary organization and dynamics
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2008.01.009
– volume: 14
  start-page: 376
  year: 1981
  ident: 10.1016/j.bbagen.2009.12.005_bib107
  article-title: Artificial photosynthesis—water cleavage into hydrogen and oxygen by visible-light
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00072a003
– volume: 5
  start-page: 294
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib5
  article-title: The crystal structure of Dps, a ferritin homolog that binds and protects DNA
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0498-294
– volume: 44
  start-page: 3203
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib49
  article-title: Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin
  publication-title: Inorg. Chem.
  doi: 10.1021/ic048819r
– volume: 103
  start-page: 074503
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib118
  article-title: Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2888357
– volume: 2
  start-page: 962
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib108
  article-title: Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly
  publication-title: Small
  doi: 10.1002/smll.200500433
– volume: 8
  start-page: 928
  year: 1996
  ident: 10.1016/j.bbagen.2009.12.005_bib51
  article-title: Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19960081114
– volume: 41
  start-page: 1017
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib81
  article-title: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P
– volume: 314
  start-page: 139
  year: 1996
  ident: 10.1016/j.bbagen.2009.12.005_bib25
  article-title: Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres
  publication-title: J. Biol. Chem.
– volume: 129
  start-page: 197
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib104
  article-title: Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0667561
– volume: 278
  start-page: 20319
  year: 2003
  ident: 10.1016/j.bbagen.2009.12.005_bib30
  article-title: The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M302114200
– volume: 81
  start-page: 1669
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib45
  article-title: Improvement Of Co3O4 nanoparticle synthesis in apoferritin cavity by outer surface PEGylation
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.81.1669
– volume: 30
  start-page: 713
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib33
  article-title: Characterization of a non-haem ferritin of the archaeon Halobacterium salinarum, homologous to Dps (starvation-induced DNA-binding protein)
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0300713
– volume: 5
  start-page: 991
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib48
  article-title: Self-organized inorganic nanoparticle arrays on protein lattices
  publication-title: Nano Letters
  doi: 10.1021/nl050556q
– volume: 257
  start-page: 522
  year: 1992
  ident: 10.1016/j.bbagen.2009.12.005_bib36
  article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein
  publication-title: Science
  doi: 10.1126/science.1636086
– volume: 22
  start-page: 876
  year: 1983
  ident: 10.1016/j.bbagen.2009.12.005_bib18
  article-title: Fate of oxygen during ferritin iron incorporation
  publication-title: Biochemistry
  doi: 10.1021/bi00273a026
– volume: 60
  start-page: 1073
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib79
  article-title: A human ferritin iron oxide nano-composite magnetic resonance contrast agent
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21761
– volume: 39
  start-page: 1828
  year: 2000
  ident: 10.1016/j.bbagen.2009.12.005_bib43
  article-title: Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin
  publication-title: Inorg. Chem.
  doi: 10.1021/ic991269q
– year: 2003
  ident: 10.1016/j.bbagen.2009.12.005_bib19
– volume: 1
  start-page: 034006
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib101
  article-title: Adsorption properties of a gold-binding peptide assessed by its attachment to a recombinant apoferritin molecule
  publication-title: Appl. Phys. Exp.
  doi: 10.1143/APEX.1.034006
– volume: 101
  start-page: 13780
  year: 2004
  ident: 10.1016/j.bbagen.2009.12.005_bib35
  article-title: Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0401821101
– volume: 97
  start-page: 10B301
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib103
  article-title: Surface contribution to the anisotropy energy of spherical magnetite particles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1845973
– volume: 14
  start-page: 4939
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib130
  article-title: Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200800203
– volume: 47
  start-page: 2237
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib47
  article-title: Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage
  publication-title: Inorg. Chem.
  doi: 10.1021/ic701740q
– volume: 11
  start-page: 450
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib75
  article-title: A new transgene reporter for in vivo magnetic resonance imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm1208
– volume: 5
  start-page: 2306
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib87
  article-title: Biomimetic synthesis of a H-2 catalyst using a protein cage architecture
  publication-title: Nano Lett.
  doi: 10.1021/nl0517619
– volume: 43
  start-page: 3441
  year: 2004
  ident: 10.1016/j.bbagen.2009.12.005_bib59
  article-title: Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin
  publication-title: Inorg. Chem.
  doi: 10.1021/ic035415a
– volume: 14
  start-page: 1562
  year: 2002
  ident: 10.1016/j.bbagen.2009.12.005_bib67
  article-title: Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D
– volume: 45
  start-page: L1
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib94
  article-title: Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.L1
– volume: 88
  start-page: 023108
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib95
  article-title: Electron confinement in a metal nanodot monolayer embedded in silicon dioxide produced using ferritin protein
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2162686
– volume: 102
  start-page: 10551
  year: 2005
  ident: 10.1016/j.bbagen.2009.12.005_bib8
  article-title: An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0501497102
– volume: 2
  start-page: L713
  issue: 46
  year: 2007
  ident: 10.1016/j.bbagen.2009.12.005_bib92
  article-title: Direct production of a two-dimensional ordered array of ferritin-nanoparticles on a silicon substrate
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.46.L713
– volume: 6
  start-page: 2646
  year: 1992
  ident: 10.1016/j.bbagen.2009.12.005_bib29
  article-title: A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli
  publication-title: Genes Dev.
  doi: 10.1101/gad.6.12b.2646
– volume: 349
  start-page: 541
  year: 1991
  ident: 10.1016/j.bbagen.2009.12.005_bib17
  article-title: Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts
  publication-title: Nature
  doi: 10.1038/349541a0
– volume: 312
  start-page: 873
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib82
  article-title: Viruses: making friends with old foes
  publication-title: Science
  doi: 10.1126/science.1123223
– volume: 12
  start-page: 354
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib129
  article-title: Viral nanoparticles as tools for intravital vascular imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm1368
– volume: 33
  start-page: 1158
  year: 2004
  ident: 10.1016/j.bbagen.2009.12.005_bib52
  article-title: Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2004.1158
– volume: 6
  start-page: 515
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib100
  article-title: Mechanism underlying specificity of proteins targeting inorganic materials
  publication-title: Nano Lett.
  doi: 10.1021/nl060050n
– volume: 268
  start-page: 424
  year: 1997
  ident: 10.1016/j.bbagen.2009.12.005_bib15
  article-title: Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.0970
– volume: 7
  start-page: 1083
  year: 1998
  ident: 10.1016/j.bbagen.2009.12.005_bib21
  article-title: Calculated electrostatic gradients in recombinant human H-chain ferritin
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560070502
– ident: 10.1016/j.bbagen.2009.12.005_bib80
– volume: 126
  start-page: 182
  year: 1999
  ident: 10.1016/j.bbagen.2009.12.005_bib23
  article-title: Mineralization in ferritin: an efficient means of iron storage
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1999.4118
– volume: 41
  start-page: 9669
  year: 2008
  ident: 10.1016/j.bbagen.2009.12.005_bib135
  article-title: Stimuli-Responsive Bicomponent Polymer Janus Particles by “Grafting from”/“Grafting to” Approaches
  publication-title: Macromolecules
  doi: 10.1021/ma802089h
– volume: 43
  start-page: 2527
  year: 2004
  ident: 10.1016/j.bbagen.2009.12.005_bib54
  article-title: Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200353436
– volume: 1275
  start-page: 161
  year: 1996
  ident: 10.1016/j.bbagen.2009.12.005_bib13
  article-title: Ferritins: molecular properties, iron storage function and cellular regulation
  publication-title: Biochim. Biophys. Acta-Bioenerg.
  doi: 10.1016/0005-2728(96)00022-9
– volume: 21
  start-page: 458
  year: 2009
  ident: 10.1016/j.bbagen.2009.12.005_bib86
  article-title: Intracellular distribution of macrophage targeting ferriti-iron oxide nanocomposite
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801209
– volume: 100
  start-page: 1061
  year: 2006
  ident: 10.1016/j.bbagen.2009.12.005_bib7
  article-title: Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2005.12.001
– reference: 18431733 - Chemistry. 2008;14(16):4939-47
– reference: 9473300 - Arch Biochem Biophys. 1998 Feb 15;350(2):259-65
– reference: 5784855 - Virology. 1969 Jun;38(2):324-35
– reference: 17199299 - J Am Chem Soc. 2007 Jan 10;129(1):197-201
– reference: 12783520 - J Am Chem Soc. 2003 Jun 11;125(23):6848-9
– reference: 12430455 - Chem Commun (Camb). 2002 Oct 21;(20):2390-1
– reference: 19405543 - Biochemistry. 2009 Jun 23;48(24):5623-30
– reference: 6192464 - Radiology. 1983 Sep;148(3):743-51
– reference: 1340475 - Genes Dev. 1992 Dec;6(12B):2646-54
– reference: 10228533 - Radiology. 1999 May;211(2):489-95
– reference: 15778721 - Nat Med. 2005 Apr;11(4):450-4
– reference: 18197628 - Biomacromolecules. 2008 Feb;9(2):456-62
– reference: 18326661 - Biophys J. 2008 Jul;95(1):342-51
– reference: 18767197 - Angew Chem Int Ed Engl. 2008;47(41):7845-8
– reference: 7802866 - J Magn Reson Imaging. 1994 May-Jun;4(3):497-505
– reference: 21730676 - Nanotechnology. 2008 Dec 10;19(49):495601
– reference: 12660233 - J Biol Chem. 2003 May 30;278(22):20319-26
– reference: 15127443 - Angew Chem Int Ed Engl. 2004 May 3;43(19):2527-30
– reference: 17525301 - Science. 2007 Jun 22;316(5832):1726-9
– reference: 10625425 - Nat Struct Biol. 2000 Jan;7(1):38-43
– reference: 18636721 - J Am Chem Soc. 2008 Aug 13;130(32):10512-4
– reference: 18482703 - Chem Biol. 2008 May;15(5):513-9
– reference: 9013563 - J Biol Chem. 1997 Feb 7;272(6):3259-65
– reference: 17787702 - Science. 1995 Jul 7;269(5220):54-7
– reference: 15802016 - Neoplasia. 2005 Feb;7(2):109-17
– reference: 18355724 - Chem Biol. 2008 Mar;15(3):246-53
– reference: 16412514 - J Inorg Biochem. 2006 May;100(5-6):1061-8
– reference: 12952458 - J Am Chem Soc. 2003 Sep 10;125(36):10806-7
– reference: 15365182 - Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13780-5
– reference: 16601154 - Science. 2006 May 12;312(5775):885-8
– reference: 17106996 - Langmuir. 2006 Nov 21;22(24):10032-7
– reference: 10089376 - Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):552-3
– reference: 13309339 - Nature. 1956 Mar 10;177(4506):473-5
– reference: 17279636 - Langmuir. 2007 Feb 13;23(4):1615-8
– reference: 16024730 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10551-6
– reference: 16511080 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 May 1;61(Pt 5):503-6
– reference: 19554690 - J Am Chem Soc. 2008 Dec 10;130(49):16527-9
– reference: 12526579 - Inorg Chem. 2000 Apr 17;39(8):1828-30
– reference: 17014132 - Langmuir. 2006 Oct 10;22(21):8891-6
– reference: 16704261 - J Am Chem Soc. 2006 May 24;128(20):6611-9
– reference: 1992356 - Nature. 1991 Feb 7;349(6309):541-4
– reference: 16376184 - Magn Reson Imaging. 2005 Dec;23(10):1001-4
– reference: 8660274 - Biochem J. 1996 Feb 15;314 ( Pt 1):139-44
– reference: 16690856 - Science. 2006 May 12;312(5775):873-5
– reference: 12196173 - Biochem Soc Trans. 2002 Aug;30(4):713-5
– reference: 15755446 - J Mol Biol. 2005 Apr 1;347(3):495-508
– reference: 10441528 - J Struct Biol. 1999 Jun 30;126(3):182-94
– reference: 16277473 - Nano Lett. 2005 Nov;5(11):2306-9
– reference: 19057765 - Chem Commun (Camb). 2008 Dec 28;(48):6519-21
– reference: 17193150 - Small. 2006 Aug;2(8-9):962-6
– reference: 16341820 - Extremophiles. 2006 Apr;10(2):139-48
– reference: 19455534 - Angew Chem Int Ed Engl. 2009;48(26):4772-6
– reference: 1636086 - Science. 1992 Jul 24;257(5069):522-3
– reference: 18633553 - Phys Chem Chem Phys. 2008 Aug 7;10(29):4327-32
– reference: 19453195 - J Am Chem Soc. 2009 May 27;131(20):6958-60
– reference: 16501571 - Nat Med. 2006 Mar;12(3):354-60
– reference: 18213564 - Chembiochem. 2008 Mar 3;9(4):514-8
– reference: 21828646 - Nanotechnology. 2008 Jun 25;19(25):255201
– reference: 16492564 - Chem Biol. 2006 Feb;13(2):161-70
– reference: 16178252 - Nano Lett. 2005 Jul;5(7):1429-34
– reference: 15884908 - Nano Lett. 2005 May;5(5):991-3
– reference: 16489350 - Nat Mater. 2006 Mar;5(3):234-40
– reference: 18355056 - Nano Lett. 2008 Apr;8(4):1081-9
– reference: 19522495 - J Am Chem Soc. 2009 Jul 8;131(26):9164-5
– reference: 12144925 - Chem Biol. 2002 Jul;9(7):813-9
– reference: 17177411 - J Am Chem Soc. 2006 Dec 27;128(51):16626-33
– reference: 18753629 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17227-31
– reference: 15740085 - J Am Chem Soc. 2005 Mar 9;127(9):2800-1
– reference: 18341338 - J Am Chem Soc. 2008 Apr 9;130(14):4578-9
– reference: 7738539 - J Inorg Biochem. 1995 Apr;58(1):59-68
– reference: 9159481 - J Mol Biol. 1997 May 2;268(2):424-48
– reference: 19198568 - Curr Top Microbiol Immunol. 2009;327:1-21
– reference: 15847428 - Inorg Chem. 2005 May 2;44(9):3203-9
– reference: 6838829 - Biochemistry. 1983 Feb 15;22(4):876-80
– reference: 12491298 - Angew Chem Int Ed Engl. 2002 Mar 15;41(6):1017-9
– reference: 12016214 - J Biol Chem. 2002 Aug 2;277(31):27689-96
– reference: 15154806 - Inorg Chem. 2004 May 31;43(11):3441-6
– reference: 15479082 - J Am Chem Soc. 2004 Oct 20;126(41):13282-6
– reference: 9546221 - Nat Struct Biol. 1998 Apr;5(4):294-303
– reference: 17731856 - Science. 1993 Sep 3;261(5126):1286-92
– reference: 16522054 - Nano Lett. 2006 Mar;6(3):515-9
– reference: 12966575 - Biotechnol Bioeng. 2003 Oct 20;84(2):187-94
– reference: 9920382 - Biochim Biophys Acta. 1998 Dec 8;1429(1):40-4
– reference: 16124819 - Inorg Chem. 2005 Sep 5;44(18):6393-400
– reference: 19441792 - Nano Lett. 2009 Jun;9(6):2360-6
– reference: 9765535 - Plant Physiol. 1998 Oct;118(2):505-12
– reference: 9605313 - Protein Sci. 1998 May;7(5):1083-91
– reference: 17824660 - Nano Lett. 2007 Oct;7(10):3200-2
– reference: 7673237 - J Biol Chem. 1995 Sep 22;270(38):22478-82
– reference: 14514305 - Inorg Chem. 2003 Oct 6;42(20):6300-5
– reference: 19652809 - Chem Commun (Camb). 2009 Aug 28;(32):4871-3
– reference: 18307300 - Inorg Chem. 2008 Apr 7;47(7):2237-9
– reference: 8695634 - Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203
– reference: 15004804 - Magn Reson Med. 2004 Mar;51(3):607-11
– reference: 9430587 - Science. 1998 Jan 16;279(5349):377-80
– reference: 2675315 - Science. 1989 Oct 6;246(4926):64-71
– reference: 17949022 - Langmuir. 2007 Nov 20;23(24):12280-6
– reference: 9707123 - Nature. 1998 Aug 6;394(6693):595-9
– reference: 18956458 - Magn Reson Med. 2008 Nov;60(5):1073-81
SSID ssj0000595
ssj0025309
Score 2.43499
SecondaryResourceType review_article
Snippet Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 834
SubjectTerms Animals
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Bio-template
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biomimetic chemistry
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Dps ( DNA binding protein from nutrient starved cells)
Ferritin
Ferritins - chemistry
Ferritins - genetics
Ferritins - metabolism
Ferritins - physiology
Humans
Iron - metabolism
Janus particle
Models, Biological
Models, Molecular
Molecular Weight
Multifunctionalities
Multigene Family
Nanoparticle
Title The ferritin superfamily: Supramolecular templates for materials synthesis
URI https://dx.doi.org/10.1016/j.bbagen.2009.12.005
https://www.ncbi.nlm.nih.gov/pubmed/20026386
https://www.proquest.com/docview/734002884
https://pubmed.ncbi.nlm.nih.gov/PMC3763752
Volume 1800
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VVgguFZSvpVD5wDUsduLY4VatWi1d0QOlojcr_ohIVdLVZvfQS397Z-Jk6QJSJU4rZW3F8kzGL_HzewAfqqxSgQeepN7jC4ryMikRGSSVoG0s6_PQkce_nubT8-zkQl5swWQ4C0O0yr72x5reVev-yrifzfG8rsdntKmHcAJXPBJZoRPlOyItckztncMvs-np74IsO_MVap9Qh-EEXUfzshaf2yYKV9J3QfKx-_cK9TcC_ZNIeW9lOn4Guz2kZIdx1M9hKzR78DiaTN7swZPJ4On2Ak4wK1hFYozLumHtah4W8QvHZ3a2mi_KX4NZLiPJqivCoQxRLUNYGzOVtTcNQsa2bl_C-fHR98k06d0UEieFXiZe6dxpckCQ2iHK4L6wQnFhJQ8IC3xqdSZcFpQVoUg_lZnCZ1kJX5SBa1ep9BVsN9dNeAMsV87JynGvNSc5mlLkRHarMqu9xBIwgnSYQeN6qXFyvLgyA6fs0sR5JxfMwnBhcN5HkKx7zaPUxgPt1RAcs5EyBleDB3qyIZYGA0BbJGUTrletUZhIiLh0NoLXMbTroRCbBYtVjrfdCPq6AQl1b_7T1D87wW4q4kqKt_894H14GlkLRDx8B9vLxSq8RzC0tAfw6OMtP-hTnn5n337M7gAZugtP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrVC5IChfWwr4wDUsduzYy61atVpK20tbqTcr_ogIKulqs3vopb-dmThZWECqxDWxFcszHr94nt8AfKhkpSOPPMtDwB8UHVRWIjLIKkFpLBeK2JHHz86L2ZU8uVbXWzAd7sIQrbKP_Smmd9G6fzLuZ3M8r-vxBSX1EE7gjkciK3SjfEfi8qXV-fH-F88D8YNKqQSZUfPh_lxH8nIOV22TZCvpVJCq2P17f_obf_5Jo_xtXzp-Ck96QMkO05ifwVZs9uBRKjF5twe706Gi23M4QZ9gFUkxLuuGtat5XKTzjc_sYjVflD-GUrmMBKtuCIUyxLQMQW3yU9beNQgY27p9AVfHR5fTWdbXUsi8EmaZBW0Kb6j-gTIeMQYPEyc0F07xiKAg5M5I4WXUTsRJ_qmUGleyFmFSRm58pfOXsN3cNvE1sEJ7ryrPgzGcxGhKURDVrZLOBIUBYAT5MIPW90LjVO_ixg6Msu82zTvVwJxYLizO-wiyda95Etp4oL0ejGM3HMbiXvBATzbY0qIBKEFSNvF21VqNboR4y8gRvEqmXQ-FuCwYqgr87IbR1w1IpnvzTVN_6-S6KYRrJfb_e8DvYXd2eXZqT7-cf30DjxN_gSiIB7C9XKziW4RFS_euc_uf9VIKcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Ferritin+Superfamily%3A+Supramolecular+Templates+for+Materials+Synthesis&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Uchida%2C+Masaki&rft.au=Kang%2C+Sebyung&rft.au=Reichhardt%2C+Courtney&rft.au=Harlen%2C+Kevin&rft.date=2010-08-01&rft.issn=0006-3002&rft.volume=1800&rft.issue=8&rft.spage=834&rft.epage=845&rft_id=info:doi/10.1016%2Fj.bbagen.2009.12.005&rft_id=info%3Apmid%2F20026386&rft.externalDocID=PMC3763752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon