The ferritin superfamily: Supramolecular templates for materials synthesis
Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1800; no. 8; pp. 834 - 845 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue
in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics. |
---|---|
AbstractList | Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics. Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics. Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics. Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics. |
Author | Harlen, Kevin Uchida, Masaki Kang, Sebyung Douglas, Trevor Reichhardt, Courtney |
AuthorAffiliation | 1 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 2 Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717 |
AuthorAffiliation_xml | – name: 2 Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717 – name: 1 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 |
Author_xml | – sequence: 1 givenname: Masaki surname: Uchida fullname: Uchida, Masaki organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA – sequence: 2 givenname: Sebyung surname: Kang fullname: Kang, Sebyung organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA – sequence: 3 givenname: Courtney surname: Reichhardt fullname: Reichhardt, Courtney organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA – sequence: 4 givenname: Kevin surname: Harlen fullname: Harlen, Kevin organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA – sequence: 5 givenname: Trevor surname: Douglas fullname: Douglas, Trevor email: tdouglas@chemistry.montana.edu organization: Department of Chemistry and Biochemistry and Center for Bioinspired Nanomaterials, Montana State University, Bozeman, MT 59717, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20026386$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAUtFAR3Rb-AUK5cUrqjzh2ekBCFZ-qxIFythznpeuVYwfbqbT_Hq92qYBDeRc_Pc_Ms2cu0JkPHhB6TXBDMOmuds0w6HvwDcW4bwhtMObP0IZIQWuJcXeGNpjhtm5Jx8_RRUo7XIr3_AU6LxTaMdlt0Ne7LVQTxGiz9VVaF4iTnq3bX1ff1yXqOTgwq9OxyjAvTmdI1RRiNZcuWu1SlfY-byHZ9BI9n8oAXp3OS_Tj44e7m8_17bdPX27e39aGU5nrUcjOSKM55tIwzsnYD1QQOnACkvQjG2RLTQtioNAzrFshpBB07DUQaSbBLtG7o-6yDjOMBnyO2qkl2lnHvQraqr9vvN2q-_CgmOiY4LQIvD0JxPBzhZTVbJMB57SHsCYlWFv8kbItyDd_rnrc8du_AmiPABNDShGmRwjB6hCT2qljTAdOrwhVJYNCu_6HZmzW2YbDg637H_n0fygmP1iIKhkL3sBoI5isxmCfFvgFHEGxlw |
CitedBy_id | crossref_primary_10_1021_cr5004908 crossref_primary_10_1021_acs_biomac_5b01134 crossref_primary_10_1016_j_foodchem_2019_125097 crossref_primary_10_1021_acssynbio_0c00368 crossref_primary_10_1039_c1cc15221a crossref_primary_10_1016_j_nantod_2025_102648 crossref_primary_10_1155_2019_9535708 crossref_primary_10_1016_j_cocis_2020_101395 crossref_primary_10_3390_pharmaceutics13020229 crossref_primary_10_3390_bios13030304 crossref_primary_10_1093_bulcsj_bcsj_20230224 crossref_primary_10_1016_j_jbiosc_2022_01_005 crossref_primary_10_1002_adfm_202104199 crossref_primary_10_1021_ic400484n crossref_primary_10_1039_C4AN02400A crossref_primary_10_1039_c3nj00546a crossref_primary_10_1002_adfm_202002043 crossref_primary_10_1021_acsami_2c11263 crossref_primary_10_1021_acs_chemmater_3c00847 crossref_primary_10_1021_acsami_4c18072 crossref_primary_10_1007_s12274_022_4385_4 crossref_primary_10_1021_acsnano_8b06091 crossref_primary_10_7759_cureus_57365 crossref_primary_10_1039_D3BM01257C crossref_primary_10_1038_ncomms9721 crossref_primary_10_1111_mmi_15330 crossref_primary_10_1021_acssuschemeng_2c03740 crossref_primary_10_1039_C3CC47847E crossref_primary_10_1063_1_3609859 crossref_primary_10_1016_j_pmatsci_2017_08_001 crossref_primary_10_1021_acs_biochem_1c00515 crossref_primary_10_1002_mabi_201300019 crossref_primary_10_1039_C5CC10365G crossref_primary_10_1002_anie_201006757 crossref_primary_10_1016_j_jbiotec_2022_02_005 crossref_primary_10_1002_mabi_201200178 crossref_primary_10_1021_acs_biomac_0c01790 crossref_primary_10_1002_anie_201106710 crossref_primary_10_1039_C5BM00052A crossref_primary_10_1007_s10534_019_00208_1 crossref_primary_10_1021_ac5018327 crossref_primary_10_1039_D4SC07021F crossref_primary_10_1016_j_jinorgbio_2012_09_003 crossref_primary_10_1116_1_4895688 crossref_primary_10_1002_ange_201006757 crossref_primary_10_1042_BJ20120514 crossref_primary_10_1039_C4MT00127C crossref_primary_10_1021_acsnano_5b03607 crossref_primary_10_1002_adma_201100067 crossref_primary_10_1021_acsami_4c14505 crossref_primary_10_1039_C5RA16951H crossref_primary_10_1088_0957_4484_26_19_195201 crossref_primary_10_1016_j_ijbiomac_2023_123206 crossref_primary_10_1021_acs_chemrev_1c00712 crossref_primary_10_1021_la300949y crossref_primary_10_1039_c1jm10575b crossref_primary_10_1103_PhysRevB_86_144402 crossref_primary_10_1186_s13567_024_01383_x crossref_primary_10_1039_c2jm31620j crossref_primary_10_1021_acscentsci_5b00315 crossref_primary_10_1039_D1RA03816H crossref_primary_10_1007_s00775_024_02058_w crossref_primary_10_1039_D1TB00234A crossref_primary_10_1021_mp2001999 crossref_primary_10_1016_j_ijbiomac_2024_136479 crossref_primary_10_1021_acsami_7b18304 crossref_primary_10_1016_j_jinorgbio_2017_11_019 crossref_primary_10_1039_C9RA04785A crossref_primary_10_1002_anie_201609517 crossref_primary_10_1021_bm301339s crossref_primary_10_1007_s00775_011_0781_z crossref_primary_10_1021_acsnano_8b02856 crossref_primary_10_1063_1_4816684 crossref_primary_10_1039_C4NR00915K crossref_primary_10_1103_PhysRevB_90_174424 crossref_primary_10_1016_j_jiec_2019_09_027 crossref_primary_10_1007_s11051_013_1942_5 crossref_primary_10_3390_vaccines10111920 crossref_primary_10_1016_j_abb_2021_109031 crossref_primary_10_3390_biom14060624 crossref_primary_10_1039_C7SC01565H crossref_primary_10_1021_acsnano_6b06235 crossref_primary_10_1002_anie_201909927 crossref_primary_10_1002_biot_202000087 crossref_primary_10_1021_acsbiomedchemau_2c00003 crossref_primary_10_1039_c1cc11759a crossref_primary_10_1021_jacs_9b03705 crossref_primary_10_7774_cevr_2014_3_2_227 crossref_primary_10_1021_ja211011k crossref_primary_10_1039_D0NR04520A crossref_primary_10_1039_C3CC48000C crossref_primary_10_1021_acs_analchem_3c04328 crossref_primary_10_1002_VIW_20200027 crossref_primary_10_1039_C6MB00235H crossref_primary_10_1002_ijch_201600017 crossref_primary_10_1007_s00775_014_1103_z crossref_primary_10_1016_j_jmmm_2011_05_017 crossref_primary_10_1039_C8NR04441D crossref_primary_10_1002_smll_201100238 crossref_primary_10_1007_s00467_013_2600_y crossref_primary_10_1021_acs_biomac_0c00030 crossref_primary_10_1039_C5NR08465B crossref_primary_10_1039_c1cc11215e crossref_primary_10_1039_C5CC06904A crossref_primary_10_1088_2632_959X_ac2c93 crossref_primary_10_1186_1475_2859_10_92 crossref_primary_10_1002_ange_201609517 crossref_primary_10_1016_j_colsurfb_2024_114332 crossref_primary_10_1038_s41598_017_10297_y crossref_primary_10_1021_acsanm_0c01563 crossref_primary_10_1088_1748_605X_adab5a crossref_primary_10_1016_j_foodchem_2022_133680 crossref_primary_10_1039_D3TB00192J crossref_primary_10_1002_mabi_201300528 crossref_primary_10_3390_ijms160510201 crossref_primary_10_1042_BJ20150787 crossref_primary_10_1680_jbibn_18_00038 crossref_primary_10_1002_ange_201909927 crossref_primary_10_1007_s11705_017_1620_8 crossref_primary_10_1016_j_bbagen_2016_12_011 crossref_primary_10_1016_j_apcatb_2023_123521 crossref_primary_10_1021_acs_inorgchem_2c03156 crossref_primary_10_1021_acsabm_4c01027 crossref_primary_10_1039_C8DT00860D crossref_primary_10_1021_acsnano_5b04912 crossref_primary_10_2144_fsoa_2021_0031 crossref_primary_10_1002_ange_201106710 crossref_primary_10_1016_j_jinorgbio_2013_10_003 crossref_primary_10_1016_j_bbapap_2017_07_012 crossref_primary_10_1016_j_nano_2019_01_012 crossref_primary_10_1021_acs_biomac_5b01753 crossref_primary_10_1016_j_foodchem_2020_128879 crossref_primary_10_1039_C9BM00098D crossref_primary_10_3389_fmolb_2022_976490 crossref_primary_10_1371_journal_pone_0119427 crossref_primary_10_1002_chem_201304070 crossref_primary_10_1016_j_foodchem_2020_126210 crossref_primary_10_3390_molecules29174221 crossref_primary_10_1039_c3nr04268e crossref_primary_10_1016_j_foodhyd_2019_03_049 crossref_primary_10_1016_j_tem_2015_03_008 crossref_primary_10_1016_j_ijbiomac_2021_12_068 crossref_primary_10_1111_1750_3841_14581 crossref_primary_10_1002_smll_202203338 crossref_primary_10_12693_APhysPolA_121_1237 crossref_primary_10_3390_ma15072601 crossref_primary_10_1016_j_foodhyd_2022_108396 crossref_primary_10_7554_eLife_45807 crossref_primary_10_1074_jbc_M115_678375 crossref_primary_10_1016_j_apsusc_2021_151847 crossref_primary_10_1002_anbr_202000115 crossref_primary_10_1039_C7CS00818J crossref_primary_10_1021_acs_biomac_0c01562 crossref_primary_10_1016_j_jprot_2012_03_013 crossref_primary_10_1002_wnan_1221 crossref_primary_10_1080_10408398_2016_1149690 crossref_primary_10_1021_ar500469e crossref_primary_10_1039_C9CC03085A crossref_primary_10_1016_j_tifs_2015_04_005 crossref_primary_10_1016_j_foodchem_2022_134586 crossref_primary_10_1039_c1sm06319g crossref_primary_10_1134_S1023193519100094 crossref_primary_10_1002_ange_201800516 crossref_primary_10_1039_D4DT01839G crossref_primary_10_3390_pharmaceutics13101621 crossref_primary_10_1016_j_polymer_2010_11_047 crossref_primary_10_1016_j_foodchem_2021_129144 crossref_primary_10_1021_acsomega_8b01033 crossref_primary_10_2217_nnm_15_175 crossref_primary_10_1039_C5RA19696E crossref_primary_10_1016_j_ccr_2012_05_013 crossref_primary_10_1016_j_ijhydene_2012_10_091 crossref_primary_10_1039_C7DT02370G crossref_primary_10_1016_j_ijbiomac_2018_04_142 crossref_primary_10_1016_j_jinorgbio_2011_12_004 crossref_primary_10_1002_cphc_201402722 crossref_primary_10_1016_j_foodres_2014_02_041 crossref_primary_10_1021_acs_biochem_5b00723 crossref_primary_10_1016_j_mssp_2019_104597 crossref_primary_10_1021_acs_cgd_7b00568 crossref_primary_10_1021_nl4015233 crossref_primary_10_3389_fmolb_2024_1403635 crossref_primary_10_1039_D0RA00341G crossref_primary_10_1039_c0mt00095g crossref_primary_10_1021_acsbiomaterials_7b00814 crossref_primary_10_1007_s00775_012_0959_z crossref_primary_10_4161_biom_29507 crossref_primary_10_1364_OE_22_023290 crossref_primary_10_1039_C6NR01007E crossref_primary_10_2217_nnm_2018_0017 crossref_primary_10_2217_nnm_2018_0259 crossref_primary_10_1038_am_2016_128 crossref_primary_10_1021_acs_biomac_1c00481 crossref_primary_10_1002_anie_201800516 crossref_primary_10_1002_smll_201303516 crossref_primary_10_1039_D0BM01726D crossref_primary_10_1021_acs_analchem_2c04063 crossref_primary_10_1039_C6NR07315H |
Cites_doi | 10.1148/radiology.211.2.r99ma53489 10.1088/0957-4484/19/49/495601 10.1002/jmri.1880040343 10.1021/ja057069x 10.1021/ja901234j 10.1016/j.chembiol.2008.03.018 10.1038/177473a0 10.1038/71236 10.1002/anie.200900437 10.1143/JJAP.45.8946 10.1021/nl073079f 10.1088/0957-4484/19/25/255201 10.1007/s00792-005-0484-x 10.1021/ja077801n 10.1021/ic0502426 10.1016/j.jmb.2005.01.055 10.1143/JJAP.46.L804 10.1021/ja0655690 10.1039/B604860A 10.1021/ja807655t 10.1593/neo.04436 10.1126/science.1122716 10.1021/nl071921b 10.1039/b908742g 10.1006/abbi.1997.0523 10.1038/nmat1596 10.1063/1.2189566 10.1016/S0020-1693(99)00375-8 10.1016/j.crci.2008.09.003 10.1007/s007750050120 10.1126/science.279.5349.377 10.1016/0042-6822(69)90374-2 10.1021/la061318t 10.1021/ja0363718 10.1021/ja9035187 10.1016/0162-0134(94)00037-B 10.1021/bm700797b 10.1007/978-3-540-69379-6_1 10.1039/B918620D 10.1109/20.908658 10.1021/la0612062 10.1107/S1744309105011516 10.1002/bit.10748 10.1021/ja034479h 10.1529/biophysj.107.116145 10.1021/cm702732x 10.1074/jbc.272.6.3259 10.1143/JJAP.46.7549 10.1021/nl050795d 10.1104/pp.118.2.505 10.1039/b804023k 10.1039/b810190f 10.1126/science.261.5126.1286 10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W 10.1002/rcm.1290020802 10.1039/B614592B 10.1021/ja00071a076 10.1021/ja802463a 10.1016/j.chembiol.2005.11.007 10.1021/la7021424 10.1021/bi900387t 10.1002/anie.200802481 10.1021/nl9009028 10.1107/S0907444998012177 10.1002/mrm.10735 10.1126/science.2675315 10.1111/j.1574-6976.1996.tb00241.x 10.1073/pnas.0711620105 10.1016/S0167-4838(98)00218-0 10.1074/jbc.M202094200 10.1021/la0621362 10.1021/ja043827s 10.1002/cbic.200700555 10.1246/bcsj.78.2075 10.1126/science.269.5220.54 10.1039/b207853h 10.1021/ja046735b 10.1021/ic0343657 10.1021/cm970421o 10.1074/jbc.270.38.22478 10.1038/29106 10.1148/radiology.148.3.6192464 10.1126/science.1142525 10.1039/b813181c 10.1039/b808178f 10.1002/adma.19910030611 10.1016/j.mri.2005.10.009 10.1016/j.chembiol.2008.01.009 10.1021/ar00072a003 10.1038/nsb0498-294 10.1021/ic048819r 10.1063/1.2888357 10.1002/smll.200500433 10.1002/adma.19960081114 10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P 10.1021/ja0667561 10.1074/jbc.M302114200 10.1246/bcsj.81.1669 10.1042/bst0300713 10.1021/nl050556q 10.1126/science.1636086 10.1021/bi00273a026 10.1002/mrm.21761 10.1021/ic991269q 10.1143/APEX.1.034006 10.1073/pnas.0401821101 10.1063/1.1845973 10.1002/chem.200800203 10.1021/ic701740q 10.1038/nm1208 10.1021/nl0517619 10.1021/ic035415a 10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D 10.1143/JJAP.45.L1 10.1063/1.2162686 10.1073/pnas.0501497102 10.1143/JJAP.46.L713 10.1101/gad.6.12b.2646 10.1038/349541a0 10.1126/science.1123223 10.1038/nm1368 10.1246/cl.2004.1158 10.1021/nl060050n 10.1006/jmbi.1997.0970 10.1002/pro.5560070502 10.1006/jsbi.1999.4118 10.1021/ma802089h 10.1002/anie.200353436 10.1016/0005-2728(96)00022-9 10.1002/adma.200801209 10.1016/j.jinorgbio.2005.12.001 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. Copyright 2010 Elsevier B.V. All rights reserved. 2009 Elsevier B.V. All rights reserved. 2009 |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: Copyright 2010 Elsevier B.V. All rights reserved. – notice: 2009 Elsevier B.V. All rights reserved. 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bbagen.2009.12.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 845 |
ExternalDocumentID | PMC3763752 20026386 10_1016_j_bbagen_2009_12_005 S0304416509003407 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R21 EB005364 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R21 EB005364 || EB |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-d786c8ca5058c3551d9b2712b51e819d3b842c4e7b2e930a4778772d9ae18cf73 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 13:38:05 EDT 2025 Fri Jul 11 04:29:56 EDT 2025 Mon Jul 21 05:54:24 EDT 2025 Tue Jul 01 00:21:56 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Fri Feb 23 02:32:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Multifunctionalities Nanoparticle Janus particle Biomimetic chemistry Ferritin Bio-template Dps ( DNA binding protein from nutrient starved cells) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright 2010 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-d786c8ca5058c3551d9b2712b51e819d3b842c4e7b2e930a4778772d9ae18cf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3763752 |
PMID | 20026386 |
PQID | 734002884 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3763752 proquest_miscellaneous_734002884 pubmed_primary_20026386 crossref_primary_10_1016_j_bbagen_2009_12_005 crossref_citationtrail_10_1016_j_bbagen_2009_12_005 elsevier_sciencedirect_doi_10_1016_j_bbagen_2009_12_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-01 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2010 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Ceci, Ilari, Giangiacomo, Laue, Chiancone, Chasteen (bib9) 2002; 277 Kang, Suci, Broomell, Iwahori, Kobayashi, Yamashita, Young, Douglas (bib138) 2009; 9 Gossuin, Muller, Gillis, Bartel (bib73) 2005; 23 Galvez, Sanchez, Dominguez-Vera, Soriano-Portillo, Clemente-Leon, Coronado (bib60) 2006; 16 Fan, Boyle, Cheong, Ng, Orner (bib109) 2009; 48 Steinmetz, Calder, Lomonossoff, Evans (bib121) 2006; 22 Nam, Kim, Yoo, Chiang, Meethong, Hammond, Chiang, Belcher (bib116) 2006; 312 Douglas, Stark (bib43) 2000; 39 Iwahori, Yamashita (bib69) 2008; 19 Tatur, Hagedoorn, Overeijnder, Hagen (bib63) 2006; 10 Kang, Oltrogge, Broomell, Liepold, Prevelige, Young, Douglas (bib110) 2008; 130 Marjorette, Pena, Bullerjahn (bib32) 1995; 270 Suci, Varpness, Gillitzer, Douglas, Young (bib133) 2007; 23 Tsukamoto, Iwahor, Muraoka, Yamashita (bib44) 2005; 78 Mayer, Rohrer, Schoeller, Harris (bib18) 1983; 22 Almiron, Link, Furlong, Kolter (bib29) 1992; 6 Ilari, Stefanini, Chiancone, Tsernoglou (bib34) 2000; 7 Yamashita (bib91) 2008; 18 Yamada, Yoshii, Kumagai, Miura, Uraoka, Fuyuki, Yamashita (bib98) 2006; 1 Vymazal, Righini, Brooks, Canesi, Mariani, Leonardi, Pezzoli (bib74) 1999; 211 Atkins (bib26) 1998 Klem, Willits, Young, Douglas (bib136) 2003; 125 Ishikawa, Yamada, Kumagai, Sano, Shiba, Yamashita, Kobayashi (bib101) 2008; 1 Matias, Tatur, Carrondo, Hagen (bib14) 2005; 61 Meldrum, Douglas, Levi, Arosio, Mann (bib42) 1995; 58 Miermont, Barnhill, Strable, Lu, Wall, Wang, Finn, Huang (bib130) 2008; 14 Kurtz (bib16) 1997; 2 Allen, Willits, Mosolf, Young, Douglas (bib67) 2002; 14 Suzuki, Abe, Ueno, Abe, Goto, Toda, Akita, Yamadae, Watanabe (bib62) 2009 Fenn, Mann, Meng, Wong, Whitehouse (bib105) 1989; 246 Kumagai, Yoshii, Yamada, Matsukawa, Fujiwara, Iwahori, Yamashita (bib97) 2006; 88 Hikono, Matsumura, Miura, Uraoka, Fuyuki, Takeguchi, Yoshii, Yamashita (bib95) 2006; 88 Polanams, Ray, Watt (bib49) 2005; 44 Gratzel (bib107) 1981; 14 Ilari, Savino, Stefanini, Chiancone, Tsernoglou (bib31) 1999; 55 Wong, Douglas, Gider, Awschalom, Mann (bib39) 1998; 10 Cohen, Dafni, Meir, Harmelin, Neeman (bib76) 2005; 7 Ichikawa, Uraoka, Punchaipetch, Yano, Hatayama, Fuyuki, Yamashita (bib93) 2007; 46 Miura, Tsukamoto, Yoshii, Yamashita, Uraoka, Fuyuki (bib117) 2008; 19 Theil, Takagi, Small, He, Tipton, Danger (bib22) 2000; 297 Okuda, Kobayashi, Suzuki, Sonoda, Kondoh, Wagawa, Kondo, Yoshimura (bib48) 2005; 5 Cheung, Camarero, Woods, Lin, Johnson, De Yoreo (bib112) 2003; 125 Douglas, Dickson, Betteridge, Charnock, Garner, Mann (bib50) 1995; 269 Kang, Lucon, Varpness, Liepold, Uchida, Willits, Young, Douglas (bib70) 2008; 47 Ceci, Ilari, Falvo, Chiancone (bib30) 2003; 278 Sano, Yoshii, Yamashita, Shiba (bib119) 2007; 7 Uchida, Terashima, Cunningham, Suzuki, Willits, Willis, Yang, Tsao, McConnell, Young, Douglas (bib79) 2008; 60 Santambrogio, Levi, Cozzi, Corsi, Arosio (bib25) 1996; 314 Hempstead, Yewdall, Fernie, Lawson, Artymiuk, Rice, Ford, Harrison (bib15) 1997; 268 Michel, Ehm, Antao, Lee, Chupas, Liu, Strongin, Schoonen, Phillips, Parise (bib20) 2007; 316 Prasuhn, Kuzelka, Strable, Udit, Cho, Lander, Quispe, Diers, Bocian, Potter, Carragher, Finn (bib131) 2008; 15 Lewis, Destito, Zijlstra, Gonzalez, Quigley, Manchester, Stuhlmann (bib129) 2006; 12 Okuda, Iwahori, Yamashita, Yoshimura (bib46) 2003; 84 Gilmore, Idzerda, Klem, Allen, Douglas, Young (bib103) 2005; 97 Kaltgrad, O'Reilly, Liao, Han, Paulson, Finn (bib127) 2008; 130 Kang, Lander, Johnson, Prevelige (bib128) 2008; 9 Strable, Finn (bib132) 2009; 327 Warne, Kasyutich, Mayes, Wiggins, Wong (bib61) 2000; 36 Genove, Demarco, Xu, Goins, Ahrens (bib75) 2005; 11 Bennett, Shapiro, Sotak, Koretsky (bib77) 2008; 95 M. Terashima, M. Uchida, H. Kosuge, C.H. Cunningham, P. Tsao, M. Young, S.M. Conolly, T. Douglas, M.V. McConnell, Human ferritin protein cage nanoparticles as macrophage-targeted contrast agents for detecting inflammation in atherosclerosis, (in preparation). Ramsay, Wiedenheft, Allen, Gauss, Lawrence, Young, Douglas (bib7) 2006; 100 Nam, Wartena, Yoo, Liau, Lee, Chiang, Hammond, Belcher (bib114) 2008; 105 Douglas, Young (bib82) 2006; 312 Miura, Hikono, Matsumura, Yano, Hatayama, Uraoka, Fuyuki, Yoshii, Yamashita (bib94) 2006; 45 Suci, Kang, Young, Douglas (bib137) 2009; 131 Bancroft, Bracker, Wagner (bib10) 1969; 38 Crick, Watson (bib11) 1956; 177 Yoo, Nam, Qi, Lee, Park, Belcher, Hammond (bib125) 2006; 5 Ueno, Suzuki, Goto, Matsumoto, Nagayama, Watanabe (bib54) 2004; 43 Koeck, Kagawa, Ellis, Hebert, Trent (bib1) 1998; 1429 Trent (bib2) 1996; 18 Harrison, Arosio (bib13) 1996; 1275 Chasteen, Harrison (bib23) 1999; 126 Wong, Mann (bib51) 1996; 8 Meldrum, Heywood, Mann (bib36) 1992; 257 Wiedenheft, Mosolf, Willits, Yeager, Dryden, Young, Douglas (bib8) 2005; 102 J. Swift, W.A. Wehbi, B.D. Kelly, X.F. Stowell, J.G. Saven, I.J. Dmochowski, Design of functional ferritin-like protein with hydrophobic cavities, J. Am. Chem. Soc. 128 (2006) 6611–6619. Ensign, Young, Douglas (bib59) 2004; 43 Ceolin, Galvez, Dominguez-Vera (bib58) 2008; 10 Hayashi, Sano, Shiba, Kumashiro, Iwahori, Yamashita, Hara (bib100) 2006; 6 Sano, Yoshii, Yamashita, Shiba (bib102) 2007; 7 Gillitzer, Suci, Young, Douglas (bib108) 2006; 2 Juan, Aust (bib24) 1998; 350 Bard, Faulkner (bib28) 1980 Clemente-Leon, Coronado, Soriano-Portillo, Galvez, Dominguez-Vera (bib55) 2007; 17 Wood, Fassler, Meade (bib78) 2004; 51 Parker, Allen, Ramsay, Klem, Young, Douglas (bib64) 2008; 20 Bulte, Douglas, Mann, Frankel, Moskowitz, Brooks, Baumgarner, Vymazal, Strub, Frank (bib37) 1994; 4 Steinmetz, Bock, Richter, Spatz, Lomonossoff, Evans (bib120) 2008; 9 Yamada, Yoshii, Kumagai, Miura, Uraoka, Fuyuki, Yamashita (bib96) 2007; 1 Abe, Hirata, Ueno, Morino, Shimizu, Yamamoto, Takata, Yashima, Watanabe (bib88) 2009; 131 Berger, Synytska, Ionov, Eichhorn, Stamm (bib135) 2008; 41 Huang, Chiang, Lee, Gao, Hu, Yoreo, Belcher (bib115) 2005; 5 Yoo, Nam, Belchert, Hammond (bib124) 2008; 8 Douglas, Strable, Willits, Aitouchen, Libera, Young (bib12) 2002; 14 Mackle, Charnock, Garner, Meldrum, Mann (bib41) 1993; 115 Tanaka, Waki, Ido, Akita, Yoshida, Yoshida, Matsuo (bib106) 1988; 2 Miura, Uraoka, Fuyuki, Yoshii, Yamashita (bib118) 2008; 103 Mann, Meldrum (bib40) 1991; 3 Galvez, Fernandez, Valero, Sanchez, Cuesta, Dominguez-Vera (bib57) 2008; 11 Niemeyer, Abe, Hikage, Ueno, Erker, Watanabe (bib90) 2008 Kang, Jolley, Liepold, Young, Douglas (bib68) 2009; 48 Uchida, Willits, Muller, Willis, Jackiw, Jutila, Young, Porter, Douglas (bib86) 2009; 21 Kramer, Li, Carter, Stone, Naik (bib56) 2004; 126 Bozzi, Mignogna, Stefanini, Barra, Longhi, Valenti, Chiancone (bib4) 1997; 272 Mann, Archibald, Didymus, Douglas, Heywood, Meldrum, Reeves (bib38) 1993; 261 Allen, Willits, Young, Douglas (bib66) 2003; 42 Douglas, Ripoll (bib21) 1998; 7 Suci, Klem, Young, Douglas (bib122) 2008; 4 Zeth, Offermann, Essen, Oesterhelt (bib35) 2004; 101 Uchida, Flenniken, Allen, Willits, Crowley, Brumfield, Willis, Jackiw, Jutila, Young, Douglas (bib85) 2006; 128 Tsukamoto, Muraoka, Fukushige, Nakagawa, Kawaguchi, Nakatsuji, Yamashita (bib45) 2008; 81 Matsui, Matsukawa, Iwahori, Sano, Shiba, Yamashita (bib99) 2007; 23 Wang, Lin, Johnson, Finn (bib134) 2002; 9 Stark, Bass, Moss, Bacon, McKerrow, Cann, Brito, Goldberg (bib72) 1983; 148 Grant, Filman, Finkel, Kolter, Hogle (bib5) 1998; 5 Lawson, Artymiuk, Yewdall, Smith, Livingstone, Treffry, Luzzago, Levi, Arosio, Cesareni, Thomas, Shaw, Harrison (bib17) 1991; 349 M.T. Klem, M. Young, T. Douglas, Biomimetic synthesis of photoactive α-Fe2O3 templated by the hyperthermophilic ferritin from Pyrococus furiosus, J. Mater. Chem. 20 (2010) 65–67. Flenniken, Willits, Harmsen, Liepold, Harmsen, Young, Douglas (bib83) 2006; 13 Abe, Niemeyer, Abe, Takezawa, Ueno, Hikage, Erker, Watanabe (bib89) 2008; 130 Varpness, Peters, Young, Douglas (bib87) 2005; 5 Grove, Wilkinson (bib6) 2005; 347 Matsui, Matsukawa, Iwahori, Sano, Shiba, Yamashita (bib92) 2007; 2 Kim, Kim, Kim (bib3) 1998; 394 Arap, Pasqualini, Ruoslahti (bib84) 1998; 279 Klem, Resnick, Gilmore, Young, Idzerda, Douglas (bib104) 2007; 129 Kinraide, Yermiyahu, Rytwo (bib27) 1998; 118 Reindel, Schmidt, Anemuller, Matzanke (bib33) 2002; 30 Gillitzer, Willits, Young, Douglas (bib126) 2002 Suci, Klem, Arce, Douglas, Young (bib123) 2006; 22 Painter, Jaya, Basha, Vierling, Robinson, Benesch (bib111) 2008; 15 McMillan, Howard, Zaluzec, Kagawa, Mogul, Li, Paavola, Trent (bib113) 2005; 127 Klem, Mosolf, Young, Douglas (bib47) 2008; 47 Iwahori, Yoshizawa, Muraoka, Yamashita (bib53) 2005; 44 Aime, Frullano, Crich (bib81) 2002; 41 Cornell, Schwertmann (bib19) 2003 Yamashita, Hayashi, Hara (bib52) 2004; 33 Gillitzer (10.1016/j.bbagen.2009.12.005_bib108) 2006; 2 Uchida (10.1016/j.bbagen.2009.12.005_bib85) 2006; 128 Yamada (10.1016/j.bbagen.2009.12.005_bib96) 2007; 1 Genove (10.1016/j.bbagen.2009.12.005_bib75) 2005; 11 Wang (10.1016/j.bbagen.2009.12.005_bib134) 2002; 9 Mann (10.1016/j.bbagen.2009.12.005_bib38) 1993; 261 Bard (10.1016/j.bbagen.2009.12.005_bib28) 1980 Sano (10.1016/j.bbagen.2009.12.005_bib102) 2007; 7 Fan (10.1016/j.bbagen.2009.12.005_bib109) 2009; 48 Kang (10.1016/j.bbagen.2009.12.005_bib68) 2009; 48 Stark (10.1016/j.bbagen.2009.12.005_bib72) 1983; 148 Mann (10.1016/j.bbagen.2009.12.005_bib40) 1991; 3 Gossuin (10.1016/j.bbagen.2009.12.005_bib73) 2005; 23 Ishikawa (10.1016/j.bbagen.2009.12.005_bib101) 2008; 1 Nam (10.1016/j.bbagen.2009.12.005_bib114) 2008; 105 Yoo (10.1016/j.bbagen.2009.12.005_bib124) 2008; 8 Galvez (10.1016/j.bbagen.2009.12.005_bib60) 2006; 16 Yamashita (10.1016/j.bbagen.2009.12.005_bib91) 2008; 18 Kang (10.1016/j.bbagen.2009.12.005_bib110) 2008; 130 Kim (10.1016/j.bbagen.2009.12.005_bib3) 1998; 394 Suci (10.1016/j.bbagen.2009.12.005_bib137) 2009; 131 Allen (10.1016/j.bbagen.2009.12.005_bib66) 2003; 42 Ensign (10.1016/j.bbagen.2009.12.005_bib59) 2004; 43 Vymazal (10.1016/j.bbagen.2009.12.005_bib74) 1999; 211 McMillan (10.1016/j.bbagen.2009.12.005_bib113) 2005; 127 Douglas (10.1016/j.bbagen.2009.12.005_bib82) 2006; 312 Tsukamoto (10.1016/j.bbagen.2009.12.005_bib44) 2005; 78 Suci (10.1016/j.bbagen.2009.12.005_bib123) 2006; 22 Grove (10.1016/j.bbagen.2009.12.005_bib6) 2005; 347 Zhao (10.1016/j.bbagen.2009.12.005_bib9) 2002; 277 Flenniken (10.1016/j.bbagen.2009.12.005_bib83) 2006; 13 Ichikawa (10.1016/j.bbagen.2009.12.005_bib93) 2007; 46 Okuda (10.1016/j.bbagen.2009.12.005_bib46) 2003; 84 Iwahori (10.1016/j.bbagen.2009.12.005_bib53) 2005; 44 Uchida (10.1016/j.bbagen.2009.12.005_bib79) 2008; 60 Hempstead (10.1016/j.bbagen.2009.12.005_bib15) 1997; 268 Yamashita (10.1016/j.bbagen.2009.12.005_bib52) 2004; 33 Abe (10.1016/j.bbagen.2009.12.005_bib88) 2009; 131 Theil (10.1016/j.bbagen.2009.12.005_bib22) 2000; 297 Bulte (10.1016/j.bbagen.2009.12.005_bib37) 1994; 4 Kaltgrad (10.1016/j.bbagen.2009.12.005_bib127) 2008; 130 Almiron (10.1016/j.bbagen.2009.12.005_bib29) 1992; 6 Ueno (10.1016/j.bbagen.2009.12.005_bib54) 2004; 43 Tsukamoto (10.1016/j.bbagen.2009.12.005_bib45) 2008; 81 Miura (10.1016/j.bbagen.2009.12.005_bib117) 2008; 19 Suci (10.1016/j.bbagen.2009.12.005_bib133) 2007; 23 Hikono (10.1016/j.bbagen.2009.12.005_bib95) 2006; 88 Sano (10.1016/j.bbagen.2009.12.005_bib119) 2007; 7 Klem (10.1016/j.bbagen.2009.12.005_bib104) 2007; 129 Cheung (10.1016/j.bbagen.2009.12.005_bib112) 2003; 125 Douglas (10.1016/j.bbagen.2009.12.005_bib21) 1998; 7 Varpness (10.1016/j.bbagen.2009.12.005_bib87) 2005; 5 Nam (10.1016/j.bbagen.2009.12.005_bib116) 2006; 312 Tanaka (10.1016/j.bbagen.2009.12.005_bib106) 1988; 2 Fenn (10.1016/j.bbagen.2009.12.005_bib105) 1989; 246 Iwahori (10.1016/j.bbagen.2009.12.005_bib69) 2008; 19 Lawson (10.1016/j.bbagen.2009.12.005_bib17) 1991; 349 Kinraide (10.1016/j.bbagen.2009.12.005_bib27) 1998; 118 Miura (10.1016/j.bbagen.2009.12.005_bib94) 2006; 45 Huang (10.1016/j.bbagen.2009.12.005_bib115) 2005; 5 Atkins (10.1016/j.bbagen.2009.12.005_bib26) 1998 Gilmore (10.1016/j.bbagen.2009.12.005_bib103) 2005; 97 Matias (10.1016/j.bbagen.2009.12.005_bib14) 2005; 61 Juan (10.1016/j.bbagen.2009.12.005_bib24) 1998; 350 Douglas (10.1016/j.bbagen.2009.12.005_bib43) 2000; 39 Koeck (10.1016/j.bbagen.2009.12.005_bib1) 1998; 1429 Douglas (10.1016/j.bbagen.2009.12.005_bib12) 2002; 14 Allen (10.1016/j.bbagen.2009.12.005_bib67) 2002; 14 Arap (10.1016/j.bbagen.2009.12.005_bib84) 1998; 279 Yoo (10.1016/j.bbagen.2009.12.005_bib125) 2006; 5 Kang (10.1016/j.bbagen.2009.12.005_bib70) 2008; 47 Klem (10.1016/j.bbagen.2009.12.005_bib136) 2003; 125 Ceci (10.1016/j.bbagen.2009.12.005_bib30) 2003; 278 Warne (10.1016/j.bbagen.2009.12.005_bib61) 2000; 36 Mackle (10.1016/j.bbagen.2009.12.005_bib41) 1993; 115 Gillitzer (10.1016/j.bbagen.2009.12.005_bib126) 2002 Miermont (10.1016/j.bbagen.2009.12.005_bib130) 2008; 14 Ceolin (10.1016/j.bbagen.2009.12.005_bib58) 2008; 10 Abe (10.1016/j.bbagen.2009.12.005_bib89) 2008; 130 Wiedenheft (10.1016/j.bbagen.2009.12.005_bib8) 2005; 102 Ramsay (10.1016/j.bbagen.2009.12.005_bib7) 2006; 100 Suzuki (10.1016/j.bbagen.2009.12.005_bib62) 2009 Ilari (10.1016/j.bbagen.2009.12.005_bib34) 2000; 7 Kang (10.1016/j.bbagen.2009.12.005_bib138) 2009; 9 Wong (10.1016/j.bbagen.2009.12.005_bib39) 1998; 10 Meldrum (10.1016/j.bbagen.2009.12.005_bib36) 1992; 257 10.1016/j.bbagen.2009.12.005_bib65 Aime (10.1016/j.bbagen.2009.12.005_bib81) 2002; 41 Kumagai (10.1016/j.bbagen.2009.12.005_bib97) 2006; 88 Miura (10.1016/j.bbagen.2009.12.005_bib118) 2008; 103 Strable (10.1016/j.bbagen.2009.12.005_bib132) 2009; 327 Uchida (10.1016/j.bbagen.2009.12.005_bib86) 2009; 21 Mayer (10.1016/j.bbagen.2009.12.005_bib18) 1983; 22 Lewis (10.1016/j.bbagen.2009.12.005_bib129) 2006; 12 Reindel (10.1016/j.bbagen.2009.12.005_bib33) 2002; 30 Bennett (10.1016/j.bbagen.2009.12.005_bib77) 2008; 95 Gratzel (10.1016/j.bbagen.2009.12.005_bib107) 1981; 14 Klem (10.1016/j.bbagen.2009.12.005_bib47) 2008; 47 Marjorette (10.1016/j.bbagen.2009.12.005_bib32) 1995; 270 Kurtz (10.1016/j.bbagen.2009.12.005_bib16) 1997; 2 Grant (10.1016/j.bbagen.2009.12.005_bib5) 1998; 5 Harrison (10.1016/j.bbagen.2009.12.005_bib13) 1996; 1275 Yamada (10.1016/j.bbagen.2009.12.005_bib98) 2006; 1 Okuda (10.1016/j.bbagen.2009.12.005_bib48) 2005; 5 Hayashi (10.1016/j.bbagen.2009.12.005_bib100) 2006; 6 Michel (10.1016/j.bbagen.2009.12.005_bib20) 2007; 316 10.1016/j.bbagen.2009.12.005_bib71 Prasuhn (10.1016/j.bbagen.2009.12.005_bib131) 2008; 15 Clemente-Leon (10.1016/j.bbagen.2009.12.005_bib55) 2007; 17 Santambrogio (10.1016/j.bbagen.2009.12.005_bib25) 1996; 314 Matsui (10.1016/j.bbagen.2009.12.005_bib92) 2007; 2 Galvez (10.1016/j.bbagen.2009.12.005_bib57) 2008; 11 Matsui (10.1016/j.bbagen.2009.12.005_bib99) 2007; 23 Ilari (10.1016/j.bbagen.2009.12.005_bib31) 1999; 55 Wong (10.1016/j.bbagen.2009.12.005_bib51) 1996; 8 Suci (10.1016/j.bbagen.2009.12.005_bib122) 2008; 4 Niemeyer (10.1016/j.bbagen.2009.12.005_bib90) 2008 Kramer (10.1016/j.bbagen.2009.12.005_bib56) 2004; 126 Kang (10.1016/j.bbagen.2009.12.005_bib128) 2008; 9 Zeth (10.1016/j.bbagen.2009.12.005_bib35) 2004; 101 Painter (10.1016/j.bbagen.2009.12.005_bib111) 2008; 15 Steinmetz (10.1016/j.bbagen.2009.12.005_bib121) 2006; 22 Trent (10.1016/j.bbagen.2009.12.005_bib2) 1996; 18 Cohen (10.1016/j.bbagen.2009.12.005_bib76) 2005; 7 10.1016/j.bbagen.2009.12.005_bib80 Bozzi (10.1016/j.bbagen.2009.12.005_bib4) 1997; 272 Tatur (10.1016/j.bbagen.2009.12.005_bib63) 2006; 10 Meldrum (10.1016/j.bbagen.2009.12.005_bib42) 1995; 58 Polanams (10.1016/j.bbagen.2009.12.005_bib49) 2005; 44 Berger (10.1016/j.bbagen.2009.12.005_bib135) 2008; 41 Chasteen (10.1016/j.bbagen.2009.12.005_bib23) 1999; 126 Douglas (10.1016/j.bbagen.2009.12.005_bib50) 1995; 269 Crick (10.1016/j.bbagen.2009.12.005_bib11) 1956; 177 Parker (10.1016/j.bbagen.2009.12.005_bib64) 2008; 20 Bancroft (10.1016/j.bbagen.2009.12.005_bib10) 1969; 38 Cornell (10.1016/j.bbagen.2009.12.005_bib19) 2003 Steinmetz (10.1016/j.bbagen.2009.12.005_bib120) 2008; 9 Wood (10.1016/j.bbagen.2009.12.005_bib78) 2004; 51 16704261 - J Am Chem Soc. 2006 May 24;128(20):6611-9 17787702 - Science. 1995 Jul 7;269(5220):54-7 12526579 - Inorg Chem. 2000 Apr 17;39(8):1828-30 12952458 - J Am Chem Soc. 2003 Sep 10;125(36):10806-7 15740085 - J Am Chem Soc. 2005 Mar 9;127(9):2800-1 19057765 - Chem Commun (Camb). 2008 Dec 28;(48):6519-21 17193150 - Small. 2006 Aug;2(8-9):962-6 8695634 - Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203 18767197 - Angew Chem Int Ed Engl. 2008;47(41):7845-8 19652809 - Chem Commun (Camb). 2009 Aug 28;(32):4871-3 16522054 - Nano Lett. 2006 Mar;6(3):515-9 9546221 - Nat Struct Biol. 1998 Apr;5(4):294-303 17177411 - J Am Chem Soc. 2006 Dec 27;128(51):16626-33 19453195 - J Am Chem Soc. 2009 May 27;131(20):6958-60 16601154 - Science. 2006 May 12;312(5775):885-8 9013563 - J Biol Chem. 1997 Feb 7;272(6):3259-65 18633553 - Phys Chem Chem Phys. 2008 Aug 7;10(29):4327-32 16489350 - Nat Mater. 2006 Mar;5(3):234-40 9765535 - Plant Physiol. 1998 Oct;118(2):505-12 15365182 - Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13780-5 21828646 - Nanotechnology. 2008 Jun 25;19(25):255201 12430455 - Chem Commun (Camb). 2002 Oct 21;(20):2390-1 16024730 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10551-6 16124819 - Inorg Chem. 2005 Sep 5;44(18):6393-400 17279636 - Langmuir. 2007 Feb 13;23(4):1615-8 1992356 - Nature. 1991 Feb 7;349(6309):541-4 19554690 - J Am Chem Soc. 2008 Dec 10;130(49):16527-9 18355056 - Nano Lett. 2008 Apr;8(4):1081-9 9159481 - J Mol Biol. 1997 May 2;268(2):424-48 16376184 - Magn Reson Imaging. 2005 Dec;23(10):1001-4 9473300 - Arch Biochem Biophys. 1998 Feb 15;350(2):259-65 21730676 - Nanotechnology. 2008 Dec 10;19(49):495601 19522495 - J Am Chem Soc. 2009 Jul 8;131(26):9164-5 10625425 - Nat Struct Biol. 2000 Jan;7(1):38-43 18636721 - J Am Chem Soc. 2008 Aug 13;130(32):10512-4 18341338 - J Am Chem Soc. 2008 Apr 9;130(14):4578-9 16511080 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 May 1;61(Pt 5):503-6 9707123 - Nature. 1998 Aug 6;394(6693):595-9 6838829 - Biochemistry. 1983 Feb 15;22(4):876-80 7738539 - J Inorg Biochem. 1995 Apr;58(1):59-68 12660233 - J Biol Chem. 2003 May 30;278(22):20319-26 18197628 - Biomacromolecules. 2008 Feb;9(2):456-62 15004804 - Magn Reson Med. 2004 Mar;51(3):607-11 18355724 - Chem Biol. 2008 Mar;15(3):246-53 17106996 - Langmuir. 2006 Nov 21;22(24):10032-7 17014132 - Langmuir. 2006 Oct 10;22(21):8891-6 15847428 - Inorg Chem. 2005 May 2;44(9):3203-9 17199299 - J Am Chem Soc. 2007 Jan 10;129(1):197-201 17525301 - Science. 2007 Jun 22;316(5832):1726-9 15884908 - Nano Lett. 2005 May;5(5):991-3 10228533 - Radiology. 1999 May;211(2):489-95 16690856 - Science. 2006 May 12;312(5775):873-5 19441792 - Nano Lett. 2009 Jun;9(6):2360-6 19455534 - Angew Chem Int Ed Engl. 2009;48(26):4772-6 8660274 - Biochem J. 1996 Feb 15;314 ( Pt 1):139-44 12491298 - Angew Chem Int Ed Engl. 2002 Mar 15;41(6):1017-9 7673237 - J Biol Chem. 1995 Sep 22;270(38):22478-82 10089376 - Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):552-3 15778721 - Nat Med. 2005 Apr;11(4):450-4 16412514 - J Inorg Biochem. 2006 May;100(5-6):1061-8 12016214 - J Biol Chem. 2002 Aug 2;277(31):27689-96 17731856 - Science. 1993 Sep 3;261(5126):1286-92 1340475 - Genes Dev. 1992 Dec;6(12B):2646-54 19405543 - Biochemistry. 2009 Jun 23;48(24):5623-30 1636086 - Science. 1992 Jul 24;257(5069):522-3 19198568 - Curr Top Microbiol Immunol. 2009;327:1-21 18307300 - Inorg Chem. 2008 Apr 7;47(7):2237-9 9920382 - Biochim Biophys Acta. 1998 Dec 8;1429(1):40-4 16341820 - Extremophiles. 2006 Apr;10(2):139-48 14514305 - Inorg Chem. 2003 Oct 6;42(20):6300-5 9605313 - Protein Sci. 1998 May;7(5):1083-91 10441528 - J Struct Biol. 1999 Jun 30;126(3):182-94 17824660 - Nano Lett. 2007 Oct;7(10):3200-2 18956458 - Magn Reson Med. 2008 Nov;60(5):1073-81 18326661 - Biophys J. 2008 Jul;95(1):342-51 2675315 - Science. 1989 Oct 6;246(4926):64-71 16501571 - Nat Med. 2006 Mar;12(3):354-60 16492564 - Chem Biol. 2006 Feb;13(2):161-70 12783520 - J Am Chem Soc. 2003 Jun 11;125(23):6848-9 16178252 - Nano Lett. 2005 Jul;5(7):1429-34 18753629 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17227-31 16277473 - Nano Lett. 2005 Nov;5(11):2306-9 9430587 - Science. 1998 Jan 16;279(5349):377-80 18213564 - Chembiochem. 2008 Mar 3;9(4):514-8 12196173 - Biochem Soc Trans. 2002 Aug;30(4):713-5 18431733 - Chemistry. 2008;14(16):4939-47 13309339 - Nature. 1956 Mar 10;177(4506):473-5 15802016 - Neoplasia. 2005 Feb;7(2):109-17 18482703 - Chem Biol. 2008 May;15(5):513-9 7802866 - J Magn Reson Imaging. 1994 May-Jun;4(3):497-505 5784855 - Virology. 1969 Jun;38(2):324-35 12144925 - Chem Biol. 2002 Jul;9(7):813-9 15755446 - J Mol Biol. 2005 Apr 1;347(3):495-508 17949022 - Langmuir. 2007 Nov 20;23(24):12280-6 6192464 - Radiology. 1983 Sep;148(3):743-51 12966575 - Biotechnol Bioeng. 2003 Oct 20;84(2):187-94 15127443 - Angew Chem Int Ed Engl. 2004 May 3;43(19):2527-30 15479082 - J Am Chem Soc. 2004 Oct 20;126(41):13282-6 15154806 - Inorg Chem. 2004 May 31;43(11):3441-6 |
References_xml | – volume: 349 start-page: 541 year: 1991 end-page: 544 ident: bib17 article-title: Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts publication-title: Nature – volume: 278 start-page: 20319 year: 2003 end-page: 20326 ident: bib30 article-title: The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage publication-title: J. Biol. Chem. – volume: 43 start-page: 2527 year: 2004 end-page: 2530 ident: bib54 article-title: Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 450 year: 2005 end-page: 454 ident: bib75 article-title: A new transgene reporter for in vivo magnetic resonance imaging publication-title: Nat. Med. – volume: 316 start-page: 1726 year: 2007 end-page: 1729 ident: bib20 article-title: The structure of ferrihydrite, a nanocrystalline material publication-title: Science – start-page: 2390 year: 2002 end-page: 2391 ident: bib126 article-title: Chemical modification of a viral cage for multivalent presentation publication-title: Chem. Commun. – volume: 9 start-page: 813 year: 2002 end-page: 819 ident: bib134 article-title: Natural supramolecular building blocks publication-title: Cysteine-Added Mutants of Cowpea Mosaic Virus, Chemistry and Biology – start-page: 6519 year: 2008 end-page: 6521 ident: bib90 article-title: Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin publication-title: Chem. Commun. – volume: 118 start-page: 505 year: 1998 end-page: 512 ident: bib27 article-title: Computation of surface electrical potentials of plant cell membranes publication-title: Plant Physiol. – volume: 44 start-page: 6393 year: 2005 end-page: 6400 ident: bib53 article-title: Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system publication-title: Inorg. Chem. – volume: 297 start-page: 242 year: 2000 end-page: 251 ident: bib22 article-title: The ferritin iron entry and exit problem publication-title: Inorg. Chim. Acta – year: 2003 ident: bib19 article-title: The Iron Oxides – volume: 269 start-page: 54 year: 1995 end-page: 57 ident: bib50 article-title: Synthesis and structure of an iron(Iii) sulfide-ferritin bioinorganic nanocomposite publication-title: Science – reference: M. Terashima, M. Uchida, H. Kosuge, C.H. Cunningham, P. Tsao, M. Young, S.M. Conolly, T. Douglas, M.V. McConnell, Human ferritin protein cage nanoparticles as macrophage-targeted contrast agents for detecting inflammation in atherosclerosis, (in preparation). – volume: 394 start-page: 595 year: 1998 end-page: 599 ident: bib3 article-title: Crystal structure of a small heat-shock protein publication-title: Nature – year: 1980 ident: bib28 article-title: Electrochemical Methods Fundamentals and Applications – volume: 131 start-page: 9164 year: 2009 end-page: 9165 ident: bib137 article-title: A streptavidin-protein cage Janus particle for polarized targeting and modular functionalization publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 161 year: 2006 end-page: 170 ident: bib83 article-title: Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture publication-title: Chem. Biol. – volume: 277 start-page: 27689 year: 2002 end-page: 27696 ident: bib9 article-title: Iron and hydrogen peroxide detoxification properties of Dps. A ferritin-like DNA binding protein of publication-title: J. Biol. Chem. – volume: 14 start-page: 415 year: 2002 end-page: 418 ident: bib12 article-title: Protein engineering of a viral cage for constrained nanomaterials synthesis publication-title: Adv. Mater. – volume: 46 start-page: L804 year: 2007 end-page: L806 ident: bib93 article-title: Low-temperature polycrystalline silicon thin film transistor flash memory with ferritin publication-title: Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. – volume: 42 start-page: 6300 year: 2003 end-page: 6305 ident: bib66 article-title: Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua publication-title: Inorg. Chem. – volume: 102 start-page: 10551 year: 2005 end-page: 10556 ident: bib8 article-title: An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 130 start-page: 4578 year: 2008 end-page: 4579 ident: bib127 article-title: On-virus construction of polyvalent glycan ligands for cell-surface receptors publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 991 year: 2005 end-page: 993 ident: bib48 article-title: Self-organized inorganic nanoparticle arrays on protein lattices publication-title: Nano Letters – volume: 177 start-page: 473 year: 1956 end-page: 475 ident: bib11 article-title: Structure of small viruses publication-title: Nature – volume: 22 start-page: 876 year: 1983 end-page: 880 ident: bib18 article-title: Fate of oxygen during ferritin iron incorporation publication-title: Biochemistry – volume: 7 start-page: 38 year: 2000 end-page: 43 ident: bib34 article-title: The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site publication-title: Nat. Struct. Biol. – volume: 41 start-page: 9669 year: 2008 end-page: 9676 ident: bib135 article-title: Stimuli-Responsive Bicomponent Polymer Janus Particles by “Grafting from”/“Grafting to” Approaches publication-title: Macromolecules – start-page: 4871 year: 2009 end-page: 4873 ident: bib62 article-title: Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin publication-title: Chem. Commun. – volume: 8 start-page: 928 year: 1996 end-page: 932 ident: bib51 article-title: Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites publication-title: Adv. Mater. – reference: J. Swift, W.A. Wehbi, B.D. Kelly, X.F. Stowell, J.G. Saven, I.J. Dmochowski, Design of functional ferritin-like protein with hydrophobic cavities, J. Am. Chem. Soc. 128 (2006) 6611–6619. – volume: 61 start-page: 503 year: 2005 end-page: 506 ident: bib14 article-title: Crystallization and preliminary x-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus publication-title: Acta Crystallogr. F-Struct. Biol. Cryst. Commun. – volume: 16 start-page: 2757 year: 2006 end-page: 2761 ident: bib60 article-title: Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles publication-title: J. Mater. Chem. – volume: 38 start-page: 324 year: 1969 end-page: 335 ident: bib10 article-title: Structures derived from cowpea chlorotic mottle and brome mosaic virus protein publication-title: Virology – volume: 115 start-page: 8471 year: 1993 end-page: 8472 ident: bib41 article-title: Characterization of the manganese core of reconstituted ferritin by x-ray-absorption spectroscopy publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 10512 year: 2008 end-page: 10514 ident: bib89 article-title: Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 255201 year: 2008 ident: bib117 article-title: Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template publication-title: Nanotechnology – volume: 148 start-page: 743 year: 1983 end-page: 751 ident: bib72 article-title: Nuclear magnetic resonance imaging of experimentally induced liver disease publication-title: Radiology – volume: 88 start-page: 153103 year: 2006 ident: bib97 article-title: Electrostatic placement of single ferritin molecules publication-title: Appl Phys Lett – volume: 1275 start-page: 161 year: 1996 end-page: 203 ident: bib13 article-title: Ferritins: molecular properties, iron storage function and cellular regulation publication-title: Biochim. Biophys. Acta-Bioenerg. – volume: 261 start-page: 1286 year: 1993 end-page: 1292 ident: bib38 article-title: Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis publication-title: Science – volume: 128 start-page: 16626 year: 2006 end-page: 16633 ident: bib85 article-title: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles publication-title: J. Am. Chem. Soc – volume: 101 start-page: 13780 year: 2004 end-page: 13785 ident: bib35 article-title: Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 456 year: 2008 end-page: 462 ident: bib120 article-title: Assembly of multilayer arrays of viral nanoparticles via biospecific recognition: a quartz crystal microbalance with dissipation monitoring study publication-title: Biomacromolecules – volume: 4 start-page: 2519 year: 2008 end-page: 2523 ident: bib122 article-title: Signal ampflication using nanoplatform cluster formation publication-title: Soft Matter – volume: 47 start-page: 7845 year: 2008 end-page: 7848 ident: bib70 article-title: Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H publication-title: Angew. Chem. Int. Ed – volume: 45 start-page: L1 year: 2006 end-page: L3 ident: bib94 article-title: Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node publication-title: Jpn. J. Appl. Phys. – volume: 314 start-page: 139 year: 1996 end-page: 144 ident: bib25 article-title: Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres publication-title: J. Biol. Chem. – volume: 12 start-page: 354 year: 2006 end-page: 360 ident: bib129 article-title: Viral nanoparticles as tools for intravital vascular imaging publication-title: Nat. Med. – year: 1998 ident: bib26 article-title: Physical Chemistry – volume: 6 start-page: 2646 year: 1992 end-page: 2654 ident: bib29 article-title: A novel DNA-binding protein with regulatory and protective roles in starved publication-title: Genes Dev. – volume: 105 start-page: 17227 year: 2008 end-page: 17231 ident: bib114 article-title: Stamped microbattery electrodes based on self-assembled M13 viruses publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 131 start-page: 6958 year: 2009 end-page: 6960 ident: bib88 article-title: Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin publication-title: J Am Chem Soc – volume: 36 start-page: 3009 year: 2000 end-page: 3011 ident: bib61 article-title: Self assembled nanoparticulate Co:Pt for data storage applications publication-title: IEEE Trans. Magn. – volume: 257 start-page: 522 year: 1992 end-page: 523 ident: bib36 article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein publication-title: Science – volume: 44 start-page: 3203 year: 2005 end-page: 3209 ident: bib49 article-title: Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin publication-title: Inorg. Chem. – volume: 312 start-page: 873 year: 2006 end-page: 875 ident: bib82 article-title: Viruses: making friends with old foes publication-title: Science – volume: 7 start-page: 3200 year: 2007 end-page: 3202 ident: bib102 article-title: In aqua structuralization of a three-dimensional configuration using biomolecules publication-title: Nano Lett. – volume: 15 start-page: 513 year: 2008 end-page: 519 ident: bib131 article-title: Polyvalent display of heme on hepatitis B virus capsid protein through coordination to hexahistidine tags publication-title: Chem. Biol. – volume: 103 start-page: 074503 year: 2008 ident: bib118 article-title: Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node publication-title: J. Appl. Phys. – volume: 97 start-page: 10B301 year: 2005 ident: bib103 article-title: Surface contribution to the anisotropy energy of spherical magnetite particles publication-title: J. Appl. Phys. – volume: 312 start-page: 885 year: 2006 end-page: 888 ident: bib116 article-title: Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes publication-title: Science – volume: 11 start-page: 1207 year: 2008 end-page: 1212 ident: bib57 article-title: Apoferritin as a nanoreactor for preparing metallic nanoparticles publication-title: Comp. Rend. Chim. – volume: 130 start-page: 16527 year: 2008 end-page: 16529 ident: bib110 article-title: Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 294 year: 1998 end-page: 303 ident: bib5 article-title: The crystal structure of Dps, a ferritin homolog that binds and protects DNA publication-title: Nat. Struct. Biol. – volume: 23 start-page: 1615 year: 2007 end-page: 1618 ident: bib99 article-title: Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides publication-title: Langmuir – volume: 7 start-page: 1083 year: 1998 end-page: 1091 ident: bib21 article-title: Calculated electrostatic gradients in recombinant human H-chain ferritin publication-title: Protein Sci. – volume: 2 start-page: L713 year: 2007 end-page: L715 ident: bib92 article-title: Direct production of a two-dimensional ordered array of ferritin-nanoparticles on a silicon substrate publication-title: Jpn J Appl Phys – volume: 125 start-page: 10806 year: 2003 end-page: 10807 ident: bib136 article-title: 2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3813 year: 2008 end-page: 3820 ident: bib91 article-title: Biosupramolecules for nano-devices: biomineralization of nanoparticles and their applications publication-title: J. Mater. Chem. – volume: 4 start-page: 497 year: 1994 end-page: 505 ident: bib37 article-title: Magnetoferritin—characterization of a novel superparamagnetic MR contrast agent publication-title: J. Magn. Reson. Imaging – volume: 17 start-page: 49 year: 2007 end-page: 51 ident: bib55 article-title: Permanent magnetism in apoferritin-encapsulated Pd nanoparticles publication-title: J. Mater. Chem. – volume: 78 start-page: 2075 year: 2005 end-page: 2081 ident: bib44 article-title: Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin publication-title: Bull. Chem. Soc. Jpn. – volume: 14 start-page: 1562 year: 2002 end-page: 1565 ident: bib67 article-title: Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles publication-title: Adv. Mater. – volume: 10 start-page: 4327 year: 2008 end-page: 4332 ident: bib58 article-title: Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles publication-title: Phys Chem Chem Phys – volume: 7 start-page: 109 year: 2005 end-page: 117 ident: bib76 article-title: Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors publication-title: Neoplasia – volume: 270 start-page: 22478 year: 1995 end-page: 22482 ident: bib32 article-title: The DpsA protein of publication-title: J. Biol. Chem. – volume: 7 start-page: 3200 year: 2007 end-page: 3202 ident: bib119 article-title: In aqua structuralization of a three-dimensional configuration using biomolecules publication-title: Nano Lett. – volume: 126 start-page: 182 year: 1999 end-page: 194 ident: bib23 article-title: Mineralization in ferritin: an efficient means of iron storage publication-title: J. Struct. Biol. – volume: 5 start-page: 234 year: 2006 end-page: 240 ident: bib125 article-title: Spontaneous assembly of viruses on multilayered polymer surfaces publication-title: Nat. Mater. – volume: 125 start-page: 6848 year: 2003 end-page: 6849 ident: bib112 article-title: Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1081 year: 2008 end-page: 1089 ident: bib124 article-title: Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies publication-title: Nano Lett. – volume: 5 start-page: 2306 year: 2005 end-page: 2309 ident: bib87 article-title: Biomimetic synthesis of a H-2 catalyst using a protein cage architecture publication-title: Nano Lett. – volume: 10 start-page: 139 year: 2006 end-page: 148 ident: bib63 article-title: A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus publication-title: Extremophiles – volume: 88 start-page: 023108 year: 2006 ident: bib95 article-title: Electron confinement in a metal nanodot monolayer embedded in silicon dioxide produced using ferritin protein publication-title: Appl. Phys. Lett. – volume: 20 start-page: 1541 year: 2008 end-page: 1547 ident: bib64 article-title: Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile Pyrococcus furiosus publication-title: Chem. Mater. – volume: 39 start-page: 1828 year: 2000 end-page: 1830 ident: bib43 article-title: Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin publication-title: Inorg. Chem. – volume: 14 start-page: 376 year: 1981 end-page: 384 ident: bib107 article-title: Artificial photosynthesis—water cleavage into hydrogen and oxygen by visible-light publication-title: Acc. Chem. Res. – volume: 327 start-page: 1 year: 2009 end-page: 21 ident: bib132 article-title: Chemical modification of viruses and virus-like particles publication-title: Curr. Top. Microbiol. Immunol. – volume: 15 start-page: 246 year: 2008 end-page: 253 ident: bib111 article-title: Real-time monitoring of protein complexes reveals their quaternary organization and dynamics publication-title: Chem. Biol. – volume: 100 start-page: 1061 year: 2006 end-page: 1068 ident: bib7 article-title: Dps-like protein from the hyperthermophilic archaeon publication-title: J. Inorg. Biochem. – volume: 126 start-page: 13282 year: 2004 end-page: 13286 ident: bib56 article-title: Engineered protein cages for nanomaterial synthesis publication-title: J. Am. Chem. Soc. – volume: 95 start-page: 342 year: 2008 end-page: 351 ident: bib77 article-title: Controlled aggregation of ferritin to modulate MRI relaxivity publication-title: Biophys J – volume: 279 start-page: 377 year: 1998 end-page: 380 ident: bib84 article-title: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model publication-title: Science – volume: 51 start-page: 607 year: 2004 end-page: 611 ident: bib78 article-title: Mimicking liver iron overload using liposomal ferritin preparations publication-title: Magn Reson Med – volume: 3 start-page: 316 year: 1991 end-page: 318 ident: bib40 article-title: Controlled synthesis of inorganic materials using supramolecular assemblies publication-title: Adv. Mater. – volume: 47 start-page: 2237 year: 2008 end-page: 2239 ident: bib47 article-title: Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage publication-title: Inorg. Chem. – volume: 5 start-page: 1429 year: 2005 end-page: 1434 ident: bib115 article-title: Programmable assembly of nanoarchitectures using genetically engineered viruses publication-title: Nano Lett. – volume: 21 start-page: 458 year: 2009 end-page: 462 ident: bib86 article-title: Intracellular distribution of macrophage targeting ferriti-iron oxide nanocomposite publication-title: Adv. Mater. – volume: 211 start-page: 489 year: 1999 end-page: 495 ident: bib74 article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content publication-title: Radiology – volume: 1429 start-page: 40 year: 1998 end-page: 44 ident: bib1 article-title: Two-dimensional crystals of reconstituted beta-subunits of the chaperonin TF55 from Sulfolobus shibatae publication-title: Biochim. Biophys. Acta – volume: 48 start-page: 5623 year: 2009 end-page: 5630 ident: bib109 article-title: A helix swapping study of two protein cages publication-title: Biochemistry – volume: 2 start-page: 151 year: 1988 end-page: 153 ident: bib106 article-title: Protein and polymer analyses up to m/z 100 publication-title: Rapid Commun. Mass Spectrom. – volume: 350 start-page: 259 year: 1998 end-page: 265 ident: bib24 article-title: The effect of putative nucleation sites on the loading and stability of iron in ferritin publication-title: Arch. Biochem. Biophys. – volume: 6 start-page: 515 year: 2006 end-page: 519 ident: bib100 article-title: Mechanism underlying specificity of proteins targeting inorganic materials publication-title: Nano Lett. – volume: 1 start-page: 8946 year: 2006 end-page: 8951 ident: bib98 article-title: Floating gate metal-oxide-semiconductor capacitor employing array of high-density nanodots produced by protein supramolecule publication-title: Jpn J Appl Phys – volume: 127 start-page: 2800 year: 2005 end-page: 2801 ident: bib113 article-title: A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 1017 year: 2002 end-page: 1019 ident: bib81 article-title: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 159 year: 1997 end-page: 167 ident: bib16 article-title: Structural similarity and functional diversity in diiron-oxo proteins, JBIC publication-title: J. Biol. Inorg. Chem. – volume: 23 start-page: 12280 year: 2007 end-page: 12286 ident: bib133 article-title: Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer publication-title: Langmuir – volume: 30 start-page: 713 year: 2002 end-page: 715 ident: bib33 article-title: Characterization of a non-haem ferritin of the archaeon Halobacterium salinarum, homologous to Dps (starvation-induced DNA-binding protein) publication-title: Biochem. Soc. Trans. – volume: 272 start-page: 3259 year: 1997 end-page: 3265 ident: bib4 article-title: A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in publication-title: J. Biol. Chem. – volume: 81 start-page: 1669 year: 2008 end-page: 1674 ident: bib45 article-title: Improvement Of Co3O4 nanoparticle synthesis in apoferritin cavity by outer surface PEGylation publication-title: Bull. Chem. Soc. Jpn. – volume: 60 start-page: 1073 year: 2008 end-page: 1081 ident: bib79 article-title: A human ferritin iron oxide nano-composite magnetic resonance contrast agent publication-title: Magn Reson Med – volume: 33 start-page: 1158 year: 2004 end-page: 1159 ident: bib52 article-title: Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin publication-title: Chem. Lett. – volume: 268 start-page: 424 year: 1997 end-page: 448 ident: bib15 article-title: Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution publication-title: J. Mol. Biol. – volume: 19 start-page: 495601 year: 2008 ident: bib69 article-title: Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity publication-title: Nanotechnology – volume: 22 start-page: 8891 year: 2006 end-page: 8896 ident: bib123 article-title: Assembly of multilayer films incorporating a viral protein cage architecture publication-title: Langmuir – volume: 347 start-page: 495 year: 2005 end-page: 508 ident: bib6 article-title: Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans publication-title: J. Mol. Biol. – volume: 55 start-page: 552 year: 1999 end-page: 553 ident: bib31 article-title: Crystallization and preliminary x-ray crystallographic analysis of the unusual ferritin from Listeria innocua publication-title: Acta Crystallogr. Sect. D-Biol. Crystallogr. – volume: 14 start-page: 4939 year: 2008 end-page: 4947 ident: bib130 article-title: Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines publication-title: Chem. Eur. J. – volume: 58 start-page: 59 year: 1995 end-page: 68 ident: bib42 article-title: Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins publication-title: J. Inorg. Biochem. – volume: 246 start-page: 64 year: 1989 end-page: 71 ident: bib105 article-title: Electrospray ionization for mass spectrometry of large biomolecules publication-title: Science – reference: M.T. Klem, M. Young, T. Douglas, Biomimetic synthesis of photoactive α-Fe2O3 templated by the hyperthermophilic ferritin from Pyrococus furiosus, J. Mater. Chem. 20 (2010) 65–67. – volume: 129 start-page: 197 year: 2007 end-page: 201 ident: bib104 article-title: Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 10032 year: 2006 end-page: 10037 ident: bib121 article-title: Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports publication-title: Langmuir – volume: 2 start-page: 962 year: 2006 end-page: 966 ident: bib108 article-title: Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly publication-title: Small – volume: 23 start-page: 1001 year: 2005 end-page: 1004 ident: bib73 article-title: Relaxivities of human liver and spleen ferritin publication-title: Magn. Reson. Imaging – volume: 1 start-page: 7549 year: 2007 end-page: 7553 ident: bib96 article-title: Effects of dot density and dot size on charge injection characteristics in nanodot array produced by protein supramolecules publication-title: Jpn J Appl Phys – volume: 18 start-page: 249 year: 1996 end-page: 258 ident: bib2 article-title: A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea publication-title: FEMS Microbiol. Rev. – volume: 10 start-page: 279 year: 1998 end-page: 285 ident: bib39 article-title: Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin) publication-title: Chem. Mater. – volume: 1 start-page: 034006 year: 2008 ident: bib101 article-title: Adsorption properties of a gold-binding peptide assessed by its attachment to a recombinant apoferritin molecule publication-title: Appl. Phys. Exp. – volume: 9 start-page: 2360 year: 2009 end-page: 2366 ident: bib138 article-title: Janus-like protein cages, spatially controlled dual-functional surface modifications of protein cages publication-title: Nano Lett. – volume: 48 start-page: 4772 year: 2009 end-page: 4776 ident: bib68 article-title: Metal binding to nanoparticle formation; monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry publication-title: Angew. Chem. Int. Ed – volume: 43 start-page: 3441 year: 2004 end-page: 3446 ident: bib59 article-title: Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin publication-title: Inorg. Chem. – volume: 9 start-page: 514 year: 2008 end-page: 518 ident: bib128 article-title: Development of bacteriophage P22 as a platform for molecular display: genetic and chemical modifications of the procapsid exterior surface publication-title: Chembiochem – volume: 84 start-page: 187 year: 2003 end-page: 194 ident: bib46 article-title: Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin publication-title: Biotechnol. Bioeng. – year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib26 – volume: 211 start-page: 489 year: 1999 ident: 10.1016/j.bbagen.2009.12.005_bib74 article-title: T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content publication-title: Radiology doi: 10.1148/radiology.211.2.r99ma53489 – volume: 19 start-page: 495601 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib69 article-title: Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity publication-title: Nanotechnology doi: 10.1088/0957-4484/19/49/495601 – volume: 4 start-page: 497 year: 1994 ident: 10.1016/j.bbagen.2009.12.005_bib37 article-title: Magnetoferritin—characterization of a novel superparamagnetic MR contrast agent publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1880040343 – ident: 10.1016/j.bbagen.2009.12.005_bib71 doi: 10.1021/ja057069x – volume: 131 start-page: 6958 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib88 article-title: Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin publication-title: J Am Chem Soc doi: 10.1021/ja901234j – volume: 15 start-page: 513 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib131 article-title: Polyvalent display of heme on hepatitis B virus capsid protein through coordination to hexahistidine tags publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2008.03.018 – volume: 177 start-page: 473 year: 1956 ident: 10.1016/j.bbagen.2009.12.005_bib11 article-title: Structure of small viruses publication-title: Nature doi: 10.1038/177473a0 – volume: 7 start-page: 38 year: 2000 ident: 10.1016/j.bbagen.2009.12.005_bib34 article-title: The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site publication-title: Nat. Struct. Biol. doi: 10.1038/71236 – volume: 48 start-page: 4772 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib68 article-title: Metal binding to nanoparticle formation; monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry publication-title: Angew. Chem. Int. Ed doi: 10.1002/anie.200900437 – volume: 1 start-page: 8946 issue: 45 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib98 article-title: Floating gate metal-oxide-semiconductor capacitor employing array of high-density nanodots produced by protein supramolecule publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.45.8946 – volume: 8 start-page: 1081 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib124 article-title: Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies publication-title: Nano Lett. doi: 10.1021/nl073079f – volume: 19 start-page: 255201 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib117 article-title: Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template publication-title: Nanotechnology doi: 10.1088/0957-4484/19/25/255201 – volume: 10 start-page: 139 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib63 article-title: A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus publication-title: Extremophiles doi: 10.1007/s00792-005-0484-x – volume: 130 start-page: 4578 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib127 article-title: On-virus construction of polyvalent glycan ligands for cell-surface receptors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077801n – volume: 44 start-page: 6393 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib53 article-title: Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system publication-title: Inorg. Chem. doi: 10.1021/ic0502426 – volume: 347 start-page: 495 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib6 article-title: Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.01.055 – volume: 46 start-page: L804 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib93 article-title: Low-temperature polycrystalline silicon thin film transistor flash memory with ferritin publication-title: Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. doi: 10.1143/JJAP.46.L804 – volume: 128 start-page: 16626 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib85 article-title: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0655690 – volume: 16 start-page: 2757 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib60 article-title: Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/B604860A – volume: 130 start-page: 16527 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib110 article-title: Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807655t – volume: 7 start-page: 109 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib76 article-title: Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors publication-title: Neoplasia doi: 10.1593/neo.04436 – volume: 312 start-page: 885 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib116 article-title: Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes publication-title: Science doi: 10.1126/science.1122716 – volume: 7 start-page: 3200 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib119 article-title: In aqua structuralization of a three-dimensional configuration using biomolecules publication-title: Nano Lett. doi: 10.1021/nl071921b – start-page: 4871 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib62 article-title: Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin publication-title: Chem. Commun. doi: 10.1039/b908742g – volume: 350 start-page: 259 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib24 article-title: The effect of putative nucleation sites on the loading and stability of iron in ferritin publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0523 – volume: 5 start-page: 234 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib125 article-title: Spontaneous assembly of viruses on multilayered polymer surfaces publication-title: Nat. Mater. doi: 10.1038/nmat1596 – volume: 88 start-page: 153103 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib97 article-title: Electrostatic placement of single ferritin molecules publication-title: Appl Phys Lett doi: 10.1063/1.2189566 – volume: 297 start-page: 242 year: 2000 ident: 10.1016/j.bbagen.2009.12.005_bib22 article-title: The ferritin iron entry and exit problem publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(99)00375-8 – volume: 11 start-page: 1207 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib57 article-title: Apoferritin as a nanoreactor for preparing metallic nanoparticles publication-title: Comp. Rend. Chim. doi: 10.1016/j.crci.2008.09.003 – volume: 2 start-page: 159 year: 1997 ident: 10.1016/j.bbagen.2009.12.005_bib16 article-title: Structural similarity and functional diversity in diiron-oxo proteins, JBIC publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s007750050120 – volume: 279 start-page: 377 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib84 article-title: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model publication-title: Science doi: 10.1126/science.279.5349.377 – volume: 38 start-page: 324 year: 1969 ident: 10.1016/j.bbagen.2009.12.005_bib10 article-title: Structures derived from cowpea chlorotic mottle and brome mosaic virus protein publication-title: Virology doi: 10.1016/0042-6822(69)90374-2 – volume: 23 start-page: 1615 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib99 article-title: Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides publication-title: Langmuir doi: 10.1021/la061318t – volume: 125 start-page: 10806 year: 2003 ident: 10.1016/j.bbagen.2009.12.005_bib136 article-title: 2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0363718 – volume: 131 start-page: 9164 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib137 article-title: A streptavidin-protein cage Janus particle for polarized targeting and modular functionalization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9035187 – volume: 58 start-page: 59 year: 1995 ident: 10.1016/j.bbagen.2009.12.005_bib42 article-title: Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins publication-title: J. Inorg. Biochem. doi: 10.1016/0162-0134(94)00037-B – volume: 9 start-page: 456 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib120 article-title: Assembly of multilayer arrays of viral nanoparticles via biospecific recognition: a quartz crystal microbalance with dissipation monitoring study publication-title: Biomacromolecules doi: 10.1021/bm700797b – volume: 327 start-page: 1 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib132 article-title: Chemical modification of viruses and virus-like particles publication-title: Curr. Top. Microbiol. Immunol. doi: 10.1007/978-3-540-69379-6_1 – ident: 10.1016/j.bbagen.2009.12.005_bib65 doi: 10.1039/B918620D – volume: 36 start-page: 3009 year: 2000 ident: 10.1016/j.bbagen.2009.12.005_bib61 article-title: Self assembled nanoparticulate Co:Pt for data storage applications publication-title: IEEE Trans. Magn. doi: 10.1109/20.908658 – volume: 22 start-page: 8891 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib123 article-title: Assembly of multilayer films incorporating a viral protein cage architecture publication-title: Langmuir doi: 10.1021/la0612062 – volume: 61 start-page: 503 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib14 article-title: Crystallization and preliminary x-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus publication-title: Acta Crystallogr. F-Struct. Biol. Cryst. Commun. doi: 10.1107/S1744309105011516 – volume: 9 start-page: 813 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib134 article-title: Natural supramolecular building blocks publication-title: Cysteine-Added Mutants of Cowpea Mosaic Virus, Chemistry and Biology – volume: 84 start-page: 187 year: 2003 ident: 10.1016/j.bbagen.2009.12.005_bib46 article-title: Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10748 – volume: 125 start-page: 6848 year: 2003 ident: 10.1016/j.bbagen.2009.12.005_bib112 article-title: Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034479h – volume: 95 start-page: 342 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib77 article-title: Controlled aggregation of ferritin to modulate MRI relaxivity publication-title: Biophys J doi: 10.1529/biophysj.107.116145 – volume: 20 start-page: 1541 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib64 article-title: Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile Pyrococcus furiosus publication-title: Chem. Mater. doi: 10.1021/cm702732x – volume: 272 start-page: 3259 year: 1997 ident: 10.1016/j.bbagen.2009.12.005_bib4 article-title: A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.6.3259 – volume: 1 start-page: 7549 issue: 46 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib96 article-title: Effects of dot density and dot size on charge injection characteristics in nanodot array produced by protein supramolecules publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.46.7549 – volume: 5 start-page: 1429 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib115 article-title: Programmable assembly of nanoarchitectures using genetically engineered viruses publication-title: Nano Lett. doi: 10.1021/nl050795d – volume: 118 start-page: 505 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib27 article-title: Computation of surface electrical potentials of plant cell membranes publication-title: Plant Physiol. doi: 10.1104/pp.118.2.505 – volume: 7 start-page: 3200 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib102 article-title: In aqua structuralization of a three-dimensional configuration using biomolecules publication-title: Nano Lett. doi: 10.1021/nl071921b – volume: 10 start-page: 4327 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib58 article-title: Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles publication-title: Phys Chem Chem Phys doi: 10.1039/b804023k – volume: 18 start-page: 3813 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib91 article-title: Biosupramolecules for nano-devices: biomineralization of nanoparticles and their applications publication-title: J. Mater. Chem. doi: 10.1039/b810190f – volume: 261 start-page: 1286 year: 1993 ident: 10.1016/j.bbagen.2009.12.005_bib38 article-title: Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis publication-title: Science doi: 10.1126/science.261.5126.1286 – volume: 14 start-page: 415 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib12 article-title: Protein engineering of a viral cage for constrained nanomaterials synthesis publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020318)14:6<415::AID-ADMA415>3.0.CO;2-W – volume: 2 start-page: 151 year: 1988 ident: 10.1016/j.bbagen.2009.12.005_bib106 article-title: Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.1290020802 – volume: 17 start-page: 49 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib55 article-title: Permanent magnetism in apoferritin-encapsulated Pd nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/B614592B – volume: 115 start-page: 8471 year: 1993 ident: 10.1016/j.bbagen.2009.12.005_bib41 article-title: Characterization of the manganese core of reconstituted ferritin by x-ray-absorption spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00071a076 – volume: 130 start-page: 10512 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib89 article-title: Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802463a – volume: 13 start-page: 161 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib83 article-title: Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2005.11.007 – volume: 23 start-page: 12280 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib133 article-title: Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer publication-title: Langmuir doi: 10.1021/la7021424 – volume: 48 start-page: 5623 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib109 article-title: A helix swapping study of two protein cages publication-title: Biochemistry doi: 10.1021/bi900387t – volume: 47 start-page: 7845 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib70 article-title: Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H2 production13 publication-title: Angew. Chem. Int. Ed doi: 10.1002/anie.200802481 – volume: 9 start-page: 2360 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib138 article-title: Janus-like protein cages, spatially controlled dual-functional surface modifications of protein cages publication-title: Nano Lett. doi: 10.1021/nl9009028 – volume: 55 start-page: 552 year: 1999 ident: 10.1016/j.bbagen.2009.12.005_bib31 article-title: Crystallization and preliminary x-ray crystallographic analysis of the unusual ferritin from Listeria innocua publication-title: Acta Crystallogr. Sect. D-Biol. Crystallogr. doi: 10.1107/S0907444998012177 – volume: 51 start-page: 607 year: 2004 ident: 10.1016/j.bbagen.2009.12.005_bib78 article-title: Mimicking liver iron overload using liposomal ferritin preparations publication-title: Magn Reson Med doi: 10.1002/mrm.10735 – volume: 246 start-page: 64 year: 1989 ident: 10.1016/j.bbagen.2009.12.005_bib105 article-title: Electrospray ionization for mass spectrometry of large biomolecules publication-title: Science doi: 10.1126/science.2675315 – volume: 18 start-page: 249 year: 1996 ident: 10.1016/j.bbagen.2009.12.005_bib2 article-title: A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1996.tb00241.x – volume: 105 start-page: 17227 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib114 article-title: Stamped microbattery electrodes based on self-assembled M13 viruses publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711620105 – volume: 1429 start-page: 40 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib1 article-title: Two-dimensional crystals of reconstituted beta-subunits of the chaperonin TF55 from Sulfolobus shibatae publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4838(98)00218-0 – volume: 277 start-page: 27689 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib9 article-title: Iron and hydrogen peroxide detoxification properties of Dps. A ferritin-like DNA binding protein of Escherichia coli publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202094200 – volume: 22 start-page: 10032 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib121 article-title: Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports publication-title: Langmuir doi: 10.1021/la0621362 – volume: 127 start-page: 2800 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib113 article-title: A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043827s – volume: 9 start-page: 514 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib128 article-title: Development of bacteriophage P22 as a platform for molecular display: genetic and chemical modifications of the procapsid exterior surface publication-title: Chembiochem doi: 10.1002/cbic.200700555 – volume: 78 start-page: 2075 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib44 article-title: Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.78.2075 – volume: 269 start-page: 54 year: 1995 ident: 10.1016/j.bbagen.2009.12.005_bib50 article-title: Synthesis and structure of an iron(Iii) sulfide-ferritin bioinorganic nanocomposite publication-title: Science doi: 10.1126/science.269.5220.54 – start-page: 2390 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib126 article-title: Chemical modification of a viral cage for multivalent presentation publication-title: Chem. Commun. doi: 10.1039/b207853h – volume: 126 start-page: 13282 year: 2004 ident: 10.1016/j.bbagen.2009.12.005_bib56 article-title: Engineered protein cages for nanomaterial synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046735b – volume: 42 start-page: 6300 year: 2003 ident: 10.1016/j.bbagen.2009.12.005_bib66 article-title: Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua publication-title: Inorg. Chem. doi: 10.1021/ic0343657 – volume: 10 start-page: 279 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib39 article-title: Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin) publication-title: Chem. Mater. doi: 10.1021/cm970421o – year: 1980 ident: 10.1016/j.bbagen.2009.12.005_bib28 – volume: 270 start-page: 22478 year: 1995 ident: 10.1016/j.bbagen.2009.12.005_bib32 article-title: The DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.38.22478 – volume: 394 start-page: 595 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib3 article-title: Crystal structure of a small heat-shock protein publication-title: Nature doi: 10.1038/29106 – volume: 148 start-page: 743 year: 1983 ident: 10.1016/j.bbagen.2009.12.005_bib72 article-title: Nuclear magnetic resonance imaging of experimentally induced liver disease publication-title: Radiology doi: 10.1148/radiology.148.3.6192464 – volume: 316 start-page: 1726 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib20 article-title: The structure of ferrihydrite, a nanocrystalline material publication-title: Science doi: 10.1126/science.1142525 – start-page: 6519 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib90 article-title: Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin publication-title: Chem. Commun. doi: 10.1039/b813181c – volume: 4 start-page: 2519 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib122 article-title: Signal ampflication using nanoplatform cluster formation publication-title: Soft Matter doi: 10.1039/b808178f – volume: 3 start-page: 316 year: 1991 ident: 10.1016/j.bbagen.2009.12.005_bib40 article-title: Controlled synthesis of inorganic materials using supramolecular assemblies publication-title: Adv. Mater. doi: 10.1002/adma.19910030611 – volume: 23 start-page: 1001 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib73 article-title: Relaxivities of human liver and spleen ferritin publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2005.10.009 – volume: 15 start-page: 246 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib111 article-title: Real-time monitoring of protein complexes reveals their quaternary organization and dynamics publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2008.01.009 – volume: 14 start-page: 376 year: 1981 ident: 10.1016/j.bbagen.2009.12.005_bib107 article-title: Artificial photosynthesis—water cleavage into hydrogen and oxygen by visible-light publication-title: Acc. Chem. Res. doi: 10.1021/ar00072a003 – volume: 5 start-page: 294 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib5 article-title: The crystal structure of Dps, a ferritin homolog that binds and protects DNA publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0498-294 – volume: 44 start-page: 3203 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib49 article-title: Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin publication-title: Inorg. Chem. doi: 10.1021/ic048819r – volume: 103 start-page: 074503 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib118 article-title: Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node publication-title: J. Appl. Phys. doi: 10.1063/1.2888357 – volume: 2 start-page: 962 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib108 article-title: Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly publication-title: Small doi: 10.1002/smll.200500433 – volume: 8 start-page: 928 year: 1996 ident: 10.1016/j.bbagen.2009.12.005_bib51 article-title: Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites publication-title: Adv. Mater. doi: 10.1002/adma.19960081114 – volume: 41 start-page: 1017 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib81 article-title: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P – volume: 314 start-page: 139 year: 1996 ident: 10.1016/j.bbagen.2009.12.005_bib25 article-title: Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres publication-title: J. Biol. Chem. – volume: 129 start-page: 197 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib104 article-title: Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0667561 – volume: 278 start-page: 20319 year: 2003 ident: 10.1016/j.bbagen.2009.12.005_bib30 article-title: The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M302114200 – volume: 81 start-page: 1669 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib45 article-title: Improvement Of Co3O4 nanoparticle synthesis in apoferritin cavity by outer surface PEGylation publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.81.1669 – volume: 30 start-page: 713 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib33 article-title: Characterization of a non-haem ferritin of the archaeon Halobacterium salinarum, homologous to Dps (starvation-induced DNA-binding protein) publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0300713 – volume: 5 start-page: 991 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib48 article-title: Self-organized inorganic nanoparticle arrays on protein lattices publication-title: Nano Letters doi: 10.1021/nl050556q – volume: 257 start-page: 522 year: 1992 ident: 10.1016/j.bbagen.2009.12.005_bib36 article-title: Magnetoferritin: in vitro synthesis of a novel magnetic protein publication-title: Science doi: 10.1126/science.1636086 – volume: 22 start-page: 876 year: 1983 ident: 10.1016/j.bbagen.2009.12.005_bib18 article-title: Fate of oxygen during ferritin iron incorporation publication-title: Biochemistry doi: 10.1021/bi00273a026 – volume: 60 start-page: 1073 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib79 article-title: A human ferritin iron oxide nano-composite magnetic resonance contrast agent publication-title: Magn Reson Med doi: 10.1002/mrm.21761 – volume: 39 start-page: 1828 year: 2000 ident: 10.1016/j.bbagen.2009.12.005_bib43 article-title: Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin publication-title: Inorg. Chem. doi: 10.1021/ic991269q – year: 2003 ident: 10.1016/j.bbagen.2009.12.005_bib19 – volume: 1 start-page: 034006 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib101 article-title: Adsorption properties of a gold-binding peptide assessed by its attachment to a recombinant apoferritin molecule publication-title: Appl. Phys. Exp. doi: 10.1143/APEX.1.034006 – volume: 101 start-page: 13780 year: 2004 ident: 10.1016/j.bbagen.2009.12.005_bib35 article-title: Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0401821101 – volume: 97 start-page: 10B301 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib103 article-title: Surface contribution to the anisotropy energy of spherical magnetite particles publication-title: J. Appl. Phys. doi: 10.1063/1.1845973 – volume: 14 start-page: 4939 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib130 article-title: Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines publication-title: Chem. Eur. J. doi: 10.1002/chem.200800203 – volume: 47 start-page: 2237 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib47 article-title: Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage publication-title: Inorg. Chem. doi: 10.1021/ic701740q – volume: 11 start-page: 450 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib75 article-title: A new transgene reporter for in vivo magnetic resonance imaging publication-title: Nat. Med. doi: 10.1038/nm1208 – volume: 5 start-page: 2306 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib87 article-title: Biomimetic synthesis of a H-2 catalyst using a protein cage architecture publication-title: Nano Lett. doi: 10.1021/nl0517619 – volume: 43 start-page: 3441 year: 2004 ident: 10.1016/j.bbagen.2009.12.005_bib59 article-title: Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin publication-title: Inorg. Chem. doi: 10.1021/ic035415a – volume: 14 start-page: 1562 year: 2002 ident: 10.1016/j.bbagen.2009.12.005_bib67 article-title: Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles publication-title: Adv. Mater. doi: 10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D – volume: 45 start-page: L1 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib94 article-title: Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.L1 – volume: 88 start-page: 023108 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib95 article-title: Electron confinement in a metal nanodot monolayer embedded in silicon dioxide produced using ferritin protein publication-title: Appl. Phys. Lett. doi: 10.1063/1.2162686 – volume: 102 start-page: 10551 year: 2005 ident: 10.1016/j.bbagen.2009.12.005_bib8 article-title: An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0501497102 – volume: 2 start-page: L713 issue: 46 year: 2007 ident: 10.1016/j.bbagen.2009.12.005_bib92 article-title: Direct production of a two-dimensional ordered array of ferritin-nanoparticles on a silicon substrate publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.46.L713 – volume: 6 start-page: 2646 year: 1992 ident: 10.1016/j.bbagen.2009.12.005_bib29 article-title: A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli publication-title: Genes Dev. doi: 10.1101/gad.6.12b.2646 – volume: 349 start-page: 541 year: 1991 ident: 10.1016/j.bbagen.2009.12.005_bib17 article-title: Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts publication-title: Nature doi: 10.1038/349541a0 – volume: 312 start-page: 873 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib82 article-title: Viruses: making friends with old foes publication-title: Science doi: 10.1126/science.1123223 – volume: 12 start-page: 354 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib129 article-title: Viral nanoparticles as tools for intravital vascular imaging publication-title: Nat. Med. doi: 10.1038/nm1368 – volume: 33 start-page: 1158 year: 2004 ident: 10.1016/j.bbagen.2009.12.005_bib52 article-title: Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin publication-title: Chem. Lett. doi: 10.1246/cl.2004.1158 – volume: 6 start-page: 515 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib100 article-title: Mechanism underlying specificity of proteins targeting inorganic materials publication-title: Nano Lett. doi: 10.1021/nl060050n – volume: 268 start-page: 424 year: 1997 ident: 10.1016/j.bbagen.2009.12.005_bib15 article-title: Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.0970 – volume: 7 start-page: 1083 year: 1998 ident: 10.1016/j.bbagen.2009.12.005_bib21 article-title: Calculated electrostatic gradients in recombinant human H-chain ferritin publication-title: Protein Sci. doi: 10.1002/pro.5560070502 – ident: 10.1016/j.bbagen.2009.12.005_bib80 – volume: 126 start-page: 182 year: 1999 ident: 10.1016/j.bbagen.2009.12.005_bib23 article-title: Mineralization in ferritin: an efficient means of iron storage publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1999.4118 – volume: 41 start-page: 9669 year: 2008 ident: 10.1016/j.bbagen.2009.12.005_bib135 article-title: Stimuli-Responsive Bicomponent Polymer Janus Particles by “Grafting from”/“Grafting to” Approaches publication-title: Macromolecules doi: 10.1021/ma802089h – volume: 43 start-page: 2527 year: 2004 ident: 10.1016/j.bbagen.2009.12.005_bib54 article-title: Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200353436 – volume: 1275 start-page: 161 year: 1996 ident: 10.1016/j.bbagen.2009.12.005_bib13 article-title: Ferritins: molecular properties, iron storage function and cellular regulation publication-title: Biochim. Biophys. Acta-Bioenerg. doi: 10.1016/0005-2728(96)00022-9 – volume: 21 start-page: 458 year: 2009 ident: 10.1016/j.bbagen.2009.12.005_bib86 article-title: Intracellular distribution of macrophage targeting ferriti-iron oxide nanocomposite publication-title: Adv. Mater. doi: 10.1002/adma.200801209 – volume: 100 start-page: 1061 year: 2006 ident: 10.1016/j.bbagen.2009.12.005_bib7 article-title: Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2005.12.001 – reference: 18431733 - Chemistry. 2008;14(16):4939-47 – reference: 9473300 - Arch Biochem Biophys. 1998 Feb 15;350(2):259-65 – reference: 5784855 - Virology. 1969 Jun;38(2):324-35 – reference: 17199299 - J Am Chem Soc. 2007 Jan 10;129(1):197-201 – reference: 12783520 - J Am Chem Soc. 2003 Jun 11;125(23):6848-9 – reference: 12430455 - Chem Commun (Camb). 2002 Oct 21;(20):2390-1 – reference: 19405543 - Biochemistry. 2009 Jun 23;48(24):5623-30 – reference: 6192464 - Radiology. 1983 Sep;148(3):743-51 – reference: 1340475 - Genes Dev. 1992 Dec;6(12B):2646-54 – reference: 10228533 - Radiology. 1999 May;211(2):489-95 – reference: 15778721 - Nat Med. 2005 Apr;11(4):450-4 – reference: 18197628 - Biomacromolecules. 2008 Feb;9(2):456-62 – reference: 18326661 - Biophys J. 2008 Jul;95(1):342-51 – reference: 18767197 - Angew Chem Int Ed Engl. 2008;47(41):7845-8 – reference: 7802866 - J Magn Reson Imaging. 1994 May-Jun;4(3):497-505 – reference: 21730676 - Nanotechnology. 2008 Dec 10;19(49):495601 – reference: 12660233 - J Biol Chem. 2003 May 30;278(22):20319-26 – reference: 15127443 - Angew Chem Int Ed Engl. 2004 May 3;43(19):2527-30 – reference: 17525301 - Science. 2007 Jun 22;316(5832):1726-9 – reference: 10625425 - Nat Struct Biol. 2000 Jan;7(1):38-43 – reference: 18636721 - J Am Chem Soc. 2008 Aug 13;130(32):10512-4 – reference: 18482703 - Chem Biol. 2008 May;15(5):513-9 – reference: 9013563 - J Biol Chem. 1997 Feb 7;272(6):3259-65 – reference: 17787702 - Science. 1995 Jul 7;269(5220):54-7 – reference: 15802016 - Neoplasia. 2005 Feb;7(2):109-17 – reference: 18355724 - Chem Biol. 2008 Mar;15(3):246-53 – reference: 16412514 - J Inorg Biochem. 2006 May;100(5-6):1061-8 – reference: 12952458 - J Am Chem Soc. 2003 Sep 10;125(36):10806-7 – reference: 15365182 - Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13780-5 – reference: 16601154 - Science. 2006 May 12;312(5775):885-8 – reference: 17106996 - Langmuir. 2006 Nov 21;22(24):10032-7 – reference: 10089376 - Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):552-3 – reference: 13309339 - Nature. 1956 Mar 10;177(4506):473-5 – reference: 17279636 - Langmuir. 2007 Feb 13;23(4):1615-8 – reference: 16024730 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10551-6 – reference: 16511080 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 May 1;61(Pt 5):503-6 – reference: 19554690 - J Am Chem Soc. 2008 Dec 10;130(49):16527-9 – reference: 12526579 - Inorg Chem. 2000 Apr 17;39(8):1828-30 – reference: 17014132 - Langmuir. 2006 Oct 10;22(21):8891-6 – reference: 16704261 - J Am Chem Soc. 2006 May 24;128(20):6611-9 – reference: 1992356 - Nature. 1991 Feb 7;349(6309):541-4 – reference: 16376184 - Magn Reson Imaging. 2005 Dec;23(10):1001-4 – reference: 8660274 - Biochem J. 1996 Feb 15;314 ( Pt 1):139-44 – reference: 16690856 - Science. 2006 May 12;312(5775):873-5 – reference: 12196173 - Biochem Soc Trans. 2002 Aug;30(4):713-5 – reference: 15755446 - J Mol Biol. 2005 Apr 1;347(3):495-508 – reference: 10441528 - J Struct Biol. 1999 Jun 30;126(3):182-94 – reference: 16277473 - Nano Lett. 2005 Nov;5(11):2306-9 – reference: 19057765 - Chem Commun (Camb). 2008 Dec 28;(48):6519-21 – reference: 17193150 - Small. 2006 Aug;2(8-9):962-6 – reference: 16341820 - Extremophiles. 2006 Apr;10(2):139-48 – reference: 19455534 - Angew Chem Int Ed Engl. 2009;48(26):4772-6 – reference: 1636086 - Science. 1992 Jul 24;257(5069):522-3 – reference: 18633553 - Phys Chem Chem Phys. 2008 Aug 7;10(29):4327-32 – reference: 19453195 - J Am Chem Soc. 2009 May 27;131(20):6958-60 – reference: 16501571 - Nat Med. 2006 Mar;12(3):354-60 – reference: 18213564 - Chembiochem. 2008 Mar 3;9(4):514-8 – reference: 21828646 - Nanotechnology. 2008 Jun 25;19(25):255201 – reference: 16492564 - Chem Biol. 2006 Feb;13(2):161-70 – reference: 16178252 - Nano Lett. 2005 Jul;5(7):1429-34 – reference: 15884908 - Nano Lett. 2005 May;5(5):991-3 – reference: 16489350 - Nat Mater. 2006 Mar;5(3):234-40 – reference: 18355056 - Nano Lett. 2008 Apr;8(4):1081-9 – reference: 19522495 - J Am Chem Soc. 2009 Jul 8;131(26):9164-5 – reference: 12144925 - Chem Biol. 2002 Jul;9(7):813-9 – reference: 17177411 - J Am Chem Soc. 2006 Dec 27;128(51):16626-33 – reference: 18753629 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17227-31 – reference: 15740085 - J Am Chem Soc. 2005 Mar 9;127(9):2800-1 – reference: 18341338 - J Am Chem Soc. 2008 Apr 9;130(14):4578-9 – reference: 7738539 - J Inorg Biochem. 1995 Apr;58(1):59-68 – reference: 9159481 - J Mol Biol. 1997 May 2;268(2):424-48 – reference: 19198568 - Curr Top Microbiol Immunol. 2009;327:1-21 – reference: 15847428 - Inorg Chem. 2005 May 2;44(9):3203-9 – reference: 6838829 - Biochemistry. 1983 Feb 15;22(4):876-80 – reference: 12491298 - Angew Chem Int Ed Engl. 2002 Mar 15;41(6):1017-9 – reference: 12016214 - J Biol Chem. 2002 Aug 2;277(31):27689-96 – reference: 15154806 - Inorg Chem. 2004 May 31;43(11):3441-6 – reference: 15479082 - J Am Chem Soc. 2004 Oct 20;126(41):13282-6 – reference: 9546221 - Nat Struct Biol. 1998 Apr;5(4):294-303 – reference: 17731856 - Science. 1993 Sep 3;261(5126):1286-92 – reference: 16522054 - Nano Lett. 2006 Mar;6(3):515-9 – reference: 12966575 - Biotechnol Bioeng. 2003 Oct 20;84(2):187-94 – reference: 9920382 - Biochim Biophys Acta. 1998 Dec 8;1429(1):40-4 – reference: 16124819 - Inorg Chem. 2005 Sep 5;44(18):6393-400 – reference: 19441792 - Nano Lett. 2009 Jun;9(6):2360-6 – reference: 9765535 - Plant Physiol. 1998 Oct;118(2):505-12 – reference: 9605313 - Protein Sci. 1998 May;7(5):1083-91 – reference: 17824660 - Nano Lett. 2007 Oct;7(10):3200-2 – reference: 7673237 - J Biol Chem. 1995 Sep 22;270(38):22478-82 – reference: 14514305 - Inorg Chem. 2003 Oct 6;42(20):6300-5 – reference: 19652809 - Chem Commun (Camb). 2009 Aug 28;(32):4871-3 – reference: 18307300 - Inorg Chem. 2008 Apr 7;47(7):2237-9 – reference: 8695634 - Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203 – reference: 15004804 - Magn Reson Med. 2004 Mar;51(3):607-11 – reference: 9430587 - Science. 1998 Jan 16;279(5349):377-80 – reference: 2675315 - Science. 1989 Oct 6;246(4926):64-71 – reference: 17949022 - Langmuir. 2007 Nov 20;23(24):12280-6 – reference: 9707123 - Nature. 1998 Aug 6;394(6693):595-9 – reference: 18956458 - Magn Reson Med. 2008 Nov;60(5):1073-81 |
SSID | ssj0000595 ssj0025309 |
Score | 2.43499 |
SecondaryResourceType | review_article |
Snippet | Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 834 |
SubjectTerms | Animals Bacterial Proteins - chemistry Bacterial Proteins - metabolism Bio-template Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biomimetic chemistry DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Dps ( DNA binding protein from nutrient starved cells) Ferritin Ferritins - chemistry Ferritins - genetics Ferritins - metabolism Ferritins - physiology Humans Iron - metabolism Janus particle Models, Biological Models, Molecular Molecular Weight Multifunctionalities Multigene Family Nanoparticle |
Title | The ferritin superfamily: Supramolecular templates for materials synthesis |
URI | https://dx.doi.org/10.1016/j.bbagen.2009.12.005 https://www.ncbi.nlm.nih.gov/pubmed/20026386 https://www.proquest.com/docview/734002884 https://pubmed.ncbi.nlm.nih.gov/PMC3763752 |
Volume | 1800 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VVgguFZSvpVD5wDUsduLY4VatWi1d0QOlojcr_ohIVdLVZvfQS397Z-Jk6QJSJU4rZW3F8kzGL_HzewAfqqxSgQeepN7jC4ryMikRGSSVoG0s6_PQkce_nubT8-zkQl5swWQ4C0O0yr72x5reVev-yrifzfG8rsdntKmHcAJXPBJZoRPlOyItckztncMvs-np74IsO_MVap9Qh-EEXUfzshaf2yYKV9J3QfKx-_cK9TcC_ZNIeW9lOn4Guz2kZIdx1M9hKzR78DiaTN7swZPJ4On2Ak4wK1hFYozLumHtah4W8QvHZ3a2mi_KX4NZLiPJqivCoQxRLUNYGzOVtTcNQsa2bl_C-fHR98k06d0UEieFXiZe6dxpckCQ2iHK4L6wQnFhJQ8IC3xqdSZcFpQVoUg_lZnCZ1kJX5SBa1ep9BVsN9dNeAMsV87JynGvNSc5mlLkRHarMqu9xBIwgnSYQeN6qXFyvLgyA6fs0sR5JxfMwnBhcN5HkKx7zaPUxgPt1RAcs5EyBleDB3qyIZYGA0BbJGUTrletUZhIiLh0NoLXMbTroRCbBYtVjrfdCPq6AQl1b_7T1D87wW4q4kqKt_894H14GlkLRDx8B9vLxSq8RzC0tAfw6OMtP-hTnn5n337M7gAZugtP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrVC5IChfWwr4wDUsduzYy61atVpK20tbqTcr_ogIKulqs3vopb-dmThZWECqxDWxFcszHr94nt8AfKhkpSOPPMtDwB8UHVRWIjLIKkFpLBeK2JHHz86L2ZU8uVbXWzAd7sIQrbKP_Smmd9G6fzLuZ3M8r-vxBSX1EE7gjkciK3SjfEfi8qXV-fH-F88D8YNKqQSZUfPh_lxH8nIOV22TZCvpVJCq2P17f_obf_5Jo_xtXzp-Ck96QMkO05ifwVZs9uBRKjF5twe706Gi23M4QZ9gFUkxLuuGtat5XKTzjc_sYjVflD-GUrmMBKtuCIUyxLQMQW3yU9beNQgY27p9AVfHR5fTWdbXUsi8EmaZBW0Kb6j-gTIeMQYPEyc0F07xiKAg5M5I4WXUTsRJ_qmUGleyFmFSRm58pfOXsN3cNvE1sEJ7ryrPgzGcxGhKURDVrZLOBIUBYAT5MIPW90LjVO_ixg6Msu82zTvVwJxYLizO-wiyda95Etp4oL0ejGM3HMbiXvBATzbY0qIBKEFSNvF21VqNboR4y8gRvEqmXQ-FuCwYqgr87IbR1w1IpnvzTVN_6-S6KYRrJfb_e8DvYXd2eXZqT7-cf30DjxN_gSiIB7C9XKziW4RFS_euc_uf9VIKcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Ferritin+Superfamily%3A+Supramolecular+Templates+for+Materials+Synthesis&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Uchida%2C+Masaki&rft.au=Kang%2C+Sebyung&rft.au=Reichhardt%2C+Courtney&rft.au=Harlen%2C+Kevin&rft.date=2010-08-01&rft.issn=0006-3002&rft.volume=1800&rft.issue=8&rft.spage=834&rft.epage=845&rft_id=info:doi/10.1016%2Fj.bbagen.2009.12.005&rft_id=info%3Apmid%2F20026386&rft.externalDocID=PMC3763752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |