Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies

There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operationa...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 4; no. 1; p. 62
Main Authors Thorsen, Jonathan, Brejnrod, Asker, Mortensen, Martin, Rasmussen, Morten A., Stokholm, Jakob, Al-Soud, Waleed Abu, Sørensen, Søren, Bisgaard, Hans, Waage, Johannes
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 25.11.2016
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.
AbstractList There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.
There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.
Background There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Results Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Conclusions Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. Keywords: 16S sequencing, Microbiome, Benchmark, Differential relative abundance, Beta-diversity
There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources.BACKGROUNDThere is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources.Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power.RESULTSRunning more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power.Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.CONCLUSIONSOur results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.
Background There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Results Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Conclusions Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.
ArticleNumber 62
Audience Academic
Author Bisgaard, Hans
Mortensen, Martin
Brejnrod, Asker
Rasmussen, Morten A.
Al-Soud, Waleed Abu
Thorsen, Jonathan
Waage, Johannes
Stokholm, Jakob
Sørensen, Søren
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Thorsen
  fullname: Thorsen, Jonathan
– sequence: 2
  givenname: Asker
  surname: Brejnrod
  fullname: Brejnrod, Asker
– sequence: 3
  givenname: Martin
  surname: Mortensen
  fullname: Mortensen, Martin
– sequence: 4
  givenname: Morten A.
  surname: Rasmussen
  fullname: Rasmussen, Morten A.
– sequence: 5
  givenname: Jakob
  surname: Stokholm
  fullname: Stokholm, Jakob
– sequence: 6
  givenname: Waleed Abu
  surname: Al-Soud
  fullname: Al-Soud, Waleed Abu
– sequence: 7
  givenname: Søren
  surname: Sørensen
  fullname: Sørensen, Søren
– sequence: 8
  givenname: Hans
  surname: Bisgaard
  fullname: Bisgaard, Hans
– sequence: 9
  givenname: Johannes
  orcidid: 0000-0002-0603-8822
  surname: Waage
  fullname: Waage, Johannes
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27884206$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNUREvpA3BBlrjAIcV2nMS5IK0q_lRagdTC2XLsSdYlsRfbWbGvw5Pi7JZqt0Ik0jhyfjNjf_M9z06ss5BlLwm-JIRX7wLDpOJ5CjmmmOf8SXZGMWtyWhF-cvB9ml2EcIfT0xBWM_4sO6U154zi6iz7vZS-hzwoOQBqwarVKP0PY3vkYQNyCKhLAZA2QbkNeAMBSauRcpONKHppQ-f8KKNxFgWwwUSzMXGLjEWkukX-5ssC9WAByXE9GJUoLaNMNeSwDSagEeLK6YCmAHpOGo3yrjVuBBTipFO_F9nT3Rku7tfz7PvHD9-uPufLr5-urxbLXJWUx1xXWrOGcMxbKIqCtA2jihZU1TXoRjJQpGsaRSrZaUJoW7ddVUBLJK5pjQtcnGfv93XXUzuCVmDT9Qax9iZJshVOGnH8x5qV6N1GlCS1qXkq8Oa-gHc_JwhRjEk1GAZpwU1BEM4YpkVZsIS-foTeucknTXZU2VBWlAdUn6YjjO1c6qvmomLBajJPsCwTdfkPKr0axllw6EzaP0p4e5SQmAi_Yi-nEMT17c0x--pQlAc1_jooAWQPpLGF4KF7QAgWs1HF3qgiBTEbVcxC1Y9ylIk7C6WTm-E_mX8AvXjtTQ
CitedBy_id crossref_primary_10_1093_bioinformatics_btac778
crossref_primary_10_1093_nargab_lqaa029
crossref_primary_10_7717_peerj_15239
crossref_primary_10_1111_1462_2920_16025
crossref_primary_10_3390_biom15030400
crossref_primary_10_3390_applmicrobiol3020023
crossref_primary_10_1111_1755_0998_13128
crossref_primary_10_1111_mec_15070
crossref_primary_10_1186_s13059_017_1359_z
crossref_primary_10_1007_s00125_022_05805_3
crossref_primary_10_1186_s40793_024_00578_1
crossref_primary_10_1038_s41598_022_18503_2
crossref_primary_10_1016_j_csbj_2021_03_040
crossref_primary_10_1128_AEM_00395_21
crossref_primary_10_1016_j_scitotenv_2022_155223
crossref_primary_10_1093_femsec_fiy027
crossref_primary_10_3390_ijerph19063254
crossref_primary_10_5808_GI_2019_17_1_e6
crossref_primary_10_1016_j_scitotenv_2019_135067
crossref_primary_10_1016_j_resmic_2018_03_004
crossref_primary_10_3389_fmicb_2019_01746
crossref_primary_10_1111_mec_14138
crossref_primary_10_1186_s13059_022_02655_5
crossref_primary_10_24072_pcjournal_2
crossref_primary_10_1094_PBIOMES_04_17_0015_R
crossref_primary_10_3389_fmicb_2021_619141
crossref_primary_10_1186_s40168_018_0534_0
crossref_primary_10_3390_microorganisms8010094
crossref_primary_10_3389_fmicb_2017_02224
crossref_primary_10_3389_fnut_2021_661794
crossref_primary_10_1371_journal_pone_0247378
crossref_primary_10_1038_s41467_022_28034_z
crossref_primary_10_1016_j_scitotenv_2021_145214
crossref_primary_10_1016_j_compbiomed_2021_104556
crossref_primary_10_1093_bioinformatics_btac399
crossref_primary_10_1371_journal_pcbi_1008913
crossref_primary_10_3390_metabo12121222
crossref_primary_10_1111_mec_17595
crossref_primary_10_3389_fmars_2023_1320540
crossref_primary_10_1038_s41598_018_22629_7
crossref_primary_10_1016_j_jhazmat_2017_09_046
crossref_primary_10_1038_s41522_024_00545_1
crossref_primary_10_1111_jam_13679
crossref_primary_10_12688_f1000research_15858_1
crossref_primary_10_1186_s12859_018_2261_8
crossref_primary_10_7717_peerj_9493
crossref_primary_10_1038_s41598_024_62437_w
crossref_primary_10_1097_j_pain_0000000000002694
crossref_primary_10_1097_j_pain_0000000000001640
crossref_primary_10_1371_journal_pone_0259973
crossref_primary_10_1371_journal_pcbi_1009442
crossref_primary_10_1094_PBIOMES_2_1
crossref_primary_10_1097_QAD_0000000000002132
crossref_primary_10_1094_PHYTO_03_17_0111_RVW
crossref_primary_10_3389_fmicb_2020_587873
crossref_primary_10_1038_s41598_022_07995_7
crossref_primary_10_1016_j_csbj_2020_09_014
crossref_primary_10_3390_ijms20020438
crossref_primary_10_1099_mgen_0_000417
crossref_primary_10_1038_s41598_023_36101_8
crossref_primary_10_3390_microorganisms7070209
crossref_primary_10_1371_journal_pone_0228560
crossref_primary_10_3389_fmicb_2023_1250909
crossref_primary_10_1128_msystems_00620_24
crossref_primary_10_3389_fmicb_2021_685935
crossref_primary_10_1038_s41598_021_89881_2
crossref_primary_10_1186_s13059_024_03390_9
crossref_primary_10_1128_mSystems_01154_20
crossref_primary_10_1183_23120541_00939_2020
crossref_primary_10_3389_fmicb_2018_00366
crossref_primary_10_1002_mbo3_1410
crossref_primary_10_1038_s41396_020_0686_3
crossref_primary_10_12688_f1000research_110605_1
crossref_primary_10_3390_microorganisms9061344
crossref_primary_10_3354_ame01901
crossref_primary_10_3389_fgene_2020_00927
crossref_primary_10_1093_nar_gky976
crossref_primary_10_1038_s41467_023_42309_z
crossref_primary_10_1186_s13059_021_02506_9
crossref_primary_10_1186_s13059_020_02104_1
crossref_primary_10_1093_femsec_fiad097
crossref_primary_10_1186_s12859_021_04193_6
crossref_primary_10_1016_j_ijfoodmicro_2019_02_003
crossref_primary_10_1093_gigascience_giz107
crossref_primary_10_3390_nu14030412
crossref_primary_10_1186_s12866_019_1464_0
crossref_primary_10_1186_s40168_018_0606_1
crossref_primary_10_1186_s40168_019_0711_9
crossref_primary_10_3389_fpsyt_2023_1256771
crossref_primary_10_1038_s41467_024_49963_x
crossref_primary_10_1038_s41598_023_46062_7
crossref_primary_10_1186_s40168_018_0543_z
crossref_primary_10_1093_nar_gkx295
crossref_primary_10_1186_s12859_020_03552_z
crossref_primary_10_1002_wics_1586
crossref_primary_10_1016_j_csbj_2020_11_049
crossref_primary_10_1007_s11104_017_3528_y
crossref_primary_10_1111_mec_17428
crossref_primary_10_1186_s12866_018_1367_5
crossref_primary_10_1016_j_scitotenv_2024_177455
crossref_primary_10_3389_fmicb_2022_728146
crossref_primary_10_1186_s12866_021_02106_4
crossref_primary_10_1080_19490976_2017_1361093
crossref_primary_10_1186_s12859_022_05088_w
crossref_primary_10_1093_nargab_lqaa079
crossref_primary_10_1186_s40168_022_01233_y
crossref_primary_10_1186_s12859_017_1690_0
crossref_primary_10_1017_gmb_2022_12
crossref_primary_10_1038_s41598_019_55509_9
crossref_primary_10_1093_bib_bbab059
crossref_primary_10_1016_j_medj_2024_10_015
crossref_primary_10_3389_fmicb_2018_00294
crossref_primary_10_1007_s00253_021_11448_y
crossref_primary_10_1007_s00227_024_04448_9
crossref_primary_10_7717_peerj_4600
Cites_doi 10.2307/1942268
10.1186/s13059-014-0550-8
10.1371/journal.pcbi.1002863
10.1016/j.tree.2008.10.008
10.1038/nature11234
10.1186/2049-2618-2-11
10.1371/journal.pone.0061217
10.1186/1471-2105-12-77
10.1093/bioinformatics/btp616
10.1093/bioinformatics/btm453
10.1099/00207713-44-4-846
10.1186/gb-2010-11-10-r106
10.1073/pnas.1002611107
10.1038/nmeth.2658
10.1093/bioinformatics/btq461
10.1111/j.2517-6161.1995.tb02031.x
10.1186/gb-2014-15-6-r76
10.1007/978-0-387-21706-2
10.1038/nature08821
10.1111/j.1365-2664.2007.01377.x
10.1038/nmeth.2898
10.1371/journal.pcbi.1003531
10.1111/j.1462-2920.2010.02193.x
10.1128/AEM.71.12.8228-8235.2005
10.1016/j.chom.2014.09.013
10.1186/1471-2105-11-422
10.7287/peerj.preprints.1157
10.1128/AEM.02810-10
10.1007/978-0-387-98141-3
10.1186/2049-2618-2-15
10.1111/cea.12213
10.1101/gr.112730.110
10.1142/9789814366496_0021
10.1038/nature09944
10.1038/nmeth.2897
10.1007/978-0-387-87458-6
10.1186/2047-217X-1-7
10.1128/AEM.01996-06
ContentType Journal Article
Copyright COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
The Author(s). 2016
Copyright_xml – notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
– notice: The Author(s). 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/s40168-016-0208-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
ExternalDocumentID PMC5123278
4270072181
A471420655
27884206
10_1186_s40168_016_0208_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: R180-2014-3356; R93-A8499; R16-A1694
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c528t-d6dd491808be3331b942c232c77ed9a4ec1f99c16afd112b7bf63eb1a07270303
IEDL.DBID M48
ISSN 2049-2618
IngestDate Thu Aug 21 14:11:11 EDT 2025
Fri Jul 11 10:53:41 EDT 2025
Fri Jul 25 12:00:18 EDT 2025
Tue Jun 17 22:05:44 EDT 2025
Tue Jun 10 21:05:07 EDT 2025
Fri Jun 27 05:47:28 EDT 2025
Thu Apr 03 07:03:22 EDT 2025
Tue Jul 01 04:16:34 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Benchmark
Differential relative abundance
Beta-diversity
16S sequencing
Microbiome
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-d6dd491808be3331b942c232c77ed9a4ec1f99c16afd112b7bf63eb1a07270303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0603-8822
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-016-0208-8
PMID 27884206
PQID 1845924354
PQPubID 2040205
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123278
proquest_miscellaneous_1844023534
proquest_journals_1845924354
gale_infotracmisc_A471420655
gale_infotracacademiconefile_A471420655
gale_incontextgauss_ISR_A471420655
pubmed_primary_27884206
crossref_primary_10_1186_s40168_016_0208_8
crossref_citationtrail_10_1186_s40168_016_0208_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-25
PublicationDateYYYYMMDD 2016-11-25
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-25
  day: 25
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2016
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References BM Bolker (208_CR14) 2009; 24
208_CR8
M Arumugam (208_CR2) 2011; 473
D McDonald (208_CR6) 2012; 1
M Pop (208_CR35) 2014; 15
BJ Haas (208_CR37) 2011; 21
P Legendre (208_CR27) 1998
208_CR29
SA Richards (208_CR9) 2007; 45
JN Paulson (208_CR7) 2013; 10
208_CR44
D Knights (208_CR22) 2014; 16
J Oksanen (208_CR43) 2015
X Robin (208_CR42) 2011; 12
PJ McMurdie (208_CR12) 2014; 10
MD Robinson (208_CR10) 2007; 23
J Qin (208_CR1) 2010; 464
O Koren (208_CR21) 2013; 9
PI Costea (208_CR30) 2014; 11
CA Lozupone (208_CR26) 2007; 73
R Core Team (208_CR39) 2015
C Lozupone (208_CR25) 2005; 71
E Stackebrandt (208_CR3) 1994; 44
PD Schloss (208_CR5) 2011; 77
JN Paulson (208_CR31) 2014; 11
MD Robinson (208_CR16) 2010; 26
PJ McMurdie (208_CR38) 2013; 8
AD Fernandes (208_CR19) 2014; 2
J Ravel (208_CR20) 2011; 108
RC Edgar (208_CR36) 2010; 26
FE Angly (208_CR23) 2014; 2
208_CR18
WN Venables (208_CR41) 2002
JR Bray (208_CR24) 1957; 27
Y Benjamini (208_CR28) 1995; 57
H Bisgaard (208_CR33) 2013; 43
Human Microbiome Project Consortium (208_CR34) 2012; 486
SM Huse (208_CR4) 2010; 12
208_CR13
O Tange (208_CR40) 2011; 36
208_CR32
S Anders (208_CR11) 2010; 11
TJ Hardcastle (208_CR17) 2010; 11
MI Love (208_CR15) 2014; 15
20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
24699258 - PLoS Comput Biol. 2014 Apr 03;10(4):e1003531
20979621 - Genome Biol. 2010;11(10):R106
24708850 - Microbiome. 2014 Apr 07;2:11
20698981 - BMC Bioinformatics. 2010 Aug 10;11:422
25516281 - Genome Biol. 2014;15(12):550
20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7
25299329 - Cell Host Microbe. 2014 Oct 8;16(4):433-7
21421784 - Appl Environ Microbiol. 2011 May;77(10):3219-26
17220268 - Appl Environ Microbiol. 2007 Mar;73(5):1576-85
22174277 - Pac Symp Biocomput. 2012;:213-24
24995464 - Genome Biol. 2014 Jun 27;15(6):R76
22699609 - Nature. 2012 Jun 13;486(7402):207-14
16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35
24681719 - Nat Methods. 2014 Apr;11(4):359
23630581 - PLoS One. 2013 Apr 22;8(4):e61217
21414208 - BMC Bioinformatics. 2011 Mar 17;12:77
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
23587224 - Gigascience. 2012 Jul 12;1(1):7
19185386 - Trends Ecol Evol. 2009 Mar;24(3):127-35
24681718 - Nat Methods. 2014 Apr;11(4):359-60
24076764 - Nat Methods. 2013 Dec;10(12):1200-2
21508958 - Nature. 2011 May 12;473(7346):174-80
20203603 - Nature. 2010 Mar 4;464(7285):59-65
23326225 - PLoS Comput Biol. 2013;9(1):e1002863
24118234 - Clin Exp Allergy. 2013 Dec;43(12):1384-94
21212162 - Genome Res. 2011 Mar;21(3):494-504
24910773 - Microbiome. 2014 May 05;2:15
20236171 - Environ Microbiol. 2010 Jul;12(7):1889-98
References_xml – volume: 27
  start-page: 325
  year: 1957
  ident: 208_CR24
  publication-title: Ecol Monogr
  doi: 10.2307/1942268
– volume: 15
  start-page: 550
  year: 2014
  ident: 208_CR15
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 9
  start-page: e1002863
  year: 2013
  ident: 208_CR21
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002863
– volume: 24
  start-page: 127
  year: 2009
  ident: 208_CR14
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2008.10.008
– volume: 486
  start-page: 207
  year: 2012
  ident: 208_CR34
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 2
  start-page: 11
  year: 2014
  ident: 208_CR23
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-11
– volume: 8
  start-page: e61217
  year: 2013
  ident: 208_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061217
– volume: 12
  start-page: 77
  year: 2011
  ident: 208_CR42
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume-title: R: a language and environment for statistical computing
  year: 2015
  ident: 208_CR39
– volume: 26
  start-page: 139
  year: 2010
  ident: 208_CR16
  publication-title: Bioinforma Oxf Engl
  doi: 10.1093/bioinformatics/btp616
– volume: 23
  start-page: 2881
  year: 2007
  ident: 208_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm453
– volume: 44
  start-page: 846
  year: 1994
  ident: 208_CR3
  publication-title: Int J Syst Bacteriol.
  doi: 10.1099/00207713-44-4-846
– volume: 36
  start-page: 42
  year: 2011
  ident: 208_CR40
  publication-title: Login USENIX Mag
– volume: 11
  start-page: R106
  year: 2010
  ident: 208_CR11
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 108
  start-page: 4680
  issue: Suppl 1
  year: 2011
  ident: 208_CR20
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1002611107
– volume: 10
  start-page: 1200
  year: 2013
  ident: 208_CR7
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2658
– volume: 26
  start-page: 2460
  year: 2010
  ident: 208_CR36
  publication-title: Bioinforma Oxf Engl
  doi: 10.1093/bioinformatics/btq461
– volume: 57
  start-page: 289
  year: 1995
  ident: 208_CR28
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 15
  start-page: R76
  year: 2014
  ident: 208_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-6-r76
– volume-title: Modern applied statistics with S [Internet]. Fourth
  year: 2002
  ident: 208_CR41
  doi: 10.1007/978-0-387-21706-2
– volume: 464
  start-page: 59
  year: 2010
  ident: 208_CR1
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 45
  start-page: 218
  year: 2007
  ident: 208_CR9
  publication-title: J Appl Ecol
  doi: 10.1111/j.1365-2664.2007.01377.x
– volume: 11
  start-page: 359
  year: 2014
  ident: 208_CR31
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2898
– volume: 10
  start-page: e1003531
  year: 2014
  ident: 208_CR12
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003531
– volume: 12
  start-page: 1889
  year: 2010
  ident: 208_CR4
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02193.x
– volume: 71
  start-page: 8228
  year: 2005
  ident: 208_CR25
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8228-8235.2005
– volume: 16
  start-page: 433
  year: 2014
  ident: 208_CR22
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.09.013
– volume: 11
  start-page: 422
  year: 2010
  ident: 208_CR17
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-422
– ident: 208_CR13
  doi: 10.7287/peerj.preprints.1157
– ident: 208_CR18
– volume: 77
  start-page: 3219
  year: 2011
  ident: 208_CR5
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02810-10
– volume-title: Numerical Ecology
  year: 1998
  ident: 208_CR27
– ident: 208_CR44
  doi: 10.1007/978-0-387-98141-3
– volume: 2
  start-page: 15
  year: 2014
  ident: 208_CR19
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-15
– volume: 43
  start-page: 1384
  year: 2013
  ident: 208_CR33
  publication-title: Clin Exp Allergy J Br Soc Allergy Clin Immunol
  doi: 10.1111/cea.12213
– volume: 21
  start-page: 494
  year: 2011
  ident: 208_CR37
  publication-title: Genome Res
  doi: 10.1101/gr.112730.110
– ident: 208_CR32
  doi: 10.1142/9789814366496_0021
– volume: 473
  start-page: 174
  year: 2011
  ident: 208_CR2
  publication-title: Nature
  doi: 10.1038/nature09944
– volume-title: vegan: community ecology package [Internet]
  year: 2015
  ident: 208_CR43
– volume: 11
  start-page: 359
  year: 2014
  ident: 208_CR30
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2897
– ident: 208_CR8
  doi: 10.1007/978-0-387-87458-6
– volume: 1
  start-page: 7
  year: 2012
  ident: 208_CR6
  publication-title: GigaScience
  doi: 10.1186/2047-217X-1-7
– volume: 73
  start-page: 1576
  year: 2007
  ident: 208_CR26
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01996-06
– ident: 208_CR29
– reference: 20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7
– reference: 23587224 - Gigascience. 2012 Jul 12;1(1):7
– reference: 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35
– reference: 24681719 - Nat Methods. 2014 Apr;11(4):359
– reference: 24699258 - PLoS Comput Biol. 2014 Apr 03;10(4):e1003531
– reference: 22174277 - Pac Symp Biocomput. 2012;:213-24
– reference: 23326225 - PLoS Comput Biol. 2013;9(1):e1002863
– reference: 24681718 - Nat Methods. 2014 Apr;11(4):359-60
– reference: 24995464 - Genome Biol. 2014 Jun 27;15(6):R76
– reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
– reference: 21421784 - Appl Environ Microbiol. 2011 May;77(10):3219-26
– reference: 19185386 - Trends Ecol Evol. 2009 Mar;24(3):127-35
– reference: 24910773 - Microbiome. 2014 May 05;2:15
– reference: 24708850 - Microbiome. 2014 Apr 07;2:11
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 20236171 - Environ Microbiol. 2010 Jul;12(7):1889-98
– reference: 22699609 - Nature. 2012 Jun 13;486(7402):207-14
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 21508958 - Nature. 2011 May 12;473(7346):174-80
– reference: 24118234 - Clin Exp Allergy. 2013 Dec;43(12):1384-94
– reference: 24076764 - Nat Methods. 2013 Dec;10(12):1200-2
– reference: 25299329 - Cell Host Microbe. 2014 Oct 8;16(4):433-7
– reference: 23630581 - PLoS One. 2013 Apr 22;8(4):e61217
– reference: 21212162 - Genome Res. 2011 Mar;21(3):494-504
– reference: 17220268 - Appl Environ Microbiol. 2007 Mar;73(5):1576-85
– reference: 21414208 - BMC Bioinformatics. 2011 Mar 17;12:77
– reference: 20698981 - BMC Bioinformatics. 2010 Aug 10;11:422
– reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65
SSID ssj0000914748
Score 2.4429467
Snippet There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining...
Background There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 62
SubjectTerms Analysis
Bacteria - classification
Bacteria - genetics
Base Sequence
Benchmarking
Benchmarks
Biological diversity
Case-Control Studies
Computational Biology - methods
Discovery and exploration
False Positive Reactions
Genes
Genetic research
High-Throughput Nucleotide Sequencing - methods
Humans
Methodology
Methods
Microbiota - genetics
RNA
RNA, Ribosomal, 16S - genetics
Sequence Analysis, RNA - methods
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4puUggxCQkKymsSfOaEVoioIemiptDfLdpx2JTZbmt1D_w6_lJnEGzYcetmLx9nNznj8xnl5Q8h7F3NYznnNatVwJmRTMOOFYqGQ2nsZTNULaf84Ucfn4ttcztOBW5dolduc2CfqehXwjPwQKhEJtQKX4tPVb4Zdo_DpamqhcZfcQ-kypHTpuR7PWGAvFFqY9DCzMOqwg3JCIXsLmbe5YWayHf2flHd2pSljcmcLOnpEHibsSGeDsx-TO7F9Qu4P3SRvnpI_35HVzTr41yP1EH2XS9efhFOUaYIwow18RIov4iJxE2pk6tqa9u0i6HoHwa5a2iGxfegsQRctLdQZvT49mVGIt0hdT0MHK-SXwjUGXRM6dKPu6KaLNU5aLgaVp2Wk3UBXfEbOj778_HzMUgsGFmRp1uDBuhZVYXLjI-e88JUoA4CwoHWsKydiKJqqCoVyTQ3IzWvfKA7p3-WAiyB_8Odkr1218SWhDoBmXelcaM6FbhpXOeW94o2MgJlyn5F86wkbkj45tsn4Zfs6xSg7OM8iJw2dZ01GPo5TrgZxjtuM36F7LYpetMiquXCbrrNfz07tDHZoUQIYkxn5kIyaFXx5cOklBbgF1MmaWB5MLGFVhunwNopsygqd_RfDGXk7DuNMZLq1cbXpbQRqEHGweTEE3XhvpTYGL58RPQnH0QC1wqcj7eKy1wyXCJ212b_9Z70iD0pcG0XBSnlA9tbXm_gaQNfav-lX1l9BVS2R
  priority: 102
  providerName: ProQuest
Title Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies
URI https://www.ncbi.nlm.nih.gov/pubmed/27884206
https://www.proquest.com/docview/1845924354
https://www.proquest.com/docview/1844023534
https://pubmed.ncbi.nlm.nih.gov/PMC5123278
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_uA8EX8dvoWVYRBCGadD_zIBLljrN4RVoLfQu7ycYrXFNtWvD-Hf9SZzZJaeTwwZfmYWdSkpnZmUl--Q0hr4yLIJyjIixkyUIuyjjUlsswj4WyVuQ68UTaF2N5PuOjuZgfkG68VXsD6xtbO5wnNVtfvf318_oDBPx7H_BavquhR5AIyUI4baRDfUiOITEpjNOLttr3G3MSc8V1-27zRk3kBoamkA9xAtJeovp7u97LV30s5V5yOrtL7rRVJU0bN7hHDlx1n9xq5kxePyC_vyDeO6zBHo5a8MvLpfHPyCkSOMGNoCX8OIqf6CKkE7pnaqqC-kESdLNX264qWiPkvZk5QRcVjeWUrifjlIInOmo8QB2kEHkK52gYT2gzp7qm29oVqLRcNPxPS0frBsj4kMzOTr99Og_b4QxhLoZ6A7YtCp7EOtLWMcZim_BhDuVZrpQrEsNdHpdJksfSlAXUdFbZUjJIDCaCigl2FvaIHFWryj0h1EAJWiQq4ooxrsrSJEZaK1kpHFRTkQ1I1Fkiy1vmchygcZX5DkbLrLFjhmg1tGOmA_Jmp_Kjoe34l_BLNG-GdBgV4m2-m21dZ5-nkyyF3I3OIERAXrdC5Qr-PDft5wtwCcig1ZM86UlCvOb95c6Lss7dM-izBXTCTPCAvNgtoyZi4Cq32noZjuxEDGQeN063u7bOaQOieu64E0AW8f5Ktbj0bOICi2qln_635jNye4gRFMfhUJyQo816655DpbaxA3Ko5mpAjtN0NB3B8ePp-Otk4J97DHxs_gFeYkLV
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ8ReEP8pDDAIhIQULYn_xHlAqMCmlnUV6jZpb5ntOFslmo6lFdrX4QPwGbmL09LwsLe99MVnN9Hd-e6cn39HyFvtQnDnMA9yWbCAiyIKlOEysJFIjBFWpTWR9sFI9o_5txNxskH-LO_CIKxyuSfWG3U-s3hGvgOViIBagQn-6eJngF2j8OvqsoWGN4t9d_ULSrbq4-Ar6PddHO_tHn3pB01XgcCKWM3hofKcp5EKlXGMscikPLaQV9gkcXmqubNRkaY2krrIIRkxiSkkgx1NhxDqwSUYrHuLbHIGpUyHbH7eHX0fr051IPryhKvm82mk5E4FBYxEvBhifUMVqFYA_D8MrMXBNkZzLejt3SN3m2yV9rx53ScbrnxAbvv-lVcPye8h4siDCvTsqAF7P5_q-uydIjEUGDYt4MdRvPqLUFGoyqkuc1o3qKDztZx5VtIKofS-lwWdlDSSh_RyPOpRsHBHdQ18BylEtMIankmF-v7XFV1ULsdJ04nnlZo6WnmA5CNyfCPqeUw65ax0TwnVkNrmaRLyhDGeFIVOtTRGskI4yNJC0yXhUhOZbRjRsTHHj6yujJTMvPIyRMGh8jLVJR9WUy48Hch1wm9QvRnSbJSI4znTi6rKBofjrAc5AY8h_RNd8r4RKmbw51Y31yLgFZCZqyW53ZKEfcC2h5dWlDX7UJX985oueb0axpmIrSvdbFHLcGQ9YiDzxBvd6t3iRClcvkuSljmuBJCdvD1STs5rlnKByXqinl3_WK_Inf7RwTAbDkb7z8lWjH4SRUEstklnfrlwLyDlm5uXjZ9RcnrTrv0Xs1Nreg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+benchmarking+reveals+false+discoveries+and+count+transformation+sensitivity+in+16S+rRNA+gene+amplicon+data+analysis+methods+used+in+microbiome+studies&rft.jtitle=Microbiome&rft.au=Thorsen%2C+Jonathan&rft.au=Brejnrod%2C+Asker&rft.au=Mortensen%2C+Martin&rft.au=Rasmussen%2C+Morten+A.&rft.date=2016-11-25&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=4&rft_id=info:doi/10.1186%2Fs40168-016-0208-8&rft_id=info%3Apmid%2F27884206&rft.externalDocID=PMC5123278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon