Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies
There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operationa...
Saved in:
Published in | Microbiome Vol. 4; no. 1; p. 62 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
25.11.2016
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources.
Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power.
Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. |
---|---|
AbstractList | There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources.
Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power.
Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. Background There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Results Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Conclusions Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. Keywords: 16S sequencing, Microbiome, Benchmark, Differential relative abundance, Beta-diversity There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources.BACKGROUNDThere is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources.Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power.RESULTSRunning more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power.Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets.CONCLUSIONSOur results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. Background There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining bacterial communities is high-throughput sequencing of 16S rRNA gene hypervariable regions, aggregating sequence-similar amplicons into operational taxonomic units (OTUs). Strategies for detecting differential relative abundance of OTUs between sample conditions include classical statistical approaches as well as a plethora of newer methods, many borrowing from the related field of RNA-seq analysis. This effort is complicated by unique data characteristics, including sparsity, sequencing depth variation, and nonconformity of read counts to theoretical distributions, which is often exacerbated by exploratory and/or unbalanced study designs. Here, we assess the robustness of available methods for (1) inference in differential relative abundance analysis and (2) beta-diversity-based sample separation, using a rigorous benchmarking framework based on large clinical 16S microbiome datasets from different sources. Results Running more than 380,000 full differential relative abundance tests on real datasets with permuted case/control assignments and in silico-spiked OTUs, we identify large differences in method performance on a range of parameters, including false positive rates, sensitivity to sparsity and case/control balances, and spike-in retrieval rate. In large datasets, methods with the highest false positive rates also tend to have the best detection power. For beta-diversity-based sample separation, we show that library size normalization has very little effect and that the distance metric is the most important factor in terms of separation power. Conclusions Our results, generalizable to datasets from different sequencing platforms, demonstrate how the choice of method considerably affects analysis outcome. Here, we give recommendations for tools that exhibit low false positive rates, have good retrieval power across effect sizes and case/control proportions, and have low sparsity bias. Result output from some commonly used methods should be interpreted with caution. We provide an easily extensible framework for benchmarking of new methods and future microbiome datasets. |
ArticleNumber | 62 |
Audience | Academic |
Author | Bisgaard, Hans Mortensen, Martin Brejnrod, Asker Rasmussen, Morten A. Al-Soud, Waleed Abu Thorsen, Jonathan Waage, Johannes Stokholm, Jakob Sørensen, Søren |
Author_xml | – sequence: 1 givenname: Jonathan surname: Thorsen fullname: Thorsen, Jonathan – sequence: 2 givenname: Asker surname: Brejnrod fullname: Brejnrod, Asker – sequence: 3 givenname: Martin surname: Mortensen fullname: Mortensen, Martin – sequence: 4 givenname: Morten A. surname: Rasmussen fullname: Rasmussen, Morten A. – sequence: 5 givenname: Jakob surname: Stokholm fullname: Stokholm, Jakob – sequence: 6 givenname: Waleed Abu surname: Al-Soud fullname: Al-Soud, Waleed Abu – sequence: 7 givenname: Søren surname: Sørensen fullname: Sørensen, Søren – sequence: 8 givenname: Hans surname: Bisgaard fullname: Bisgaard, Hans – sequence: 9 givenname: Johannes orcidid: 0000-0002-0603-8822 surname: Waage fullname: Waage, Johannes |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27884206$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxiNUREvpA3BBlrjAIcV2nMS5IK0q_lRagdTC2XLsSdYlsRfbWbGvw5Pi7JZqt0Ik0jhyfjNjf_M9z06ss5BlLwm-JIRX7wLDpOJ5CjmmmOf8SXZGMWtyWhF-cvB9ml2EcIfT0xBWM_4sO6U154zi6iz7vZS-hzwoOQBqwarVKP0PY3vkYQNyCKhLAZA2QbkNeAMBSauRcpONKHppQ-f8KKNxFgWwwUSzMXGLjEWkukX-5ssC9WAByXE9GJUoLaNMNeSwDSagEeLK6YCmAHpOGo3yrjVuBBTipFO_F9nT3Rku7tfz7PvHD9-uPufLr5-urxbLXJWUx1xXWrOGcMxbKIqCtA2jihZU1TXoRjJQpGsaRSrZaUJoW7ddVUBLJK5pjQtcnGfv93XXUzuCVmDT9Qax9iZJshVOGnH8x5qV6N1GlCS1qXkq8Oa-gHc_JwhRjEk1GAZpwU1BEM4YpkVZsIS-foTeucknTXZU2VBWlAdUn6YjjO1c6qvmomLBajJPsCwTdfkPKr0axllw6EzaP0p4e5SQmAi_Yi-nEMT17c0x--pQlAc1_jooAWQPpLGF4KF7QAgWs1HF3qgiBTEbVcxC1Y9ylIk7C6WTm-E_mX8AvXjtTQ |
CitedBy_id | crossref_primary_10_1093_bioinformatics_btac778 crossref_primary_10_1093_nargab_lqaa029 crossref_primary_10_7717_peerj_15239 crossref_primary_10_1111_1462_2920_16025 crossref_primary_10_3390_biom15030400 crossref_primary_10_3390_applmicrobiol3020023 crossref_primary_10_1111_1755_0998_13128 crossref_primary_10_1111_mec_15070 crossref_primary_10_1186_s13059_017_1359_z crossref_primary_10_1007_s00125_022_05805_3 crossref_primary_10_1186_s40793_024_00578_1 crossref_primary_10_1038_s41598_022_18503_2 crossref_primary_10_1016_j_csbj_2021_03_040 crossref_primary_10_1128_AEM_00395_21 crossref_primary_10_1016_j_scitotenv_2022_155223 crossref_primary_10_1093_femsec_fiy027 crossref_primary_10_3390_ijerph19063254 crossref_primary_10_5808_GI_2019_17_1_e6 crossref_primary_10_1016_j_scitotenv_2019_135067 crossref_primary_10_1016_j_resmic_2018_03_004 crossref_primary_10_3389_fmicb_2019_01746 crossref_primary_10_1111_mec_14138 crossref_primary_10_1186_s13059_022_02655_5 crossref_primary_10_24072_pcjournal_2 crossref_primary_10_1094_PBIOMES_04_17_0015_R crossref_primary_10_3389_fmicb_2021_619141 crossref_primary_10_1186_s40168_018_0534_0 crossref_primary_10_3390_microorganisms8010094 crossref_primary_10_3389_fmicb_2017_02224 crossref_primary_10_3389_fnut_2021_661794 crossref_primary_10_1371_journal_pone_0247378 crossref_primary_10_1038_s41467_022_28034_z crossref_primary_10_1016_j_scitotenv_2021_145214 crossref_primary_10_1016_j_compbiomed_2021_104556 crossref_primary_10_1093_bioinformatics_btac399 crossref_primary_10_1371_journal_pcbi_1008913 crossref_primary_10_3390_metabo12121222 crossref_primary_10_1111_mec_17595 crossref_primary_10_3389_fmars_2023_1320540 crossref_primary_10_1038_s41598_018_22629_7 crossref_primary_10_1016_j_jhazmat_2017_09_046 crossref_primary_10_1038_s41522_024_00545_1 crossref_primary_10_1111_jam_13679 crossref_primary_10_12688_f1000research_15858_1 crossref_primary_10_1186_s12859_018_2261_8 crossref_primary_10_7717_peerj_9493 crossref_primary_10_1038_s41598_024_62437_w crossref_primary_10_1097_j_pain_0000000000002694 crossref_primary_10_1097_j_pain_0000000000001640 crossref_primary_10_1371_journal_pone_0259973 crossref_primary_10_1371_journal_pcbi_1009442 crossref_primary_10_1094_PBIOMES_2_1 crossref_primary_10_1097_QAD_0000000000002132 crossref_primary_10_1094_PHYTO_03_17_0111_RVW crossref_primary_10_3389_fmicb_2020_587873 crossref_primary_10_1038_s41598_022_07995_7 crossref_primary_10_1016_j_csbj_2020_09_014 crossref_primary_10_3390_ijms20020438 crossref_primary_10_1099_mgen_0_000417 crossref_primary_10_1038_s41598_023_36101_8 crossref_primary_10_3390_microorganisms7070209 crossref_primary_10_1371_journal_pone_0228560 crossref_primary_10_3389_fmicb_2023_1250909 crossref_primary_10_1128_msystems_00620_24 crossref_primary_10_3389_fmicb_2021_685935 crossref_primary_10_1038_s41598_021_89881_2 crossref_primary_10_1186_s13059_024_03390_9 crossref_primary_10_1128_mSystems_01154_20 crossref_primary_10_1183_23120541_00939_2020 crossref_primary_10_3389_fmicb_2018_00366 crossref_primary_10_1002_mbo3_1410 crossref_primary_10_1038_s41396_020_0686_3 crossref_primary_10_12688_f1000research_110605_1 crossref_primary_10_3390_microorganisms9061344 crossref_primary_10_3354_ame01901 crossref_primary_10_3389_fgene_2020_00927 crossref_primary_10_1093_nar_gky976 crossref_primary_10_1038_s41467_023_42309_z crossref_primary_10_1186_s13059_021_02506_9 crossref_primary_10_1186_s13059_020_02104_1 crossref_primary_10_1093_femsec_fiad097 crossref_primary_10_1186_s12859_021_04193_6 crossref_primary_10_1016_j_ijfoodmicro_2019_02_003 crossref_primary_10_1093_gigascience_giz107 crossref_primary_10_3390_nu14030412 crossref_primary_10_1186_s12866_019_1464_0 crossref_primary_10_1186_s40168_018_0606_1 crossref_primary_10_1186_s40168_019_0711_9 crossref_primary_10_3389_fpsyt_2023_1256771 crossref_primary_10_1038_s41467_024_49963_x crossref_primary_10_1038_s41598_023_46062_7 crossref_primary_10_1186_s40168_018_0543_z crossref_primary_10_1093_nar_gkx295 crossref_primary_10_1186_s12859_020_03552_z crossref_primary_10_1002_wics_1586 crossref_primary_10_1016_j_csbj_2020_11_049 crossref_primary_10_1007_s11104_017_3528_y crossref_primary_10_1111_mec_17428 crossref_primary_10_1186_s12866_018_1367_5 crossref_primary_10_1016_j_scitotenv_2024_177455 crossref_primary_10_3389_fmicb_2022_728146 crossref_primary_10_1186_s12866_021_02106_4 crossref_primary_10_1080_19490976_2017_1361093 crossref_primary_10_1186_s12859_022_05088_w crossref_primary_10_1093_nargab_lqaa079 crossref_primary_10_1186_s40168_022_01233_y crossref_primary_10_1186_s12859_017_1690_0 crossref_primary_10_1017_gmb_2022_12 crossref_primary_10_1038_s41598_019_55509_9 crossref_primary_10_1093_bib_bbab059 crossref_primary_10_1016_j_medj_2024_10_015 crossref_primary_10_3389_fmicb_2018_00294 crossref_primary_10_1007_s00253_021_11448_y crossref_primary_10_1007_s00227_024_04448_9 crossref_primary_10_7717_peerj_4600 |
Cites_doi | 10.2307/1942268 10.1186/s13059-014-0550-8 10.1371/journal.pcbi.1002863 10.1016/j.tree.2008.10.008 10.1038/nature11234 10.1186/2049-2618-2-11 10.1371/journal.pone.0061217 10.1186/1471-2105-12-77 10.1093/bioinformatics/btp616 10.1093/bioinformatics/btm453 10.1099/00207713-44-4-846 10.1186/gb-2010-11-10-r106 10.1073/pnas.1002611107 10.1038/nmeth.2658 10.1093/bioinformatics/btq461 10.1111/j.2517-6161.1995.tb02031.x 10.1186/gb-2014-15-6-r76 10.1007/978-0-387-21706-2 10.1038/nature08821 10.1111/j.1365-2664.2007.01377.x 10.1038/nmeth.2898 10.1371/journal.pcbi.1003531 10.1111/j.1462-2920.2010.02193.x 10.1128/AEM.71.12.8228-8235.2005 10.1016/j.chom.2014.09.013 10.1186/1471-2105-11-422 10.7287/peerj.preprints.1157 10.1128/AEM.02810-10 10.1007/978-0-387-98141-3 10.1186/2049-2618-2-15 10.1111/cea.12213 10.1101/gr.112730.110 10.1142/9789814366496_0021 10.1038/nature09944 10.1038/nmeth.2897 10.1007/978-0-387-87458-6 10.1186/2047-217X-1-7 10.1128/AEM.01996-06 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 The Author(s). 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 – notice: The Author(s). 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/s40168-016-0208-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
ExternalDocumentID | PMC5123278 4270072181 A471420655 27884206 10_1186_s40168_016_0208_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: R180-2014-3356; R93-A8499; R16-A1694 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS EJD FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SOJ UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c528t-d6dd491808be3331b942c232c77ed9a4ec1f99c16afd112b7bf63eb1a07270303 |
IEDL.DBID | M48 |
ISSN | 2049-2618 |
IngestDate | Thu Aug 21 14:11:11 EDT 2025 Fri Jul 11 10:53:41 EDT 2025 Fri Jul 25 12:00:18 EDT 2025 Tue Jun 17 22:05:44 EDT 2025 Tue Jun 10 21:05:07 EDT 2025 Fri Jun 27 05:47:28 EDT 2025 Thu Apr 03 07:03:22 EDT 2025 Tue Jul 01 04:16:34 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Benchmark Differential relative abundance Beta-diversity 16S sequencing Microbiome |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-d6dd491808be3331b942c232c77ed9a4ec1f99c16afd112b7bf63eb1a07270303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0603-8822 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-016-0208-8 |
PMID | 27884206 |
PQID | 1845924354 |
PQPubID | 2040205 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5123278 proquest_miscellaneous_1844023534 proquest_journals_1845924354 gale_infotracmisc_A471420655 gale_infotracacademiconefile_A471420655 gale_incontextgauss_ISR_A471420655 pubmed_primary_27884206 crossref_primary_10_1186_s40168_016_0208_8 crossref_citationtrail_10_1186_s40168_016_0208_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-25 |
PublicationDateYYYYMMDD | 2016-11-25 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2016 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | BM Bolker (208_CR14) 2009; 24 208_CR8 M Arumugam (208_CR2) 2011; 473 D McDonald (208_CR6) 2012; 1 M Pop (208_CR35) 2014; 15 BJ Haas (208_CR37) 2011; 21 P Legendre (208_CR27) 1998 208_CR29 SA Richards (208_CR9) 2007; 45 JN Paulson (208_CR7) 2013; 10 208_CR44 D Knights (208_CR22) 2014; 16 J Oksanen (208_CR43) 2015 X Robin (208_CR42) 2011; 12 PJ McMurdie (208_CR12) 2014; 10 MD Robinson (208_CR10) 2007; 23 J Qin (208_CR1) 2010; 464 O Koren (208_CR21) 2013; 9 PI Costea (208_CR30) 2014; 11 CA Lozupone (208_CR26) 2007; 73 R Core Team (208_CR39) 2015 C Lozupone (208_CR25) 2005; 71 E Stackebrandt (208_CR3) 1994; 44 PD Schloss (208_CR5) 2011; 77 JN Paulson (208_CR31) 2014; 11 MD Robinson (208_CR16) 2010; 26 PJ McMurdie (208_CR38) 2013; 8 AD Fernandes (208_CR19) 2014; 2 J Ravel (208_CR20) 2011; 108 RC Edgar (208_CR36) 2010; 26 FE Angly (208_CR23) 2014; 2 208_CR18 WN Venables (208_CR41) 2002 JR Bray (208_CR24) 1957; 27 Y Benjamini (208_CR28) 1995; 57 H Bisgaard (208_CR33) 2013; 43 Human Microbiome Project Consortium (208_CR34) 2012; 486 SM Huse (208_CR4) 2010; 12 208_CR13 O Tange (208_CR40) 2011; 36 208_CR32 S Anders (208_CR11) 2010; 11 TJ Hardcastle (208_CR17) 2010; 11 MI Love (208_CR15) 2014; 15 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 24699258 - PLoS Comput Biol. 2014 Apr 03;10(4):e1003531 20979621 - Genome Biol. 2010;11(10):R106 24708850 - Microbiome. 2014 Apr 07;2:11 20698981 - BMC Bioinformatics. 2010 Aug 10;11:422 25516281 - Genome Biol. 2014;15(12):550 20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 25299329 - Cell Host Microbe. 2014 Oct 8;16(4):433-7 21421784 - Appl Environ Microbiol. 2011 May;77(10):3219-26 17220268 - Appl Environ Microbiol. 2007 Mar;73(5):1576-85 22174277 - Pac Symp Biocomput. 2012;:213-24 24995464 - Genome Biol. 2014 Jun 27;15(6):R76 22699609 - Nature. 2012 Jun 13;486(7402):207-14 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35 24681719 - Nat Methods. 2014 Apr;11(4):359 23630581 - PLoS One. 2013 Apr 22;8(4):e61217 21414208 - BMC Bioinformatics. 2011 Mar 17;12:77 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 23587224 - Gigascience. 2012 Jul 12;1(1):7 19185386 - Trends Ecol Evol. 2009 Mar;24(3):127-35 24681718 - Nat Methods. 2014 Apr;11(4):359-60 24076764 - Nat Methods. 2013 Dec;10(12):1200-2 21508958 - Nature. 2011 May 12;473(7346):174-80 20203603 - Nature. 2010 Mar 4;464(7285):59-65 23326225 - PLoS Comput Biol. 2013;9(1):e1002863 24118234 - Clin Exp Allergy. 2013 Dec;43(12):1384-94 21212162 - Genome Res. 2011 Mar;21(3):494-504 24910773 - Microbiome. 2014 May 05;2:15 20236171 - Environ Microbiol. 2010 Jul;12(7):1889-98 |
References_xml | – volume: 27 start-page: 325 year: 1957 ident: 208_CR24 publication-title: Ecol Monogr doi: 10.2307/1942268 – volume: 15 start-page: 550 year: 2014 ident: 208_CR15 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 9 start-page: e1002863 year: 2013 ident: 208_CR21 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002863 – volume: 24 start-page: 127 year: 2009 ident: 208_CR14 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2008.10.008 – volume: 486 start-page: 207 year: 2012 ident: 208_CR34 publication-title: Nature doi: 10.1038/nature11234 – volume: 2 start-page: 11 year: 2014 ident: 208_CR23 publication-title: Microbiome doi: 10.1186/2049-2618-2-11 – volume: 8 start-page: e61217 year: 2013 ident: 208_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0061217 – volume: 12 start-page: 77 year: 2011 ident: 208_CR42 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume-title: R: a language and environment for statistical computing year: 2015 ident: 208_CR39 – volume: 26 start-page: 139 year: 2010 ident: 208_CR16 publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btp616 – volume: 23 start-page: 2881 year: 2007 ident: 208_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm453 – volume: 44 start-page: 846 year: 1994 ident: 208_CR3 publication-title: Int J Syst Bacteriol. doi: 10.1099/00207713-44-4-846 – volume: 36 start-page: 42 year: 2011 ident: 208_CR40 publication-title: Login USENIX Mag – volume: 11 start-page: R106 year: 2010 ident: 208_CR11 publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 108 start-page: 4680 issue: Suppl 1 year: 2011 ident: 208_CR20 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1002611107 – volume: 10 start-page: 1200 year: 2013 ident: 208_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.2658 – volume: 26 start-page: 2460 year: 2010 ident: 208_CR36 publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btq461 – volume: 57 start-page: 289 year: 1995 ident: 208_CR28 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 15 start-page: R76 year: 2014 ident: 208_CR35 publication-title: Genome Biol doi: 10.1186/gb-2014-15-6-r76 – volume-title: Modern applied statistics with S [Internet]. Fourth year: 2002 ident: 208_CR41 doi: 10.1007/978-0-387-21706-2 – volume: 464 start-page: 59 year: 2010 ident: 208_CR1 publication-title: Nature doi: 10.1038/nature08821 – volume: 45 start-page: 218 year: 2007 ident: 208_CR9 publication-title: J Appl Ecol doi: 10.1111/j.1365-2664.2007.01377.x – volume: 11 start-page: 359 year: 2014 ident: 208_CR31 publication-title: Nat Methods doi: 10.1038/nmeth.2898 – volume: 10 start-page: e1003531 year: 2014 ident: 208_CR12 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003531 – volume: 12 start-page: 1889 year: 2010 ident: 208_CR4 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02193.x – volume: 71 start-page: 8228 year: 2005 ident: 208_CR25 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8228-8235.2005 – volume: 16 start-page: 433 year: 2014 ident: 208_CR22 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.09.013 – volume: 11 start-page: 422 year: 2010 ident: 208_CR17 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-422 – ident: 208_CR13 doi: 10.7287/peerj.preprints.1157 – ident: 208_CR18 – volume: 77 start-page: 3219 year: 2011 ident: 208_CR5 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02810-10 – volume-title: Numerical Ecology year: 1998 ident: 208_CR27 – ident: 208_CR44 doi: 10.1007/978-0-387-98141-3 – volume: 2 start-page: 15 year: 2014 ident: 208_CR19 publication-title: Microbiome doi: 10.1186/2049-2618-2-15 – volume: 43 start-page: 1384 year: 2013 ident: 208_CR33 publication-title: Clin Exp Allergy J Br Soc Allergy Clin Immunol doi: 10.1111/cea.12213 – volume: 21 start-page: 494 year: 2011 ident: 208_CR37 publication-title: Genome Res doi: 10.1101/gr.112730.110 – ident: 208_CR32 doi: 10.1142/9789814366496_0021 – volume: 473 start-page: 174 year: 2011 ident: 208_CR2 publication-title: Nature doi: 10.1038/nature09944 – volume-title: vegan: community ecology package [Internet] year: 2015 ident: 208_CR43 – volume: 11 start-page: 359 year: 2014 ident: 208_CR30 publication-title: Nat Methods doi: 10.1038/nmeth.2897 – ident: 208_CR8 doi: 10.1007/978-0-387-87458-6 – volume: 1 start-page: 7 year: 2012 ident: 208_CR6 publication-title: GigaScience doi: 10.1186/2047-217X-1-7 – volume: 73 start-page: 1576 year: 2007 ident: 208_CR26 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01996-06 – ident: 208_CR29 – reference: 20534435 - Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 – reference: 23587224 - Gigascience. 2012 Jul 12;1(1):7 – reference: 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35 – reference: 24681719 - Nat Methods. 2014 Apr;11(4):359 – reference: 24699258 - PLoS Comput Biol. 2014 Apr 03;10(4):e1003531 – reference: 22174277 - Pac Symp Biocomput. 2012;:213-24 – reference: 23326225 - PLoS Comput Biol. 2013;9(1):e1002863 – reference: 24681718 - Nat Methods. 2014 Apr;11(4):359-60 – reference: 24995464 - Genome Biol. 2014 Jun 27;15(6):R76 – reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 – reference: 21421784 - Appl Environ Microbiol. 2011 May;77(10):3219-26 – reference: 19185386 - Trends Ecol Evol. 2009 Mar;24(3):127-35 – reference: 24910773 - Microbiome. 2014 May 05;2:15 – reference: 24708850 - Microbiome. 2014 Apr 07;2:11 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 20236171 - Environ Microbiol. 2010 Jul;12(7):1889-98 – reference: 22699609 - Nature. 2012 Jun 13;486(7402):207-14 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 21508958 - Nature. 2011 May 12;473(7346):174-80 – reference: 24118234 - Clin Exp Allergy. 2013 Dec;43(12):1384-94 – reference: 24076764 - Nat Methods. 2013 Dec;10(12):1200-2 – reference: 25299329 - Cell Host Microbe. 2014 Oct 8;16(4):433-7 – reference: 23630581 - PLoS One. 2013 Apr 22;8(4):e61217 – reference: 21212162 - Genome Res. 2011 Mar;21(3):494-504 – reference: 17220268 - Appl Environ Microbiol. 2007 Mar;73(5):1576-85 – reference: 21414208 - BMC Bioinformatics. 2011 Mar 17;12:77 – reference: 20698981 - BMC Bioinformatics. 2010 Aug 10;11:422 – reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65 |
SSID | ssj0000914748 |
Score | 2.4429467 |
Snippet | There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for examining... Background There is an immense scientific interest in the human microbiome and its effects on human physiology, health, and disease. A common approach for... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 62 |
SubjectTerms | Analysis Bacteria - classification Bacteria - genetics Base Sequence Benchmarking Benchmarks Biological diversity Case-Control Studies Computational Biology - methods Discovery and exploration False Positive Reactions Genes Genetic research High-Throughput Nucleotide Sequencing - methods Humans Methodology Methods Microbiota - genetics RNA RNA, Ribosomal, 16S - genetics Sequence Analysis, RNA - methods |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4puUggxCQkKymsSfOaEVoioIemiptDfLdpx2JTZbmt1D_w6_lJnEGzYcetmLx9nNznj8xnl5Q8h7F3NYznnNatVwJmRTMOOFYqGQ2nsZTNULaf84Ucfn4ttcztOBW5dolduc2CfqehXwjPwQKhEJtQKX4tPVb4Zdo_DpamqhcZfcQ-kypHTpuR7PWGAvFFqY9DCzMOqwg3JCIXsLmbe5YWayHf2flHd2pSljcmcLOnpEHibsSGeDsx-TO7F9Qu4P3SRvnpI_35HVzTr41yP1EH2XS9efhFOUaYIwow18RIov4iJxE2pk6tqa9u0i6HoHwa5a2iGxfegsQRctLdQZvT49mVGIt0hdT0MHK-SXwjUGXRM6dKPu6KaLNU5aLgaVp2Wk3UBXfEbOj778_HzMUgsGFmRp1uDBuhZVYXLjI-e88JUoA4CwoHWsKydiKJqqCoVyTQ3IzWvfKA7p3-WAiyB_8Odkr1218SWhDoBmXelcaM6FbhpXOeW94o2MgJlyn5F86wkbkj45tsn4Zfs6xSg7OM8iJw2dZ01GPo5TrgZxjtuM36F7LYpetMiquXCbrrNfz07tDHZoUQIYkxn5kIyaFXx5cOklBbgF1MmaWB5MLGFVhunwNopsygqd_RfDGXk7DuNMZLq1cbXpbQRqEHGweTEE3XhvpTYGL58RPQnH0QC1wqcj7eKy1wyXCJ212b_9Z70iD0pcG0XBSnlA9tbXm_gaQNfav-lX1l9BVS2R priority: 102 providerName: ProQuest |
Title | Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27884206 https://www.proquest.com/docview/1845924354 https://www.proquest.com/docview/1844023534 https://pubmed.ncbi.nlm.nih.gov/PMC5123278 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_uA8EX8dvoWVYRBCGadD_zIBLljrN4RVoLfQu7ycYrXFNtWvD-Hf9SZzZJaeTwwZfmYWdSkpnZmUl--Q0hr4yLIJyjIixkyUIuyjjUlsswj4WyVuQ68UTaF2N5PuOjuZgfkG68VXsD6xtbO5wnNVtfvf318_oDBPx7H_BavquhR5AIyUI4baRDfUiOITEpjNOLttr3G3MSc8V1-27zRk3kBoamkA9xAtJeovp7u97LV30s5V5yOrtL7rRVJU0bN7hHDlx1n9xq5kxePyC_vyDeO6zBHo5a8MvLpfHPyCkSOMGNoCX8OIqf6CKkE7pnaqqC-kESdLNX264qWiPkvZk5QRcVjeWUrifjlIInOmo8QB2kEHkK52gYT2gzp7qm29oVqLRcNPxPS0frBsj4kMzOTr99Og_b4QxhLoZ6A7YtCp7EOtLWMcZim_BhDuVZrpQrEsNdHpdJksfSlAXUdFbZUjJIDCaCigl2FvaIHFWryj0h1EAJWiQq4ooxrsrSJEZaK1kpHFRTkQ1I1Fkiy1vmchygcZX5DkbLrLFjhmg1tGOmA_Jmp_Kjoe34l_BLNG-GdBgV4m2-m21dZ5-nkyyF3I3OIERAXrdC5Qr-PDft5wtwCcig1ZM86UlCvOb95c6Lss7dM-izBXTCTPCAvNgtoyZi4Cq32noZjuxEDGQeN063u7bOaQOieu64E0AW8f5Ktbj0bOICi2qln_635jNye4gRFMfhUJyQo816655DpbaxA3Ko5mpAjtN0NB3B8ePp-Otk4J97DHxs_gFeYkLV |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ8ReEP8pDDAIhIQULYn_xHlAqMCmlnUV6jZpb5ntOFslmo6lFdrX4QPwGbmL09LwsLe99MVnN9Hd-e6cn39HyFvtQnDnMA9yWbCAiyIKlOEysJFIjBFWpTWR9sFI9o_5txNxskH-LO_CIKxyuSfWG3U-s3hGvgOViIBagQn-6eJngF2j8OvqsoWGN4t9d_ULSrbq4-Ar6PddHO_tHn3pB01XgcCKWM3hofKcp5EKlXGMscikPLaQV9gkcXmqubNRkaY2krrIIRkxiSkkgx1NhxDqwSUYrHuLbHIGpUyHbH7eHX0fr051IPryhKvm82mk5E4FBYxEvBhifUMVqFYA_D8MrMXBNkZzLejt3SN3m2yV9rx53ScbrnxAbvv-lVcPye8h4siDCvTsqAF7P5_q-uydIjEUGDYt4MdRvPqLUFGoyqkuc1o3qKDztZx5VtIKofS-lwWdlDSSh_RyPOpRsHBHdQ18BylEtMIankmF-v7XFV1ULsdJ04nnlZo6WnmA5CNyfCPqeUw65ax0TwnVkNrmaRLyhDGeFIVOtTRGskI4yNJC0yXhUhOZbRjRsTHHj6yujJTMvPIyRMGh8jLVJR9WUy48Hch1wm9QvRnSbJSI4znTi6rKBofjrAc5AY8h_RNd8r4RKmbw51Y31yLgFZCZqyW53ZKEfcC2h5dWlDX7UJX985oueb0axpmIrSvdbFHLcGQ9YiDzxBvd6t3iRClcvkuSljmuBJCdvD1STs5rlnKByXqinl3_WK_Inf7RwTAbDkb7z8lWjH4SRUEstklnfrlwLyDlm5uXjZ9RcnrTrv0Xs1Nreg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+benchmarking+reveals+false+discoveries+and+count+transformation+sensitivity+in+16S+rRNA+gene+amplicon+data+analysis+methods+used+in+microbiome+studies&rft.jtitle=Microbiome&rft.au=Thorsen%2C+Jonathan&rft.au=Brejnrod%2C+Asker&rft.au=Mortensen%2C+Martin&rft.au=Rasmussen%2C+Morten+A.&rft.date=2016-11-25&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=4&rft_id=info:doi/10.1186%2Fs40168-016-0208-8&rft_id=info%3Apmid%2F27884206&rft.externalDocID=PMC5123278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |