Melatonin Synthesis and Function: Evolutionary History in Animals and Plants

Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evoluti...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 10; p. 249
Main Authors Zhao, Dake, Yu, Yang, Shen, Yong, Liu, Qin, Zhao, Zhiwei, Sharma, Ramaswamy, Reiter, Russel J.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 17.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to -acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
AbstractList Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to -acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N -acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Author Liu, Qin
Sharma, Ramaswamy
Yu, Yang
Shen, Yong
Reiter, Russel J.
Zhao, Zhiwei
Zhao, Dake
AuthorAffiliation 2 Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University , Kunming , China
5 College of Agriculture and Biotechnology, Yunnan Agricultural University , Kunming , China
6 School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture , Kunming , China
3 School of Life Science, Yunnan University , Kunming , China
1 Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University , Kunming , China
7 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health) , San Antonio, TX , United States
4 State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University , Kunming , China
AuthorAffiliation_xml – name: 7 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health) , San Antonio, TX , United States
– name: 4 State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University , Kunming , China
– name: 5 College of Agriculture and Biotechnology, Yunnan Agricultural University , Kunming , China
– name: 3 School of Life Science, Yunnan University , Kunming , China
– name: 1 Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University , Kunming , China
– name: 6 School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture , Kunming , China
– name: 2 Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University , Kunming , China
Author_xml – sequence: 1
  givenname: Dake
  surname: Zhao
  fullname: Zhao, Dake
– sequence: 2
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
– sequence: 3
  givenname: Yong
  surname: Shen
  fullname: Shen, Yong
– sequence: 4
  givenname: Qin
  surname: Liu
  fullname: Liu, Qin
– sequence: 5
  givenname: Zhiwei
  surname: Zhao
  fullname: Zhao, Zhiwei
– sequence: 6
  givenname: Ramaswamy
  surname: Sharma
  fullname: Sharma, Ramaswamy
– sequence: 7
  givenname: Russel J.
  surname: Reiter
  fullname: Reiter, Russel J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31057485$$D View this record in MEDLINE/PubMed
BookMark eNp1UUtLJDEQDuLi--5J-riXGfPodCd7WBDxBbPswq7nkE6qNdKTuElamH9vekZFBXOpoup7FPn20bYPHhA6JnjOmJCnPXgb5hQTOceY1nIL7ZGmqWeUSbr9rt9FRyk94PLqgpViB-0ygnlbC76HFr9g0Dl456u_K5_vIblUaW-ry9Gb7IL_UV08hWGcWh1X1bVLOZRa8GfeLfWwQf8ZtM_pEH3rywSOXuoBur28-Hd-PVv8vro5P1vMDKciz2ytWcM51ZQAEEtNJwjInkotcNPz3giGLWOGys6anhBspWVlBZwQ0kLHDtDNRtcG_aAeY7kjrlTQTq0HId4pHbMzAyhuQXe8kHouatu2XTHpwDAQgoERvGj93Gg9jt0SrAGfox4-iH7ceHev7sKTampBaNsUge8vAjH8HyFltXTJwFB-BMKYFKWMSEyaevI6ee_1ZvIaRwHgDcDEkFKE_g1CsJpCV-vQ1RS6WodeKM0ninFZT3GVa93wNfEZi4-zcg
CitedBy_id crossref_primary_10_1016_j_scienta_2024_113776
crossref_primary_10_1016_j_clineuro_2019_105591
crossref_primary_10_1016_j_enbuild_2021_111456
crossref_primary_10_3390_horticulturae9060704
crossref_primary_10_1016_j_scienta_2023_112286
crossref_primary_10_1021_acsptsci_1c00157
crossref_primary_10_3390_su14031107
crossref_primary_10_1016_j_joca_2020_05_011
crossref_primary_10_1002_jsfa_12179
crossref_primary_10_1007_s11010_019_03617_5
crossref_primary_10_1016_j_postharvbio_2024_112852
crossref_primary_10_1515_jbcpp_2021_0289
crossref_primary_10_3390_plants10091917
crossref_primary_10_3390_ijms23031238
crossref_primary_10_1002_jcp_29049
crossref_primary_10_1016_j_jksus_2023_103086
crossref_primary_10_3389_fphar_2023_1332567
crossref_primary_10_1038_s41598_023_34682_y
crossref_primary_10_1016_j_arr_2022_101717
crossref_primary_10_3389_fendo_2020_00638
crossref_primary_10_2174_0115734137290869240307105633
crossref_primary_10_1111_and_14597
crossref_primary_10_3390_molecules25235508
crossref_primary_10_5586_asbp_8922
crossref_primary_10_1186_s12934_021_01662_8
crossref_primary_10_1186_s40529_020_00301_6
crossref_primary_10_1016_j_arr_2024_102480
crossref_primary_10_1007_s00299_021_02718_0
crossref_primary_10_3390_biom14080950
crossref_primary_10_3390_biom10091243
crossref_primary_10_3390_biom13010032
crossref_primary_10_1007_s00425_020_03342_0
crossref_primary_10_1111_jpi_12835
crossref_primary_10_1016_j_stress_2024_100410
crossref_primary_10_3390_plants12040781
crossref_primary_10_1089_ict_2022_29025_klu
crossref_primary_10_1080_03602532_2024_2305764
crossref_primary_10_3390_su11226400
crossref_primary_10_1007_s10725_024_01231_0
crossref_primary_10_1007_s43440_024_00593_6
crossref_primary_10_3390_antiox14010044
crossref_primary_10_1038_s42003_021_02042_z
crossref_primary_10_3390_plants8070190
crossref_primary_10_1016_j_ijbiomac_2024_131803
crossref_primary_10_1177_11786469221099214
crossref_primary_10_1039_D0FO03213A
crossref_primary_10_1152_ajpgi_00186_2021
crossref_primary_10_2174_1570159X19666210609163946
crossref_primary_10_1111_jpi_12702
crossref_primary_10_1002_biot_201900451
crossref_primary_10_2108_zs230057
crossref_primary_10_33069_cim_2020_0019
crossref_primary_10_3390_molecules27175582
crossref_primary_10_3390_molecules27030705
crossref_primary_10_3390_ijms23126731
crossref_primary_10_1007_s00018_019_03438_1
crossref_primary_10_1016_j_cca_2022_08_012
crossref_primary_10_3390_ph17040441
crossref_primary_10_1007_s40256_024_00631_x
crossref_primary_10_1007_s00299_022_02969_5
crossref_primary_10_1016_j_sajb_2023_10_045
crossref_primary_10_1016_j_sajb_2023_10_044
crossref_primary_10_1111_jpi_12618
crossref_primary_10_3390_ijms24021178
crossref_primary_10_26565_2312_5675_2024_23_03
crossref_primary_10_1111_jpi_12736
crossref_primary_10_1111_jpi_12737
crossref_primary_10_3390_molecules28031105
crossref_primary_10_15188_kjopp_2023_08_37_4_61
crossref_primary_10_3390_cimb45100530
crossref_primary_10_3390_ijms25147815
crossref_primary_10_3389_fphar_2022_1007006
crossref_primary_10_3390_horticulturae9020285
crossref_primary_10_1111_jpi_12606
crossref_primary_10_1016_j_diabres_2025_112057
crossref_primary_10_1186_s12576_021_00812_2
crossref_primary_10_1007_s12298_020_00878_z
crossref_primary_10_53471_bahce_963661
crossref_primary_10_1016_j_heliyon_2021_e07485
crossref_primary_10_1016_j_heliyon_2021_e06150
crossref_primary_10_3390_ijerph20031865
crossref_primary_10_1016_j_ygcen_2025_114714
crossref_primary_10_1007_s11103_020_01077_w
crossref_primary_10_3390_biom14030356
crossref_primary_10_1093_jxb_erab220
crossref_primary_10_1186_s12866_021_02098_1
crossref_primary_10_3390_antiox11081531
crossref_primary_10_1111_jpi_12639
crossref_primary_10_1111_pce_13879
crossref_primary_10_1016_j_scienta_2023_112387
crossref_primary_10_1111_jpi_12751
crossref_primary_10_1007_s11010_021_04325_9
crossref_primary_10_1016_j_mce_2019_110687
crossref_primary_10_3389_fphar_2022_866625
crossref_primary_10_1038_s41440_019_0318_3
crossref_primary_10_3390_molecules26041075
crossref_primary_10_3390_cancers12061567
crossref_primary_10_1615_CritRevOncog_2023048934
crossref_primary_10_1007_s10725_024_01256_5
crossref_primary_10_3390_biom9100589
crossref_primary_10_3390_seeds3030025
crossref_primary_10_5812_numonthly_135436
crossref_primary_10_1007_s13592_023_01015_x
crossref_primary_10_1016_j_archoralbio_2022_105565
crossref_primary_10_1016_j_phrs_2021_105839
crossref_primary_10_3390_cells12081178
crossref_primary_10_3389_fgene_2020_591984
crossref_primary_10_1111_jpi_12896
crossref_primary_10_1016_j_scienta_2022_111076
crossref_primary_10_1016_j_biopha_2021_112001
crossref_primary_10_3390_ani11010047
crossref_primary_10_1016_j_jtherbio_2024_103883
crossref_primary_10_3390_cells13050453
crossref_primary_10_3390_ijms222212494
crossref_primary_10_3390_life12030462
crossref_primary_10_3390_ani14233451
crossref_primary_10_3390_antiox11030596
crossref_primary_10_1242_jeb_245195
crossref_primary_10_1016_j_foodchem_2022_135185
crossref_primary_10_3390_agronomy10010095
crossref_primary_10_1016_j_talanta_2024_125808
crossref_primary_10_1007_s13167_024_00358_4
crossref_primary_10_3390_ani13243855
crossref_primary_10_1016_j_cbpa_2023_111386
crossref_primary_10_3390_cancers16091646
crossref_primary_10_1016_j_theriogenology_2020_01_044
crossref_primary_10_3390_cells8070728
crossref_primary_10_3390_ijms222212143
crossref_primary_10_1016_j_apsb_2023_01_020
crossref_primary_10_1016_j_envexpbot_2022_104980
crossref_primary_10_1016_j_jtcms_2024_05_004
crossref_primary_10_3389_fpls_2024_1274964
crossref_primary_10_3390_antiox13101177
crossref_primary_10_1534_g3_120_401470
crossref_primary_10_3389_fendo_2019_00791
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022041294
crossref_primary_10_3390_ijms25105122
crossref_primary_10_1111_jpi_12677
crossref_primary_10_1016_j_foodres_2022_112272
crossref_primary_10_1111_jpi_12794
crossref_primary_10_1111_jpi_12792
crossref_primary_10_3389_fcell_2021_686551
crossref_primary_10_3390_ijms21144970
crossref_primary_10_1071_RD22194
crossref_primary_10_1016_j_cj_2024_04_004
crossref_primary_10_1016_j_molliq_2023_123125
crossref_primary_10_1093_plcell_koaf035
crossref_primary_10_3390_ijms22094476
crossref_primary_10_1016_j_cbpa_2025_111843
crossref_primary_10_1093_jxb_erae092
crossref_primary_10_1080_13813455_2020_1770799
crossref_primary_10_1016_j_jnutbio_2024_109625
crossref_primary_10_32615_ps_2021_061
crossref_primary_10_3390_membranes12030303
crossref_primary_10_1016_j_scitotenv_2021_151734
crossref_primary_10_3389_fpls_2023_1108507
crossref_primary_10_3390_biom13121779
crossref_primary_10_1007_s10695_023_01271_9
crossref_primary_10_3390_ani14233534
crossref_primary_10_1007_s11154_020_09570_9
crossref_primary_10_3390_agronomy13092405
crossref_primary_10_1016_j_neulet_2022_136483
crossref_primary_10_1071_RD23235
crossref_primary_10_1111_jpi_12695
crossref_primary_10_1071_RD23233
crossref_primary_10_1111_ppl_14605
crossref_primary_10_3390_ijms20164022
crossref_primary_10_1016_j_ecoinf_2023_102283
crossref_primary_10_1055_s_0040_1716713
crossref_primary_10_1155_2021_9965916
crossref_primary_10_1016_j_ailsci_2024_100115
crossref_primary_10_3389_fendo_2024_1414463
crossref_primary_10_1016_j_jfca_2023_105410
crossref_primary_10_1016_j_jhazmat_2020_122882
crossref_primary_10_2174_0117450179326359240903045716
crossref_primary_10_1016_j_neuroscience_2025_03_028
crossref_primary_10_1111_jpi_12685
crossref_primary_10_7717_peerj_8663
crossref_primary_10_3390_antiox12020319
crossref_primary_10_1146_annurev_nutr_120420_021719
crossref_primary_10_3390_molecules27154888
crossref_primary_10_1016_j_mce_2024_112296
crossref_primary_10_33483_jfpau_1504455
crossref_primary_10_1080_09291016_2021_1899485
crossref_primary_10_12677_ACM_2024_142472
crossref_primary_10_3390_cells8070681
crossref_primary_10_1007_s11033_020_05249_1
crossref_primary_10_1016_j_plaphy_2020_02_021
crossref_primary_10_3390_agronomy13071727
crossref_primary_10_1002_cbic_202400069
crossref_primary_10_1111_tpj_14915
crossref_primary_10_3389_fphys_2020_564140
crossref_primary_10_1007_s10343_023_00947_9
crossref_primary_10_3390_ijms241210366
crossref_primary_10_33988_auvfd_866702
crossref_primary_10_1111_1440_1681_13572
crossref_primary_10_1007_s00299_021_02769_3
crossref_primary_10_1016_j_jid_2024_11_012
crossref_primary_10_1080_10408398_2020_1825924
crossref_primary_10_1021_acschemneuro_3c00127
crossref_primary_10_1080_10715762_2019_1702656
crossref_primary_10_1016_j_reprotox_2024_108534
crossref_primary_10_1016_j_yhbeh_2024_105599
crossref_primary_10_3389_fgene_2022_820442
crossref_primary_10_3390_cancers16213706
crossref_primary_10_3390_plants9040407
crossref_primary_10_1071_RD23006
crossref_primary_10_1016_j_envpol_2021_118029
crossref_primary_10_1016_j_cellsig_2025_111754
crossref_primary_10_1007_s11103_021_01202_3
crossref_primary_10_20538_1682_0363_2022_1_89_95
crossref_primary_10_1155_2021_6668365
crossref_primary_10_1111_brv_13091
crossref_primary_10_1016_j_cryobiol_2024_104974
crossref_primary_10_1016_j_lfs_2021_119597
crossref_primary_10_1080_21645698_2022_2106111
crossref_primary_10_1134_S1022795421030121
crossref_primary_10_3389_fmicb_2023_1073539
crossref_primary_10_1007_s00344_024_11257_3
crossref_primary_10_1016_j_jplph_2022_153758
crossref_primary_10_3390_antiox10010036
crossref_primary_10_1016_j_prp_2023_154410
crossref_primary_10_1093_jxb_erac289
crossref_primary_10_3892_ijmm_2024_5406
crossref_primary_10_1016_j_lfs_2022_120612
crossref_primary_10_1017_S0954422422000026
crossref_primary_10_1093_jxb_erac164
crossref_primary_10_1111_pce_13900
crossref_primary_10_1126_sciadv_abl6891
crossref_primary_10_3390_ijms20235906
crossref_primary_10_31857_S0015330324040012
crossref_primary_10_1016_j_jsbmb_2020_105595
crossref_primary_10_3389_fpls_2024_1418515
crossref_primary_10_3390_molecules27227742
crossref_primary_10_1016_j_jchromb_2023_123604
crossref_primary_10_1007_s00432_020_03292_w
crossref_primary_10_1016_j_hpj_2023_03_011
crossref_primary_10_1093_jxb_erae011
crossref_primary_10_3389_fmicb_2022_873555
crossref_primary_10_1111_acel_13935
crossref_primary_10_3390_foods12183507
crossref_primary_10_1016_j_phytochem_2023_113928
crossref_primary_10_1007_s11302_024_10037_8
crossref_primary_10_4068_cmj_2023_59_3_188
crossref_primary_10_3390_ijms242015496
crossref_primary_10_1007_s00253_023_12584_3
crossref_primary_10_3390_ijms23073779
crossref_primary_10_3390_antiox12020264
crossref_primary_10_3389_fpls_2023_1142753
crossref_primary_10_1007_s13580_022_00507_6
crossref_primary_10_3389_fnins_2021_642745
crossref_primary_10_3389_fpls_2022_890613
crossref_primary_10_1007_s11356_024_35160_2
crossref_primary_10_1186_s12870_024_05972_y
crossref_primary_10_1016_j_mrgentox_2022_503443
crossref_primary_10_2147_NSS_S260734
crossref_primary_10_1016_j_aac_2025_01_001
crossref_primary_10_3390_molecules27144350
crossref_primary_10_1016_j_jfutfo_2022_01_005
crossref_primary_10_1016_j_cub_2021_10_029
crossref_primary_10_1016_j_jlumin_2023_119817
crossref_primary_10_1002_jsfa_11318
crossref_primary_10_1111_ppl_70020
crossref_primary_10_2174_1874467214666210309115605
crossref_primary_10_3390_ijms22083918
crossref_primary_10_3390_molecules25225359
crossref_primary_10_1111_icad_12447
crossref_primary_10_3389_fpls_2022_948901
crossref_primary_10_17749_2313_7347_ob_gyn_rep_2020_140
crossref_primary_10_3390_nu13124433
crossref_primary_10_1002_med_21628
crossref_primary_10_3390_antiox11030570
crossref_primary_10_3390_antiox11061107
crossref_primary_10_1080_17446651_2019_1631158
crossref_primary_10_3390_ijms232315217
crossref_primary_10_3390_life14121606
crossref_primary_10_3390_ijms23031835
crossref_primary_10_1007_s12035_024_04333_y
crossref_primary_10_1002_vms3_1112
crossref_primary_10_3390_biom10040523
crossref_primary_10_3389_fendo_2023_1173113
crossref_primary_10_3390_ijms242417221
crossref_primary_10_3390_nu14091912
crossref_primary_10_1016_j_aquaculture_2023_739997
crossref_primary_10_3892_etm_2022_11197
crossref_primary_10_1111_jipb_12993
crossref_primary_10_3390_biology12010089
crossref_primary_10_3389_fpls_2021_808899
crossref_primary_10_3390_ijms24032249
crossref_primary_10_2147_JIR_S343236
crossref_primary_10_3389_fnins_2023_1084813
crossref_primary_10_3390_ijms21176045
crossref_primary_10_1016_j_vph_2020_106659
crossref_primary_10_1186_s12885_022_09464_w
crossref_primary_10_1111_jvim_15646
crossref_primary_10_3390_ijms23073593
crossref_primary_10_1016_j_tins_2023_01_003
crossref_primary_10_1038_s41598_024_53810_w
crossref_primary_10_1016_j_tplants_2020_08_009
crossref_primary_10_3390_polym17060750
crossref_primary_10_1016_j_plantsci_2020_110697
crossref_primary_10_1186_s12958_024_01296_6
crossref_primary_10_3390_ijms22189904
crossref_primary_10_54097_hset_v54i_9810
crossref_primary_10_3390_children11101197
crossref_primary_10_3390_insects12040317
crossref_primary_10_3390_antiox10040511
crossref_primary_10_3390_ani11082454
crossref_primary_10_3389_fnmol_2020_00096
crossref_primary_10_1002_csc2_21126
crossref_primary_10_2174_1570178619666220325124451
crossref_primary_10_1177_11786388231160317
crossref_primary_10_3390_f12101404
crossref_primary_10_3390_ijms222011034
crossref_primary_10_2478_aoas_2020_0105
crossref_primary_10_3389_fpls_2022_847175
crossref_primary_10_1007_s00580_020_03145_5
crossref_primary_10_1134_S1021443724606839
crossref_primary_10_3389_fphys_2024_1501334
crossref_primary_10_1016_j_jtv_2022_07_015
crossref_primary_10_2147_CCID_S366854
crossref_primary_10_1007_s10522_022_09981_y
crossref_primary_10_1016_j_indcrop_2023_116834
crossref_primary_10_1139_cjb_2023_0017
crossref_primary_10_1152_physiol_00034_2019
crossref_primary_10_33069_cim_2024_0009
crossref_primary_10_3390_biom10010054
crossref_primary_10_3390_ijms222011265
crossref_primary_10_1186_s12986_022_00694_0
crossref_primary_10_3389_fmed_2024_1487971
crossref_primary_10_1093_jxb_erac233
crossref_primary_10_1080_01480545_2024_2401023
crossref_primary_10_1093_pnasnexus_pgad262
crossref_primary_10_4103_jfmpc_jfmpc_1122_24
crossref_primary_10_3390_antiox9111078
crossref_primary_10_1016_j_actaastro_2022_10_020
crossref_primary_10_3390_cancers13123018
crossref_primary_10_1080_07352689_2020_1865637
crossref_primary_10_1016_j_theriogenology_2021_11_020
crossref_primary_10_12688_openreseurope_13795_2
crossref_primary_10_3390_biom12020198
crossref_primary_10_2174_1381612826666200310145935
crossref_primary_10_3389_fpls_2023_1126669
crossref_primary_10_3390_vaccines9121399
crossref_primary_10_12688_openreseurope_13795_1
crossref_primary_10_3389_fimmu_2021_692022
crossref_primary_10_3390_diseases9040067
crossref_primary_10_3390_antiox9111088
crossref_primary_10_3390_ijms25126799
crossref_primary_10_3390_pharmaceutics15071845
crossref_primary_10_1007_s40415_024_01013_y
crossref_primary_10_3390_antiox13060747
crossref_primary_10_1007_s11756_023_01460_0
crossref_primary_10_3389_fpls_2023_1271137
crossref_primary_10_1186_s12870_024_05672_7
crossref_primary_10_3390_cells9020436
crossref_primary_10_1016_j_ygcen_2020_113620
crossref_primary_10_1210_endocr_bqaa128
crossref_primary_10_3389_fpls_2022_902694
crossref_primary_10_31083_j_jin2307133
crossref_primary_10_1016_j_dialog_2023_100098
crossref_primary_10_1016_j_sajb_2023_09_032
crossref_primary_10_1016_j_biochi_2022_01_001
crossref_primary_10_1093_treephys_tpac112
crossref_primary_10_3390_foods11233895
crossref_primary_10_3389_fnut_2023_1143511
crossref_primary_10_1186_s43170_024_00309_z
crossref_primary_10_1186_s11658_022_00375_z
crossref_primary_10_1002_2211_5463_13007
crossref_primary_10_3390_ijms25115952
crossref_primary_10_1016_j_sleep_2021_08_001
crossref_primary_10_3390_metabo13010072
crossref_primary_10_1016_j_bbadis_2020_165914
crossref_primary_10_1371_journal_pone_0318362
crossref_primary_10_3389_fimmu_2021_673692
crossref_primary_10_3390_ijms20205173
crossref_primary_10_3390_biom10010141
crossref_primary_10_3389_fgene_2023_1183637
crossref_primary_10_1016_j_pmpp_2024_102367
crossref_primary_10_31482_mmsl_2023_039
crossref_primary_10_1016_j_gocm_2021_10_004
crossref_primary_10_1186_s12964_023_01047_x
crossref_primary_10_1080_17460441_2022_2043846
crossref_primary_10_3390_biom13060908
crossref_primary_10_3389_fpls_2022_936747
crossref_primary_10_1080_07420528_2023_2270706
crossref_primary_10_3390_antiox11040634
crossref_primary_10_1016_j_foodchem_2024_140172
crossref_primary_10_3390_microorganisms8060866
crossref_primary_10_1007_s10725_023_01011_2
crossref_primary_10_1093_jxb_erac009
crossref_primary_10_1016_j_plaphy_2024_108601
crossref_primary_10_3389_fcimb_2023_1167312
crossref_primary_10_3390_antiox10111728
crossref_primary_10_25118_2763_9037_2024_v14_1197
crossref_primary_10_1007_s42000_024_00602_6
crossref_primary_10_1016_j_mitoco_2024_07_002
crossref_primary_10_1007_s10555_020_09845_2
crossref_primary_10_3390_ijms23126646
crossref_primary_10_1007_s11064_022_03674_1
crossref_primary_10_1016_j_mito_2020_04_006
crossref_primary_10_7554_eLife_83361
crossref_primary_10_3390_su13010294
crossref_primary_10_3390_ijms21031135
crossref_primary_10_3390_ani14040644
crossref_primary_10_3390_ijms24087447
crossref_primary_10_1146_annurev_environ_112420_014438
crossref_primary_10_3390_antiox11040737
crossref_primary_10_3390_nu14051076
crossref_primary_10_1016_j_synbio_2021_12_011
crossref_primary_10_3389_fcvm_2022_888319
crossref_primary_10_3390_antiox13060663
crossref_primary_10_3390_ijms23031222
crossref_primary_10_1016_j_arr_2021_101394
crossref_primary_10_1016_j_postharvbio_2021_111656
crossref_primary_10_3389_fpls_2022_861043
Cites_doi 10.1111/j.1600-079X.2007.00490.x
10.1146/annurev-pharmtox-010814-124742
10.1016/j.archoralbio.2011.03.004
10.3892/or.2015.4238
10.3390/molecules23081887
10.1016/j.cbpa.2009.07.025
10.1111/jpi.12441
10.1096/fj.06-7745com
10.1016/j.fsi.2014.10.030
10.1111/jpi.12246
10.1016/bs.ircmb.2018.02.002
10.1517/14728222.2013.834890
10.1016/0006-3002(60)90453-4
10.1074/jbc.M005671200
10.1007/0-306-46814-X_46
10.1111/jpi.12026
10.1111/j.1600-079X.2010.00789.x
10.1196/annals.1356.028
10.1093/jxb/erv396
10.1111/jpi.12514
10.2174/138955713804999810
10.1111/jpi.12321
10.1038/nri.2017.66
10.1055/s-0031-1298239
10.1385/ENDO:27:2:201
10.1111/jpi.12160
10.1111/jpi.12360
10.1111/j.1471-4159.2011.07397.x
10.1007/BF00327987
10.1111/jpi.12500
10.1124/jpet.118.253260
10.1021/acs.jafc.7b03354
10.1073/pnas.1618798114
10.1111/j.1600-079X.2009.00701.x
10.1007/s10787-017-0332-5
10.1210/endo-79-6-1168
10.1016/j.mce.2006.03.039
10.1111/jpi.12267
10.1111/jpi.12103
10.1038/nature06058
10.1128/MMBR.64.4.786-820.2000
10.1016/j.smrv.2004.08.001
10.1523/jneurosci.1384-06.2006
10.1111/j.1574-6976.2008.00134.x
10.3390/molecules23030530
10.32794/mr11250002
10.1016/j.cbpb.2017.12.013
10.1111/jpi.12336
10.1076/brhm.28.1.144.12978
10.1080/10408398.2018.1487927
10.1097/00075197-200403000-00011
10.1210/en.2011-0226
10.1093/jxb/eru373
10.1126/sciadv.1600134
10.1093/molbev/msh160
10.3390/molecules20047396
10.1007/s00114-018-1546-0
10.1517/14728222.2016.1091882
10.1016/j.bbabio.2011.04.014
10.1177/1534735409353332
10.1111/jpi.12538
10.1111/j.1753-4887.2001.tb07018.x
10.1126/science.131.3409.1312
10.1016/j.mce.2012.01.004
10.1007/s00018-017-2609-7
10.1111/jpi.12111
10.1271/bbb.80220
10.1111/jpi.12244
10.1093/jxb/eru336
10.1111/jpi.12317
10.1371/journal.pone.0109257
10.1111/jpi.12370
10.1021/ja01543a060
10.1111/j.1600-079X.2012.01019.x
10.1016/0024-3205(93)90670-X
10.2119/molmed.2008.00117
10.3390/ijms19082205
10.1073/pnas.0406871102
10.1074/jbc.R600036200
10.1111/jpi.12364
10.1016/S0140-6736(05)64014-7
10.1016/0303-7207(91)90087-9
10.3390/ijms19082439
10.1034/j.1600-079X.2001.300201.x
10.1002/aja.1001620402
10.1111/j.1399-3054.2011.01454.x
10.1016/j.yfrne.2014.12.001
10.1111/jpi.12415
10.1111/jpi.12181
10.1126/science.7423204
10.1016/j.arr.2018.07.010
10.1038/srep41236
10.3390/ijms150915858
10.1111/jpi.12391
10.3390/molecules22112015
10.1111/jpi.12188
10.3390/antiox6040082
10.1101/gad.1519507
10.1111/j.1600-079X.2012.01029.x
10.1073/pnas.86.8.2582
10.1016/j.foodchem.2012.10.077
10.1111/jpi.12356
10.3109/07420529209064541
10.1016/j.cub.2015.08.026
10.1016/j.jad.2012.12.025
10.3389/fpls.2016.01124
10.1111/j.1768-322X.1999.tb01114.x
10.1038/bjp.2008.184
10.1007/BF01955342
10.3389/fpls.2016.00198
10.1016/j.freeradbiomed.2018.03.002
10.1016/S0024-3205(00)00896-1
10.1093/jxb/eru357
10.1038/s41598-017-02286-y
10.1111/jpi.12412
10.1016/j.cell.2014.07.042
10.1016/S0169-328X(99)00257-0
10.1021/acs.jmedchem.6b01243
10.1556/030.62.2015.2.1
10.1111/jpi.12289
10.1002/bies.201700158
10.1016/j.beem.2017.10.010
10.1111/jpi.12460
10.1093/jxb/eru386
10.1111/j.1600-079X.2010.00841.x
10.1385/ENDO:27:2:149
10.1007/s002990000206
10.1111/j.1600-079X.2011.00931.x
10.1111/jpi.12055
10.3390/molecules201018886
10.4239/wjd.v9.i7.99
10.1016/0166-4328(96)00083-6
10.1111/jpi.12180
10.1155/2018/3271948
10.1111/jpi.12010
10.1007/s00018-008-8001-x
10.1530/ERC-15-0030
10.1111/j.1469-185X.2009.00118.x
10.1111/j.1600-079X.2004.00181.x
10.1111/jpi.12490
10.1021/acs.jpcb.7b01408
10.1016/j.actatropica.2014.04.021
10.1152/physiol.00011.2014
10.1111/jpi.12390
10.1080/17460441.2018.1419184
10.1111/jpi.12011
10.1111/jpi.12232
10.1111/jpi.12379
10.1111/j.1600-079X.2005.00223.x
10.1016/j.ceb.2015.02.003
10.1159/000109133
10.1111/jpi.12080
10.1111/jpi.12454
10.1016/S0021-9258(18)31790-3
10.1111/jpi.12294
10.32794/mr11250005
10.1007/s00709-017-1098-8
10.1111/j.1600-079X.1995.tb00136.x
10.1124/pr.110.002832
10.1111/jpi.12392
10.3109/10715762.2011.605788
10.1371/journal.pone.0052010
10.1111/jpi.12361
10.1111/jpi.12429
10.1111/jpi.12531
10.3389/fpls.2017.00134
10.1080/07420520500545839
10.1038/s41598-017-00566-1
10.1093/jxb/err256
10.1111/gbb.12369
10.3390/ijms151222405
10.1111/jpi.12253
10.1007/s12154-011-0064-8
10.3390/molecules23020336
10.32794/mr11250004
10.1016/j.neuchi.2015.03.002
10.1111/bph.14083
10.1002/jcp.27698
10.1073/pnas.1705768114
10.1111/j.1399-3054.1984.tb06089.x
10.1002/bies.201400017
10.1016/j.cub.2015.07.055
10.1046/j.1471-4159.1999.0731343.x
10.1111/jpi.12120
10.1002/biof.23
10.1111/jpi.12346
10.3390/ijms140610979
10.1111/jpi.12262
10.1111/jpi.12378
10.32794/nr11250011
10.1111/jpi.12481
10.1073/pnas.1312634110
10.1111/bph.13536
10.1034/j.1600-079X.2003.02111.x
10.1111/jpi.12219
10.1093/jxb/erx305
10.1080/15216540152845984
10.1111/j.1600-079X.2005.00276.x
10.1111/jpi.12387
10.1016/j.abb.2008.04.040
ContentType Journal Article
Copyright Copyright © 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter. 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter
Copyright_xml – notice: Copyright © 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter. 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fendo.2019.00249
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_5deab57ebf584d77b9a8bec3e883ec85
PMC6481276
31057485
10_3389_fendo_2019_00249
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RPM
IPNFZ
M48
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-d4a36552a21ee1d2cb81e9f29a806f5fc830d33c29bdcf110d9d3806e51117eb3
IEDL.DBID M48
ISSN 1664-2392
IngestDate Wed Aug 27 01:31:32 EDT 2025
Thu Aug 21 14:19:52 EDT 2025
Thu Jul 10 18:42:37 EDT 2025
Thu Apr 03 06:59:22 EDT 2025
Tue Jul 01 01:25:45 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords antioxidant
regulation of melatonin
biological rhythms
biosynthesis enzymes
endosymbiosis
evolution
melatonin
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-d4a36552a21ee1d2cb81e9f29a806f5fc830d33c29bdcf110d9d3806e51117eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors have contributed equally to this work
Reviewed by: Maristela Oliveira Poletini, Federal University of Minas Gerais, Brazil; Yves Combarnous, Centre National de la Recherche Scientifique (CNRS), France
This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology
Edited by: Ralf Jockers, Université Paris-Sorbonne, France
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fendo.2019.00249
PMID 31057485
PQID 2231901645
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5deab57ebf584d77b9a8bec3e883ec85
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6481276
proquest_miscellaneous_2231901645
pubmed_primary_31057485
crossref_primary_10_3389_fendo_2019_00249
crossref_citationtrail_10_3389_fendo_2019_00249
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-17
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Taverne (B37) 2018; 40
Scortegagna (B206) 1999; 73
Boutin (B119) 2008; 477
Hardeland (B56) 2017; 22
Leja-Szpak (B87) 2010; 49
Ganguly (B204) 2005; 102
Cassagnes (B120) 2018; 120
Gentil (B164) 2017; 254
Jockers (B113) 2016; 173
Byeon (B188) 2014; 56
Donaghy (B40) 2015; 42
Hu (B106) 2017; 65
Pshenichnyuk (B9) 2017; 121
Byeon (B168) 2015; 66
Reiter (B10) 2018; 19
Kolář (B177) 2005; 39
Cai (B33) 2017; 62
Byeon (B26) 2014; 56
Wei (B214) 2018; 65
Kriegsfeld (B80) 2015; 37
Zhao (B133) 2017; 62
Weissbach (B152) 1960; 43
Quintana (B88) 2016; 61
Klein (B156) 2007; 282
Reiter (B55) 2016; 61
Pevet (B75) 2017; 31
Simonneaux (B76) 2011; 152
Tosches (B104) 2014; 159
Case (B44) 2017; 6
Arnao (B181) 2013; 55
Zhang (B34) 2018; 65
Muxel (B32) 2016; 60
Lee (B117) 2017; 62
Shi (B173) 2015; 33
Acuña-Castroviejo (B47) 2001; 30
Suofu (B101) 2017; 114
Burke (B213) 1999; 73
Reiter (B178) 2001; 59
Boutin (B130) 2019; 368
Markus (B99) 2013; 14
Lochner (B19) 2018; 65
Tan (B7) 2016; 61
Rodriguez (B29) 1994; 269
Su (B89) 2017; 62
Benleulmi-Chaachoua (B124) 2016; 60
Kurland (B170) 2000; 64
Reybier (B121) 2011; 45
Arnao (B141) 2013; 138
Shi (B202) 2015; 59
Wei (B116) 2018; 64
Huo (B103) 2017; 62
Reiter (B144); 13
Liu (B127) 2016; 56
Menendez-Menendez (B136) 2018; 2018
Hardeland (B125) 2009; 35
Klein (B97) 1970; 31
Esser (B162) 2004; 21
Kang (B157) 2011; 50
Liang (B107) 2017; 8
Hill (B131) 2009; 8
Tan (B100) 2003; 34
Mayo (B46) 2017; 62
Maciel (B138) 2014; 15
De Luca (B149) 1989; 86
Hevia (B53) 2014; 9
Fuhrberg (B148) 1997; 28
Axelrod (B151) 1960; 131
Zheng (B166) 2017; 7
Byeon (B160) 2014; 57
Mori (B69) 2015; 25
Moore (B93) 1996; 73
Mehta (B174) 2017; 17
Pozdeyev (B195) 2006; 26
Wei (B205) 2017; 68
Reiter (B109) 2015; 20
Li (B197) 2016; 61
Margulis (B11) 1975; 29
Dubocovich (B114) 2010; 62
Izon (B36) 2017; 114
Tan (B15) 2015; 20
Byeon (B167) 2013; 55
Shi (B142) 2015; 66
Byeon (B155) 2016; 60
Shi (B6) 2016; 7
Alkozi (B115) 2017; 13
Galano (B17) 2018; 23
Murch (B179) 1997; 350
Lerner (B1) 1958; 80
Tan (B18) 2010; 85
Estrada-Rodgers (B30) 1998; 7
Treberg (B43) 2018; 224
Vass (B59) 2012; 1817
Hardeland (B49) 2018; 65
Kolář (B66) 1999; 460
Tan (B158) 2012; 63
Liu (B190) 2005; 39
Lee (B57) 2016; 61
Claustrat (B79) 2015; 61
Zhang (B108) 2017; 7
Csaba (B140) 2015; 62
Coon (B169) 2006; 252
Hardeland (B146) 2015; 66
Back (B22) 2016; 61
Schomerus (B194) 2005; 1057
Majidinia (B73) 2018; 47
Gonzalez-Gonzalez (B85) 2018; 23
Byeon (B27) 2015; 58
Byeon (B154) 2015; 66
Zuo (B191) 2014; 57
Tan (B24) 2014; 15
Muxel (B209) 2012; 7
Choi (B122) 2017; 63
Galano (B51) 2013; 54
Vielma (B54) 2014; 137
Kramm (B92) 1993; 274
Reiter (B184) 1991; 79
Hardeland (B50) 2009; 47
Reiter (B39) 2017; 9
Boutin (B134) 2016; 20
Baler (B212) 1999; 91
Murch (B183) 2000; 19
Najafi (B82) 2017; 25
Archibald (B163) 2015; 25
Nabavi (B74) 2018; 14
Cardinali (B94) 1978
Cutando (B126) 2011; 56
Reiter (B13) 2017; 74
Oksche (B65) 1991
Casteilla (B42) 2001; 52
Dodt (B91) 1982; 36
Hattori (B3) 1995; 35
Lee (B28) 2014; 57
Reiter (B77) 2018; 1
Haque (B211) 2011; 119
Tan (B14) 1993; 1
Jou (B72) 2007; 43
Lee (B161) 2017; 64
Lecharny (B176) 1984; 60
Kang (B153) 2013; 55
Onaolapo (B20) 2018; 9
Tamtaji (B21) 2018; 2018
Latifi (B61) 2009; 33
Bondy (B83) 2018; 19
Park (B150) 2008; 72
Claustrat (B62) 2005; 9
Hardeland (B187) 2007; 1
Hardeland (B145) 2016; 7
Luo (B35) 2016; 2
Zhang (B203) 2015; 66
Wang (B132) 2015; 34
Manchester (B4) 2000; 67
Wu (B123) 2013; 148
Benitez-King (B135) 1993; 53
Reiter (B5) 2014; 29
Markus (B98) 2017; 175
Venegas (B63) 2012; 52
Yu (B118) 2018; 23
Reiter (B90) 1981; 162
Vass (B58) 2011; 142
Tan (B12) 2013; 54
Byeon (B192) 2016; 60
Falcón (B172) 2014; 111
Tan (B70) 2007; 21
Brown (B180) 2012; 78
Shi (B199) 2015; 59
Poeggeler (B71) 2005; 27
Seematter (B207) 2004; 7
Shi (B201) 2015; 58
Tan (B182) 2005; 27
Mendivil-Perez (B81) 2017; 63
Acuna-Castroviejo (B102) 2018; 1
Chong (B210) 2000; 275
Leon (B48) 2005; 38
Korkmaz (B31) 2009; 15
Hardeland (B67) 2008; 65
Tosini (B143) 2014; 36
Jockers (B112) 2008; 154
Tan (B171) 2019; 2
Slominski (B111) 2012; 351
Ye (B23); 2018
Shi (B200) 2015; 58
Dubbels (B2) 1995; 18
Bochkov (B147) 2012; 5
Park (B189) 2013; 54
Reiter (B95) 1992; 9
Kump (B38) 2007; 448
Ebihara (B185) 1997; 6
Johnson (B68) 2004; 6
Hill (B84) 2015; 22
Liu (B128) 2017; 16
Park (B175) 2013; 54
Lee (B159) 2017; 62
Byeon (B196) 2014; 56
Arnao (B105) 2015; 59
Reiter (B110) 2007; 52
Klein (B193) 2006; 23
Manchester (B45) 1995; 41
Jou (B52) 2018; 2018
Hardeland (B60) 1996; 29
Li (B139) 2018; 105
Galano (B16) 2018; 65
Manchester (B8) 2015; 59
Reiter (B96) 1966; 79
Shi (B198) 2015; 59
Lee (B25) 2017; 63
Roth (B64) 1980; 210
Bizzarri (B86) 2013; 17
Kim (B186) 2007; 21
Dharmaraja (B41) 2017; 60
Wang (B165) 2017; 63
da Silveira Cruz-Machado (B208) 2017; 7
Carrillo-Vico (B78) 2006; 7
Oishi (B129) 2018; 338
Mendoza-Vargas (B137) 2009; 154
References_xml – volume: 43
  start-page: 389
  year: 2007
  ident: B72
  article-title: Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2007.00490.x
– volume: 56
  start-page: 361
  year: 2016
  ident: B127
  article-title: MT1 and MT2 melatonin receptors: a therapeutic perspective
  publication-title: Ann Rev Pharmacol Toxicol.
  doi: 10.1146/annurev-pharmtox-010814-124742
– volume: 56
  start-page: 944
  year: 2011
  ident: B126
  article-title: A new perspective in oral health: potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity
  publication-title: Arch Oral Biol.
  doi: 10.1016/j.archoralbio.2011.03.004
– volume: 34
  start-page: 2541
  year: 2015
  ident: B132
  article-title: Involvement of nuclear receptor RZR/RORgamma in melatonin-induced HIF-1alpha inactivation in SGC-7901 human gastric cancer cells
  publication-title: Oncol Rep.
  doi: 10.3892/or.2015.4238
– volume: 23
  start-page: 1887
  year: 2018
  ident: B118
  article-title: The role of phyto-melatonin and related metabolites in response to stress
  publication-title: Molecules.
  doi: 10.3390/molecules23081887
– volume: 154
  start-page: 486
  year: 2009
  ident: B137
  article-title: MT2-like melatonin receptor modulates amplitude receptor potential in visual cells of crayfish during a 24-hour cycle
  publication-title: Comp Biochem Physiol A.
  doi: 10.1016/j.cbpa.2009.07.025
– volume: 63
  start-page: e12441
  year: 2017
  ident: B25
  article-title: Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12441
– volume: 21
  start-page: 1724
  year: 2007
  ident: B70
  article-title: Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in the water hyacinth: importance in phytoremediation
  publication-title: FASEB J.
  doi: 10.1096/fj.06-7745com
– volume: 42
  start-page: 91
  year: 2015
  ident: B40
  article-title: The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs
  publication-title: Fish Shellfish Immunol.
  doi: 10.1016/j.fsi.2014.10.030
– volume: 1
  start-page: 32
  year: 2007
  ident: B187
  article-title: Melatonin in plants - focus on a vertebrate night hormone with cytoprotective properties
  publication-title: Funct Plant Sci Biotechnol.
– volume: 59
  start-page: 120
  year: 2015
  ident: B202
  article-title: Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers)
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12246
– volume: 338
  start-page: 59
  year: 2018
  ident: B129
  article-title: Melatonin receptor signaling: impact of receptor oligomerization on receptor function
  publication-title: Int Rev Cell Mol Biol.
  doi: 10.1016/bs.ircmb.2018.02.002
– volume: 17
  start-page: 1483
  year: 2013
  ident: B86
  article-title: Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review
  publication-title: Exp Opin Ther Targets.
  doi: 10.1517/14728222.2013.834890
– volume: 43
  start-page: 352
  year: 1960
  ident: B152
  article-title: Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/0006-3002(60)90453-4
– volume: 275
  start-page: 32991
  year: 2000
  ident: B210
  article-title: Characterization of the chicken serotonin N-acetyltransferase gene: activation via clock gene heterodimer/E-box interaction
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M005671200
– volume: 460
  start-page: 391
  year: 1999
  ident: B66
  article-title: Presence and possible role of melatonin in a short-day flowering plant, Chenopodium rubrum
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/0-306-46814-X_46
– volume: 29
  start-page: 21
  year: 1975
  ident: B11
  article-title: Symbiotic theory of the origin of eukaryotic organelles; criteria for proof
  publication-title: Symp Soc Exp Biol.
– volume: 54
  start-page: 127
  year: 2013
  ident: B12
  article-title: Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12026
– volume: 49
  start-page: 248
  year: 2010
  ident: B87
  article-title: Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1)
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2010.00789.x
– volume: 1057
  start-page: 372
  year: 2005
  ident: B194
  article-title: Mechanisms regulating melatonin synthesis in the mammalian pineal organ
  publication-title: Ann N Y Acad Sci.
  doi: 10.1196/annals.1356.028
– volume: 66
  start-page: 6917
  year: 2015
  ident: B154
  article-title: Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/erv396
– volume: 65
  start-page: e12514
  year: 2018
  ident: B16
  article-title: Melatonin and its metabolites vs. oxidative stress: from individual actions to collective protection
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12514
– volume: 13
  start-page: 373
  ident: B144
  article-title: The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives
  publication-title: Mini Rev Med Chem.
  doi: 10.2174/138955713804999810
– volume: 60
  start-page: 394
  year: 2016
  ident: B32
  article-title: The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12321
– volume: 17
  start-page: 608
  year: 2017
  ident: B174
  article-title: Mitochondrial control of immunity: beyond ATP
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri.2017.66
– volume: 78
  start-page: 630
  year: 2012
  ident: B180
  article-title: Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis
  publication-title: Planta Med.
  doi: 10.1055/s-0031-1298239
– volume: 27
  start-page: 201
  year: 2005
  ident: B71
  article-title: Melatonin, aging, and age-related diseases
  publication-title: Endocrine.
  doi: 10.1385/ENDO:27:2:201
– volume: 57
  start-page: 219
  year: 2014
  ident: B160
  article-title: Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12160
– volume: 61
  start-page: 253
  year: 2016
  ident: B55
  article-title: Melatonin as an antioxidant: under promises but over delivers
  publication-title: J Pineal Gland.
  doi: 10.1111/jpi.12360
– volume: 7
  start-page: 13
  year: 1998
  ident: B30
  article-title: Characterization of a hormone response element in the mouse N-Acetyltransferase 2 (Nat2*) promoter
  publication-title: Gene Expr.
– volume: 119
  start-page: 6
  year: 2011
  ident: B211
  article-title: Melatonin synthesis in retina: cAMP-dependent transcriptional regulation of chicken arylalkylamine N-acetyltransferase by a CRE-like sequence and a TTATT repeat motif in the proximal promoter
  publication-title: J Neurochem.
  doi: 10.1111/j.1471-4159.2011.07397.x
– volume: 274
  start-page: 71
  year: 1993
  ident: B92
  article-title: Rod-opsin immunoreaction in the pineal organ of the pigmented mouse does not indicate the presence of a functional photopigment
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00327987
– volume: 65
  start-page: e12500
  year: 2018
  ident: B214
  article-title: Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12500
– volume: 368
  start-page: 59
  year: 2019
  ident: B130
  article-title: Is there sufficient evidence that the melatonin binding Site MT3 is Quinone Reductase 2?
  publication-title: J Pharmacol Exp Ther.
  doi: 10.1124/jpet.118.253260
– volume: 65
  start-page: 9987
  year: 2017
  ident: B106
  article-title: Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality
  publication-title: J Agric Food Chem.
  doi: 10.1021/acs.jafc.7b03354
– volume: 114
  start-page: 201618798
  year: 2017
  ident: B36
  article-title: Biological regulation of atmospheric chemistry en route to planetary oxygenation
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1618798114
– volume: 29
  start-page: 119
  year: 1996
  ident: B60
  article-title: Chronobiology of indoleamines in the dinoflagellate Gonyaulax polyedra: metabolism and effects related to circadian rhythmicity and photoperiodism
  publication-title: Braz J Med Biol Rep.
– volume: 47
  start-page: 109
  year: 2009
  ident: B50
  article-title: Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic animals
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2009.00701.x
– volume: 25
  start-page: 403
  year: 2017
  ident: B82
  article-title: Melatonin as an anti-inflammatory agent in radiotherapy
  publication-title: Inflammopharmacology.
  doi: 10.1007/s10787-017-0332-5
– volume: 79
  start-page: 1168
  year: 1966
  ident: B96
  article-title: Interrelationships of the pineal gland, the superior ganglia and the photoperiod in the regulation of the endocrine systems of hamsters
  publication-title: Endocrinology.
  doi: 10.1210/endo-79-6-1168
– volume: 31
  start-page: 241
  year: 1970
  ident: B97
  article-title: Pineal gland: stimulation of melatonin production by norepinephrine involves cyclic AMP-mediated stimulation of N-acetyltransferase
  publication-title: Adv Biochem Psychopharmacol.
– volume: 252
  start-page: 2
  year: 2006
  ident: B169
  article-title: Evolution of arylalkylamine N-acetyltransferase: emergence and divergence
  publication-title: Mol Cell Endocrinol.
  doi: 10.1016/j.mce.2006.03.039
– volume: 59
  start-page: 403
  year: 2015
  ident: B8
  article-title: Melatonin: an ancient molecule that makes oxygen metabolically tolerable
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12267
– volume: 56
  start-page: 107
  year: 2014
  ident: B26
  article-title: Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12103
– volume: 448
  start-page: 1033
  year: 2007
  ident: B38
  article-title: Increased subaerial volcanism and the rise of atmospheric oxygen 2
  publication-title: Nature.
  doi: 10.1038/nature06058
– volume: 64
  start-page: 786
  year: 2000
  ident: B170
  article-title: Origin and evolution of the mitochondrial proteome
  publication-title: Microbiol Mol Biol Rev.
  doi: 10.1128/MMBR.64.4.786-820.2000
– volume: 9
  start-page: 45
  year: 2017
  ident: B39
  article-title: Role of SIRT3/SOD2 signaling in mediating the antioxidant actions of melatonin in mitochondria
  publication-title: Curr Trends Endocrinol.
– volume: 41
  start-page: 391
  year: 1995
  ident: B45
  article-title: Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system
  publication-title: Chem Mol Biol Res.
– volume: 9
  start-page: 11
  year: 2005
  ident: B62
  article-title: The basic physiology and pathophysiology of melatonin
  publication-title: Sleep Med Rev.
  doi: 10.1016/j.smrv.2004.08.001
– volume: 26
  start-page: 9153
  year: 2006
  ident: B195
  article-title: Photic regulation of arylalkylamine N-acetyltransferase binding to 14-3-3 proteins in retinal photoreceptor cells
  publication-title: J Neurosci.
  doi: 10.1523/jneurosci.1384-06.2006
– volume: 33
  start-page: 258
  year: 2009
  ident: B61
  article-title: Oxidative stress in cyanobacteria
  publication-title: FEMS Microbiol Rev.
  doi: 10.1111/j.1574-6976.2008.00134.x
– volume: 23
  start-page: E530
  year: 2018
  ident: B17
  article-title: Melatonin: a versatile protector against oxidative DNA damage
  publication-title: Molecules.
  doi: 10.3390/molecules23030530
– volume: 1
  start-page: 21
  year: 2018
  ident: B102
  article-title: Melatonin actions in the heart: more than a hormone
  publication-title: Melaton Res.
  doi: 10.32794/mr11250002
– volume: 224
  start-page: 121
  year: 2018
  ident: B43
  article-title: Multidimensional mitochondrial energetics: applications to the study of electron leak and hydrogen peroxide metabolism
  publication-title: Comp Biochem Physiol B Biochem Mol Biol.
  doi: 10.1016/j.cbpb.2017.12.013
– volume: 61
  start-page: 27
  year: 2016
  ident: B7
  article-title: On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12336
– volume: 28
  start-page: 144
  year: 1997
  ident: B148
  article-title: Dramatic rises of melatonin and 5-methoxytryptamine in Gonyaulax exposed to decreased temperature
  publication-title: J Interdiscip Cycle Res.
  doi: 10.1076/brhm.28.1.144.12978
– volume: 14
  start-page: 1
  year: 2018
  ident: B74
  article-title: Anti-inflammatory effects of Melatonin: a mechanistic review
  publication-title: Crit Rev Food Sci Nutr.
  doi: 10.1080/10408398.2018.1487927
– volume: 7
  start-page: 169
  year: 2004
  ident: B207
  article-title: Relationship between stress, inflammation and metabolism
  publication-title: Curr Opin Clin Nutr Metab Care.
  doi: 10.1097/00075197-200403000-00011
– volume: 152
  start-page: 1734
  year: 2011
  ident: B76
  article-title: Naughty melatonin: how mothers tick off their fetus
  publication-title: Endocrinology.
  doi: 10.1210/en.2011-0226
– volume: 66
  start-page: 681
  year: 2015
  ident: B142
  article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L)
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/eru373
– volume: 2
  start-page: e1600134
  year: 2016
  ident: B35
  article-title: Rapid oxygenation of earth's atmosphere 2
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.1600134
– volume: 21
  start-page: 1643
  year: 2004
  ident: B162
  article-title: A genome phylogeny for mitochondria among α-Proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes
  publication-title: Mol Biol Evol.
  doi: 10.1093/molbev/msh160
– volume: 20
  start-page: 7396
  year: 2015
  ident: B109
  article-title: Phytomelatonin: assisting plants to survive and thrive
  publication-title: Molecules.
  doi: 10.3390/molecules20047396
– volume: 105
  start-page: 24
  year: 2018
  ident: B139
  article-title: Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress
  publication-title: Naturwissenschaften.
  doi: 10.1007/s00114-018-1546-0
– volume: 20
  start-page: 303
  year: 2016
  ident: B134
  article-title: Quinone reductase 2 as a promising target of melatonin therapeutic actions
  publication-title: Expert Opin Ther Targets.
  doi: 10.1517/14728222.2016.1091882
– volume: 1817
  start-page: 209
  year: 2012
  ident: B59
  article-title: Molecular mechanisms of photodamage in the Photosystem II complex
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbabio.2011.04.014
– volume: 8
  start-page: 337
  year: 2009
  ident: B131
  article-title: Molecular mechanisms of melatonin anticancer effects
  publication-title: Integr Cancer Ther.
  doi: 10.1177/1534735409353332
– volume: 2018
  start-page: e12538
  year: 2018
  ident: B52
  article-title: Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca2+ stress by melatonin's cascade metabolites C3-OHM and AFMK in RBA1 astrocytes
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12538
– volume: 59
  start-page: 286
  year: 2001
  ident: B178
  article-title: Melatonin in plants
  publication-title: Nutr Rev.
  doi: 10.1111/j.1753-4887.2001.tb07018.x
– volume: 131
  start-page: 1312
  year: 1960
  ident: B151
  article-title: Enzymatic O-methylation of N-acetylserotonin to melatonin
  publication-title: Science.
  doi: 10.1126/science.131.3409.1312
– volume: 351
  start-page: 152
  year: 2012
  ident: B111
  article-title: Melatonin membrane receptors in peripheral tissues: Distribution and functions
  publication-title: Mol Cell Endocrinol.
  doi: 10.1016/j.mce.2012.01.004
– volume: 74
  start-page: 3863
  year: 2017
  ident: B13
  article-title: Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas
  publication-title: Cell Mol Life Sci.
  doi: 10.1007/s00018-017-2609-7
– volume: 56
  start-page: 189
  year: 2014
  ident: B188
  article-title: Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12111
– volume: 72
  start-page: 2456
  year: 2008
  ident: B150
  article-title: Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants, Escherichia coli, and yeast
  publication-title: Biosci Biotech Bioch
  doi: 10.1271/bbb.80220
– volume: 59
  start-page: 102
  year: 2015
  ident: B198
  article-title: Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12244
– volume: 66
  start-page: 647
  year: 2015
  ident: B203
  article-title: Roles of melatonin in abiotic stress resistance in plants
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/eru336
– volume: 6
  start-page: 103
  year: 2004
  ident: B68
  article-title: Precise circadian clocks in prokaryotic cyanobacteria
  publication-title: Curr Issues Mol Biol.
– volume: 60
  start-page: 348
  year: 2016
  ident: B192
  article-title: Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12317
– volume: 9
  start-page: e109257
  year: 2014
  ident: B53
  article-title: Melatonin enhances photo-oxidation of 2′, 7′-dichlorodihydrofluorescein by an antioxidant reaction that renders N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK)
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0109257
– volume: 62
  start-page: 12370
  year: 2017
  ident: B89
  article-title: Cancer metastasis: mechanisms of inhibition by melatonin
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12370
– volume: 80
  start-page: 2587
  year: 1958
  ident: B1
  article-title: Isolation of melatonin, the pineal gland factor that lightens melanocyteS1
  publication-title: J Am Chem Soc.
  doi: 10.1021/ja01543a060
– volume: 54
  start-page: 139
  year: 2013
  ident: B175
  article-title: Kinetic analysis of purified recombinant rice N-acetylserotonin methyltransferase and peak melatonin production in etiolated rice shoots
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2012.01019.x
– volume: 53
  start-page: 201
  year: 1993
  ident: B135
  article-title: Binding of 3H-melatonin to calmodulin
  publication-title: Life Sci.
  doi: 10.1016/0024-3205(93)90670-X
– volume: 15
  start-page: 43
  year: 2009
  ident: B31
  article-title: Melatonin: an established antioxidant worthy of use in clinical trials
  publication-title: Mol Med.
  doi: 10.2119/molmed.2008.00117
– volume: 19
  start-page: E2205
  year: 2018
  ident: B83
  article-title: Mechanisms underlying tumor suppressive properties of melatonin
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms19082205
– volume: 102
  start-page: 1222
  year: 2005
  ident: B204
  article-title: Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0406871102
– volume: 282
  start-page: 4233
  year: 2007
  ident: B156
  article-title: Arylalkylamine N-acetyltransferase: “the timezyme”
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.R600036200
– volume: 7
  start-page: 423
  year: 2006
  ident: B78
  article-title: The modulatory role of melatonin on immune responsiveness
  publication-title: Curr Opin Investig Drugs.
– volume: 61
  start-page: 426
  year: 2016
  ident: B22
  article-title: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12364
– start-page: 5
  volume-title: Suprachiasmatic Nucleus.
  year: 1991
  ident: B65
  article-title: The development of the concept of photoneuroendocrine systems: historical perspective
– volume: 350
  start-page: 1598
  year: 1997
  ident: B179
  article-title: Melatonin in feverfew and other medicinal plants
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(05)64014-7
– volume: 79
  start-page: C153
  year: 1991
  ident: B184
  article-title: Melatonin: the chemical expression of darkness
  publication-title: Mol Cell Endocrinol.
  doi: 10.1016/0303-7207(91)90087-9
– volume: 19
  start-page: E2439
  year: 2018
  ident: B10
  article-title: Melatonin mitigates mitochondrial meltdown: interactions with SIRT3
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms19082439
– volume: 30
  start-page: 65
  year: 2001
  ident: B47
  article-title: Melatonin, mitochondria, and cellular bioenergetics
  publication-title: J Pineal Res.
  doi: 10.1034/j.1600-079X.2001.300201.x
– volume: 162
  start-page: 287
  year: 1981
  ident: B90
  article-title: The mammalian pineal gland: structure and function
  publication-title: Am J Anat.
  doi: 10.1002/aja.1001620402
– volume: 142
  start-page: 6
  year: 2011
  ident: B58
  article-title: Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex
  publication-title: Physiol Plant.
  doi: 10.1111/j.1399-3054.2011.01454.x
– volume: 37
  start-page: 65
  year: 2015
  ident: B80
  article-title: Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals
  publication-title: Front Neuroendocrinol.
  doi: 10.1016/j.yfrne.2014.12.001
– volume: 63
  start-page: e12415
  year: 2017
  ident: B81
  article-title: Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12415
– volume: 57
  start-page: 418
  year: 2014
  ident: B28
  article-title: Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12181
– volume: 210
  start-page: 548
  year: 1980
  ident: B64
  article-title: Nonpineal melatonin in the alligator (Alligator mississippiensis)
  publication-title: Science.
  doi: 10.1126/science.7423204
– volume: 47
  start-page: 198
  year: 2018
  ident: B73
  article-title: The role of melatonin, a multitasking molecule, in retarding the processes of ageing
  publication-title: Ageing Res Rev.
  doi: 10.1016/j.arr.2018.07.010
– volume: 7
  start-page: 41236
  year: 2017
  ident: B166
  article-title: Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress
  publication-title: Sci Rep.
  doi: 10.1038/srep41236
– volume: 15
  start-page: 15858
  year: 2014
  ident: B24
  article-title: Fundamental Issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms150915858
– volume: 62
  start-page: e12391
  year: 2017
  ident: B46
  article-title: Melatonin and sirtuins: a “not-so unexpected” relationship
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12391
– volume: 22
  start-page: E2015
  year: 2017
  ident: B56
  article-title: Taxon- and site-specific melatonin catabolism
  publication-title: Molecules.
  doi: 10.3390/molecules22112015
– volume: 58
  start-page: 26
  year: 2015
  ident: B200
  article-title: INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12188
– volume: 6
  start-page: 82
  year: 2017
  ident: B44
  article-title: On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling
  publication-title: Antioxidants.
  doi: 10.3390/antiox6040082
– volume: 21
  start-page: 797
  year: 2007
  ident: B186
  article-title: Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production
  publication-title: Genes Dev.
  doi: 10.1101/gad.1519507
– volume: 54
  start-page: 258
  year: 2013
  ident: B189
  article-title: Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2012.01029.x
– volume: 86
  start-page: 2582
  year: 1989
  ident: B149
  article-title: Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.86.8.2582
– volume: 138
  start-page: 1212
  year: 2013
  ident: B141
  article-title: Growth conditions influence the melatonin content of tomato plants
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.10.077
– volume: 61
  start-page: 381
  year: 2016
  ident: B88
  article-title: Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12356
– volume: 9
  start-page: 314
  year: 1992
  ident: B95
  article-title: Some perturbations that disturb the circadian melatonin rhythm
  publication-title: Chronobiol Int.
  doi: 10.3109/07420529209064541
– volume: 25
  start-page: R842
  year: 2015
  ident: B69
  article-title: Circadian clocks: unexpected biochemical cogs
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2015.08.026
– volume: 148
  start-page: 357
  year: 2013
  ident: B123
  article-title: Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression
  publication-title: J Affect Disord.
  doi: 10.1016/j.jad.2012.12.025
– volume: 7
  start-page: 1124
  year: 2016
  ident: B6
  article-title: Fundamental issues of melatonin-mediated stress signaling in plants
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2016.01124
– volume: 91
  start-page: 699
  year: 1999
  ident: B212
  article-title: Rat arylalkylamine N-acetyltransferase gene: upstream and intronic components of a bipartite promoter
  publication-title: Biol Cell.
  doi: 10.1111/j.1768-322X.1999.tb01114.x
– volume: 154
  start-page: 1182
  year: 2008
  ident: B112
  article-title: Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new?
  publication-title: Br J Pharmacol.
  doi: 10.1038/bjp.2008.184
– volume: 36
  start-page: 996
  year: 1982
  ident: B91
  article-title: The pineal and parietal organs of lower vertebrates
  publication-title: Experientia.
  doi: 10.1007/BF01955342
– volume: 7
  start-page: 198
  year: 2016
  ident: B145
  article-title: Melatonin in plants - diversity of levels and multiplicity of functions
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2016.00198
– volume: 120
  start-page: 56
  year: 2018
  ident: B120
  article-title: Oxidative stress and neurodegeneration: the possible contribution of quinone reductase 2
  publication-title: Free Radic Biol Med.
  doi: 10.1016/j.freeradbiomed.2018.03.002
– volume: 67
  start-page: 3023
  year: 2000
  ident: B4
  article-title: High levels of melatonin in edible seeds: possible function in germ cell protection
  publication-title: Life Sci.
  doi: 10.1016/S0024-3205(00)00896-1
– volume: 66
  start-page: 709
  year: 2015
  ident: B168
  article-title: Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/eru357
– volume: 7
  start-page: 2091
  year: 2017
  ident: B208
  article-title: Daily corticosterone rhythm modulates pineal function through NFkappaB-related gene transcriptional program
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-02286-y
– volume: 63
  start-page: e12412
  year: 2017
  ident: B122
  article-title: Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12412
– start-page: 175
  year: 1978
  ident: B94
  article-title: Feedback control of pineal function by reproductive hormones – a neuroendocrine paradigm
  publication-title: J Neural Trans Suppl.
– volume: 159
  start-page: 46
  year: 2014
  ident: B104
  article-title: Melatonin signaling controls circadian swimming behavior in marine zooplankton
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.07.042
– volume: 73
  start-page: 144
  year: 1999
  ident: B206
  article-title: Activator protein-1 DNA binding activation by hydrogen peroxide in neuronal and astrocytic primary cultures of trisomy-16 and diploid mice
  publication-title: Mol Brain Res.
  doi: 10.1016/S0169-328X(99)00257-0
– volume: 60
  start-page: 3221
  year: 2017
  ident: B41
  article-title: Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria
  publication-title: J Med Chem.
  doi: 10.1021/acs.jmedchem.6b01243
– volume: 62
  start-page: 93
  year: 2015
  ident: B140
  article-title: Biogenic amines at a low level of evolution: production, functions and regulation in the unicellular Tetrahymena
  publication-title: Acta Microbiol Immunol Hungar.
  doi: 10.1556/030.62.2015.2.1
– volume: 60
  start-page: 65
  year: 2016
  ident: B155
  article-title: Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12289
– volume: 40
  start-page: 1700158
  year: 2018
  ident: B37
  article-title: Reactive oxygen species: radical factors in the evolution of animal life: a molecular timescale from earth's earliest history to the rise of complex life
  publication-title: Bioessays.
  doi: 10.1002/bies.201700158
– volume: 31
  start-page: 547
  year: 2017
  ident: B75
  article-title: The hormone melatonin: animal studies
  publication-title: Best Pract Res Clin Endocrinol Metab.
  doi: 10.1016/j.beem.2017.10.010
– volume: 64
  start-page: e12460
  year: 2017
  ident: B161
  article-title: Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12460
– volume: 66
  start-page: 627
  year: 2015
  ident: B146
  article-title: Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/eru386
– volume: 50
  start-page: 304
  year: 2011
  ident: B157
  article-title: Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2010.00841.x
– volume: 27
  start-page: 149
  year: 2005
  ident: B182
  article-title: Physiological ischemia/reperfusion phenomena and their relation to endogenous melatonin production: a hypothesis
  publication-title: Endocrine.
  doi: 10.1385/ENDO:27:2:149
– volume: 19
  start-page: 698
  year: 2000
  ident: B183
  article-title: Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St
  publication-title: John's wort (Hypericum perforatum L cv Anthos). Plant Cell Rep.
  doi: 10.1007/s002990000206
– volume: 52
  start-page: 217
  year: 2012
  ident: B63
  article-title: Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2011.00931.x
– volume: 55
  start-page: 149
  year: 2013
  ident: B181
  article-title: Growth conditions determine different melatonin levels in Lupinus albus L
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12055
– volume: 20
  start-page: 18886
  year: 2015
  ident: B15
  article-title: Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism
  publication-title: Molecules.
  doi: 10.3390/molecules201018886
– volume: 9
  start-page: 99
  year: 2018
  ident: B20
  article-title: Circadian dysrhythmia-linked diabetes mellitus: examining melatonin's roles in prophylaxis and management
  publication-title: World J Diabetes
  doi: 10.4239/wjd.v9.i7.99
– volume: 73
  start-page: 125
  year: 1996
  ident: B93
  article-title: Neural control of the pineal gland
  publication-title: Behav Brain Res.
  doi: 10.1016/0166-4328(96)00083-6
– volume: 57
  start-page: 408
  year: 2014
  ident: B191
  article-title: Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12180
– volume: 2018
  start-page: 3271948
  year: 2018
  ident: B136
  article-title: Melatonin: an anti-tumor agent in hormone-dependent cancers
  publication-title: Int J Endocrinol.
  doi: 10.1155/2018/3271948
– volume: 54
  start-page: 245
  year: 2013
  ident: B51
  article-title: On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12010
– volume: 65
  start-page: 2001
  year: 2008
  ident: B67
  article-title: Melatonin, hormone of darkness and more - occurrence, control mechanisms, actions and bioactive metabolites
  publication-title: Cellular and Molecular Life Sci.
  doi: 10.1007/s00018-008-8001-x
– volume: 22
  start-page: R183
  year: 2015
  ident: B84
  article-title: Melatonin: an inhibitor of breast cancer
  publication-title: Endocr Relat Cancer.
  doi: 10.1530/ERC-15-0030
– volume: 85
  start-page: 607
  year: 2010
  ident: B18
  article-title: The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness
  publication-title: Biol Rev.
  doi: 10.1111/j.1469-185X.2009.00118.x
– volume: 38
  start-page: 1
  year: 2005
  ident: B48
  article-title: Melatonin mitigates mitochondrial malfunction
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2004.00181.x
– volume: 65
  start-page: e12490
  year: 2018
  ident: B19
  article-title: Melatonin and cardioprotection against ischaemia/reperfusion injury: what's new?
  publication-title: . J Pineal Res.
  doi: 10.1111/jpi.12490
– volume: 121
  start-page: 3965
  year: 2017
  ident: B9
  article-title: Low-energy electron interaction with melatonin and related compounds
  publication-title: J Phys Chem B.
  doi: 10.1021/acs.jpcb.7b01408
– volume: 137
  start-page: 31
  year: 2014
  ident: B54
  article-title: Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: a review
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2014.04.021
– volume: 29
  start-page: 325
  year: 2014
  ident: B5
  article-title: Melatonin: exceeding expectations
  publication-title: Physiology.
  doi: 10.1152/physiol.00011.2014
– volume: 62
  start-page: 12390
  year: 2017
  ident: B103
  article-title: Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12390
– volume: 13
  start-page: 241
  year: 2017
  ident: B115
  article-title: Docking studies for melatonin receptors
  publication-title: Expert Opin Drug Discov.
  doi: 10.1080/17460441.2018.1419184
– volume: 55
  start-page: 7
  year: 2013
  ident: B153
  article-title: Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12011
– volume: 58
  start-page: 470
  year: 2015
  ident: B27
  article-title: Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12232
– volume: 62
  start-page: e12379
  year: 2017
  ident: B117
  article-title: Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12379
– volume: 39
  start-page: 91
  year: 2005
  ident: B190
  article-title: N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2005.00223.x
– volume: 33
  start-page: 125
  year: 2015
  ident: B173
  article-title: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/j.ceb.2015.02.003
– volume: 6
  start-page: 233
  year: 1997
  ident: B185
  article-title: In vivo microdialysis studies of pineal and ocular melatonin rhythms in birds
  publication-title: Neurosignals.
  doi: 10.1159/000109133
– volume: 55
  start-page: 371
  year: 2013
  ident: B167
  article-title: Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12080
– volume: 64
  start-page: e12454
  year: 2018
  ident: B116
  article-title: RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12454
– volume: 35
  start-page: 627
  year: 1995
  ident: B3
  article-title: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates
  publication-title: Biochem Mol Biol Int.
– volume: 269
  start-page: 31969
  year: 1994
  ident: B29
  article-title: Structural analysis of the human hydroxyindole-O-methyltransferase gene. Presence of two distinct promoters
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(18)31790-3
– volume: 60
  start-page: 95
  year: 2016
  ident: B124
  article-title: Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12294
– volume: 65
  start-page: e12525
  year: 2018
  ident: B49
  article-title: Melatonin and retinoid orphan receptors: demand for new interpretation after their exclusion as nuclear melatonin receptors
  publication-title: Melatonin Res.
  doi: 10.32794/mr11250005
– volume: 254
  start-page: 1835
  year: 2017
  ident: B164
  article-title: Origin of complex algae by secondary endosymbiosis: a journey through time
  publication-title: Protoplasma.
  doi: 10.1007/s00709-017-1098-8
– volume: 18
  start-page: 28
  year: 1995
  ident: B2
  article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.1995.tb00136.x
– volume: 62
  start-page: 343
  year: 2010
  ident: B114
  article-title: International Union of Basic and Clinical Pharmacology
  publication-title: . Pharmacol Rev.
  doi: 10.1124/pr.110.002832
– volume: 62
  start-page: e12392
  year: 2017
  ident: B159
  article-title: Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12392
– volume: 45
  start-page: 1184
  year: 2011
  ident: B121
  article-title: Insights into the redox cycle of human quinone reductase 2
  publication-title: Free Radic Res.
  doi: 10.3109/10715762.2011.605788
– volume: 7
  start-page: e52010
  year: 2012
  ident: B209
  article-title: NF-κB drives the synthesis of melatonin in RAW 264
  publication-title: PloS ONE.
  doi: 10.1371/journal.pone.0052010
– volume: 61
  start-page: 470
  year: 2016
  ident: B57
  article-title: Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa)
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12361
– volume: 63
  start-page: e12429
  year: 2017
  ident: B165
  article-title: Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12429
– volume: 2018
  start-page: e12531
  ident: B23
  article-title: Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12531
– volume: 8
  start-page: 134
  year: 2017
  ident: B107
  article-title: Melatonin regulates root architecture by modulating auxin response in rice
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2017.00134
– volume: 1
  start-page: 57
  year: 1993
  ident: B14
  article-title: Melatonin: a potent, endogenous hydroxyl radical scavenger
  publication-title: Endocr J.
– volume: 23
  start-page: 5
  year: 2006
  ident: B193
  article-title: Evolution of the vertebrate pineal gland: the AANAT hypothesis
  publication-title: Chronobiol Int.
  doi: 10.1080/07420520500545839
– volume: 7
  start-page: 503
  year: 2017
  ident: B108
  article-title: Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-00566-1
– volume: 63
  start-page: 577
  year: 2012
  ident: B158
  article-title: Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/err256
– volume: 16
  start-page: 546
  year: 2017
  ident: B128
  article-title: Role of the MT1 and MT2 melatonin receptors in mediating depressive- and anxiety-like behaviors in C3H/HeN mice
  publication-title: Genes Brain Behav.
  doi: 10.1111/gbb.12369
– volume: 15
  start-page: 22405
  year: 2014
  ident: B138
  article-title: Melatonin as a signaling molecule for metabolism regulation in response to hypoxia in the crab Neohelice granulata
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms151222405
– volume: 59
  start-page: 133
  year: 2015
  ident: B105
  article-title: Functions of melatonin in plants: a review
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12253
– volume: 5
  start-page: 5
  year: 2012
  ident: B147
  article-title: Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources
  publication-title: J Chem Biol.
  doi: 10.1007/s12154-011-0064-8
– volume: 23
  start-page: E336
  year: 2018
  ident: B85
  article-title: Melatonin: a molecule for reducing breast cancer risk
  publication-title: Molecules.
  doi: 10.3390/molecules23020336
– volume: 1
  start-page: 58
  year: 2018
  ident: B77
  article-title: Historical perspective and evaluation of the mechanisms by which melatonin mediates seasonal reproduction in mammals
  publication-title: Melaton Res.
  doi: 10.32794/mr11250004
– volume: 61
  start-page: 77
  year: 2015
  ident: B79
  article-title: Melatonin: physiological effects in humans
  publication-title: Neurochirurgie.
  doi: 10.1016/j.neuchi.2015.03.002
– volume: 175
  start-page: 3239
  year: 2017
  ident: B98
  article-title: Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes
  publication-title: Br J Pharmacol.
  doi: 10.1111/bph.14083
– volume: 2018
  start-page: 27698
  year: 2018
  ident: B21
  article-title: Melatonin, a toll-like receptor inhibitor: current status and future perspectives
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.27698
– volume: 52
  start-page: 11
  year: 2007
  ident: B110
  article-title: Medical implications of melatonin: receptor-mediated and receptor-independent actions
  publication-title: Adv Med Sci.
– volume: 114
  start-page: E7997
  year: 2017
  ident: B101
  article-title: Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1705768114
– volume: 60
  start-page: 437
  year: 1984
  ident: B176
  article-title: Stem extension rate in light-grown plants
  publication-title: Chenopodium rubrum. Physiol Plant.
  doi: 10.1111/j.1399-3054.1984.tb06089.x
– volume: 36
  start-page: 778
  year: 2014
  ident: B143
  article-title: Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease
  publication-title: Bioessays.
  doi: 10.1002/bies.201400017
– volume: 25
  start-page: R911
  year: 2015
  ident: B163
  article-title: Endosymbiosis and eukaryotic cell evolution
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2015.07.055
– volume: 73
  start-page: 1343
  year: 1999
  ident: B213
  article-title: Genetic targeting: the serotonin N-acetyltransferase promoter imparts circadian expression selectively in the pineal gland and retina of transgenic rats
  publication-title: J Neurochem.
  doi: 10.1046/j.1471-4159.1999.0731343.x
– volume: 56
  start-page: 275
  year: 2014
  ident: B196
  article-title: Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12120
– volume: 35
  start-page: 183
  year: 2009
  ident: B125
  article-title: Melatonin: signaling mechanisms of a pleiotropic agent
  publication-title: Biofactors.
  doi: 10.1002/biof.23
– volume: 61
  start-page: 291
  year: 2016
  ident: B197
  article-title: Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12346
– volume: 14
  start-page: 10979
  year: 2013
  ident: B99
  article-title: Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms140610979
– volume: 59
  start-page: 334
  year: 2015
  ident: B199
  article-title: Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12262
– volume: 62
  start-page: e12378
  year: 2017
  ident: B133
  article-title: Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-alpha in diabetic cardiomyopathy
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12378
– volume: 2
  start-page: 44
  year: 2019
  ident: B171
  article-title: Mitochondria: the birth place, battle ground and site of melatonin metabolism in cells
  publication-title: Melatonin Res.
  doi: 10.32794/nr11250011
– volume: 65
  start-page: e12481
  year: 2018
  ident: B34
  article-title: LIM homeobox transcription factor Isl1 is required for melatonin synthesis in the pig pineal gland
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12481
– volume: 111
  start-page: 314
  year: 2014
  ident: B172
  article-title: Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1312634110
– volume: 173
  start-page: 2702
  year: 2016
  ident: B113
  article-title: Update on melatonin receptors: IUPHAR Review 20
  publication-title: Br J Pharmacol.
  doi: 10.1111/bph.13536
– volume: 34
  start-page: 75
  year: 2003
  ident: B100
  article-title: Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin
  publication-title: J Pineal Res.
  doi: 10.1034/j.1600-079X.2003.02111.x
– volume: 58
  start-page: 335
  year: 2015
  ident: B201
  article-title: Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12219
– volume: 68
  start-page: 4997
  year: 2017
  ident: B205
  article-title: Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/erx305
– volume: 52
  start-page: 181
  year: 2001
  ident: B42
  article-title: Mitochondrial ROS metabolism: modulation by uncoupling proteins
  publication-title: IUBMB Life.
  doi: 10.1080/15216540152845984
– volume: 39
  start-page: 333
  year: 2005
  ident: B177
  article-title: Melatonin in higher plants: occurrence and possible functions
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2005.00276.x
– volume: 62
  start-page: e12387
  year: 2017
  ident: B33
  article-title: HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12387
– volume: 477
  start-page: 12
  year: 2008
  ident: B119
  article-title: Studies of the melatonin binding site location onto quinone reductase 2 by directed mutagenesis
  publication-title: Arch Biochem Biophys.
  doi: 10.1016/j.abb.2008.04.040
SSID ssj0000401998
Score 2.6364996
SecondaryResourceType review_article
Snippet Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 249
SubjectTerms antioxidant
biological rhythms
biosynthesis enzymes
Endocrinology
endosymbiosis
evolution
melatonin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iQbyIb-uLFbx4WNrNa7PeVFpErBcVvIVkk8WCpmKr0H_vTHZbWhG9eE0mbPgyu_PNJvmGkNOC5hWXtExZCR7MvVSpVVylrnLKc2gT8Xp0_05eP_KbJ_E0V-oLz4TV8sA1cG3hvLEi97aCUOny3BZGwXOZV4r5UkX1Uoh5c8lU_AZD2gCJRL0vCVlY0a58cHjZL0N9SorSmXNxKMr1_8Qxvx-VnIs9vXWy1pDG5KKe7AZZ8mGTrPSbbfEtctvHI234YzW5nwSgdKPBKDHBJT2IWoj8edL9bHzMvE-SWhtkkoD9RRi8ggdGayxgNB5tk8de9-HqOm3KJKSloGqcOm6YFIIamnmfOVpalfmiogBUR1Z4Rot1HGMlLawrKwj3rnAMujxwrQyAZTtkOQyD3yMJAswkvNROAlNxWSGEyYz1gnZ4JXLbIu0paLpsNMSxlMWLhlwCYdYRZo0w6whzi5zNRrzV-hm_2F7iOszsUPk6NoA_6MYf9F_-0CIn01XU8Kbg9ocJfvgx0kCEkP1IDja79arOHsWw3DHH0fnCei_MZbEnDJ6jGrfkwJFyuf8fkz8gqwgH7lZl-SFZHr9_-CMgPWN7HP37CwpiApE
  priority: 102
  providerName: Directory of Open Access Journals
Title Melatonin Synthesis and Function: Evolutionary History in Animals and Plants
URI https://www.ncbi.nlm.nih.gov/pubmed/31057485
https://www.proquest.com/docview/2231901645
https://pubmed.ncbi.nlm.nih.gov/PMC6481276
https://doaj.org/article/5deab57ebf584d77b9a8bec3e883ec85
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RIlW9VLxJgcpIXHpwm32vkRAqqKGqGi4lUm6rtXfdRgqbNk4R-ffMrN1AUIS4-GDP2rvz8HyzjxlC3hVM10KxKucVaLAIyuSlESb3tTdBwD2ZjkcPv6qzkTgfy_Hv49EdA5uNoR3WkxrNp0c_b5cfweA_YMQJ_va4DtHjOT6KqSchnNgiD8EvaTTTYQf2038ZQokiFcelSomcATJo1y03vmTNT6V0_psw6N9bKf_wTYNHZK8DldlJqwWPyYMQn5CdYbds_pRcDHHLG068ZpfLCJCvmTSZiz4bgFdDybzPTn90Oujmy6zNHbLMgP4kTr4DpxI1FjhaNM_IaHD67fNZ3pVRyCvJzCL3wnElJXOMhkA9q0pDQ1Gzwpm-qnEPF-97zitWlL6qAQ74wnN4FACLUQ3B9nOyHWcxvCSZ8FpzBUbvgYPc00JKR10ZJOuLWuqyR47vmWarLsc4lrqYWog1kM02sdkim21ic48crlrctPk1_kH7CeWwosPM2OnGbH5lO0Oz0gdXSuh2DdAKulvCMEFPeTCGh8rIHnl7L0ULloTLIy6G2V1jASghOlICaF60Ul19imM5ZIGt9Zq81_qy_iROrlO2biUAQ2m1_x_ffUV2cbS4WEX1a7K9mN-FN4B5FuVBmiuA65cxPUhq_QtWagGn
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+Synthesis+and+Function%3A+Evolutionary+History+in+Animals+and+Plants&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Zhao%2C+Dake&rft.au=Yu%2C+Yang&rft.au=Shen%2C+Yong&rft.au=Liu%2C+Qin&rft.date=2019-04-17&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=10&rft.spage=249&rft_id=info:doi/10.3389%2Ffendo.2019.00249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon