Melatonin Synthesis and Function: Evolutionary History in Animals and Plants
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evoluti...
Saved in:
Published in | Frontiers in endocrinology (Lausanne) Vol. 10; p. 249 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
17.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to
-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin. |
---|---|
AbstractList | Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to
-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin. Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N -acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin. Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin. Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin. |
Author | Liu, Qin Sharma, Ramaswamy Yu, Yang Shen, Yong Reiter, Russel J. Zhao, Zhiwei Zhao, Dake |
AuthorAffiliation | 2 Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University , Kunming , China 5 College of Agriculture and Biotechnology, Yunnan Agricultural University , Kunming , China 6 School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture , Kunming , China 3 School of Life Science, Yunnan University , Kunming , China 1 Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University , Kunming , China 7 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health) , San Antonio, TX , United States 4 State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University , Kunming , China |
AuthorAffiliation_xml | – name: 7 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health) , San Antonio, TX , United States – name: 4 State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University , Kunming , China – name: 5 College of Agriculture and Biotechnology, Yunnan Agricultural University , Kunming , China – name: 3 School of Life Science, Yunnan University , Kunming , China – name: 1 Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University , Kunming , China – name: 6 School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture , Kunming , China – name: 2 Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University , Kunming , China |
Author_xml | – sequence: 1 givenname: Dake surname: Zhao fullname: Zhao, Dake – sequence: 2 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 3 givenname: Yong surname: Shen fullname: Shen, Yong – sequence: 4 givenname: Qin surname: Liu fullname: Liu, Qin – sequence: 5 givenname: Zhiwei surname: Zhao fullname: Zhao, Zhiwei – sequence: 6 givenname: Ramaswamy surname: Sharma fullname: Sharma, Ramaswamy – sequence: 7 givenname: Russel J. surname: Reiter fullname: Reiter, Russel J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31057485$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUtLJDEQDuLi--5J-riXGfPodCd7WBDxBbPswq7nkE6qNdKTuElamH9vekZFBXOpoup7FPn20bYPHhA6JnjOmJCnPXgb5hQTOceY1nIL7ZGmqWeUSbr9rt9FRyk94PLqgpViB-0ygnlbC76HFr9g0Dl456u_K5_vIblUaW-ry9Gb7IL_UV08hWGcWh1X1bVLOZRa8GfeLfWwQf8ZtM_pEH3rywSOXuoBur28-Hd-PVv8vro5P1vMDKciz2ytWcM51ZQAEEtNJwjInkotcNPz3giGLWOGys6anhBspWVlBZwQ0kLHDtDNRtcG_aAeY7kjrlTQTq0HId4pHbMzAyhuQXe8kHouatu2XTHpwDAQgoERvGj93Gg9jt0SrAGfox4-iH7ceHev7sKTampBaNsUge8vAjH8HyFltXTJwFB-BMKYFKWMSEyaevI6ee_1ZvIaRwHgDcDEkFKE_g1CsJpCV-vQ1RS6WodeKM0ninFZT3GVa93wNfEZi4-zcg |
CitedBy_id | crossref_primary_10_1016_j_scienta_2024_113776 crossref_primary_10_1016_j_clineuro_2019_105591 crossref_primary_10_1016_j_enbuild_2021_111456 crossref_primary_10_3390_horticulturae9060704 crossref_primary_10_1016_j_scienta_2023_112286 crossref_primary_10_1021_acsptsci_1c00157 crossref_primary_10_3390_su14031107 crossref_primary_10_1016_j_joca_2020_05_011 crossref_primary_10_1002_jsfa_12179 crossref_primary_10_1007_s11010_019_03617_5 crossref_primary_10_1016_j_postharvbio_2024_112852 crossref_primary_10_1515_jbcpp_2021_0289 crossref_primary_10_3390_plants10091917 crossref_primary_10_3390_ijms23031238 crossref_primary_10_1002_jcp_29049 crossref_primary_10_1016_j_jksus_2023_103086 crossref_primary_10_3389_fphar_2023_1332567 crossref_primary_10_1038_s41598_023_34682_y crossref_primary_10_1016_j_arr_2022_101717 crossref_primary_10_3389_fendo_2020_00638 crossref_primary_10_2174_0115734137290869240307105633 crossref_primary_10_1111_and_14597 crossref_primary_10_3390_molecules25235508 crossref_primary_10_5586_asbp_8922 crossref_primary_10_1186_s12934_021_01662_8 crossref_primary_10_1186_s40529_020_00301_6 crossref_primary_10_1016_j_arr_2024_102480 crossref_primary_10_1007_s00299_021_02718_0 crossref_primary_10_3390_biom14080950 crossref_primary_10_3390_biom10091243 crossref_primary_10_3390_biom13010032 crossref_primary_10_1007_s00425_020_03342_0 crossref_primary_10_1111_jpi_12835 crossref_primary_10_1016_j_stress_2024_100410 crossref_primary_10_3390_plants12040781 crossref_primary_10_1089_ict_2022_29025_klu crossref_primary_10_1080_03602532_2024_2305764 crossref_primary_10_3390_su11226400 crossref_primary_10_1007_s10725_024_01231_0 crossref_primary_10_1007_s43440_024_00593_6 crossref_primary_10_3390_antiox14010044 crossref_primary_10_1038_s42003_021_02042_z crossref_primary_10_3390_plants8070190 crossref_primary_10_1016_j_ijbiomac_2024_131803 crossref_primary_10_1177_11786469221099214 crossref_primary_10_1039_D0FO03213A crossref_primary_10_1152_ajpgi_00186_2021 crossref_primary_10_2174_1570159X19666210609163946 crossref_primary_10_1111_jpi_12702 crossref_primary_10_1002_biot_201900451 crossref_primary_10_2108_zs230057 crossref_primary_10_33069_cim_2020_0019 crossref_primary_10_3390_molecules27175582 crossref_primary_10_3390_molecules27030705 crossref_primary_10_3390_ijms23126731 crossref_primary_10_1007_s00018_019_03438_1 crossref_primary_10_1016_j_cca_2022_08_012 crossref_primary_10_3390_ph17040441 crossref_primary_10_1007_s40256_024_00631_x crossref_primary_10_1007_s00299_022_02969_5 crossref_primary_10_1016_j_sajb_2023_10_045 crossref_primary_10_1016_j_sajb_2023_10_044 crossref_primary_10_1111_jpi_12618 crossref_primary_10_3390_ijms24021178 crossref_primary_10_26565_2312_5675_2024_23_03 crossref_primary_10_1111_jpi_12736 crossref_primary_10_1111_jpi_12737 crossref_primary_10_3390_molecules28031105 crossref_primary_10_15188_kjopp_2023_08_37_4_61 crossref_primary_10_3390_cimb45100530 crossref_primary_10_3390_ijms25147815 crossref_primary_10_3389_fphar_2022_1007006 crossref_primary_10_3390_horticulturae9020285 crossref_primary_10_1111_jpi_12606 crossref_primary_10_1016_j_diabres_2025_112057 crossref_primary_10_1186_s12576_021_00812_2 crossref_primary_10_1007_s12298_020_00878_z crossref_primary_10_53471_bahce_963661 crossref_primary_10_1016_j_heliyon_2021_e07485 crossref_primary_10_1016_j_heliyon_2021_e06150 crossref_primary_10_3390_ijerph20031865 crossref_primary_10_1016_j_ygcen_2025_114714 crossref_primary_10_1007_s11103_020_01077_w crossref_primary_10_3390_biom14030356 crossref_primary_10_1093_jxb_erab220 crossref_primary_10_1186_s12866_021_02098_1 crossref_primary_10_3390_antiox11081531 crossref_primary_10_1111_jpi_12639 crossref_primary_10_1111_pce_13879 crossref_primary_10_1016_j_scienta_2023_112387 crossref_primary_10_1111_jpi_12751 crossref_primary_10_1007_s11010_021_04325_9 crossref_primary_10_1016_j_mce_2019_110687 crossref_primary_10_3389_fphar_2022_866625 crossref_primary_10_1038_s41440_019_0318_3 crossref_primary_10_3390_molecules26041075 crossref_primary_10_3390_cancers12061567 crossref_primary_10_1615_CritRevOncog_2023048934 crossref_primary_10_1007_s10725_024_01256_5 crossref_primary_10_3390_biom9100589 crossref_primary_10_3390_seeds3030025 crossref_primary_10_5812_numonthly_135436 crossref_primary_10_1007_s13592_023_01015_x crossref_primary_10_1016_j_archoralbio_2022_105565 crossref_primary_10_1016_j_phrs_2021_105839 crossref_primary_10_3390_cells12081178 crossref_primary_10_3389_fgene_2020_591984 crossref_primary_10_1111_jpi_12896 crossref_primary_10_1016_j_scienta_2022_111076 crossref_primary_10_1016_j_biopha_2021_112001 crossref_primary_10_3390_ani11010047 crossref_primary_10_1016_j_jtherbio_2024_103883 crossref_primary_10_3390_cells13050453 crossref_primary_10_3390_ijms222212494 crossref_primary_10_3390_life12030462 crossref_primary_10_3390_ani14233451 crossref_primary_10_3390_antiox11030596 crossref_primary_10_1242_jeb_245195 crossref_primary_10_1016_j_foodchem_2022_135185 crossref_primary_10_3390_agronomy10010095 crossref_primary_10_1016_j_talanta_2024_125808 crossref_primary_10_1007_s13167_024_00358_4 crossref_primary_10_3390_ani13243855 crossref_primary_10_1016_j_cbpa_2023_111386 crossref_primary_10_3390_cancers16091646 crossref_primary_10_1016_j_theriogenology_2020_01_044 crossref_primary_10_3390_cells8070728 crossref_primary_10_3390_ijms222212143 crossref_primary_10_1016_j_apsb_2023_01_020 crossref_primary_10_1016_j_envexpbot_2022_104980 crossref_primary_10_1016_j_jtcms_2024_05_004 crossref_primary_10_3389_fpls_2024_1274964 crossref_primary_10_3390_antiox13101177 crossref_primary_10_1534_g3_120_401470 crossref_primary_10_3389_fendo_2019_00791 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022041294 crossref_primary_10_3390_ijms25105122 crossref_primary_10_1111_jpi_12677 crossref_primary_10_1016_j_foodres_2022_112272 crossref_primary_10_1111_jpi_12794 crossref_primary_10_1111_jpi_12792 crossref_primary_10_3389_fcell_2021_686551 crossref_primary_10_3390_ijms21144970 crossref_primary_10_1071_RD22194 crossref_primary_10_1016_j_cj_2024_04_004 crossref_primary_10_1016_j_molliq_2023_123125 crossref_primary_10_1093_plcell_koaf035 crossref_primary_10_3390_ijms22094476 crossref_primary_10_1016_j_cbpa_2025_111843 crossref_primary_10_1093_jxb_erae092 crossref_primary_10_1080_13813455_2020_1770799 crossref_primary_10_1016_j_jnutbio_2024_109625 crossref_primary_10_32615_ps_2021_061 crossref_primary_10_3390_membranes12030303 crossref_primary_10_1016_j_scitotenv_2021_151734 crossref_primary_10_3389_fpls_2023_1108507 crossref_primary_10_3390_biom13121779 crossref_primary_10_1007_s10695_023_01271_9 crossref_primary_10_3390_ani14233534 crossref_primary_10_1007_s11154_020_09570_9 crossref_primary_10_3390_agronomy13092405 crossref_primary_10_1016_j_neulet_2022_136483 crossref_primary_10_1071_RD23235 crossref_primary_10_1111_jpi_12695 crossref_primary_10_1071_RD23233 crossref_primary_10_1111_ppl_14605 crossref_primary_10_3390_ijms20164022 crossref_primary_10_1016_j_ecoinf_2023_102283 crossref_primary_10_1055_s_0040_1716713 crossref_primary_10_1155_2021_9965916 crossref_primary_10_1016_j_ailsci_2024_100115 crossref_primary_10_3389_fendo_2024_1414463 crossref_primary_10_1016_j_jfca_2023_105410 crossref_primary_10_1016_j_jhazmat_2020_122882 crossref_primary_10_2174_0117450179326359240903045716 crossref_primary_10_1016_j_neuroscience_2025_03_028 crossref_primary_10_1111_jpi_12685 crossref_primary_10_7717_peerj_8663 crossref_primary_10_3390_antiox12020319 crossref_primary_10_1146_annurev_nutr_120420_021719 crossref_primary_10_3390_molecules27154888 crossref_primary_10_1016_j_mce_2024_112296 crossref_primary_10_33483_jfpau_1504455 crossref_primary_10_1080_09291016_2021_1899485 crossref_primary_10_12677_ACM_2024_142472 crossref_primary_10_3390_cells8070681 crossref_primary_10_1007_s11033_020_05249_1 crossref_primary_10_1016_j_plaphy_2020_02_021 crossref_primary_10_3390_agronomy13071727 crossref_primary_10_1002_cbic_202400069 crossref_primary_10_1111_tpj_14915 crossref_primary_10_3389_fphys_2020_564140 crossref_primary_10_1007_s10343_023_00947_9 crossref_primary_10_3390_ijms241210366 crossref_primary_10_33988_auvfd_866702 crossref_primary_10_1111_1440_1681_13572 crossref_primary_10_1007_s00299_021_02769_3 crossref_primary_10_1016_j_jid_2024_11_012 crossref_primary_10_1080_10408398_2020_1825924 crossref_primary_10_1021_acschemneuro_3c00127 crossref_primary_10_1080_10715762_2019_1702656 crossref_primary_10_1016_j_reprotox_2024_108534 crossref_primary_10_1016_j_yhbeh_2024_105599 crossref_primary_10_3389_fgene_2022_820442 crossref_primary_10_3390_cancers16213706 crossref_primary_10_3390_plants9040407 crossref_primary_10_1071_RD23006 crossref_primary_10_1016_j_envpol_2021_118029 crossref_primary_10_1016_j_cellsig_2025_111754 crossref_primary_10_1007_s11103_021_01202_3 crossref_primary_10_20538_1682_0363_2022_1_89_95 crossref_primary_10_1155_2021_6668365 crossref_primary_10_1111_brv_13091 crossref_primary_10_1016_j_cryobiol_2024_104974 crossref_primary_10_1016_j_lfs_2021_119597 crossref_primary_10_1080_21645698_2022_2106111 crossref_primary_10_1134_S1022795421030121 crossref_primary_10_3389_fmicb_2023_1073539 crossref_primary_10_1007_s00344_024_11257_3 crossref_primary_10_1016_j_jplph_2022_153758 crossref_primary_10_3390_antiox10010036 crossref_primary_10_1016_j_prp_2023_154410 crossref_primary_10_1093_jxb_erac289 crossref_primary_10_3892_ijmm_2024_5406 crossref_primary_10_1016_j_lfs_2022_120612 crossref_primary_10_1017_S0954422422000026 crossref_primary_10_1093_jxb_erac164 crossref_primary_10_1111_pce_13900 crossref_primary_10_1126_sciadv_abl6891 crossref_primary_10_3390_ijms20235906 crossref_primary_10_31857_S0015330324040012 crossref_primary_10_1016_j_jsbmb_2020_105595 crossref_primary_10_3389_fpls_2024_1418515 crossref_primary_10_3390_molecules27227742 crossref_primary_10_1016_j_jchromb_2023_123604 crossref_primary_10_1007_s00432_020_03292_w crossref_primary_10_1016_j_hpj_2023_03_011 crossref_primary_10_1093_jxb_erae011 crossref_primary_10_3389_fmicb_2022_873555 crossref_primary_10_1111_acel_13935 crossref_primary_10_3390_foods12183507 crossref_primary_10_1016_j_phytochem_2023_113928 crossref_primary_10_1007_s11302_024_10037_8 crossref_primary_10_4068_cmj_2023_59_3_188 crossref_primary_10_3390_ijms242015496 crossref_primary_10_1007_s00253_023_12584_3 crossref_primary_10_3390_ijms23073779 crossref_primary_10_3390_antiox12020264 crossref_primary_10_3389_fpls_2023_1142753 crossref_primary_10_1007_s13580_022_00507_6 crossref_primary_10_3389_fnins_2021_642745 crossref_primary_10_3389_fpls_2022_890613 crossref_primary_10_1007_s11356_024_35160_2 crossref_primary_10_1186_s12870_024_05972_y crossref_primary_10_1016_j_mrgentox_2022_503443 crossref_primary_10_2147_NSS_S260734 crossref_primary_10_1016_j_aac_2025_01_001 crossref_primary_10_3390_molecules27144350 crossref_primary_10_1016_j_jfutfo_2022_01_005 crossref_primary_10_1016_j_cub_2021_10_029 crossref_primary_10_1016_j_jlumin_2023_119817 crossref_primary_10_1002_jsfa_11318 crossref_primary_10_1111_ppl_70020 crossref_primary_10_2174_1874467214666210309115605 crossref_primary_10_3390_ijms22083918 crossref_primary_10_3390_molecules25225359 crossref_primary_10_1111_icad_12447 crossref_primary_10_3389_fpls_2022_948901 crossref_primary_10_17749_2313_7347_ob_gyn_rep_2020_140 crossref_primary_10_3390_nu13124433 crossref_primary_10_1002_med_21628 crossref_primary_10_3390_antiox11030570 crossref_primary_10_3390_antiox11061107 crossref_primary_10_1080_17446651_2019_1631158 crossref_primary_10_3390_ijms232315217 crossref_primary_10_3390_life14121606 crossref_primary_10_3390_ijms23031835 crossref_primary_10_1007_s12035_024_04333_y crossref_primary_10_1002_vms3_1112 crossref_primary_10_3390_biom10040523 crossref_primary_10_3389_fendo_2023_1173113 crossref_primary_10_3390_ijms242417221 crossref_primary_10_3390_nu14091912 crossref_primary_10_1016_j_aquaculture_2023_739997 crossref_primary_10_3892_etm_2022_11197 crossref_primary_10_1111_jipb_12993 crossref_primary_10_3390_biology12010089 crossref_primary_10_3389_fpls_2021_808899 crossref_primary_10_3390_ijms24032249 crossref_primary_10_2147_JIR_S343236 crossref_primary_10_3389_fnins_2023_1084813 crossref_primary_10_3390_ijms21176045 crossref_primary_10_1016_j_vph_2020_106659 crossref_primary_10_1186_s12885_022_09464_w crossref_primary_10_1111_jvim_15646 crossref_primary_10_3390_ijms23073593 crossref_primary_10_1016_j_tins_2023_01_003 crossref_primary_10_1038_s41598_024_53810_w crossref_primary_10_1016_j_tplants_2020_08_009 crossref_primary_10_3390_polym17060750 crossref_primary_10_1016_j_plantsci_2020_110697 crossref_primary_10_1186_s12958_024_01296_6 crossref_primary_10_3390_ijms22189904 crossref_primary_10_54097_hset_v54i_9810 crossref_primary_10_3390_children11101197 crossref_primary_10_3390_insects12040317 crossref_primary_10_3390_antiox10040511 crossref_primary_10_3390_ani11082454 crossref_primary_10_3389_fnmol_2020_00096 crossref_primary_10_1002_csc2_21126 crossref_primary_10_2174_1570178619666220325124451 crossref_primary_10_1177_11786388231160317 crossref_primary_10_3390_f12101404 crossref_primary_10_3390_ijms222011034 crossref_primary_10_2478_aoas_2020_0105 crossref_primary_10_3389_fpls_2022_847175 crossref_primary_10_1007_s00580_020_03145_5 crossref_primary_10_1134_S1021443724606839 crossref_primary_10_3389_fphys_2024_1501334 crossref_primary_10_1016_j_jtv_2022_07_015 crossref_primary_10_2147_CCID_S366854 crossref_primary_10_1007_s10522_022_09981_y crossref_primary_10_1016_j_indcrop_2023_116834 crossref_primary_10_1139_cjb_2023_0017 crossref_primary_10_1152_physiol_00034_2019 crossref_primary_10_33069_cim_2024_0009 crossref_primary_10_3390_biom10010054 crossref_primary_10_3390_ijms222011265 crossref_primary_10_1186_s12986_022_00694_0 crossref_primary_10_3389_fmed_2024_1487971 crossref_primary_10_1093_jxb_erac233 crossref_primary_10_1080_01480545_2024_2401023 crossref_primary_10_1093_pnasnexus_pgad262 crossref_primary_10_4103_jfmpc_jfmpc_1122_24 crossref_primary_10_3390_antiox9111078 crossref_primary_10_1016_j_actaastro_2022_10_020 crossref_primary_10_3390_cancers13123018 crossref_primary_10_1080_07352689_2020_1865637 crossref_primary_10_1016_j_theriogenology_2021_11_020 crossref_primary_10_12688_openreseurope_13795_2 crossref_primary_10_3390_biom12020198 crossref_primary_10_2174_1381612826666200310145935 crossref_primary_10_3389_fpls_2023_1126669 crossref_primary_10_3390_vaccines9121399 crossref_primary_10_12688_openreseurope_13795_1 crossref_primary_10_3389_fimmu_2021_692022 crossref_primary_10_3390_diseases9040067 crossref_primary_10_3390_antiox9111088 crossref_primary_10_3390_ijms25126799 crossref_primary_10_3390_pharmaceutics15071845 crossref_primary_10_1007_s40415_024_01013_y crossref_primary_10_3390_antiox13060747 crossref_primary_10_1007_s11756_023_01460_0 crossref_primary_10_3389_fpls_2023_1271137 crossref_primary_10_1186_s12870_024_05672_7 crossref_primary_10_3390_cells9020436 crossref_primary_10_1016_j_ygcen_2020_113620 crossref_primary_10_1210_endocr_bqaa128 crossref_primary_10_3389_fpls_2022_902694 crossref_primary_10_31083_j_jin2307133 crossref_primary_10_1016_j_dialog_2023_100098 crossref_primary_10_1016_j_sajb_2023_09_032 crossref_primary_10_1016_j_biochi_2022_01_001 crossref_primary_10_1093_treephys_tpac112 crossref_primary_10_3390_foods11233895 crossref_primary_10_3389_fnut_2023_1143511 crossref_primary_10_1186_s43170_024_00309_z crossref_primary_10_1186_s11658_022_00375_z crossref_primary_10_1002_2211_5463_13007 crossref_primary_10_3390_ijms25115952 crossref_primary_10_1016_j_sleep_2021_08_001 crossref_primary_10_3390_metabo13010072 crossref_primary_10_1016_j_bbadis_2020_165914 crossref_primary_10_1371_journal_pone_0318362 crossref_primary_10_3389_fimmu_2021_673692 crossref_primary_10_3390_ijms20205173 crossref_primary_10_3390_biom10010141 crossref_primary_10_3389_fgene_2023_1183637 crossref_primary_10_1016_j_pmpp_2024_102367 crossref_primary_10_31482_mmsl_2023_039 crossref_primary_10_1016_j_gocm_2021_10_004 crossref_primary_10_1186_s12964_023_01047_x crossref_primary_10_1080_17460441_2022_2043846 crossref_primary_10_3390_biom13060908 crossref_primary_10_3389_fpls_2022_936747 crossref_primary_10_1080_07420528_2023_2270706 crossref_primary_10_3390_antiox11040634 crossref_primary_10_1016_j_foodchem_2024_140172 crossref_primary_10_3390_microorganisms8060866 crossref_primary_10_1007_s10725_023_01011_2 crossref_primary_10_1093_jxb_erac009 crossref_primary_10_1016_j_plaphy_2024_108601 crossref_primary_10_3389_fcimb_2023_1167312 crossref_primary_10_3390_antiox10111728 crossref_primary_10_25118_2763_9037_2024_v14_1197 crossref_primary_10_1007_s42000_024_00602_6 crossref_primary_10_1016_j_mitoco_2024_07_002 crossref_primary_10_1007_s10555_020_09845_2 crossref_primary_10_3390_ijms23126646 crossref_primary_10_1007_s11064_022_03674_1 crossref_primary_10_1016_j_mito_2020_04_006 crossref_primary_10_7554_eLife_83361 crossref_primary_10_3390_su13010294 crossref_primary_10_3390_ijms21031135 crossref_primary_10_3390_ani14040644 crossref_primary_10_3390_ijms24087447 crossref_primary_10_1146_annurev_environ_112420_014438 crossref_primary_10_3390_antiox11040737 crossref_primary_10_3390_nu14051076 crossref_primary_10_1016_j_synbio_2021_12_011 crossref_primary_10_3389_fcvm_2022_888319 crossref_primary_10_3390_antiox13060663 crossref_primary_10_3390_ijms23031222 crossref_primary_10_1016_j_arr_2021_101394 crossref_primary_10_1016_j_postharvbio_2021_111656 crossref_primary_10_3389_fpls_2022_861043 |
Cites_doi | 10.1111/j.1600-079X.2007.00490.x 10.1146/annurev-pharmtox-010814-124742 10.1016/j.archoralbio.2011.03.004 10.3892/or.2015.4238 10.3390/molecules23081887 10.1016/j.cbpa.2009.07.025 10.1111/jpi.12441 10.1096/fj.06-7745com 10.1016/j.fsi.2014.10.030 10.1111/jpi.12246 10.1016/bs.ircmb.2018.02.002 10.1517/14728222.2013.834890 10.1016/0006-3002(60)90453-4 10.1074/jbc.M005671200 10.1007/0-306-46814-X_46 10.1111/jpi.12026 10.1111/j.1600-079X.2010.00789.x 10.1196/annals.1356.028 10.1093/jxb/erv396 10.1111/jpi.12514 10.2174/138955713804999810 10.1111/jpi.12321 10.1038/nri.2017.66 10.1055/s-0031-1298239 10.1385/ENDO:27:2:201 10.1111/jpi.12160 10.1111/jpi.12360 10.1111/j.1471-4159.2011.07397.x 10.1007/BF00327987 10.1111/jpi.12500 10.1124/jpet.118.253260 10.1021/acs.jafc.7b03354 10.1073/pnas.1618798114 10.1111/j.1600-079X.2009.00701.x 10.1007/s10787-017-0332-5 10.1210/endo-79-6-1168 10.1016/j.mce.2006.03.039 10.1111/jpi.12267 10.1111/jpi.12103 10.1038/nature06058 10.1128/MMBR.64.4.786-820.2000 10.1016/j.smrv.2004.08.001 10.1523/jneurosci.1384-06.2006 10.1111/j.1574-6976.2008.00134.x 10.3390/molecules23030530 10.32794/mr11250002 10.1016/j.cbpb.2017.12.013 10.1111/jpi.12336 10.1076/brhm.28.1.144.12978 10.1080/10408398.2018.1487927 10.1097/00075197-200403000-00011 10.1210/en.2011-0226 10.1093/jxb/eru373 10.1126/sciadv.1600134 10.1093/molbev/msh160 10.3390/molecules20047396 10.1007/s00114-018-1546-0 10.1517/14728222.2016.1091882 10.1016/j.bbabio.2011.04.014 10.1177/1534735409353332 10.1111/jpi.12538 10.1111/j.1753-4887.2001.tb07018.x 10.1126/science.131.3409.1312 10.1016/j.mce.2012.01.004 10.1007/s00018-017-2609-7 10.1111/jpi.12111 10.1271/bbb.80220 10.1111/jpi.12244 10.1093/jxb/eru336 10.1111/jpi.12317 10.1371/journal.pone.0109257 10.1111/jpi.12370 10.1021/ja01543a060 10.1111/j.1600-079X.2012.01019.x 10.1016/0024-3205(93)90670-X 10.2119/molmed.2008.00117 10.3390/ijms19082205 10.1073/pnas.0406871102 10.1074/jbc.R600036200 10.1111/jpi.12364 10.1016/S0140-6736(05)64014-7 10.1016/0303-7207(91)90087-9 10.3390/ijms19082439 10.1034/j.1600-079X.2001.300201.x 10.1002/aja.1001620402 10.1111/j.1399-3054.2011.01454.x 10.1016/j.yfrne.2014.12.001 10.1111/jpi.12415 10.1111/jpi.12181 10.1126/science.7423204 10.1016/j.arr.2018.07.010 10.1038/srep41236 10.3390/ijms150915858 10.1111/jpi.12391 10.3390/molecules22112015 10.1111/jpi.12188 10.3390/antiox6040082 10.1101/gad.1519507 10.1111/j.1600-079X.2012.01029.x 10.1073/pnas.86.8.2582 10.1016/j.foodchem.2012.10.077 10.1111/jpi.12356 10.3109/07420529209064541 10.1016/j.cub.2015.08.026 10.1016/j.jad.2012.12.025 10.3389/fpls.2016.01124 10.1111/j.1768-322X.1999.tb01114.x 10.1038/bjp.2008.184 10.1007/BF01955342 10.3389/fpls.2016.00198 10.1016/j.freeradbiomed.2018.03.002 10.1016/S0024-3205(00)00896-1 10.1093/jxb/eru357 10.1038/s41598-017-02286-y 10.1111/jpi.12412 10.1016/j.cell.2014.07.042 10.1016/S0169-328X(99)00257-0 10.1021/acs.jmedchem.6b01243 10.1556/030.62.2015.2.1 10.1111/jpi.12289 10.1002/bies.201700158 10.1016/j.beem.2017.10.010 10.1111/jpi.12460 10.1093/jxb/eru386 10.1111/j.1600-079X.2010.00841.x 10.1385/ENDO:27:2:149 10.1007/s002990000206 10.1111/j.1600-079X.2011.00931.x 10.1111/jpi.12055 10.3390/molecules201018886 10.4239/wjd.v9.i7.99 10.1016/0166-4328(96)00083-6 10.1111/jpi.12180 10.1155/2018/3271948 10.1111/jpi.12010 10.1007/s00018-008-8001-x 10.1530/ERC-15-0030 10.1111/j.1469-185X.2009.00118.x 10.1111/j.1600-079X.2004.00181.x 10.1111/jpi.12490 10.1021/acs.jpcb.7b01408 10.1016/j.actatropica.2014.04.021 10.1152/physiol.00011.2014 10.1111/jpi.12390 10.1080/17460441.2018.1419184 10.1111/jpi.12011 10.1111/jpi.12232 10.1111/jpi.12379 10.1111/j.1600-079X.2005.00223.x 10.1016/j.ceb.2015.02.003 10.1159/000109133 10.1111/jpi.12080 10.1111/jpi.12454 10.1016/S0021-9258(18)31790-3 10.1111/jpi.12294 10.32794/mr11250005 10.1007/s00709-017-1098-8 10.1111/j.1600-079X.1995.tb00136.x 10.1124/pr.110.002832 10.1111/jpi.12392 10.3109/10715762.2011.605788 10.1371/journal.pone.0052010 10.1111/jpi.12361 10.1111/jpi.12429 10.1111/jpi.12531 10.3389/fpls.2017.00134 10.1080/07420520500545839 10.1038/s41598-017-00566-1 10.1093/jxb/err256 10.1111/gbb.12369 10.3390/ijms151222405 10.1111/jpi.12253 10.1007/s12154-011-0064-8 10.3390/molecules23020336 10.32794/mr11250004 10.1016/j.neuchi.2015.03.002 10.1111/bph.14083 10.1002/jcp.27698 10.1073/pnas.1705768114 10.1111/j.1399-3054.1984.tb06089.x 10.1002/bies.201400017 10.1016/j.cub.2015.07.055 10.1046/j.1471-4159.1999.0731343.x 10.1111/jpi.12120 10.1002/biof.23 10.1111/jpi.12346 10.3390/ijms140610979 10.1111/jpi.12262 10.1111/jpi.12378 10.32794/nr11250011 10.1111/jpi.12481 10.1073/pnas.1312634110 10.1111/bph.13536 10.1034/j.1600-079X.2003.02111.x 10.1111/jpi.12219 10.1093/jxb/erx305 10.1080/15216540152845984 10.1111/j.1600-079X.2005.00276.x 10.1111/jpi.12387 10.1016/j.abb.2008.04.040 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter. 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter |
Copyright_xml | – notice: Copyright © 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter. 2019 Zhao, Yu, Shen, Liu, Zhao, Sharma and Reiter |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fendo.2019.00249 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2392 |
ExternalDocumentID | oai_doaj_org_article_5deab57ebf584d77b9a8bec3e883ec85 PMC6481276 31057485 10_3389_fendo_2019_00249 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M~E OK1 PGMZT RPM IPNFZ M48 NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-d4a36552a21ee1d2cb81e9f29a806f5fc830d33c29bdcf110d9d3806e51117eb3 |
IEDL.DBID | M48 |
ISSN | 1664-2392 |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Thu Aug 21 14:19:52 EDT 2025 Thu Jul 10 18:42:37 EDT 2025 Thu Apr 03 06:59:22 EDT 2025 Tue Jul 01 01:25:45 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | antioxidant regulation of melatonin biological rhythms biosynthesis enzymes endosymbiosis evolution melatonin |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-d4a36552a21ee1d2cb81e9f29a806f5fc830d33c29bdcf110d9d3806e51117eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors have contributed equally to this work Reviewed by: Maristela Oliveira Poletini, Federal University of Minas Gerais, Brazil; Yves Combarnous, Centre National de la Recherche Scientifique (CNRS), France This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology Edited by: Ralf Jockers, Université Paris-Sorbonne, France |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fendo.2019.00249 |
PMID | 31057485 |
PQID | 2231901645 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5deab57ebf584d77b9a8bec3e883ec85 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6481276 proquest_miscellaneous_2231901645 pubmed_primary_31057485 crossref_primary_10_3389_fendo_2019_00249 crossref_citationtrail_10_3389_fendo_2019_00249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-17 |
PublicationDateYYYYMMDD | 2019-04-17 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in endocrinology (Lausanne) |
PublicationTitleAlternate | Front Endocrinol (Lausanne) |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Taverne (B37) 2018; 40 Scortegagna (B206) 1999; 73 Boutin (B119) 2008; 477 Hardeland (B56) 2017; 22 Leja-Szpak (B87) 2010; 49 Ganguly (B204) 2005; 102 Cassagnes (B120) 2018; 120 Gentil (B164) 2017; 254 Jockers (B113) 2016; 173 Byeon (B188) 2014; 56 Donaghy (B40) 2015; 42 Hu (B106) 2017; 65 Pshenichnyuk (B9) 2017; 121 Byeon (B168) 2015; 66 Reiter (B10) 2018; 19 Kolář (B177) 2005; 39 Cai (B33) 2017; 62 Byeon (B26) 2014; 56 Wei (B214) 2018; 65 Kriegsfeld (B80) 2015; 37 Zhao (B133) 2017; 62 Weissbach (B152) 1960; 43 Quintana (B88) 2016; 61 Klein (B156) 2007; 282 Reiter (B55) 2016; 61 Pevet (B75) 2017; 31 Simonneaux (B76) 2011; 152 Tosches (B104) 2014; 159 Case (B44) 2017; 6 Arnao (B181) 2013; 55 Zhang (B34) 2018; 65 Muxel (B32) 2016; 60 Lee (B117) 2017; 62 Shi (B173) 2015; 33 Acuña-Castroviejo (B47) 2001; 30 Suofu (B101) 2017; 114 Burke (B213) 1999; 73 Reiter (B178) 2001; 59 Boutin (B130) 2019; 368 Markus (B99) 2013; 14 Lochner (B19) 2018; 65 Tan (B7) 2016; 61 Rodriguez (B29) 1994; 269 Su (B89) 2017; 62 Benleulmi-Chaachoua (B124) 2016; 60 Kurland (B170) 2000; 64 Reybier (B121) 2011; 45 Arnao (B141) 2013; 138 Shi (B202) 2015; 59 Wei (B116) 2018; 64 Huo (B103) 2017; 62 Reiter (B144); 13 Liu (B127) 2016; 56 Menendez-Menendez (B136) 2018; 2018 Hardeland (B125) 2009; 35 Klein (B97) 1970; 31 Esser (B162) 2004; 21 Kang (B157) 2011; 50 Liang (B107) 2017; 8 Hill (B131) 2009; 8 Tan (B100) 2003; 34 Mayo (B46) 2017; 62 Maciel (B138) 2014; 15 De Luca (B149) 1989; 86 Hevia (B53) 2014; 9 Fuhrberg (B148) 1997; 28 Axelrod (B151) 1960; 131 Zheng (B166) 2017; 7 Byeon (B160) 2014; 57 Mori (B69) 2015; 25 Moore (B93) 1996; 73 Mehta (B174) 2017; 17 Pozdeyev (B195) 2006; 26 Wei (B205) 2017; 68 Reiter (B109) 2015; 20 Li (B197) 2016; 61 Margulis (B11) 1975; 29 Dubocovich (B114) 2010; 62 Izon (B36) 2017; 114 Tan (B15) 2015; 20 Byeon (B167) 2013; 55 Shi (B142) 2015; 66 Byeon (B155) 2016; 60 Shi (B6) 2016; 7 Alkozi (B115) 2017; 13 Galano (B17) 2018; 23 Murch (B179) 1997; 350 Lerner (B1) 1958; 80 Tan (B18) 2010; 85 Estrada-Rodgers (B30) 1998; 7 Treberg (B43) 2018; 224 Vass (B59) 2012; 1817 Hardeland (B49) 2018; 65 Kolář (B66) 1999; 460 Tan (B158) 2012; 63 Liu (B190) 2005; 39 Lee (B57) 2016; 61 Claustrat (B79) 2015; 61 Zhang (B108) 2017; 7 Csaba (B140) 2015; 62 Coon (B169) 2006; 252 Hardeland (B146) 2015; 66 Back (B22) 2016; 61 Schomerus (B194) 2005; 1057 Majidinia (B73) 2018; 47 Gonzalez-Gonzalez (B85) 2018; 23 Byeon (B27) 2015; 58 Byeon (B154) 2015; 66 Zuo (B191) 2014; 57 Tan (B24) 2014; 15 Muxel (B209) 2012; 7 Choi (B122) 2017; 63 Galano (B51) 2013; 54 Vielma (B54) 2014; 137 Kramm (B92) 1993; 274 Reiter (B184) 1991; 79 Hardeland (B50) 2009; 47 Reiter (B39) 2017; 9 Boutin (B134) 2016; 20 Baler (B212) 1999; 91 Murch (B183) 2000; 19 Najafi (B82) 2017; 25 Archibald (B163) 2015; 25 Nabavi (B74) 2018; 14 Cardinali (B94) 1978 Cutando (B126) 2011; 56 Reiter (B13) 2017; 74 Oksche (B65) 1991 Casteilla (B42) 2001; 52 Dodt (B91) 1982; 36 Hattori (B3) 1995; 35 Lee (B28) 2014; 57 Reiter (B77) 2018; 1 Haque (B211) 2011; 119 Tan (B14) 1993; 1 Jou (B72) 2007; 43 Lee (B161) 2017; 64 Lecharny (B176) 1984; 60 Kang (B153) 2013; 55 Onaolapo (B20) 2018; 9 Tamtaji (B21) 2018; 2018 Latifi (B61) 2009; 33 Bondy (B83) 2018; 19 Park (B150) 2008; 72 Claustrat (B62) 2005; 9 Hardeland (B187) 2007; 1 Hardeland (B145) 2016; 7 Luo (B35) 2016; 2 Zhang (B203) 2015; 66 Wang (B132) 2015; 34 Manchester (B4) 2000; 67 Wu (B123) 2013; 148 Benitez-King (B135) 1993; 53 Reiter (B5) 2014; 29 Markus (B98) 2017; 175 Venegas (B63) 2012; 52 Yu (B118) 2018; 23 Reiter (B90) 1981; 162 Vass (B58) 2011; 142 Tan (B12) 2013; 54 Byeon (B192) 2016; 60 Falcón (B172) 2014; 111 Tan (B70) 2007; 21 Brown (B180) 2012; 78 Shi (B199) 2015; 59 Poeggeler (B71) 2005; 27 Seematter (B207) 2004; 7 Shi (B201) 2015; 58 Tan (B182) 2005; 27 Mendivil-Perez (B81) 2017; 63 Acuna-Castroviejo (B102) 2018; 1 Chong (B210) 2000; 275 Leon (B48) 2005; 38 Korkmaz (B31) 2009; 15 Hardeland (B67) 2008; 65 Tosini (B143) 2014; 36 Jockers (B112) 2008; 154 Tan (B171) 2019; 2 Slominski (B111) 2012; 351 Ye (B23); 2018 Shi (B200) 2015; 58 Dubbels (B2) 1995; 18 Bochkov (B147) 2012; 5 Park (B189) 2013; 54 Reiter (B95) 1992; 9 Kump (B38) 2007; 448 Ebihara (B185) 1997; 6 Johnson (B68) 2004; 6 Hill (B84) 2015; 22 Liu (B128) 2017; 16 Park (B175) 2013; 54 Lee (B159) 2017; 62 Byeon (B196) 2014; 56 Arnao (B105) 2015; 59 Reiter (B110) 2007; 52 Klein (B193) 2006; 23 Manchester (B45) 1995; 41 Jou (B52) 2018; 2018 Hardeland (B60) 1996; 29 Li (B139) 2018; 105 Galano (B16) 2018; 65 Manchester (B8) 2015; 59 Reiter (B96) 1966; 79 Shi (B198) 2015; 59 Lee (B25) 2017; 63 Roth (B64) 1980; 210 Bizzarri (B86) 2013; 17 Kim (B186) 2007; 21 Dharmaraja (B41) 2017; 60 Wang (B165) 2017; 63 da Silveira Cruz-Machado (B208) 2017; 7 Carrillo-Vico (B78) 2006; 7 Oishi (B129) 2018; 338 Mendoza-Vargas (B137) 2009; 154 |
References_xml | – volume: 43 start-page: 389 year: 2007 ident: B72 article-title: Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2007.00490.x – volume: 56 start-page: 361 year: 2016 ident: B127 article-title: MT1 and MT2 melatonin receptors: a therapeutic perspective publication-title: Ann Rev Pharmacol Toxicol. doi: 10.1146/annurev-pharmtox-010814-124742 – volume: 56 start-page: 944 year: 2011 ident: B126 article-title: A new perspective in oral health: potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity publication-title: Arch Oral Biol. doi: 10.1016/j.archoralbio.2011.03.004 – volume: 34 start-page: 2541 year: 2015 ident: B132 article-title: Involvement of nuclear receptor RZR/RORgamma in melatonin-induced HIF-1alpha inactivation in SGC-7901 human gastric cancer cells publication-title: Oncol Rep. doi: 10.3892/or.2015.4238 – volume: 23 start-page: 1887 year: 2018 ident: B118 article-title: The role of phyto-melatonin and related metabolites in response to stress publication-title: Molecules. doi: 10.3390/molecules23081887 – volume: 154 start-page: 486 year: 2009 ident: B137 article-title: MT2-like melatonin receptor modulates amplitude receptor potential in visual cells of crayfish during a 24-hour cycle publication-title: Comp Biochem Physiol A. doi: 10.1016/j.cbpa.2009.07.025 – volume: 63 start-page: e12441 year: 2017 ident: B25 article-title: Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase publication-title: J Pineal Res. doi: 10.1111/jpi.12441 – volume: 21 start-page: 1724 year: 2007 ident: B70 article-title: Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in the water hyacinth: importance in phytoremediation publication-title: FASEB J. doi: 10.1096/fj.06-7745com – volume: 42 start-page: 91 year: 2015 ident: B40 article-title: The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2014.10.030 – volume: 1 start-page: 32 year: 2007 ident: B187 article-title: Melatonin in plants - focus on a vertebrate night hormone with cytoprotective properties publication-title: Funct Plant Sci Biotechnol. – volume: 59 start-page: 120 year: 2015 ident: B202 article-title: Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers) publication-title: J Pineal Res. doi: 10.1111/jpi.12246 – volume: 338 start-page: 59 year: 2018 ident: B129 article-title: Melatonin receptor signaling: impact of receptor oligomerization on receptor function publication-title: Int Rev Cell Mol Biol. doi: 10.1016/bs.ircmb.2018.02.002 – volume: 17 start-page: 1483 year: 2013 ident: B86 article-title: Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review publication-title: Exp Opin Ther Targets. doi: 10.1517/14728222.2013.834890 – volume: 43 start-page: 352 year: 1960 ident: B152 article-title: Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin publication-title: Biochim Biophys Acta. doi: 10.1016/0006-3002(60)90453-4 – volume: 275 start-page: 32991 year: 2000 ident: B210 article-title: Characterization of the chicken serotonin N-acetyltransferase gene: activation via clock gene heterodimer/E-box interaction publication-title: J Biol Chem. doi: 10.1074/jbc.M005671200 – volume: 460 start-page: 391 year: 1999 ident: B66 article-title: Presence and possible role of melatonin in a short-day flowering plant, Chenopodium rubrum publication-title: Adv Exp Med Biol. doi: 10.1007/0-306-46814-X_46 – volume: 29 start-page: 21 year: 1975 ident: B11 article-title: Symbiotic theory of the origin of eukaryotic organelles; criteria for proof publication-title: Symp Soc Exp Biol. – volume: 54 start-page: 127 year: 2013 ident: B12 article-title: Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes publication-title: J Pineal Res. doi: 10.1111/jpi.12026 – volume: 49 start-page: 248 year: 2010 ident: B87 article-title: Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1) publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2010.00789.x – volume: 1057 start-page: 372 year: 2005 ident: B194 article-title: Mechanisms regulating melatonin synthesis in the mammalian pineal organ publication-title: Ann N Y Acad Sci. doi: 10.1196/annals.1356.028 – volume: 66 start-page: 6917 year: 2015 ident: B154 article-title: Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice publication-title: J Exp Bot. doi: 10.1093/jxb/erv396 – volume: 65 start-page: e12514 year: 2018 ident: B16 article-title: Melatonin and its metabolites vs. oxidative stress: from individual actions to collective protection publication-title: J Pineal Res. doi: 10.1111/jpi.12514 – volume: 13 start-page: 373 ident: B144 article-title: The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives publication-title: Mini Rev Med Chem. doi: 10.2174/138955713804999810 – volume: 60 start-page: 394 year: 2016 ident: B32 article-title: The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264 publication-title: J Pineal Res. doi: 10.1111/jpi.12321 – volume: 17 start-page: 608 year: 2017 ident: B174 article-title: Mitochondrial control of immunity: beyond ATP publication-title: Nat Rev Immunol. doi: 10.1038/nri.2017.66 – volume: 78 start-page: 630 year: 2012 ident: B180 article-title: Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis publication-title: Planta Med. doi: 10.1055/s-0031-1298239 – volume: 27 start-page: 201 year: 2005 ident: B71 article-title: Melatonin, aging, and age-related diseases publication-title: Endocrine. doi: 10.1385/ENDO:27:2:201 – volume: 57 start-page: 219 year: 2014 ident: B160 article-title: Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis publication-title: J Pineal Res. doi: 10.1111/jpi.12160 – volume: 61 start-page: 253 year: 2016 ident: B55 article-title: Melatonin as an antioxidant: under promises but over delivers publication-title: J Pineal Gland. doi: 10.1111/jpi.12360 – volume: 7 start-page: 13 year: 1998 ident: B30 article-title: Characterization of a hormone response element in the mouse N-Acetyltransferase 2 (Nat2*) promoter publication-title: Gene Expr. – volume: 119 start-page: 6 year: 2011 ident: B211 article-title: Melatonin synthesis in retina: cAMP-dependent transcriptional regulation of chicken arylalkylamine N-acetyltransferase by a CRE-like sequence and a TTATT repeat motif in the proximal promoter publication-title: J Neurochem. doi: 10.1111/j.1471-4159.2011.07397.x – volume: 274 start-page: 71 year: 1993 ident: B92 article-title: Rod-opsin immunoreaction in the pineal organ of the pigmented mouse does not indicate the presence of a functional photopigment publication-title: Cell Tissue Res. doi: 10.1007/BF00327987 – volume: 65 start-page: e12500 year: 2018 ident: B214 article-title: Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana publication-title: J Pineal Res. doi: 10.1111/jpi.12500 – volume: 368 start-page: 59 year: 2019 ident: B130 article-title: Is there sufficient evidence that the melatonin binding Site MT3 is Quinone Reductase 2? publication-title: J Pharmacol Exp Ther. doi: 10.1124/jpet.118.253260 – volume: 65 start-page: 9987 year: 2017 ident: B106 article-title: Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality publication-title: J Agric Food Chem. doi: 10.1021/acs.jafc.7b03354 – volume: 114 start-page: 201618798 year: 2017 ident: B36 article-title: Biological regulation of atmospheric chemistry en route to planetary oxygenation publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1618798114 – volume: 29 start-page: 119 year: 1996 ident: B60 article-title: Chronobiology of indoleamines in the dinoflagellate Gonyaulax polyedra: metabolism and effects related to circadian rhythmicity and photoperiodism publication-title: Braz J Med Biol Rep. – volume: 47 start-page: 109 year: 2009 ident: B50 article-title: Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic animals publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2009.00701.x – volume: 25 start-page: 403 year: 2017 ident: B82 article-title: Melatonin as an anti-inflammatory agent in radiotherapy publication-title: Inflammopharmacology. doi: 10.1007/s10787-017-0332-5 – volume: 79 start-page: 1168 year: 1966 ident: B96 article-title: Interrelationships of the pineal gland, the superior ganglia and the photoperiod in the regulation of the endocrine systems of hamsters publication-title: Endocrinology. doi: 10.1210/endo-79-6-1168 – volume: 31 start-page: 241 year: 1970 ident: B97 article-title: Pineal gland: stimulation of melatonin production by norepinephrine involves cyclic AMP-mediated stimulation of N-acetyltransferase publication-title: Adv Biochem Psychopharmacol. – volume: 252 start-page: 2 year: 2006 ident: B169 article-title: Evolution of arylalkylamine N-acetyltransferase: emergence and divergence publication-title: Mol Cell Endocrinol. doi: 10.1016/j.mce.2006.03.039 – volume: 59 start-page: 403 year: 2015 ident: B8 article-title: Melatonin: an ancient molecule that makes oxygen metabolically tolerable publication-title: J Pineal Res. doi: 10.1111/jpi.12267 – volume: 56 start-page: 107 year: 2014 ident: B26 article-title: Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT publication-title: J Pineal Res. doi: 10.1111/jpi.12103 – volume: 448 start-page: 1033 year: 2007 ident: B38 article-title: Increased subaerial volcanism and the rise of atmospheric oxygen 2 publication-title: Nature. doi: 10.1038/nature06058 – volume: 64 start-page: 786 year: 2000 ident: B170 article-title: Origin and evolution of the mitochondrial proteome publication-title: Microbiol Mol Biol Rev. doi: 10.1128/MMBR.64.4.786-820.2000 – volume: 9 start-page: 45 year: 2017 ident: B39 article-title: Role of SIRT3/SOD2 signaling in mediating the antioxidant actions of melatonin in mitochondria publication-title: Curr Trends Endocrinol. – volume: 41 start-page: 391 year: 1995 ident: B45 article-title: Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system publication-title: Chem Mol Biol Res. – volume: 9 start-page: 11 year: 2005 ident: B62 article-title: The basic physiology and pathophysiology of melatonin publication-title: Sleep Med Rev. doi: 10.1016/j.smrv.2004.08.001 – volume: 26 start-page: 9153 year: 2006 ident: B195 article-title: Photic regulation of arylalkylamine N-acetyltransferase binding to 14-3-3 proteins in retinal photoreceptor cells publication-title: J Neurosci. doi: 10.1523/jneurosci.1384-06.2006 – volume: 33 start-page: 258 year: 2009 ident: B61 article-title: Oxidative stress in cyanobacteria publication-title: FEMS Microbiol Rev. doi: 10.1111/j.1574-6976.2008.00134.x – volume: 23 start-page: E530 year: 2018 ident: B17 article-title: Melatonin: a versatile protector against oxidative DNA damage publication-title: Molecules. doi: 10.3390/molecules23030530 – volume: 1 start-page: 21 year: 2018 ident: B102 article-title: Melatonin actions in the heart: more than a hormone publication-title: Melaton Res. doi: 10.32794/mr11250002 – volume: 224 start-page: 121 year: 2018 ident: B43 article-title: Multidimensional mitochondrial energetics: applications to the study of electron leak and hydrogen peroxide metabolism publication-title: Comp Biochem Physiol B Biochem Mol Biol. doi: 10.1016/j.cbpb.2017.12.013 – volume: 61 start-page: 27 year: 2016 ident: B7 article-title: On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species publication-title: J Pineal Res. doi: 10.1111/jpi.12336 – volume: 28 start-page: 144 year: 1997 ident: B148 article-title: Dramatic rises of melatonin and 5-methoxytryptamine in Gonyaulax exposed to decreased temperature publication-title: J Interdiscip Cycle Res. doi: 10.1076/brhm.28.1.144.12978 – volume: 14 start-page: 1 year: 2018 ident: B74 article-title: Anti-inflammatory effects of Melatonin: a mechanistic review publication-title: Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2018.1487927 – volume: 7 start-page: 169 year: 2004 ident: B207 article-title: Relationship between stress, inflammation and metabolism publication-title: Curr Opin Clin Nutr Metab Care. doi: 10.1097/00075197-200403000-00011 – volume: 152 start-page: 1734 year: 2011 ident: B76 article-title: Naughty melatonin: how mothers tick off their fetus publication-title: Endocrinology. doi: 10.1210/en.2011-0226 – volume: 66 start-page: 681 year: 2015 ident: B142 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L) publication-title: J Exp Bot. doi: 10.1093/jxb/eru373 – volume: 2 start-page: e1600134 year: 2016 ident: B35 article-title: Rapid oxygenation of earth's atmosphere 2 publication-title: Sci Adv. doi: 10.1126/sciadv.1600134 – volume: 21 start-page: 1643 year: 2004 ident: B162 article-title: A genome phylogeny for mitochondria among α-Proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes publication-title: Mol Biol Evol. doi: 10.1093/molbev/msh160 – volume: 20 start-page: 7396 year: 2015 ident: B109 article-title: Phytomelatonin: assisting plants to survive and thrive publication-title: Molecules. doi: 10.3390/molecules20047396 – volume: 105 start-page: 24 year: 2018 ident: B139 article-title: Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress publication-title: Naturwissenschaften. doi: 10.1007/s00114-018-1546-0 – volume: 20 start-page: 303 year: 2016 ident: B134 article-title: Quinone reductase 2 as a promising target of melatonin therapeutic actions publication-title: Expert Opin Ther Targets. doi: 10.1517/14728222.2016.1091882 – volume: 1817 start-page: 209 year: 2012 ident: B59 article-title: Molecular mechanisms of photodamage in the Photosystem II complex publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbabio.2011.04.014 – volume: 8 start-page: 337 year: 2009 ident: B131 article-title: Molecular mechanisms of melatonin anticancer effects publication-title: Integr Cancer Ther. doi: 10.1177/1534735409353332 – volume: 2018 start-page: e12538 year: 2018 ident: B52 article-title: Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca2+ stress by melatonin's cascade metabolites C3-OHM and AFMK in RBA1 astrocytes publication-title: J Pineal Res. doi: 10.1111/jpi.12538 – volume: 59 start-page: 286 year: 2001 ident: B178 article-title: Melatonin in plants publication-title: Nutr Rev. doi: 10.1111/j.1753-4887.2001.tb07018.x – volume: 131 start-page: 1312 year: 1960 ident: B151 article-title: Enzymatic O-methylation of N-acetylserotonin to melatonin publication-title: Science. doi: 10.1126/science.131.3409.1312 – volume: 351 start-page: 152 year: 2012 ident: B111 article-title: Melatonin membrane receptors in peripheral tissues: Distribution and functions publication-title: Mol Cell Endocrinol. doi: 10.1016/j.mce.2012.01.004 – volume: 74 start-page: 3863 year: 2017 ident: B13 article-title: Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas publication-title: Cell Mol Life Sci. doi: 10.1007/s00018-017-2609-7 – volume: 56 start-page: 189 year: 2014 ident: B188 article-title: Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities publication-title: J Pineal Res. doi: 10.1111/jpi.12111 – volume: 72 start-page: 2456 year: 2008 ident: B150 article-title: Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants, Escherichia coli, and yeast publication-title: Biosci Biotech Bioch doi: 10.1271/bbb.80220 – volume: 59 start-page: 102 year: 2015 ident: B198 article-title: Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis publication-title: J Pineal Res. doi: 10.1111/jpi.12244 – volume: 66 start-page: 647 year: 2015 ident: B203 article-title: Roles of melatonin in abiotic stress resistance in plants publication-title: J Exp Bot. doi: 10.1093/jxb/eru336 – volume: 6 start-page: 103 year: 2004 ident: B68 article-title: Precise circadian clocks in prokaryotic cyanobacteria publication-title: Curr Issues Mol Biol. – volume: 60 start-page: 348 year: 2016 ident: B192 article-title: Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions publication-title: J Pineal Res. doi: 10.1111/jpi.12317 – volume: 9 start-page: e109257 year: 2014 ident: B53 article-title: Melatonin enhances photo-oxidation of 2′, 7′-dichlorodihydrofluorescein by an antioxidant reaction that renders N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) publication-title: PloS ONE doi: 10.1371/journal.pone.0109257 – volume: 62 start-page: 12370 year: 2017 ident: B89 article-title: Cancer metastasis: mechanisms of inhibition by melatonin publication-title: J Pineal Res. doi: 10.1111/jpi.12370 – volume: 80 start-page: 2587 year: 1958 ident: B1 article-title: Isolation of melatonin, the pineal gland factor that lightens melanocyteS1 publication-title: J Am Chem Soc. doi: 10.1021/ja01543a060 – volume: 54 start-page: 139 year: 2013 ident: B175 article-title: Kinetic analysis of purified recombinant rice N-acetylserotonin methyltransferase and peak melatonin production in etiolated rice shoots publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2012.01019.x – volume: 53 start-page: 201 year: 1993 ident: B135 article-title: Binding of 3H-melatonin to calmodulin publication-title: Life Sci. doi: 10.1016/0024-3205(93)90670-X – volume: 15 start-page: 43 year: 2009 ident: B31 article-title: Melatonin: an established antioxidant worthy of use in clinical trials publication-title: Mol Med. doi: 10.2119/molmed.2008.00117 – volume: 19 start-page: E2205 year: 2018 ident: B83 article-title: Mechanisms underlying tumor suppressive properties of melatonin publication-title: Int J Mol Sci. doi: 10.3390/ijms19082205 – volume: 102 start-page: 1222 year: 2005 ident: B204 article-title: Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0406871102 – volume: 282 start-page: 4233 year: 2007 ident: B156 article-title: Arylalkylamine N-acetyltransferase: “the timezyme” publication-title: J Biol Chem. doi: 10.1074/jbc.R600036200 – volume: 7 start-page: 423 year: 2006 ident: B78 article-title: The modulatory role of melatonin on immune responsiveness publication-title: Curr Opin Investig Drugs. – volume: 61 start-page: 426 year: 2016 ident: B22 article-title: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts publication-title: J Pineal Res. doi: 10.1111/jpi.12364 – start-page: 5 volume-title: Suprachiasmatic Nucleus. year: 1991 ident: B65 article-title: The development of the concept of photoneuroendocrine systems: historical perspective – volume: 350 start-page: 1598 year: 1997 ident: B179 article-title: Melatonin in feverfew and other medicinal plants publication-title: Lancet. doi: 10.1016/S0140-6736(05)64014-7 – volume: 79 start-page: C153 year: 1991 ident: B184 article-title: Melatonin: the chemical expression of darkness publication-title: Mol Cell Endocrinol. doi: 10.1016/0303-7207(91)90087-9 – volume: 19 start-page: E2439 year: 2018 ident: B10 article-title: Melatonin mitigates mitochondrial meltdown: interactions with SIRT3 publication-title: Int J Mol Sci. doi: 10.3390/ijms19082439 – volume: 30 start-page: 65 year: 2001 ident: B47 article-title: Melatonin, mitochondria, and cellular bioenergetics publication-title: J Pineal Res. doi: 10.1034/j.1600-079X.2001.300201.x – volume: 162 start-page: 287 year: 1981 ident: B90 article-title: The mammalian pineal gland: structure and function publication-title: Am J Anat. doi: 10.1002/aja.1001620402 – volume: 142 start-page: 6 year: 2011 ident: B58 article-title: Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex publication-title: Physiol Plant. doi: 10.1111/j.1399-3054.2011.01454.x – volume: 37 start-page: 65 year: 2015 ident: B80 article-title: Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals publication-title: Front Neuroendocrinol. doi: 10.1016/j.yfrne.2014.12.001 – volume: 63 start-page: e12415 year: 2017 ident: B81 article-title: Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function publication-title: J Pineal Res. doi: 10.1111/jpi.12415 – volume: 57 start-page: 418 year: 2014 ident: B28 article-title: Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations publication-title: J Pineal Res. doi: 10.1111/jpi.12181 – volume: 210 start-page: 548 year: 1980 ident: B64 article-title: Nonpineal melatonin in the alligator (Alligator mississippiensis) publication-title: Science. doi: 10.1126/science.7423204 – volume: 47 start-page: 198 year: 2018 ident: B73 article-title: The role of melatonin, a multitasking molecule, in retarding the processes of ageing publication-title: Ageing Res Rev. doi: 10.1016/j.arr.2018.07.010 – volume: 7 start-page: 41236 year: 2017 ident: B166 article-title: Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress publication-title: Sci Rep. doi: 10.1038/srep41236 – volume: 15 start-page: 15858 year: 2014 ident: B24 article-title: Fundamental Issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions publication-title: Int J Mol Sci. doi: 10.3390/ijms150915858 – volume: 62 start-page: e12391 year: 2017 ident: B46 article-title: Melatonin and sirtuins: a “not-so unexpected” relationship publication-title: J Pineal Res. doi: 10.1111/jpi.12391 – volume: 22 start-page: E2015 year: 2017 ident: B56 article-title: Taxon- and site-specific melatonin catabolism publication-title: Molecules. doi: 10.3390/molecules22112015 – volume: 58 start-page: 26 year: 2015 ident: B200 article-title: INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis publication-title: J Pineal Res. doi: 10.1111/jpi.12188 – volume: 6 start-page: 82 year: 2017 ident: B44 article-title: On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling publication-title: Antioxidants. doi: 10.3390/antiox6040082 – volume: 21 start-page: 797 year: 2007 ident: B186 article-title: Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production publication-title: Genes Dev. doi: 10.1101/gad.1519507 – volume: 54 start-page: 258 year: 2013 ident: B189 article-title: Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2012.01029.x – volume: 86 start-page: 2582 year: 1989 ident: B149 article-title: Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.86.8.2582 – volume: 138 start-page: 1212 year: 2013 ident: B141 article-title: Growth conditions influence the melatonin content of tomato plants publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.10.077 – volume: 61 start-page: 381 year: 2016 ident: B88 article-title: Melatonin enhances hyperthermia-induced apoptotic cell death in human leukemia cells publication-title: J Pineal Res. doi: 10.1111/jpi.12356 – volume: 9 start-page: 314 year: 1992 ident: B95 article-title: Some perturbations that disturb the circadian melatonin rhythm publication-title: Chronobiol Int. doi: 10.3109/07420529209064541 – volume: 25 start-page: R842 year: 2015 ident: B69 article-title: Circadian clocks: unexpected biochemical cogs publication-title: Curr Biol. doi: 10.1016/j.cub.2015.08.026 – volume: 148 start-page: 357 year: 2013 ident: B123 article-title: Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression publication-title: J Affect Disord. doi: 10.1016/j.jad.2012.12.025 – volume: 7 start-page: 1124 year: 2016 ident: B6 article-title: Fundamental issues of melatonin-mediated stress signaling in plants publication-title: Front Plant Sci. doi: 10.3389/fpls.2016.01124 – volume: 91 start-page: 699 year: 1999 ident: B212 article-title: Rat arylalkylamine N-acetyltransferase gene: upstream and intronic components of a bipartite promoter publication-title: Biol Cell. doi: 10.1111/j.1768-322X.1999.tb01114.x – volume: 154 start-page: 1182 year: 2008 ident: B112 article-title: Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new? publication-title: Br J Pharmacol. doi: 10.1038/bjp.2008.184 – volume: 36 start-page: 996 year: 1982 ident: B91 article-title: The pineal and parietal organs of lower vertebrates publication-title: Experientia. doi: 10.1007/BF01955342 – volume: 7 start-page: 198 year: 2016 ident: B145 article-title: Melatonin in plants - diversity of levels and multiplicity of functions publication-title: Front Plant Sci. doi: 10.3389/fpls.2016.00198 – volume: 120 start-page: 56 year: 2018 ident: B120 article-title: Oxidative stress and neurodegeneration: the possible contribution of quinone reductase 2 publication-title: Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2018.03.002 – volume: 67 start-page: 3023 year: 2000 ident: B4 article-title: High levels of melatonin in edible seeds: possible function in germ cell protection publication-title: Life Sci. doi: 10.1016/S0024-3205(00)00896-1 – volume: 66 start-page: 709 year: 2015 ident: B168 article-title: Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts publication-title: J Exp Bot. doi: 10.1093/jxb/eru357 – volume: 7 start-page: 2091 year: 2017 ident: B208 article-title: Daily corticosterone rhythm modulates pineal function through NFkappaB-related gene transcriptional program publication-title: Sci Rep. doi: 10.1038/s41598-017-02286-y – volume: 63 start-page: e12412 year: 2017 ident: B122 article-title: Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants publication-title: J Pineal Res. doi: 10.1111/jpi.12412 – start-page: 175 year: 1978 ident: B94 article-title: Feedback control of pineal function by reproductive hormones – a neuroendocrine paradigm publication-title: J Neural Trans Suppl. – volume: 159 start-page: 46 year: 2014 ident: B104 article-title: Melatonin signaling controls circadian swimming behavior in marine zooplankton publication-title: Cell. doi: 10.1016/j.cell.2014.07.042 – volume: 73 start-page: 144 year: 1999 ident: B206 article-title: Activator protein-1 DNA binding activation by hydrogen peroxide in neuronal and astrocytic primary cultures of trisomy-16 and diploid mice publication-title: Mol Brain Res. doi: 10.1016/S0169-328X(99)00257-0 – volume: 60 start-page: 3221 year: 2017 ident: B41 article-title: Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria publication-title: J Med Chem. doi: 10.1021/acs.jmedchem.6b01243 – volume: 62 start-page: 93 year: 2015 ident: B140 article-title: Biogenic amines at a low level of evolution: production, functions and regulation in the unicellular Tetrahymena publication-title: Acta Microbiol Immunol Hungar. doi: 10.1556/030.62.2015.2.1 – volume: 60 start-page: 65 year: 2016 ident: B155 article-title: Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis publication-title: J Pineal Res. doi: 10.1111/jpi.12289 – volume: 40 start-page: 1700158 year: 2018 ident: B37 article-title: Reactive oxygen species: radical factors in the evolution of animal life: a molecular timescale from earth's earliest history to the rise of complex life publication-title: Bioessays. doi: 10.1002/bies.201700158 – volume: 31 start-page: 547 year: 2017 ident: B75 article-title: The hormone melatonin: animal studies publication-title: Best Pract Res Clin Endocrinol Metab. doi: 10.1016/j.beem.2017.10.010 – volume: 64 start-page: e12460 year: 2017 ident: B161 article-title: Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants publication-title: J Pineal Res. doi: 10.1111/jpi.12460 – volume: 66 start-page: 627 year: 2015 ident: B146 article-title: Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions publication-title: J Exp Bot. doi: 10.1093/jxb/eru386 – volume: 50 start-page: 304 year: 2011 ident: B157 article-title: Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2010.00841.x – volume: 27 start-page: 149 year: 2005 ident: B182 article-title: Physiological ischemia/reperfusion phenomena and their relation to endogenous melatonin production: a hypothesis publication-title: Endocrine. doi: 10.1385/ENDO:27:2:149 – volume: 19 start-page: 698 year: 2000 ident: B183 article-title: Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St publication-title: John's wort (Hypericum perforatum L cv Anthos). Plant Cell Rep. doi: 10.1007/s002990000206 – volume: 52 start-page: 217 year: 2012 ident: B63 article-title: Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2011.00931.x – volume: 55 start-page: 149 year: 2013 ident: B181 article-title: Growth conditions determine different melatonin levels in Lupinus albus L publication-title: J Pineal Res. doi: 10.1111/jpi.12055 – volume: 20 start-page: 18886 year: 2015 ident: B15 article-title: Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism publication-title: Molecules. doi: 10.3390/molecules201018886 – volume: 9 start-page: 99 year: 2018 ident: B20 article-title: Circadian dysrhythmia-linked diabetes mellitus: examining melatonin's roles in prophylaxis and management publication-title: World J Diabetes doi: 10.4239/wjd.v9.i7.99 – volume: 73 start-page: 125 year: 1996 ident: B93 article-title: Neural control of the pineal gland publication-title: Behav Brain Res. doi: 10.1016/0166-4328(96)00083-6 – volume: 57 start-page: 408 year: 2014 ident: B191 article-title: Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants publication-title: J Pineal Res. doi: 10.1111/jpi.12180 – volume: 2018 start-page: 3271948 year: 2018 ident: B136 article-title: Melatonin: an anti-tumor agent in hormone-dependent cancers publication-title: Int J Endocrinol. doi: 10.1155/2018/3271948 – volume: 54 start-page: 245 year: 2013 ident: B51 article-title: On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK publication-title: J Pineal Res. doi: 10.1111/jpi.12010 – volume: 65 start-page: 2001 year: 2008 ident: B67 article-title: Melatonin, hormone of darkness and more - occurrence, control mechanisms, actions and bioactive metabolites publication-title: Cellular and Molecular Life Sci. doi: 10.1007/s00018-008-8001-x – volume: 22 start-page: R183 year: 2015 ident: B84 article-title: Melatonin: an inhibitor of breast cancer publication-title: Endocr Relat Cancer. doi: 10.1530/ERC-15-0030 – volume: 85 start-page: 607 year: 2010 ident: B18 article-title: The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness publication-title: Biol Rev. doi: 10.1111/j.1469-185X.2009.00118.x – volume: 38 start-page: 1 year: 2005 ident: B48 article-title: Melatonin mitigates mitochondrial malfunction publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2004.00181.x – volume: 65 start-page: e12490 year: 2018 ident: B19 article-title: Melatonin and cardioprotection against ischaemia/reperfusion injury: what's new? publication-title: . J Pineal Res. doi: 10.1111/jpi.12490 – volume: 121 start-page: 3965 year: 2017 ident: B9 article-title: Low-energy electron interaction with melatonin and related compounds publication-title: J Phys Chem B. doi: 10.1021/acs.jpcb.7b01408 – volume: 137 start-page: 31 year: 2014 ident: B54 article-title: Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: a review publication-title: Acta Trop. doi: 10.1016/j.actatropica.2014.04.021 – volume: 29 start-page: 325 year: 2014 ident: B5 article-title: Melatonin: exceeding expectations publication-title: Physiology. doi: 10.1152/physiol.00011.2014 – volume: 62 start-page: 12390 year: 2017 ident: B103 article-title: Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential publication-title: J Pineal Res. doi: 10.1111/jpi.12390 – volume: 13 start-page: 241 year: 2017 ident: B115 article-title: Docking studies for melatonin receptors publication-title: Expert Opin Drug Discov. doi: 10.1080/17460441.2018.1419184 – volume: 55 start-page: 7 year: 2013 ident: B153 article-title: Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis publication-title: J Pineal Res. doi: 10.1111/jpi.12011 – volume: 58 start-page: 470 year: 2015 ident: B27 article-title: Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment publication-title: J Pineal Res. doi: 10.1111/jpi.12232 – volume: 62 start-page: e12379 year: 2017 ident: B117 article-title: Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana publication-title: J Pineal Res. doi: 10.1111/jpi.12379 – volume: 39 start-page: 91 year: 2005 ident: B190 article-title: N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2005.00223.x – volume: 33 start-page: 125 year: 2015 ident: B173 article-title: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences publication-title: Curr Opin Cell Biol. doi: 10.1016/j.ceb.2015.02.003 – volume: 6 start-page: 233 year: 1997 ident: B185 article-title: In vivo microdialysis studies of pineal and ocular melatonin rhythms in birds publication-title: Neurosignals. doi: 10.1159/000109133 – volume: 55 start-page: 371 year: 2013 ident: B167 article-title: Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp publication-title: J Pineal Res. doi: 10.1111/jpi.12080 – volume: 64 start-page: e12454 year: 2018 ident: B116 article-title: RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes publication-title: J Pineal Res. doi: 10.1111/jpi.12454 – volume: 35 start-page: 627 year: 1995 ident: B3 article-title: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates publication-title: Biochem Mol Biol Int. – volume: 269 start-page: 31969 year: 1994 ident: B29 article-title: Structural analysis of the human hydroxyindole-O-methyltransferase gene. Presence of two distinct promoters publication-title: J Biol Chem. doi: 10.1016/S0021-9258(18)31790-3 – volume: 60 start-page: 95 year: 2016 ident: B124 article-title: Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons publication-title: J Pineal Res. doi: 10.1111/jpi.12294 – volume: 65 start-page: e12525 year: 2018 ident: B49 article-title: Melatonin and retinoid orphan receptors: demand for new interpretation after their exclusion as nuclear melatonin receptors publication-title: Melatonin Res. doi: 10.32794/mr11250005 – volume: 254 start-page: 1835 year: 2017 ident: B164 article-title: Origin of complex algae by secondary endosymbiosis: a journey through time publication-title: Protoplasma. doi: 10.1007/s00709-017-1098-8 – volume: 18 start-page: 28 year: 1995 ident: B2 article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.1995.tb00136.x – volume: 62 start-page: 343 year: 2010 ident: B114 article-title: International Union of Basic and Clinical Pharmacology publication-title: . Pharmacol Rev. doi: 10.1124/pr.110.002832 – volume: 62 start-page: e12392 year: 2017 ident: B159 article-title: Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield publication-title: J Pineal Res. doi: 10.1111/jpi.12392 – volume: 45 start-page: 1184 year: 2011 ident: B121 article-title: Insights into the redox cycle of human quinone reductase 2 publication-title: Free Radic Res. doi: 10.3109/10715762.2011.605788 – volume: 7 start-page: e52010 year: 2012 ident: B209 article-title: NF-κB drives the synthesis of melatonin in RAW 264 publication-title: PloS ONE. doi: 10.1371/journal.pone.0052010 – volume: 61 start-page: 470 year: 2016 ident: B57 article-title: Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa) publication-title: J Pineal Res. doi: 10.1111/jpi.12361 – volume: 63 start-page: e12429 year: 2017 ident: B165 article-title: Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress publication-title: J Pineal Res. doi: 10.1111/jpi.12429 – volume: 2018 start-page: e12531 ident: B23 article-title: Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry publication-title: J Pineal Res. doi: 10.1111/jpi.12531 – volume: 8 start-page: 134 year: 2017 ident: B107 article-title: Melatonin regulates root architecture by modulating auxin response in rice publication-title: Front Plant Sci. doi: 10.3389/fpls.2017.00134 – volume: 1 start-page: 57 year: 1993 ident: B14 article-title: Melatonin: a potent, endogenous hydroxyl radical scavenger publication-title: Endocr J. – volume: 23 start-page: 5 year: 2006 ident: B193 article-title: Evolution of the vertebrate pineal gland: the AANAT hypothesis publication-title: Chronobiol Int. doi: 10.1080/07420520500545839 – volume: 7 start-page: 503 year: 2017 ident: B108 article-title: Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production publication-title: Sci Rep. doi: 10.1038/s41598-017-00566-1 – volume: 63 start-page: 577 year: 2012 ident: B158 article-title: Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science publication-title: J Exp Bot. doi: 10.1093/jxb/err256 – volume: 16 start-page: 546 year: 2017 ident: B128 article-title: Role of the MT1 and MT2 melatonin receptors in mediating depressive- and anxiety-like behaviors in C3H/HeN mice publication-title: Genes Brain Behav. doi: 10.1111/gbb.12369 – volume: 15 start-page: 22405 year: 2014 ident: B138 article-title: Melatonin as a signaling molecule for metabolism regulation in response to hypoxia in the crab Neohelice granulata publication-title: Int J Mol Sci. doi: 10.3390/ijms151222405 – volume: 59 start-page: 133 year: 2015 ident: B105 article-title: Functions of melatonin in plants: a review publication-title: J Pineal Res. doi: 10.1111/jpi.12253 – volume: 5 start-page: 5 year: 2012 ident: B147 article-title: Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources publication-title: J Chem Biol. doi: 10.1007/s12154-011-0064-8 – volume: 23 start-page: E336 year: 2018 ident: B85 article-title: Melatonin: a molecule for reducing breast cancer risk publication-title: Molecules. doi: 10.3390/molecules23020336 – volume: 1 start-page: 58 year: 2018 ident: B77 article-title: Historical perspective and evaluation of the mechanisms by which melatonin mediates seasonal reproduction in mammals publication-title: Melaton Res. doi: 10.32794/mr11250004 – volume: 61 start-page: 77 year: 2015 ident: B79 article-title: Melatonin: physiological effects in humans publication-title: Neurochirurgie. doi: 10.1016/j.neuchi.2015.03.002 – volume: 175 start-page: 3239 year: 2017 ident: B98 article-title: Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes publication-title: Br J Pharmacol. doi: 10.1111/bph.14083 – volume: 2018 start-page: 27698 year: 2018 ident: B21 article-title: Melatonin, a toll-like receptor inhibitor: current status and future perspectives publication-title: J Cell Physiol. doi: 10.1002/jcp.27698 – volume: 52 start-page: 11 year: 2007 ident: B110 article-title: Medical implications of melatonin: receptor-mediated and receptor-independent actions publication-title: Adv Med Sci. – volume: 114 start-page: E7997 year: 2017 ident: B101 article-title: Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1705768114 – volume: 60 start-page: 437 year: 1984 ident: B176 article-title: Stem extension rate in light-grown plants publication-title: Chenopodium rubrum. Physiol Plant. doi: 10.1111/j.1399-3054.1984.tb06089.x – volume: 36 start-page: 778 year: 2014 ident: B143 article-title: Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease publication-title: Bioessays. doi: 10.1002/bies.201400017 – volume: 25 start-page: R911 year: 2015 ident: B163 article-title: Endosymbiosis and eukaryotic cell evolution publication-title: Curr Biol. doi: 10.1016/j.cub.2015.07.055 – volume: 73 start-page: 1343 year: 1999 ident: B213 article-title: Genetic targeting: the serotonin N-acetyltransferase promoter imparts circadian expression selectively in the pineal gland and retina of transgenic rats publication-title: J Neurochem. doi: 10.1046/j.1471-4159.1999.0731343.x – volume: 56 start-page: 275 year: 2014 ident: B196 article-title: Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase publication-title: J Pineal Res. doi: 10.1111/jpi.12120 – volume: 35 start-page: 183 year: 2009 ident: B125 article-title: Melatonin: signaling mechanisms of a pleiotropic agent publication-title: Biofactors. doi: 10.1002/biof.23 – volume: 61 start-page: 291 year: 2016 ident: B197 article-title: Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants publication-title: J Pineal Res. doi: 10.1111/jpi.12346 – volume: 14 start-page: 10979 year: 2013 ident: B99 article-title: Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells publication-title: Int J Mol Sci. doi: 10.3390/ijms140610979 – volume: 59 start-page: 334 year: 2015 ident: B199 article-title: Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis publication-title: J Pineal Res. doi: 10.1111/jpi.12262 – volume: 62 start-page: e12378 year: 2017 ident: B133 article-title: Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-alpha in diabetic cardiomyopathy publication-title: J Pineal Res. doi: 10.1111/jpi.12378 – volume: 2 start-page: 44 year: 2019 ident: B171 article-title: Mitochondria: the birth place, battle ground and site of melatonin metabolism in cells publication-title: Melatonin Res. doi: 10.32794/nr11250011 – volume: 65 start-page: e12481 year: 2018 ident: B34 article-title: LIM homeobox transcription factor Isl1 is required for melatonin synthesis in the pig pineal gland publication-title: J Pineal Res. doi: 10.1111/jpi.12481 – volume: 111 start-page: 314 year: 2014 ident: B172 article-title: Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1312634110 – volume: 173 start-page: 2702 year: 2016 ident: B113 article-title: Update on melatonin receptors: IUPHAR Review 20 publication-title: Br J Pharmacol. doi: 10.1111/bph.13536 – volume: 34 start-page: 75 year: 2003 ident: B100 article-title: Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin publication-title: J Pineal Res. doi: 10.1034/j.1600-079X.2003.02111.x – volume: 58 start-page: 335 year: 2015 ident: B201 article-title: Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis publication-title: J Pineal Res. doi: 10.1111/jpi.12219 – volume: 68 start-page: 4997 year: 2017 ident: B205 article-title: Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava publication-title: J Exp Bot. doi: 10.1093/jxb/erx305 – volume: 52 start-page: 181 year: 2001 ident: B42 article-title: Mitochondrial ROS metabolism: modulation by uncoupling proteins publication-title: IUBMB Life. doi: 10.1080/15216540152845984 – volume: 39 start-page: 333 year: 2005 ident: B177 article-title: Melatonin in higher plants: occurrence and possible functions publication-title: J Pineal Res. doi: 10.1111/j.1600-079X.2005.00276.x – volume: 62 start-page: e12387 year: 2017 ident: B33 article-title: HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants publication-title: J Pineal Res. doi: 10.1111/jpi.12387 – volume: 477 start-page: 12 year: 2008 ident: B119 article-title: Studies of the melatonin binding site location onto quinone reductase 2 by directed mutagenesis publication-title: Arch Biochem Biophys. doi: 10.1016/j.abb.2008.04.040 |
SSID | ssj0000401998 |
Score | 2.6364996 |
SecondaryResourceType | review_article |
Snippet | Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 249 |
SubjectTerms | antioxidant biological rhythms biosynthesis enzymes Endocrinology endosymbiosis evolution melatonin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iQbyIb-uLFbx4WNrNa7PeVFpErBcVvIVkk8WCpmKr0H_vTHZbWhG9eE0mbPgyu_PNJvmGkNOC5hWXtExZCR7MvVSpVVylrnLKc2gT8Xp0_05eP_KbJ_E0V-oLz4TV8sA1cG3hvLEi97aCUOny3BZGwXOZV4r5UkX1Uoh5c8lU_AZD2gCJRL0vCVlY0a58cHjZL0N9SorSmXNxKMr1_8Qxvx-VnIs9vXWy1pDG5KKe7AZZ8mGTrPSbbfEtctvHI234YzW5nwSgdKPBKDHBJT2IWoj8edL9bHzMvE-SWhtkkoD9RRi8ggdGayxgNB5tk8de9-HqOm3KJKSloGqcOm6YFIIamnmfOVpalfmiogBUR1Z4Rot1HGMlLawrKwj3rnAMujxwrQyAZTtkOQyD3yMJAswkvNROAlNxWSGEyYz1gnZ4JXLbIu0paLpsNMSxlMWLhlwCYdYRZo0w6whzi5zNRrzV-hm_2F7iOszsUPk6NoA_6MYf9F_-0CIn01XU8Kbg9ocJfvgx0kCEkP1IDja79arOHsWw3DHH0fnCei_MZbEnDJ6jGrfkwJFyuf8fkz8gqwgH7lZl-SFZHr9_-CMgPWN7HP37CwpiApE priority: 102 providerName: Directory of Open Access Journals |
Title | Melatonin Synthesis and Function: Evolutionary History in Animals and Plants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31057485 https://www.proquest.com/docview/2231901645 https://pubmed.ncbi.nlm.nih.gov/PMC6481276 https://doaj.org/article/5deab57ebf584d77b9a8bec3e883ec85 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RIlW9VLxJgcpIXHpwm32vkRAqqKGqGi4lUm6rtXfdRgqbNk4R-ffMrN1AUIS4-GDP2rvz8HyzjxlC3hVM10KxKucVaLAIyuSlESb3tTdBwD2ZjkcPv6qzkTgfy_Hv49EdA5uNoR3WkxrNp0c_b5cfweA_YMQJ_va4DtHjOT6KqSchnNgiD8EvaTTTYQf2038ZQokiFcelSomcATJo1y03vmTNT6V0_psw6N9bKf_wTYNHZK8DldlJqwWPyYMQn5CdYbds_pRcDHHLG068ZpfLCJCvmTSZiz4bgFdDybzPTn90Oujmy6zNHbLMgP4kTr4DpxI1FjhaNM_IaHD67fNZ3pVRyCvJzCL3wnElJXOMhkA9q0pDQ1Gzwpm-qnEPF-97zitWlL6qAQ74wnN4FACLUQ3B9nOyHWcxvCSZ8FpzBUbvgYPc00JKR10ZJOuLWuqyR47vmWarLsc4lrqYWog1kM02sdkim21ic48crlrctPk1_kH7CeWwosPM2OnGbH5lO0Oz0gdXSuh2DdAKulvCMEFPeTCGh8rIHnl7L0ULloTLIy6G2V1jASghOlICaF60Ul19imM5ZIGt9Zq81_qy_iROrlO2biUAQ2m1_x_ffUV2cbS4WEX1a7K9mN-FN4B5FuVBmiuA65cxPUhq_QtWagGn |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+Synthesis+and+Function%3A+Evolutionary+History+in+Animals+and+Plants&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Zhao%2C+Dake&rft.au=Yu%2C+Yang&rft.au=Shen%2C+Yong&rft.au=Liu%2C+Qin&rft.date=2019-04-17&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=10&rft.spage=249&rft_id=info:doi/10.3389%2Ffendo.2019.00249&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon |