Conformal phased surfaces for wireless powering of bioelectronic microdevices
Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatia...
Saved in:
Published in | Nature biomedical engineering Vol. 1; no. 3 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.03.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm
3
) deep within the body (>4 cm). As an illustration of
in vivo
operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model.
A phased electromagnetic surface that conforms to the body surface can regulate cardiac rhythm in a porcine model through the wireless transmission of power to miniaturized semiconductor devices implanted at depths of over 4 cm. |
---|---|
AbstractList | Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm3) deep within the body (>4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm3) deep within the body (>4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model.A phased electromagnetic surface that conforms to the body surface can regulate cardiac rhythm in a porcine model through the wireless transmission of power to miniaturized semiconductor devices implanted at depths of over 4 cm. Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices ( 12 mm ) deep within the body ( 4 cm). As an illustration of operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices ( < 12 mm 3 ) deep within the body ( > 4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm 3 ) deep within the body (>4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. A phased electromagnetic surface that conforms to the body surface can regulate cardiac rhythm in a porcine model through the wireless transmission of power to miniaturized semiconductor devices implanted at depths of over 4 cm. |
ArticleNumber | 0043 |
Author | Zhen, Zhe Ho, John S. Agrawal, Devansh R. Tse, Hung Fat Zhu, Zi-Yi Liao, Song-Yan Tanabe, Yuji Weng, Desen Sun, Chuanbowen Yang, Fengyuan Poon, Ada S. Y. Hsu, Stephanie Ma, Andrew Dong, Zhenya |
AuthorAffiliation | 4 Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, University of Hong Kong, Hong Kong, China 1 Singapore Institute for Neurotechnology, National University of Singapore, Singapore 5 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 2 Department of Electrical Engineering, Stanford University, CA 94305, USA 3 Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong, China |
AuthorAffiliation_xml | – name: 4 Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, University of Hong Kong, Hong Kong, China – name: 1 Singapore Institute for Neurotechnology, National University of Singapore, Singapore – name: 2 Department of Electrical Engineering, Stanford University, CA 94305, USA – name: 3 Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong, China – name: 5 Department of Electrical and Computer Engineering, National University of Singapore, Singapore |
Author_xml | – sequence: 1 givenname: Devansh R. orcidid: 0000-0002-0236-9077 surname: Agrawal fullname: Agrawal, Devansh R. organization: Singapore Institute for Neurotechnology, National University of Singapore – sequence: 2 givenname: Yuji surname: Tanabe fullname: Tanabe, Yuji organization: Department of Electrical Engineering, Stanford University – sequence: 3 givenname: Desen surname: Weng fullname: Weng, Desen organization: Singapore Institute for Neurotechnology, National University of Singapore – sequence: 4 givenname: Andrew surname: Ma fullname: Ma, Andrew organization: Department of Electrical Engineering, Stanford University – sequence: 5 givenname: Stephanie surname: Hsu fullname: Hsu, Stephanie organization: Department of Electrical Engineering, Stanford University – sequence: 6 givenname: Song-Yan surname: Liao fullname: Liao, Song-Yan organization: Cardiology Division, Department of Medicine, University of Hong Kong – sequence: 7 givenname: Zhe surname: Zhen fullname: Zhen, Zhe organization: Cardiology Division, Department of Medicine, University of Hong Kong – sequence: 8 givenname: Zi-Yi surname: Zhu fullname: Zhu, Zi-Yi organization: Cardiology Division, Department of Medicine, University of Hong Kong – sequence: 9 givenname: Chuanbowen surname: Sun fullname: Sun, Chuanbowen organization: Department of Electrical and Computer Engineering, National University of Singapore – sequence: 10 givenname: Zhenya surname: Dong fullname: Dong, Zhenya organization: Department of Electrical and Computer Engineering, National University of Singapore – sequence: 11 givenname: Fengyuan surname: Yang fullname: Yang, Fengyuan organization: Department of Electrical and Computer Engineering, National University of Singapore – sequence: 12 givenname: Hung Fat surname: Tse fullname: Tse, Hung Fat organization: Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, University of Hong Kong – sequence: 13 givenname: Ada S. Y. surname: Poon fullname: Poon, Ada S. Y. organization: Department of Electrical Engineering, Stanford University – sequence: 14 givenname: John S. surname: Ho fullname: Ho, John S. email: johnho@nus.edu.sg organization: Singapore Institute for Neurotechnology, National University of Singapore, Department of Electrical and Computer Engineering, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29226018$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvGyEUhVHlqHbSrLurRuqmm0mAgQE2kSorLylRNqnUHcL4kmDNwAQ8ifLvi-XEdStlBVy-e-7jHKJJiAEQ-krwCcGNPM2McE5qTESNMWs-oRklXNSStb8ne_cpOs55hTEmqmFK8M9oShWlLSZyhm7nMbiYetNVw6PJsKzymJyxkKsSrl58gg5yrob4AsmHhyq6auFjCdp1isHbqvc2xSU8-5LzBR0402U4fjuP0K-L8_v5VX1zd3k9_3lTW07lurYLQpQC60AohznjUkLLDXGyvIUCw4VhijdcNAtGywwSFCv9OgBDBMPNETrb6g7jooelhbBOptND8r1Jrzoar__9Cf5RP8RnzQWlTGwEfrwJpPg0Ql7r3mcLXWcCxDFrUvbElSi1C_r9P3QVxxTKeJo2UrWqJZQU6nRLlWXknMDtmiFYb9zSW7d0cUtv3CoZ3_Zn2PHv3hQAb4E8bDYP6W_hjzT_AJ8BoUI |
CitedBy_id | crossref_primary_10_3390_en11051232 crossref_primary_10_1038_s41928_021_00648_z crossref_primary_10_1126_science_abn4732 crossref_primary_10_1002_adma_202306903 crossref_primary_10_1109_TBME_2022_3200409 crossref_primary_10_1109_TITS_2018_2882202 crossref_primary_10_1073_pnas_1717552115 crossref_primary_10_1126_sciadv_adj0540 crossref_primary_10_3390_electronics10151837 crossref_primary_10_1002_adma_202200070 crossref_primary_10_1016_j_aeue_2022_154303 crossref_primary_10_1109_ACCESS_2021_3096729 crossref_primary_10_3390_app9061125 crossref_primary_10_1038_s41551_017_0135_4 crossref_primary_10_1109_TBME_2021_3094543 crossref_primary_10_1002_adfm_202300027 crossref_primary_10_1002_adma_201902083 crossref_primary_10_1126_sciadv_ade8622 crossref_primary_10_1063_5_0156015 crossref_primary_10_3390_en13040905 crossref_primary_10_1038_s41551_017_0051 crossref_primary_10_1002_advs_202102944 crossref_primary_10_1016_j_neuron_2020_05_019 crossref_primary_10_1002_adhm_202100577 crossref_primary_10_1109_TIE_2019_2945304 crossref_primary_10_1002_adhm_202100614 crossref_primary_10_1103_PhysRevApplied_8_044026 crossref_primary_10_1039_C8BM01290C crossref_primary_10_1016_j_xcrp_2024_101882 crossref_primary_10_1038_s41467_022_31166_x crossref_primary_10_3390_s19204534 crossref_primary_10_1149_1945_7111_ab6827 crossref_primary_10_1016_j_aeue_2023_155010 crossref_primary_10_1103_PhysRevLett_122_108101 crossref_primary_10_1088_1741_2552_ac7894 crossref_primary_10_1038_s41551_021_00763_4 crossref_primary_10_1098_rsta_2021_0020 crossref_primary_10_1111_pace_14105 crossref_primary_10_1038_s41467_021_24417_w crossref_primary_10_1038_s41551_018_0341_8 crossref_primary_10_1109_OJNANO_2022_3218960 crossref_primary_10_1002_adma_201907478 crossref_primary_10_1038_s41928_021_00631_8 crossref_primary_10_1109_TMC_2023_3255980 crossref_primary_10_1021_acsnano_3c05619 crossref_primary_10_1038_s41598_023_40486_x crossref_primary_10_1007_s10853_021_06248_8 crossref_primary_10_1103_PhysRevApplied_9_024033 crossref_primary_10_3390_s22176371 crossref_primary_10_1002_smll_202307742 crossref_primary_10_1109_TMTT_2022_3231492 crossref_primary_10_1109_JIOT_2022_3187558 crossref_primary_10_1038_s41467_022_34047_5 crossref_primary_10_1038_s41551_021_00817_7 crossref_primary_10_3390_mi13040561 crossref_primary_10_1007_s10439_020_02450_y crossref_primary_10_1109_TIE_2018_2879310 crossref_primary_10_1038_s41578_022_00427_y crossref_primary_10_1002_smll_201902827 crossref_primary_10_1038_s41467_022_29859_4 crossref_primary_10_1109_TAP_2022_3184549 crossref_primary_10_1038_s41551_022_00873_7 crossref_primary_10_1002_smtd_202000274 crossref_primary_10_1021_acsami_3c14493 crossref_primary_10_1016_j_neuron_2020_10_011 crossref_primary_10_1038_s41928_021_00589_7 crossref_primary_10_2217_bem_2018_0005 crossref_primary_10_1002_adma_202000376 crossref_primary_10_1002_adfm_201703059 crossref_primary_10_1038_s41598_022_18000_6 crossref_primary_10_1002_pi_6089 crossref_primary_10_1038_s41586_024_07383_3 crossref_primary_10_1109_TMTT_2020_2965938 crossref_primary_10_1038_s41551_021_00802_0 crossref_primary_10_1002_adhm_202100664 crossref_primary_10_1073_pnas_2002201117 crossref_primary_10_1016_j_xcrp_2023_101414 crossref_primary_10_1109_LMWT_2023_3325393 crossref_primary_10_1126_sciadv_abd4639 crossref_primary_10_1016_j_nanoen_2023_108761 crossref_primary_10_1109_TBCAS_2018_2881800 crossref_primary_10_1109_TAP_2023_3322752 crossref_primary_10_1371_journal_pone_0186698 crossref_primary_10_1109_TIM_2023_3277988 crossref_primary_10_1038_s41467_023_39850_2 crossref_primary_10_1109_JERM_2020_2983842 crossref_primary_10_1038_s41551_017_0129_2 crossref_primary_10_1186_s12984_019_0501_4 crossref_primary_10_1103_PhysRevApplied_12_054020 crossref_primary_10_1002_adfm_201808247 crossref_primary_10_1002_adma_202305917 crossref_primary_10_1016_j_cell_2020_02_054 crossref_primary_10_1109_TMTT_2021_3065560 crossref_primary_10_1126_sciadv_abk0159 crossref_primary_10_1126_science_adk9880 crossref_primary_10_1080_17425247_2022_2141709 crossref_primary_10_3390_mi8120359 crossref_primary_10_1109_TAP_2019_2943424 crossref_primary_10_1016_j_bios_2019_04_051 crossref_primary_10_1016_j_matt_2021_02_001 crossref_primary_10_1039_D2MH01548J crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1002_advs_202307369 crossref_primary_10_1186_s42234_023_00136_z crossref_primary_10_1002_admt_201800490 crossref_primary_10_1038_s41565_022_01189_y crossref_primary_10_1109_TAP_2022_3168663 crossref_primary_10_1038_s41598_019_53677_2 crossref_primary_10_1016_j_bios_2020_112781 crossref_primary_10_1088_1741_2552_ac8dc4 |
Cites_doi | 10.1073/pnas.1317233111 10.1109/TAP.1978.1141852 10.1364/JOSAA.1.000965 10.1109/JPROC.2011.2165309 10.1073/pnas.1403002111 10.1109/TAP.2011.2144551 10.1109/PROC.1984.12844 10.1103/PhysRevLett.110.203905 10.1103/PhysRevB.91.125145 10.1109/TBCAS.2010.2072782 10.1109/JPROC.2011.2106191 10.1126/science.1250169 10.1002/aenm.201301269 10.1109/TBCAS.2014.2370794 10.1002/adfm.201503277 10.1103/PhysRevLett.110.197401 10.1146/annurev.bioeng.10.061807.160547 10.1103/PhysRevB.84.205428 10.1109/22.883861 10.1038/nmat3839 10.1038/nrd4351 10.1109/TMTT.2004.832686 10.1109/TBCAS.2007.913130 10.1088/0031-9155/41/11/003 10.1109/4.871327 10.1088/0031-9155/51/1/001 10.1109/JSEN.2013.2252526 10.1038/nmeth.3536 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature. 2017 Macmillan Publishers Limited, part of Springer Nature. 2017. |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. 2017 – notice: Macmillan Publishers Limited, part of Springer Nature. 2017. |
DBID | NPM AAYXX CITATION 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PQEST PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1038/s41551-017-0043 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Student Technology Collection ProQuest Biological Science Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest Engineering Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science & Engineering Collection ProQuest One Academic Engineering Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Advanced Technologies & Aerospace Collection PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
ExternalDocumentID | 10_1038_s41551_017_0043 29226018 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAEEF AARCD ABJCF ABLJU ABVXF ACGFS AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS FSGXE FZEXT HCIFZ M7P M7S NNMJJ O9- PTHSS RNT SHXYY SIXXV SNYQT TAOOD TBHMF TDRGL TSG AAYZH EJD NPM ODYON AAYXX CITATION 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PQEST PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c528t-cb1199ecfe79f054588e65a1f879f79ea57a4953573b428468e94601feea17403 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Tue Sep 17 20:56:38 EDT 2024 Thu Oct 24 23:41:40 EDT 2024 Thu Oct 10 22:07:29 EDT 2024 Thu Sep 12 17:36:25 EDT 2024 Wed Oct 16 01:00:29 EDT 2024 Fri Oct 11 20:45:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-cb1199ecfe79f054588e65a1f879f79ea57a4953573b428468e94601feea17403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 H.F.T., A.S.Y.P., and J.S.H. contributed equally as senior authors to the supervision of this work. |
ORCID | 0000-0002-0236-9077 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5722470 |
PMID | 29226018 |
PQID | 2389696121 |
PQPubID | 4669717 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5722470 proquest_miscellaneous_1975597284 proquest_journals_2389696121 crossref_primary_10_1038_s41551_017_0043 pubmed_primary_29226018 springer_journals_10_1038_s41551_017_0043 |
PublicationCentury | 2000 |
PublicationDate | 3-6-2017 |
PublicationDateYYYYMMDD | 2017-03-06 |
PublicationDate_xml | – month: 03 year: 2017 text: 3-6-2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat Biomed Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Schuder, Stephenson, Townsend (CR4) 1961; 9 RamRakhyani, Mirabbasi, Chiao (CR7) 2011; 5 Gabriel, Lau, Gabriel (CR31) 1996; 41 Birmingham (CR28) 2014; 13 Pfeiffer, Grbic (CR30) 2013; 110 Grbic, Merlin, Thomas, Imani (CR23) 2011; 99 Wu, McGough, Arabe, Samulski (CR17) 2005; 51 Chandrakasan, Verma, Daly (CR1) 2008; 10 Ling, Lee (CR13) 1984; 1 Meaney, Fanning, Li (CR16) 2000; 48 Ahn, Ghovanloo (CR9) 2016; 10 Ling, Lee, Gee (CR15) 1984; 72 Waters, Sample, Bonde, Smith (CR8) 2012; 100 Hussain (CR19) 2015; 25 Xu (CR18) 2014; 344 Ozeki (CR24) 2003; 49 Harrington (CR22) 1978; 26 Jow, Ghovanloo (CR5) 2008; 1 Montgomery (CR26) 2015; 12 Yu, Capasso (CR20) 2014; 13 Dagdeviren (CR2) 2014; 111 Kim, Ho, Poon (CR10) 2013; 110 Li, Davis, Hagness, van der Weide, Van Veen (CR14) 2004; 52 Liu (CR6) 2000; 35 Zhao, Alu (CR29) 2011; 84 CR25 Meng, Maeng, John, Irazoqui (CR27) 2013; 4 Leonov (CR3) 2013; 13 Ho (CR11) 2014; 111 Ho (CR21) 2015; 91 Chow (CR12) 2011; 59 V Leonov (BFs415510170043_CR3) 2013; 13 BFs415510170043_CR25 RF Harrington (BFs415510170043_CR22) 1978; 26 U-M Jow (BFs415510170043_CR5) 2008; 1 S Gabriel (BFs415510170043_CR31) 1996; 41 T Ozeki (BFs415510170043_CR24) 2003; 49 S Kim (BFs415510170043_CR10) 2013; 110 AK RamRakhyani (BFs415510170043_CR7) 2011; 5 X Li (BFs415510170043_CR14) 2004; 52 PM Meaney (BFs415510170043_CR16) 2000; 48 D Ahn (BFs415510170043_CR9) 2016; 10 W Liu (BFs415510170043_CR6) 2000; 35 C Pfeiffer (BFs415510170043_CR30) 2013; 110 C Dagdeviren (BFs415510170043_CR2) 2014; 111 AM Hussain (BFs415510170043_CR19) 2015; 25 A Grbic (BFs415510170043_CR23) 2011; 99 C Meng (BFs415510170043_CR27) 2013; 4 KL Montgomery (BFs415510170043_CR26) 2015; 12 Y Zhao (BFs415510170043_CR29) 2011; 84 K Birmingham (BFs415510170043_CR28) 2014; 13 H Ling (BFs415510170043_CR13) 1984; 1 AP Chandrakasan (BFs415510170043_CR1) 2008; 10 N Yu (BFs415510170043_CR20) 2014; 13 JS Ho (BFs415510170043_CR21) 2015; 91 H Ling (BFs415510170043_CR15) 1984; 72 J Schuder (BFs415510170043_CR4) 1961; 9 S Xu (BFs415510170043_CR18) 2014; 344 JS Ho (BFs415510170043_CR11) 2014; 111 L Wu (BFs415510170043_CR17) 2005; 51 BH Waters (BFs415510170043_CR8) 2012; 100 EY Chow (BFs415510170043_CR12) 2011; 59 |
References_xml | – volume: 111 start-page: 1927 year: 2014 end-page: 1932 ident: CR2 article-title: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1317233111 contributor: fullname: Dagdeviren – volume: 26 start-page: 390 year: 1978 end-page: 395 ident: CR22 article-title: Reactively controlled directive arrays publication-title: IEEE Trans. Antennas Propag doi: 10.1109/TAP.1978.1141852 contributor: fullname: Harrington – volume: 1 start-page: 965 year: 1984 end-page: 973 ident: CR13 article-title: Focusing of electromagnetic waves through a dielectric interface publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.1.000965 contributor: fullname: Lee – volume: 100 start-page: 138 year: 2012 end-page: 149 ident: CR8 article-title: Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2165309 contributor: fullname: Smith – volume: 111 start-page: 7974 year: 2014 end-page: 7979 ident: CR11 article-title: Wireless power transfer to deep-tissue microimplants publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1403002111 contributor: fullname: Ho – volume: 59 start-page: 2379 year: 2011 end-page: 2387 ident: CR12 article-title: Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors publication-title: IEEE Trans. Antennas Propag doi: 10.1109/TAP.2011.2144551 contributor: fullname: Chow – volume: 49 start-page: 469 year: 2003 end-page: 474 ident: CR24 article-title: Functions for detecting malposition of transcutaneous energy transmission coils publication-title: ASAIO J. contributor: fullname: Ozeki – volume: 72 start-page: 224 year: 1984 end-page: 225 ident: CR15 article-title: Frequency optimization of focused microwave hyperthermia applicators publication-title: Proc. IEEE doi: 10.1109/PROC.1984.12844 contributor: fullname: Gee – volume: 9 start-page: 119 year: 1961 end-page: 126 ident: CR4 article-title: High level electromagnetic energy transfer through a closed chest wall publication-title: Inst. Radio Engrs. Int. Conv. Record contributor: fullname: Townsend – volume: 110 start-page: 203905 year: 2013 ident: CR10 article-title: Midfield wireless powering of subwavelength autonomous devices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.203905 contributor: fullname: Poon – volume: 91 start-page: 125145 year: 2015 end-page: 8 ident: CR21 article-title: Planar immersion lens with metasurfaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.125145 contributor: fullname: Ho – volume: 5 start-page: 48 year: 2011 end-page: 63 ident: CR7 article-title: Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants publication-title: IEEE Trans. Biomed. Circuits Syst doi: 10.1109/TBCAS.2010.2072782 contributor: fullname: Chiao – volume: 99 start-page: 1806 year: 2011 end-page: 1815 ident: CR23 article-title: Near-field plates: metamaterial surfaces/arrays for subwavelength focusing and probing publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2106191 contributor: fullname: Imani – ident: CR25 – volume: 344 start-page: 70 year: 2014 end-page: 74 ident: CR18 article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin publication-title: Science doi: 10.1126/science.1250169 contributor: fullname: Xu – volume: 4 start-page: 1301269 year: 2013 ident: CR27 article-title: Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices publication-title: Adv. Energy Mater doi: 10.1002/aenm.201301269 contributor: fullname: Irazoqui – volume: 10 start-page: 125 year: 2016 end-page: 137 ident: CR9 article-title: Optimal design of wireless power transmission links for millimeter-sized biomedical implants publication-title: IEEE Trans. Biomed. Circuits Syst doi: 10.1109/TBCAS.2014.2370794 contributor: fullname: Ghovanloo – volume: 25 start-page: 6565 year: 2015 end-page: 6575 ident: CR19 article-title: Metal/polymer based stretchable antenna for constant frequency far-field communication in wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503277 contributor: fullname: Hussain – volume: 110 start-page: 197401 year: 2013 end-page: 5 ident: CR30 article-title: Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.197401 contributor: fullname: Grbic – volume: 10 start-page: 247 year: 2008 end-page: 274 ident: CR1 article-title: Ultralow-power electronics for biomedical applications publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160547 contributor: fullname: Daly – volume: 84 start-page: 205428 year: 2011 end-page: 6 ident: CR29 article-title: Manipulating light polarization with ultrathin plasmonic metasurfaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.205428 contributor: fullname: Alu – volume: 48 start-page: 1841 year: 2000 end-page: 1853 ident: CR16 article-title: A clinical prototype for active microwave imaging of the breast publication-title: IEEE Trans. Microwave Theory Tech doi: 10.1109/22.883861 contributor: fullname: Li – volume: 13 start-page: 139 year: 2014 end-page: 150 ident: CR20 article-title: Flat optics with designer metasurfaces publication-title: Nat. Mater. doi: 10.1038/nmat3839 contributor: fullname: Capasso – volume: 13 start-page: 399 year: 2014 end-page: 400 ident: CR28 article-title: Bioelectronic medicines: a research roadmap publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4351 contributor: fullname: Birmingham – volume: 52 start-page: 1856 year: 2004 end-page: 1865 ident: CR14 article-title: Microwave imaging via space–time beamforming: experimental investigation of tumor detection in multilayer breast phantoms publication-title: IEEE Trans. Microwave Theory Techn doi: 10.1109/TMTT.2004.832686 contributor: fullname: Van Veen – volume: 1 start-page: 193 year: 2008 end-page: 202 ident: CR5 article-title: Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission publication-title: IEEE Trans. Biomed. Circuits Syst doi: 10.1109/TBCAS.2007.913130 contributor: fullname: Ghovanloo – volume: 41 start-page: 2271 year: 1996 end-page: 2293 ident: CR31 article-title: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/003 contributor: fullname: Gabriel – volume: 35 start-page: 1487 year: 2000 end-page: 1497 ident: CR6 article-title: A neuro-stimulus chip with telemetry unit for retinal prosthetic device publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.871327 contributor: fullname: Liu – volume: 51 start-page: 1 year: 2005 end-page: 20 ident: CR17 article-title: An RF phased array applicator designed for hyperthermia breast cancer treatments publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/1/001 contributor: fullname: Samulski – volume: 13 start-page: 2284 year: 2013 end-page: 2291 ident: CR3 article-title: Thermoelectric energy harvesting of human body heat for wearable sensors publication-title: IEEE Sens. J doi: 10.1109/JSEN.2013.2252526 contributor: fullname: Leonov – volume: 12 start-page: 969 year: 2015 end-page: 974 ident: CR26 article-title: Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice publication-title: Nat. Methods doi: 10.1038/nmeth.3536 contributor: fullname: Montgomery – volume: 111 start-page: 1927 year: 2014 ident: BFs415510170043_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1317233111 contributor: fullname: C Dagdeviren – volume: 9 start-page: 119 year: 1961 ident: BFs415510170043_CR4 publication-title: Inst. Radio Engrs. Int. Conv. Record contributor: fullname: J Schuder – volume: 99 start-page: 1806 year: 2011 ident: BFs415510170043_CR23 publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2106191 contributor: fullname: A Grbic – volume: 1 start-page: 965 year: 1984 ident: BFs415510170043_CR13 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.1.000965 contributor: fullname: H Ling – volume: 4 start-page: 1301269 year: 2013 ident: BFs415510170043_CR27 publication-title: Adv. Energy Mater doi: 10.1002/aenm.201301269 contributor: fullname: C Meng – volume: 51 start-page: 1 year: 2005 ident: BFs415510170043_CR17 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/1/001 contributor: fullname: L Wu – volume: 84 start-page: 205428 year: 2011 ident: BFs415510170043_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.205428 contributor: fullname: Y Zhao – volume: 110 start-page: 197401 year: 2013 ident: BFs415510170043_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.197401 contributor: fullname: C Pfeiffer – volume: 344 start-page: 70 year: 2014 ident: BFs415510170043_CR18 publication-title: Science doi: 10.1126/science.1250169 contributor: fullname: S Xu – volume: 25 start-page: 6565 year: 2015 ident: BFs415510170043_CR19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503277 contributor: fullname: AM Hussain – volume: 59 start-page: 2379 year: 2011 ident: BFs415510170043_CR12 publication-title: IEEE Trans. Antennas Propag doi: 10.1109/TAP.2011.2144551 contributor: fullname: EY Chow – volume: 26 start-page: 390 year: 1978 ident: BFs415510170043_CR22 publication-title: IEEE Trans. Antennas Propag doi: 10.1109/TAP.1978.1141852 contributor: fullname: RF Harrington – volume: 10 start-page: 125 year: 2016 ident: BFs415510170043_CR9 publication-title: IEEE Trans. Biomed. Circuits Syst doi: 10.1109/TBCAS.2014.2370794 contributor: fullname: D Ahn – volume: 111 start-page: 7974 year: 2014 ident: BFs415510170043_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1403002111 contributor: fullname: JS Ho – volume: 13 start-page: 139 year: 2014 ident: BFs415510170043_CR20 publication-title: Nat. Mater. doi: 10.1038/nmat3839 contributor: fullname: N Yu – volume: 13 start-page: 399 year: 2014 ident: BFs415510170043_CR28 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4351 contributor: fullname: K Birmingham – volume: 35 start-page: 1487 year: 2000 ident: BFs415510170043_CR6 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.871327 contributor: fullname: W Liu – volume: 12 start-page: 969 year: 2015 ident: BFs415510170043_CR26 publication-title: Nat. Methods doi: 10.1038/nmeth.3536 contributor: fullname: KL Montgomery – volume: 41 start-page: 2271 year: 1996 ident: BFs415510170043_CR31 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/41/11/003 contributor: fullname: S Gabriel – volume: 1 start-page: 193 year: 2008 ident: BFs415510170043_CR5 publication-title: IEEE Trans. Biomed. Circuits Syst doi: 10.1109/TBCAS.2007.913130 contributor: fullname: U-M Jow – volume: 48 start-page: 1841 year: 2000 ident: BFs415510170043_CR16 publication-title: IEEE Trans. Microwave Theory Tech doi: 10.1109/22.883861 contributor: fullname: PM Meaney – volume: 52 start-page: 1856 year: 2004 ident: BFs415510170043_CR14 publication-title: IEEE Trans. Microwave Theory Techn doi: 10.1109/TMTT.2004.832686 contributor: fullname: X Li – volume: 72 start-page: 224 year: 1984 ident: BFs415510170043_CR15 publication-title: Proc. IEEE doi: 10.1109/PROC.1984.12844 contributor: fullname: H Ling – volume: 13 start-page: 2284 year: 2013 ident: BFs415510170043_CR3 publication-title: IEEE Sens. J doi: 10.1109/JSEN.2013.2252526 contributor: fullname: V Leonov – volume: 100 start-page: 138 year: 2012 ident: BFs415510170043_CR8 publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2165309 contributor: fullname: BH Waters – volume: 110 start-page: 203905 year: 2013 ident: BFs415510170043_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.203905 contributor: fullname: S Kim – volume: 5 start-page: 48 year: 2011 ident: BFs415510170043_CR7 publication-title: IEEE Trans. Biomed. Circuits Syst doi: 10.1109/TBCAS.2010.2072782 contributor: fullname: AK RamRakhyani – volume: 49 start-page: 469 year: 2003 ident: BFs415510170043_CR24 publication-title: ASAIO J. contributor: fullname: T Ozeki – volume: 10 start-page: 247 year: 2008 ident: BFs415510170043_CR1 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160547 contributor: fullname: AP Chandrakasan – volume: 91 start-page: 125145 year: 2015 ident: BFs415510170043_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.125145 contributor: fullname: JS Ho – ident: BFs415510170043_CR25 |
SSID | ssj0001934975 |
Score | 2.4401712 |
Snippet | Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | 639/166/985 639/166/987 Animal models Bioelectricity Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Heart Miniaturization Phase control Rhythm Semiconductor devices Stimulators Surgical implants |
Title | Conformal phased surfaces for wireless powering of bioelectronic microdevices |
URI | https://link.springer.com/article/10.1038/s41551-017-0043 https://www.ncbi.nlm.nih.gov/pubmed/29226018 https://www.proquest.com/docview/2389696121 https://search.proquest.com/docview/1975597284 https://pubmed.ncbi.nlm.nih.gov/PMC5722470 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vehBfFtfRPCgh2KbPpKcRMVVBEVEwVvJpgkuaLva3f_vTLfddRU9tmlpMl-amclMvgE4ciIQ1irjW2mVjxoq8nVoJZ1GiwyPdGg4HXC-u09vnuPbl-Sl2XCrmrTKdk2sF-q8NLRHfoqqhYhcQh6eDT58qhpF0dWmhMY8LHD0FIIOLFxc3T88TndZVBQrkbScPpE8rUiDkgctfIqCzaqjXzbm71TJH_HSWg11V2C5sR_Z-RjwVZizxRosfWMVXIc7OsVHpugbG7yikspZNfp0lHrF8DYjcuI3XN_YgAqk4RusdKzXL6cFcdg7Zenltl5ENuC5e_V0eeM3VRN8k3A59E0vDJWyxlmhXEBxMWnTRIdO4rVQVidCU1JpIqIe-h5xiiDF6JY5azW6J0G0CZ2iLOw2MJkHhppzoU2spJM5QuB4ajSRUOnUg-NWeNlgTI6R1UHtSGZjOWco54zk7MFeK9ys-UuqbIqpB4eTZpzfFLTQhS1HVRYifOj0YEc92BpjMfkWV5wY0aQHYgalyQPEnT3bUvRfaw7tRKDtIgIPTlo8p936Ywg7_w9hFxZ5PauoWsYedIafI7uPBsuwdwDzsnt90MzNL0HG7AI |
link.rule.ids | 230,315,783,787,888,12777,21400,27936,27937,33385,33756,33757,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8xeNj2gAYDFj6NxMP2EDXftp-mDbUq0FZoAok3y3VsgcSSjrT_P3dp0tIheEycKPb9HN-d7_w7gDPHA26tNL4VVvqooWJfh1bQabTYRLEOTUQHnIejrH-bXN6ld82GW9WkVbZrYr1Q56WhPfIOqhYicgmj8Ofkn09Voyi62pTQ-AAbRFWFztfG7-7o-s9yl0XGieRpy-kTi05FGpQ8aO5TFGxVHb2yMV-nSv4XL63VUO8LbDb2I_s1B3wL1myxDZ9fsAp-hSGd4iNT9JFN7lFJ5ayaPTlKvWJ4mxE58SOub2xCBdLwDVY6Nn4olwVx2F_K0sttvYjswG2ve3Pe95uqCb5JIzH1zTgMpbTGWS5dQHExYbNUh07gNZdWp1xTUmnK4zH6HkmGICXoljlrNbonQbwL60VZ2G_ARB4Yas65NokUTuQIgYsyo4mESmcefG-FpyZzcgxVB7VjoeZyVihnRXL24LAVrmr-kkotMfXgdNGM85uCFrqw5axSIcKHTg921IO9ORaLb0UyIkY04QFfQWnxAHFnr7YUD_c1h3bK0XbhgQc_WjyX3XpjCPvvD-EEPvZvhgM1uBhdHcCnqJ5hVDnjENanTzN7hMbLdHzczNBnDubuFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformal+phased+surfaces+for+wireless+powering+of+bioelectronic+microdevices&rft.jtitle=Nature+biomedical+engineering&rft.au=Agrawal%2C+Devansh+R.&rft.au=Tanabe%2C+Yuji&rft.au=Weng%2C+Desen&rft.au=Ma%2C+Andrew&rft.date=2017-03-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2157-846X&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1038%2Fs41551-017-0043&rft.externalDocID=10_1038_s41551_017_0043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |