Induction of Intestinal Th17 Cells by Flagellins From Segmented Filamentous Bacteria
T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their diff...
Saved in:
Published in | Frontiers in immunology Vol. 10; p. 2750 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
22.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq
and
. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells. |
---|---|
AbstractList | T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells. T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq and . The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells. T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells. T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo . The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells. |
Author | Chen, Huahai Chen, Xin Zhao, Yongjia Wang, Xin Wang, Yanling Yin, Yeshi Li, Yifei Wu, Yichen Xiang, Charlie |
AuthorAffiliation | 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , China 3 State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Academy of Agricultural Sciences , Hangzhou , China 2 Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering , Yongzhou , China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , China – name: 2 Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering , Yongzhou , China – name: 3 State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Academy of Agricultural Sciences , Hangzhou , China |
Author_xml | – sequence: 1 givenname: Yanling surname: Wang fullname: Wang, Yanling – sequence: 2 givenname: Yeshi surname: Yin fullname: Yin, Yeshi – sequence: 3 givenname: Xin surname: Chen fullname: Chen, Xin – sequence: 4 givenname: Yongjia surname: Zhao fullname: Zhao, Yongjia – sequence: 5 givenname: Yichen surname: Wu fullname: Wu, Yichen – sequence: 6 givenname: Yifei surname: Li fullname: Li, Yifei – sequence: 7 givenname: Xin surname: Wang fullname: Wang, Xin – sequence: 8 givenname: Huahai surname: Chen fullname: Chen, Huahai – sequence: 9 givenname: Charlie surname: Xiang fullname: Xiang, Charlie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31824516$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1vEzEUtFARLaV3TshHLgn-WL-1L0gQEYhUiQPhbHnf2qmr3XWxN0j99zhJqVokfPHInplnz7wmZ1OaPCFvOVtKqc2HEMdxvxSMmyUTrWIvyAUHaBZSiObsCT4nV6XcsroaI6VUr8i55Fo0isMF2W6mfo9zTBNNgW6m2Zc5Tm6g2xve0pUfhkK7e7oe3K7iOBW6zmmkP_xu9JXc03Uc3AGmfaGfHc4-R_eGvAxuKP7qYb8kP9dftqtvi-vvXzerT9cLVELPC4QQOmANBDCaBYYaHSqFgFx6FcAFdFpoD4Z51vdGCOQGlGSmReiVl5dkc_Ltk7u1dzmOLt_b5KI9HqS8sy7PEQdvNXcKeo7YiqZBwzveNg5CJ7WAVnaien08ed3tu9H3WL-U3fDM9PnNFG_sLv22oLVsOVSD9w8GOf3a1xjtGAvW0NzkazhWSNEYLgBMpb57OutxyN9aKoGdCJhTKdmHRwpn9lC-PZZvD-XbY_lVAv9IMM7uUGx9bRz-L_wDnwS02Q |
CitedBy_id | crossref_primary_10_1007_s43538_024_00355_1 crossref_primary_10_3390_ijms25063386 crossref_primary_10_1007_s00335_021_09871_7 crossref_primary_10_3390_jpm14020217 crossref_primary_10_1016_j_biopha_2023_114985 crossref_primary_10_1155_2022_6891179 crossref_primary_10_12677_OJNS_2022_106107 crossref_primary_10_3389_fimmu_2022_1007165 crossref_primary_10_1016_j_intimp_2024_113570 crossref_primary_10_3390_fishes8020109 crossref_primary_10_3390_ijms221910545 crossref_primary_10_3389_fmicb_2021_793050 crossref_primary_10_3389_fimmu_2022_949490 crossref_primary_10_1080_07853890_2025_2451191 crossref_primary_10_3390_ijms222313156 crossref_primary_10_1038_s41598_024_52852_4 crossref_primary_10_1038_s41421_024_00725_5 crossref_primary_10_1002_cam4_70813 crossref_primary_10_1080_19490976_2022_2035661 crossref_primary_10_3390_cells10092410 crossref_primary_10_1016_j_prp_2024_155603 crossref_primary_10_1128_spectrum_00135_23 crossref_primary_10_3389_fcimb_2025_1557331 crossref_primary_10_1038_s12276_023_01120_y crossref_primary_10_1016_j_csbj_2020_12_008 crossref_primary_10_3389_fimmu_2024_1410928 crossref_primary_10_3389_fnut_2021_759137 crossref_primary_10_3389_fimmu_2024_1497311 crossref_primary_10_3390_nu14122498 crossref_primary_10_3390_biomedicines12030616 crossref_primary_10_3390_microorganisms9051062 crossref_primary_10_1016_j_ijbiomac_2024_137212 crossref_primary_10_3389_fvets_2023_1206346 crossref_primary_10_1155_2022_9157455 crossref_primary_10_3389_fmicb_2022_1051100 crossref_primary_10_3389_fimmu_2024_1387903 crossref_primary_10_3389_fcimb_2022_852066 crossref_primary_10_3389_fimmu_2024_1479505 crossref_primary_10_1093_ismeco_ycae061 crossref_primary_10_1038_s41598_024_64966_w crossref_primary_10_1007_s00774_021_01247_w crossref_primary_10_1038_s41423_022_00871_4 crossref_primary_10_1016_j_biopha_2023_114483 crossref_primary_10_3390_ijms22083854 crossref_primary_10_2147_DDDT_S473688 crossref_primary_10_3389_fphar_2022_875700 crossref_primary_10_5217_ir_2021_00034 crossref_primary_10_3390_biom12030433 crossref_primary_10_1093_gastro_goac008 crossref_primary_10_1128_msphere_00492_24 crossref_primary_10_12677_acm_2025_153603 crossref_primary_10_1007_s10238_024_01304_4 crossref_primary_10_1021_acs_jafc_4c02433 crossref_primary_10_3390_nu14081568 crossref_primary_10_1111_sji_13106 crossref_primary_10_1186_s12964_024_01505_0 crossref_primary_10_1038_s42255_023_00846_3 crossref_primary_10_3389_fimmu_2022_1096551 crossref_primary_10_3389_fimmu_2024_1449411 crossref_primary_10_3389_fimmu_2021_698042 crossref_primary_10_3390_app14031240 crossref_primary_10_1080_13880209_2022_2147551 crossref_primary_10_1186_s13041_020_00635_z crossref_primary_10_3389_fmicb_2023_1264356 crossref_primary_10_12677_ACM_2023_133483 crossref_primary_10_3389_fimmu_2024_1482214 crossref_primary_10_3389_fmicb_2024_1363455 crossref_primary_10_2147_DDDT_S389811 crossref_primary_10_1038_s41374_021_00697_0 crossref_primary_10_1142_S0192415X23500866 crossref_primary_10_3389_fimmu_2021_800796 |
Cites_doi | 10.1073/pnas.1617460113 10.1038/mi.2009.9 10.1128/AEM.01061-17 10.4049/jimmunol.0901296 10.1038/nature04753 10.1016/j.jaci.2015.07.010 10.1016/j.chom.2011.08.007 10.1101/gr.131482.111 10.1016/j.cell.2012.04.037 10.1038/nri1373 10.1038/mi.2013.25 10.1038/s41423-018-0004-4 10.1038/nature08114 10.1016/j.immuni.2011.01.020 10.1084/jem.20021340 10.1016/j.tim.2007.09.006 10.1074/jbc.M109.070227 10.1111/j.1365-2249.2011.04382.x 10.1038/nature13279 10.1016/j.chom.2011.08.005 10.1016/j.chom.2008.09.009 10.1016/j.cell.2015.08.058 10.1016/j.immuni.2006.01.001 10.1126/science.1223490 10.1016/j.cell.2004.07.002 10.1002/eji.200838804 10.1136/gut.2010.223891 10.1038/ni.1698 10.1126/science.1198469 10.1016/j.cell.2006.07.035 10.1016/j.cell.2015.08.061 10.1084/jem.20111703 10.1016/j.immuni.2014.03.005 10.1126/science.1154986 10.4049/jimmunol.1301893 10.1016/S0923-2508(00)01169-4 10.1128/IAI.10.4.948-956.1974 10.1093/dnares/dsr022 10.1111/imm.12950 10.1089/ars.2013.5713 10.1385/IR:33:1:083 10.1016/j.cell.2009.09.033 10.1146/annurev.immunol.021908.132710 10.1084/jem.20060285 10.4049/jimmunol.1000115 10.1038/nature14027 10.1038/nature07240 10.1126/science.aat4042 10.1038/cmi.2014.110 10.1038/ni1362 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang |
Copyright_xml | – notice: Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. – notice: Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2019.02750 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_81a56d1cc7244c91b174a6fb382673b2 PMC6883716 31824516 10_3389_fimmu_2019_02750 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Infrastructure Program – fundername: National Basic Research Program of China (973 Program) – fundername: National Natural Science Foundation of China – fundername: Natural Science Foundation of Hunan Province |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-c6ffb6046f6980f0c8cac55c6c13e5f6afca828e690e0dd922c19653097c6d5e3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:29:44 EDT 2025 Thu Aug 21 13:35:56 EDT 2025 Fri Jul 11 01:50:24 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 00:39:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | segmented filamentous bacteria flagellin SI EC IL-17A Th17 cells |
Language | English |
License | Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-c6ffb6046f6980f0c8cac55c6c13e5f6afca828e690e0dd922c19653097c6d5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Mucosal Immunity, a section of the journal Frontiers in Immunology Reviewed by: Ivan Monteleone, University of Rome Tor Vergata, Italy; Nicolaas Adrianus Bos, University Medical Center Groningen, Netherlands Edited by: Federica Facciotti, European Institute of Oncology (IEO), Italy |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2019.02750 |
PMID | 31824516 |
PQID | 2324912669 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81a56d1cc7244c91b174a6fb382673b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6883716 proquest_miscellaneous_2324912669 pubmed_primary_31824516 crossref_primary_10_3389_fimmu_2019_02750 crossref_citationtrail_10_3389_fimmu_2019_02750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-22 |
PublicationDateYYYYMMDD | 2019-11-22 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Macpherson (B1) 2004; 4 Shaw (B16) 2012; 209 Veldhoen (B13) 2006; 24 Knochelmann (B44) 2018; 15 Rakoff-Nahoum (B21) 2004; 118 Guerry (B22) 2007; 15 McGeachy (B14) 2009; 10 Xiao (B24) 2015; 12 de Zoete (B38) 2010; 285 Bettelli (B11) 2006; 441 Chung (B2) 2012; 149 Goto (B10) 2014; 40 Ivanov (B39) 2008; 4 Shim (B45) 2016; 137 Burdelya (B25) 2008; 320 Chen (B31) 2017; 83 Pamp (B49) 2012; 22 Flannigan (B18) 2018; 154 Vijay-Kumar (B23) 2009; 2 Tan (B50) 2016; 113 Honko (B27) 2005; 33 Davis (B7) 1974; 10 Atarashi (B4) 2011; 331 Uematsu (B37) 2006; 7 Schraml (B42) 2009; 460 Prakash (B30) 2011; 10 Huber (B43) 2011; 34 Sano (B8) 2015; 163 Korn (B9) 2009; 27 Eisenbarth (B46) 2002; 196 Ladinsky (B17) 2019; 363 Sczesnak (B20) 2011; 10 Jones (B34) 2011; 60 Kuwahara (B19) 2011; 18 Atarashi (B15) 2008; 455 Atif (B29) 2014; 7 Jones (B28) 2010; 185 Urdaci (B32) 2001; 152 Ivanov (B5) 2009; 139 Sanders (B40) 2009; 39 Ivanov (B33) 2006; 126 Sutton (B12) 2006; 203 Atarashi (B35) 2015; 163 Hooper (B3) 2012; 336 Schnupf (B36) 2015; 520 Van Maele (B41) 2010; 185 Liu (B47) 2011; 164 Yang (B6) 2014; 510 Stanley (B48) 2014; 20 Lopez-Yglesias (B26) 2014; 192 |
References_xml | – volume: 113 start-page: E8141 year: 2016 ident: B50 article-title: Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1617460113 – volume: 2 start-page: 197 year: 2009 ident: B23 article-title: Flagellin: key target of mucosal innate immunity publication-title: Mucosal Immunol. doi: 10.1038/mi.2009.9 – volume: 83 start-page: e01061 year: 2017 ident: B31 article-title: Host specificity of flagellins from segmented filamentous bacteria affects their patterns of interaction with mouse ileal mucosal proteins publication-title: Appl Environ Microbiol. doi: 10.1128/AEM.01061-17 – volume: 185 start-page: 6783 year: 2010 ident: B28 article-title: TLR-activated dendritic cells enhance the response of aged naive CD4 T cells via an IL-6-dependent mechanism publication-title: J Immunol. doi: 10.4049/jimmunol.0901296 – volume: 441 start-page: 235 year: 2006 ident: B11 article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells publication-title: Nature. doi: 10.1038/nature04753 – volume: 137 start-page: 426 year: 2016 ident: B45 article-title: Flagellin suppresses experimental asthma by generating regulatory dendritic cells and T cells publication-title: J Allergy Clin Immunol. doi: 10.1016/j.jaci.2015.07.010 – volume: 10 start-page: 273 year: 2011 ident: B30 article-title: Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2011.08.007 – volume: 22 start-page: 1107 year: 2012 ident: B49 article-title: Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB) publication-title: Genome Res. doi: 10.1101/gr.131482.111 – volume: 149 start-page: 1578 year: 2012 ident: B2 article-title: Gut immune maturation depends on colonization with a host-specific microbiota publication-title: Cell. doi: 10.1016/j.cell.2012.04.037 – volume: 4 start-page: 478 year: 2004 ident: B1 article-title: Interactions between commensal intestinal bacteria and the immune system publication-title: Nat Rev Immunol. doi: 10.1038/nri1373 – volume: 7 start-page: 68 year: 2014 ident: B29 article-title: CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin publication-title: Mucosal Immunol. doi: 10.1038/mi.2013.25 – volume: 15 start-page: 458 year: 2018 ident: B44 article-title: When worlds collide: Th17 and Treg cells in cancer and autoimmunity publication-title: Cell Mol Immunol. doi: 10.1038/s41423-018-0004-4 – volume: 460 start-page: 405 year: 2009 ident: B42 article-title: The AP-1 transcription factor Batf controls T(H)17 differentiation publication-title: Nature. doi: 10.1038/nature08114 – volume: 34 start-page: 554 year: 2011 ident: B43 article-title: Th17 cells express interleukin-10 receptor and are controlled by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner publication-title: Immunity. doi: 10.1016/j.immuni.2011.01.020 – volume: 196 start-page: 1645 year: 2002 ident: B46 article-title: Lipopolysaccharide-enhanced, Toll-like receptor 4–dependent T helper cell type 2 responses to inhaled antigen publication-title: J Exp Med. doi: 10.1084/jem.20021340 – volume: 15 start-page: 456 year: 2007 ident: B22 article-title: Campylobacter flagella: not just for motility publication-title: Trends Microbiol. doi: 10.1016/j.tim.2007.09.006 – volume: 285 start-page: 12149 year: 2010 ident: B38 article-title: Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin publication-title: J Biol Chem. doi: 10.1074/jbc.M109.070227 – volume: 164 start-page: 396 year: 2011 ident: B47 article-title: Chemokine CXCL11 links microbial stimuli to intestinal inflammation publication-title: Clin Exp Immunol. doi: 10.1111/j.1365-2249.2011.04382.x – volume: 510 start-page: 152 year: 2014 ident: B6 article-title: Focused specificity of intestinal TH17 cells towards commensal bacterial antigens publication-title: Nature. doi: 10.1038/nature13279 – volume: 10 start-page: 260 year: 2011 ident: B20 article-title: The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2011.08.005 – volume: 4 start-page: 337 year: 2008 ident: B39 article-title: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2008.09.009 – volume: 163 start-page: 367 year: 2015 ident: B35 article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells publication-title: Cell. doi: 10.1016/j.cell.2015.08.058 – volume: 24 start-page: 179 year: 2006 ident: B13 article-title: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells publication-title: Immunity. doi: 10.1016/j.immuni.2006.01.001 – volume: 336 start-page: 1268 year: 2012 ident: B3 article-title: Interactions between the microbiota and the immune system publication-title: Science. doi: 10.1126/science.1223490 – volume: 118 start-page: 229 year: 2004 ident: B21 article-title: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis publication-title: Cell. doi: 10.1016/j.cell.2004.07.002 – volume: 39 start-page: 359 year: 2009 ident: B40 article-title: Induction of adaptive immunity by flagellin does not require robust activation of innate immunity publication-title: Eur J Immunol. doi: 10.1002/eji.200838804 – volume: 60 start-page: 648 year: 2011 ident: B34 article-title: Flagellin administration protects gut mucosal tissue from irradiation-induced apoptosis via MKP-7 activity publication-title: Gut. doi: 10.1136/gut.2010.223891 – volume: 10 start-page: 314 year: 2009 ident: B14 article-title: The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo publication-title: Nat Immunol. doi: 10.1038/ni.1698 – volume: 331 start-page: 337 year: 2011 ident: B4 article-title: Induction of colonic regulatory T cells by indigenous clostridium species publication-title: Science. doi: 10.1126/science.1198469 – volume: 126 start-page: 1121 year: 2006 ident: B33 article-title: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells publication-title: Cell. doi: 10.1016/j.cell.2006.07.035 – volume: 163 start-page: 381 year: 2015 ident: B8 article-title: An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses publication-title: Cell. doi: 10.1016/j.cell.2015.08.061 – volume: 209 start-page: 251 year: 2012 ident: B16 article-title: Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine publication-title: J Exp Med. doi: 10.1084/jem.20111703 – volume: 40 start-page: 594 year: 2014 ident: B10 article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation publication-title: Immunity. doi: 10.1016/j.immuni.2014.03.005 – volume: 320 start-page: 226 year: 2008 ident: B25 article-title: An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models publication-title: Science. doi: 10.1126/science.1154986 – volume: 192 start-page: 1587 year: 2014 ident: B26 article-title: Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway publication-title: J Immunol. doi: 10.4049/jimmunol.1301893 – volume: 152 start-page: 67 year: 2001 ident: B32 article-title: Identification by in situ hybridization of segmented filamentous bacteria in the intestine of diarrheic rainbow trout (Oncorhynchus mykiss) publication-title: Res Microbiol. doi: 10.1016/S0923-2508(00)01169-4 – volume: 10 start-page: 948 year: 1974 ident: B7 article-title: Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract publication-title: Infect Immun. doi: 10.1128/IAI.10.4.948-956.1974 – volume: 18 start-page: 291 year: 2011 ident: B19 article-title: The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing publication-title: DNA Res. doi: 10.1093/dnares/dsr022 – volume: 154 start-page: 537 year: 2018 ident: B18 article-title: Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity publication-title: Immunology. doi: 10.1111/imm.12950 – volume: 20 start-page: 2026 year: 2014 ident: B48 article-title: NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration publication-title: Antioxid Redox Signal. doi: 10.1089/ars.2013.5713 – volume: 33 start-page: 83 year: 2005 ident: B27 article-title: Effects of flagellin on innate and adaptive immunity publication-title: Immunol Res. doi: 10.1385/IR:33:1:083 – volume: 139 start-page: 485 year: 2009 ident: B5 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell. doi: 10.1016/j.cell.2009.09.033 – volume: 27 start-page: 485 year: 2009 ident: B9 article-title: IL-17 and Th17 cells publication-title: Annu Rev Immunol. doi: 10.1146/annurev.immunol.021908.132710 – volume: 203 start-page: 1685 year: 2006 ident: B12 article-title: A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis publication-title: J Exp Med. doi: 10.1084/jem.20060285 – volume: 185 start-page: 1177 year: 2010 ident: B41 article-title: TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa publication-title: J Immunol. doi: 10.4049/jimmunol.1000115 – volume: 520 start-page: 99 year: 2015 ident: B36 article-title: Growth and host interaction of mouse segmented filamentous bacteria in vitro publication-title: Nature. doi: 10.1038/nature14027 – volume: 455 start-page: 808 year: 2008 ident: B15 article-title: ATP drives lamina propria T(H)17 cell differentiation publication-title: Nature. doi: 10.1038/nature07240 – volume: 363 start-page: eaat4042 year: 2019 ident: B17 article-title: Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis publication-title: Science doi: 10.1126/science.aat4042 – volume: 12 start-page: 729 year: 2015 ident: B24 article-title: Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice publication-title: Cell Mol Immunol. doi: 10.1038/cmi.2014.110 – volume: 7 start-page: 868 year: 2006 ident: B37 article-title: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells publication-title: Nat Immunol. doi: 10.1038/ni1362 |
SSID | ssj0000493335 |
Score | 2.5143766 |
Snippet | T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2750 |
SubjectTerms | flagellin IL-17A Immunology segmented filamentous bacteria SI EC Th17 cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodBL6bvuCxV66cGNZUWvY3epWQrtpVnYm5DGUjclccomOey_74ycDUkp7aU3Y8tYfDOSvvFI3zD2TrlAqlmyljHYeqqFqC2lC4NyTQaTQAs64Pzlqz6_mH6-VJcHpb5oT9goDzwCN7EiKN0LAIMLETgRkUIHnaNEXmxkLLMvrnkHwdSPkfdKKdWYl8QozE3yfLnc0lYu94Eydc3ROlTk-v_EMX_fKnmw9nQP2P0daeQfx84-ZHfS8IjdHctI3jxmM6q_Uc4n8FXm9I8Pxy29MLsShp-lxWLN4w3vFjh3kAT3mnfXqyX_lr4XRc6ed3P0C7xcbdf8dJRvDk_YRfdpdnZe76ol1KBau6lB5xw1hrtZO9vkBiwEUAo0CJlU1iFDwPAqYTicmr53bQukJigbZ0D3Ksmn7GRYDek546BTb6QMTRPUNNholYl9Cw5iysEYXbHJLXYedlLiVNFi4TGkILR9QdsT2r6gXbH3-zd-jjIaf2l7SubYtyMB7HID3cLv3ML_yy0q9vbWmB4HDGVBwpAQRk8U0gnkJa5iz0bj7j-FE1xLlYsrZo7MftSX4yfD_KqIcmuLob7QL_5H51-yewQHHXls21fsZHO9Ta-R-2zim-LmvwDPVwII priority: 102 providerName: Directory of Open Access Journals |
Title | Induction of Intestinal Th17 Cells by Flagellins From Segmented Filamentous Bacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31824516 https://www.proquest.com/docview/2324912669 https://pubmed.ncbi.nlm.nih.gov/PMC6883716 https://doaj.org/article/81a56d1cc7244c91b174a6fb382673b2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXxJvwqIzEhUPaOI5fB4RoRaiQyoVdaW-R49jtomwC-5DYf8-Mky4sWiEuUZTYcTIzzsznxzeEvBHGImsWT3ltdVpIxlKN04VWmCw45Z1kuMH58ou8mBafZ2L2e3v0KMDVQWiH-aSmy_bk54_te-jw7xBxgr89DfPFYoOrtMwJTsIBgL8NfklhPoPLMdj_NsTCnMeMm0zKIgVLLoZ5y4MP2fNTkc7_UAz691LKP3xTeZ_cG4NK-mGwggfklu8ekjtDmsntIzLB_Bxx_wLtA8UxQOjXWGFyzRQ99227ovWWli38W5Cie0XLZb-gX_1VZOxsaDkHu4HTfrOiZwO9s31MpuXHyflFOmZTSJ3I9Tp1MoRaAhwO0ugsZE4764Rw0jHuRZA2OAvwywNc9lnTmDx3yDbIM6OcbITnT8hR13f-GaFO-kZxbrPMisLqWgtVN7kzrvbBKiUTcnoju8qNVOOY8aKtAHKgtKso7QqlXUVpJ-Ttrsb3gWbjH2XPUB27ckiQHS_0y6tq7G-VZlbIhjmnIH5xhtWAvKwMNQc4pXidJ-T1jTIr6FA4S2I7D2KsMMQ0DOIWk5Cng3J3TcEPMMfMxglRe2rfe5f9O938OpJ2S605YNPn_9HuC3IXvxZ3POb5S3K0Xm78Kwh91vVxHDKA46cZO47W_QtVhQO0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+Intestinal+Th17+Cells+by+Flagellins+From+Segmented+Filamentous+Bacteria&rft.jtitle=Frontiers+in+immunology&rft.au=Wang%2C+Yanling&rft.au=Yin%2C+Yeshi&rft.au=Chen%2C+Xin&rft.au=Zhao%2C+Yongjia&rft.date=2019-11-22&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=10&rft.spage=2750&rft_id=info:doi/10.3389%2Ffimmu.2019.02750&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |