Induction of Intestinal Th17 Cells by Flagellins From Segmented Filamentous Bacteria

T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their diff...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 10; p. 2750
Main Authors Wang, Yanling, Yin, Yeshi, Chen, Xin, Zhao, Yongjia, Wu, Yichen, Li, Yifei, Wang, Xin, Chen, Huahai, Xiang, Charlie
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 22.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq and . The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.
AbstractList T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.
T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq and . The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.
T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.
T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo . The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1β, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.
Author Chen, Huahai
Chen, Xin
Zhao, Yongjia
Wang, Xin
Wang, Yanling
Yin, Yeshi
Li, Yifei
Wu, Yichen
Xiang, Charlie
AuthorAffiliation 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , China
3 State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Academy of Agricultural Sciences , Hangzhou , China
2 Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering , Yongzhou , China
AuthorAffiliation_xml – name: 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou , China
– name: 2 Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering , Yongzhou , China
– name: 3 State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Academy of Agricultural Sciences , Hangzhou , China
Author_xml – sequence: 1
  givenname: Yanling
  surname: Wang
  fullname: Wang, Yanling
– sequence: 2
  givenname: Yeshi
  surname: Yin
  fullname: Yin, Yeshi
– sequence: 3
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
– sequence: 4
  givenname: Yongjia
  surname: Zhao
  fullname: Zhao, Yongjia
– sequence: 5
  givenname: Yichen
  surname: Wu
  fullname: Wu, Yichen
– sequence: 6
  givenname: Yifei
  surname: Li
  fullname: Li, Yifei
– sequence: 7
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
– sequence: 8
  givenname: Huahai
  surname: Chen
  fullname: Chen, Huahai
– sequence: 9
  givenname: Charlie
  surname: Xiang
  fullname: Xiang, Charlie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31824516$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1vEzEUtFARLaV3TshHLgn-WL-1L0gQEYhUiQPhbHnf2qmr3XWxN0j99zhJqVokfPHInplnz7wmZ1OaPCFvOVtKqc2HEMdxvxSMmyUTrWIvyAUHaBZSiObsCT4nV6XcsroaI6VUr8i55Fo0isMF2W6mfo9zTBNNgW6m2Zc5Tm6g2xve0pUfhkK7e7oe3K7iOBW6zmmkP_xu9JXc03Uc3AGmfaGfHc4-R_eGvAxuKP7qYb8kP9dftqtvi-vvXzerT9cLVELPC4QQOmANBDCaBYYaHSqFgFx6FcAFdFpoD4Z51vdGCOQGlGSmReiVl5dkc_Ltk7u1dzmOLt_b5KI9HqS8sy7PEQdvNXcKeo7YiqZBwzveNg5CJ7WAVnaien08ed3tu9H3WL-U3fDM9PnNFG_sLv22oLVsOVSD9w8GOf3a1xjtGAvW0NzkazhWSNEYLgBMpb57OutxyN9aKoGdCJhTKdmHRwpn9lC-PZZvD-XbY_lVAv9IMM7uUGx9bRz-L_wDnwS02Q
CitedBy_id crossref_primary_10_1007_s43538_024_00355_1
crossref_primary_10_3390_ijms25063386
crossref_primary_10_1007_s00335_021_09871_7
crossref_primary_10_3390_jpm14020217
crossref_primary_10_1016_j_biopha_2023_114985
crossref_primary_10_1155_2022_6891179
crossref_primary_10_12677_OJNS_2022_106107
crossref_primary_10_3389_fimmu_2022_1007165
crossref_primary_10_1016_j_intimp_2024_113570
crossref_primary_10_3390_fishes8020109
crossref_primary_10_3390_ijms221910545
crossref_primary_10_3389_fmicb_2021_793050
crossref_primary_10_3389_fimmu_2022_949490
crossref_primary_10_1080_07853890_2025_2451191
crossref_primary_10_3390_ijms222313156
crossref_primary_10_1038_s41598_024_52852_4
crossref_primary_10_1038_s41421_024_00725_5
crossref_primary_10_1002_cam4_70813
crossref_primary_10_1080_19490976_2022_2035661
crossref_primary_10_3390_cells10092410
crossref_primary_10_1016_j_prp_2024_155603
crossref_primary_10_1128_spectrum_00135_23
crossref_primary_10_3389_fcimb_2025_1557331
crossref_primary_10_1038_s12276_023_01120_y
crossref_primary_10_1016_j_csbj_2020_12_008
crossref_primary_10_3389_fimmu_2024_1410928
crossref_primary_10_3389_fnut_2021_759137
crossref_primary_10_3389_fimmu_2024_1497311
crossref_primary_10_3390_nu14122498
crossref_primary_10_3390_biomedicines12030616
crossref_primary_10_3390_microorganisms9051062
crossref_primary_10_1016_j_ijbiomac_2024_137212
crossref_primary_10_3389_fvets_2023_1206346
crossref_primary_10_1155_2022_9157455
crossref_primary_10_3389_fmicb_2022_1051100
crossref_primary_10_3389_fimmu_2024_1387903
crossref_primary_10_3389_fcimb_2022_852066
crossref_primary_10_3389_fimmu_2024_1479505
crossref_primary_10_1093_ismeco_ycae061
crossref_primary_10_1038_s41598_024_64966_w
crossref_primary_10_1007_s00774_021_01247_w
crossref_primary_10_1038_s41423_022_00871_4
crossref_primary_10_1016_j_biopha_2023_114483
crossref_primary_10_3390_ijms22083854
crossref_primary_10_2147_DDDT_S473688
crossref_primary_10_3389_fphar_2022_875700
crossref_primary_10_5217_ir_2021_00034
crossref_primary_10_3390_biom12030433
crossref_primary_10_1093_gastro_goac008
crossref_primary_10_1128_msphere_00492_24
crossref_primary_10_12677_acm_2025_153603
crossref_primary_10_1007_s10238_024_01304_4
crossref_primary_10_1021_acs_jafc_4c02433
crossref_primary_10_3390_nu14081568
crossref_primary_10_1111_sji_13106
crossref_primary_10_1186_s12964_024_01505_0
crossref_primary_10_1038_s42255_023_00846_3
crossref_primary_10_3389_fimmu_2022_1096551
crossref_primary_10_3389_fimmu_2024_1449411
crossref_primary_10_3389_fimmu_2021_698042
crossref_primary_10_3390_app14031240
crossref_primary_10_1080_13880209_2022_2147551
crossref_primary_10_1186_s13041_020_00635_z
crossref_primary_10_3389_fmicb_2023_1264356
crossref_primary_10_12677_ACM_2023_133483
crossref_primary_10_3389_fimmu_2024_1482214
crossref_primary_10_3389_fmicb_2024_1363455
crossref_primary_10_2147_DDDT_S389811
crossref_primary_10_1038_s41374_021_00697_0
crossref_primary_10_1142_S0192415X23500866
crossref_primary_10_3389_fimmu_2021_800796
Cites_doi 10.1073/pnas.1617460113
10.1038/mi.2009.9
10.1128/AEM.01061-17
10.4049/jimmunol.0901296
10.1038/nature04753
10.1016/j.jaci.2015.07.010
10.1016/j.chom.2011.08.007
10.1101/gr.131482.111
10.1016/j.cell.2012.04.037
10.1038/nri1373
10.1038/mi.2013.25
10.1038/s41423-018-0004-4
10.1038/nature08114
10.1016/j.immuni.2011.01.020
10.1084/jem.20021340
10.1016/j.tim.2007.09.006
10.1074/jbc.M109.070227
10.1111/j.1365-2249.2011.04382.x
10.1038/nature13279
10.1016/j.chom.2011.08.005
10.1016/j.chom.2008.09.009
10.1016/j.cell.2015.08.058
10.1016/j.immuni.2006.01.001
10.1126/science.1223490
10.1016/j.cell.2004.07.002
10.1002/eji.200838804
10.1136/gut.2010.223891
10.1038/ni.1698
10.1126/science.1198469
10.1016/j.cell.2006.07.035
10.1016/j.cell.2015.08.061
10.1084/jem.20111703
10.1016/j.immuni.2014.03.005
10.1126/science.1154986
10.4049/jimmunol.1301893
10.1016/S0923-2508(00)01169-4
10.1128/IAI.10.4.948-956.1974
10.1093/dnares/dsr022
10.1111/imm.12950
10.1089/ars.2013.5713
10.1385/IR:33:1:083
10.1016/j.cell.2009.09.033
10.1146/annurev.immunol.021908.132710
10.1084/jem.20060285
10.4049/jimmunol.1000115
10.1038/nature14027
10.1038/nature07240
10.1126/science.aat4042
10.1038/cmi.2014.110
10.1038/ni1362
ContentType Journal Article
Copyright Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang.
Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang
Copyright_xml – notice: Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang.
– notice: Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang. 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2019.02750
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_81a56d1cc7244c91b174a6fb382673b2
PMC6883716
31824516
10_3389_fimmu_2019_02750
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science and Technology Infrastructure Program
– fundername: National Basic Research Program of China (973 Program)
– fundername: National Natural Science Foundation of China
– fundername: Natural Science Foundation of Hunan Province
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-c6ffb6046f6980f0c8cac55c6c13e5f6afca828e690e0dd922c19653097c6d5e3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:29:44 EDT 2025
Thu Aug 21 13:35:56 EDT 2025
Fri Jul 11 01:50:24 EDT 2025
Thu Apr 03 07:02:34 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Tue Jul 01 00:39:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords segmented filamentous bacteria
flagellin
SI EC
IL-17A
Th17 cells
Language English
License Copyright © 2019 Wang, Yin, Chen, Zhao, Wu, Li, Wang, Chen and Xiang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-c6ffb6046f6980f0c8cac55c6c13e5f6afca828e690e0dd922c19653097c6d5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Mucosal Immunity, a section of the journal Frontiers in Immunology
Reviewed by: Ivan Monteleone, University of Rome Tor Vergata, Italy; Nicolaas Adrianus Bos, University Medical Center Groningen, Netherlands
Edited by: Federica Facciotti, European Institute of Oncology (IEO), Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2019.02750
PMID 31824516
PQID 2324912669
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_81a56d1cc7244c91b174a6fb382673b2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6883716
proquest_miscellaneous_2324912669
pubmed_primary_31824516
crossref_primary_10_3389_fimmu_2019_02750
crossref_citationtrail_10_3389_fimmu_2019_02750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-22
PublicationDateYYYYMMDD 2019-11-22
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-22
  day: 22
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Macpherson (B1) 2004; 4
Shaw (B16) 2012; 209
Veldhoen (B13) 2006; 24
Knochelmann (B44) 2018; 15
Rakoff-Nahoum (B21) 2004; 118
Guerry (B22) 2007; 15
McGeachy (B14) 2009; 10
Xiao (B24) 2015; 12
de Zoete (B38) 2010; 285
Bettelli (B11) 2006; 441
Chung (B2) 2012; 149
Goto (B10) 2014; 40
Ivanov (B39) 2008; 4
Shim (B45) 2016; 137
Burdelya (B25) 2008; 320
Chen (B31) 2017; 83
Pamp (B49) 2012; 22
Flannigan (B18) 2018; 154
Vijay-Kumar (B23) 2009; 2
Tan (B50) 2016; 113
Honko (B27) 2005; 33
Davis (B7) 1974; 10
Atarashi (B4) 2011; 331
Uematsu (B37) 2006; 7
Schraml (B42) 2009; 460
Prakash (B30) 2011; 10
Huber (B43) 2011; 34
Sano (B8) 2015; 163
Korn (B9) 2009; 27
Eisenbarth (B46) 2002; 196
Ladinsky (B17) 2019; 363
Sczesnak (B20) 2011; 10
Jones (B34) 2011; 60
Kuwahara (B19) 2011; 18
Atarashi (B15) 2008; 455
Atif (B29) 2014; 7
Jones (B28) 2010; 185
Urdaci (B32) 2001; 152
Ivanov (B5) 2009; 139
Sanders (B40) 2009; 39
Ivanov (B33) 2006; 126
Sutton (B12) 2006; 203
Atarashi (B35) 2015; 163
Hooper (B3) 2012; 336
Schnupf (B36) 2015; 520
Van Maele (B41) 2010; 185
Liu (B47) 2011; 164
Yang (B6) 2014; 510
Stanley (B48) 2014; 20
Lopez-Yglesias (B26) 2014; 192
References_xml – volume: 113
  start-page: E8141
  year: 2016
  ident: B50
  article-title: Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1617460113
– volume: 2
  start-page: 197
  year: 2009
  ident: B23
  article-title: Flagellin: key target of mucosal innate immunity
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2009.9
– volume: 83
  start-page: e01061
  year: 2017
  ident: B31
  article-title: Host specificity of flagellins from segmented filamentous bacteria affects their patterns of interaction with mouse ileal mucosal proteins
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/AEM.01061-17
– volume: 185
  start-page: 6783
  year: 2010
  ident: B28
  article-title: TLR-activated dendritic cells enhance the response of aged naive CD4 T cells via an IL-6-dependent mechanism
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.0901296
– volume: 441
  start-page: 235
  year: 2006
  ident: B11
  article-title: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
  publication-title: Nature.
  doi: 10.1038/nature04753
– volume: 137
  start-page: 426
  year: 2016
  ident: B45
  article-title: Flagellin suppresses experimental asthma by generating regulatory dendritic cells and T cells
  publication-title: J Allergy Clin Immunol.
  doi: 10.1016/j.jaci.2015.07.010
– volume: 10
  start-page: 273
  year: 2011
  ident: B30
  article-title: Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2011.08.007
– volume: 22
  start-page: 1107
  year: 2012
  ident: B49
  article-title: Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB)
  publication-title: Genome Res.
  doi: 10.1101/gr.131482.111
– volume: 149
  start-page: 1578
  year: 2012
  ident: B2
  article-title: Gut immune maturation depends on colonization with a host-specific microbiota
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.04.037
– volume: 4
  start-page: 478
  year: 2004
  ident: B1
  article-title: Interactions between commensal intestinal bacteria and the immune system
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri1373
– volume: 7
  start-page: 68
  year: 2014
  ident: B29
  article-title: CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2013.25
– volume: 15
  start-page: 458
  year: 2018
  ident: B44
  article-title: When worlds collide: Th17 and Treg cells in cancer and autoimmunity
  publication-title: Cell Mol Immunol.
  doi: 10.1038/s41423-018-0004-4
– volume: 460
  start-page: 405
  year: 2009
  ident: B42
  article-title: The AP-1 transcription factor Batf controls T(H)17 differentiation
  publication-title: Nature.
  doi: 10.1038/nature08114
– volume: 34
  start-page: 554
  year: 2011
  ident: B43
  article-title: Th17 cells express interleukin-10 receptor and are controlled by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2011.01.020
– volume: 196
  start-page: 1645
  year: 2002
  ident: B46
  article-title: Lipopolysaccharide-enhanced, Toll-like receptor 4–dependent T helper cell type 2 responses to inhaled antigen
  publication-title: J Exp Med.
  doi: 10.1084/jem.20021340
– volume: 15
  start-page: 456
  year: 2007
  ident: B22
  article-title: Campylobacter flagella: not just for motility
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2007.09.006
– volume: 285
  start-page: 12149
  year: 2010
  ident: B38
  article-title: Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M109.070227
– volume: 164
  start-page: 396
  year: 2011
  ident: B47
  article-title: Chemokine CXCL11 links microbial stimuli to intestinal inflammation
  publication-title: Clin Exp Immunol.
  doi: 10.1111/j.1365-2249.2011.04382.x
– volume: 510
  start-page: 152
  year: 2014
  ident: B6
  article-title: Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
  publication-title: Nature.
  doi: 10.1038/nature13279
– volume: 10
  start-page: 260
  year: 2011
  ident: B20
  article-title: The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2011.08.005
– volume: 4
  start-page: 337
  year: 2008
  ident: B39
  article-title: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2008.09.009
– volume: 163
  start-page: 367
  year: 2015
  ident: B35
  article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.08.058
– volume: 24
  start-page: 179
  year: 2006
  ident: B13
  article-title: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2006.01.001
– volume: 336
  start-page: 1268
  year: 2012
  ident: B3
  article-title: Interactions between the microbiota and the immune system
  publication-title: Science.
  doi: 10.1126/science.1223490
– volume: 118
  start-page: 229
  year: 2004
  ident: B21
  article-title: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
  publication-title: Cell.
  doi: 10.1016/j.cell.2004.07.002
– volume: 39
  start-page: 359
  year: 2009
  ident: B40
  article-title: Induction of adaptive immunity by flagellin does not require robust activation of innate immunity
  publication-title: Eur J Immunol.
  doi: 10.1002/eji.200838804
– volume: 60
  start-page: 648
  year: 2011
  ident: B34
  article-title: Flagellin administration protects gut mucosal tissue from irradiation-induced apoptosis via MKP-7 activity
  publication-title: Gut.
  doi: 10.1136/gut.2010.223891
– volume: 10
  start-page: 314
  year: 2009
  ident: B14
  article-title: The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo
  publication-title: Nat Immunol.
  doi: 10.1038/ni.1698
– volume: 331
  start-page: 337
  year: 2011
  ident: B4
  article-title: Induction of colonic regulatory T cells by indigenous clostridium species
  publication-title: Science.
  doi: 10.1126/science.1198469
– volume: 126
  start-page: 1121
  year: 2006
  ident: B33
  article-title: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells
  publication-title: Cell.
  doi: 10.1016/j.cell.2006.07.035
– volume: 163
  start-page: 381
  year: 2015
  ident: B8
  article-title: An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.08.061
– volume: 209
  start-page: 251
  year: 2012
  ident: B16
  article-title: Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
  publication-title: J Exp Med.
  doi: 10.1084/jem.20111703
– volume: 40
  start-page: 594
  year: 2014
  ident: B10
  article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2014.03.005
– volume: 320
  start-page: 226
  year: 2008
  ident: B25
  article-title: An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models
  publication-title: Science.
  doi: 10.1126/science.1154986
– volume: 192
  start-page: 1587
  year: 2014
  ident: B26
  article-title: Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.1301893
– volume: 152
  start-page: 67
  year: 2001
  ident: B32
  article-title: Identification by in situ hybridization of segmented filamentous bacteria in the intestine of diarrheic rainbow trout (Oncorhynchus mykiss)
  publication-title: Res Microbiol.
  doi: 10.1016/S0923-2508(00)01169-4
– volume: 10
  start-page: 948
  year: 1974
  ident: B7
  article-title: Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract
  publication-title: Infect Immun.
  doi: 10.1128/IAI.10.4.948-956.1974
– volume: 18
  start-page: 291
  year: 2011
  ident: B19
  article-title: The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsr022
– volume: 154
  start-page: 537
  year: 2018
  ident: B18
  article-title: Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity
  publication-title: Immunology.
  doi: 10.1111/imm.12950
– volume: 20
  start-page: 2026
  year: 2014
  ident: B48
  article-title: NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration
  publication-title: Antioxid Redox Signal.
  doi: 10.1089/ars.2013.5713
– volume: 33
  start-page: 83
  year: 2005
  ident: B27
  article-title: Effects of flagellin on innate and adaptive immunity
  publication-title: Immunol Res.
  doi: 10.1385/IR:33:1:083
– volume: 139
  start-page: 485
  year: 2009
  ident: B5
  article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria
  publication-title: Cell.
  doi: 10.1016/j.cell.2009.09.033
– volume: 27
  start-page: 485
  year: 2009
  ident: B9
  article-title: IL-17 and Th17 cells
  publication-title: Annu Rev Immunol.
  doi: 10.1146/annurev.immunol.021908.132710
– volume: 203
  start-page: 1685
  year: 2006
  ident: B12
  article-title: A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis
  publication-title: J Exp Med.
  doi: 10.1084/jem.20060285
– volume: 185
  start-page: 1177
  year: 2010
  ident: B41
  article-title: TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa
  publication-title: J Immunol.
  doi: 10.4049/jimmunol.1000115
– volume: 520
  start-page: 99
  year: 2015
  ident: B36
  article-title: Growth and host interaction of mouse segmented filamentous bacteria in vitro
  publication-title: Nature.
  doi: 10.1038/nature14027
– volume: 455
  start-page: 808
  year: 2008
  ident: B15
  article-title: ATP drives lamina propria T(H)17 cell differentiation
  publication-title: Nature.
  doi: 10.1038/nature07240
– volume: 363
  start-page: eaat4042
  year: 2019
  ident: B17
  article-title: Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis
  publication-title: Science
  doi: 10.1126/science.aat4042
– volume: 12
  start-page: 729
  year: 2015
  ident: B24
  article-title: Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice
  publication-title: Cell Mol Immunol.
  doi: 10.1038/cmi.2014.110
– volume: 7
  start-page: 868
  year: 2006
  ident: B37
  article-title: Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells
  publication-title: Nat Immunol.
  doi: 10.1038/ni1362
SSID ssj0000493335
Score 2.5143766
Snippet T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2750
SubjectTerms flagellin
IL-17A
Immunology
segmented filamentous bacteria
SI EC
Th17 cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodBL6bvuCxV66cGNZUWvY3epWQrtpVnYm5DGUjclccomOey_74ycDUkp7aU3Y8tYfDOSvvFI3zD2TrlAqlmyljHYeqqFqC2lC4NyTQaTQAs64Pzlqz6_mH6-VJcHpb5oT9goDzwCN7EiKN0LAIMLETgRkUIHnaNEXmxkLLMvrnkHwdSPkfdKKdWYl8QozE3yfLnc0lYu94Eydc3ROlTk-v_EMX_fKnmw9nQP2P0daeQfx84-ZHfS8IjdHctI3jxmM6q_Uc4n8FXm9I8Pxy29MLsShp-lxWLN4w3vFjh3kAT3mnfXqyX_lr4XRc6ed3P0C7xcbdf8dJRvDk_YRfdpdnZe76ol1KBau6lB5xw1hrtZO9vkBiwEUAo0CJlU1iFDwPAqYTicmr53bQukJigbZ0D3Ksmn7GRYDek546BTb6QMTRPUNNholYl9Cw5iysEYXbHJLXYedlLiVNFi4TGkILR9QdsT2r6gXbH3-zd-jjIaf2l7SubYtyMB7HID3cLv3ML_yy0q9vbWmB4HDGVBwpAQRk8U0gnkJa5iz0bj7j-FE1xLlYsrZo7MftSX4yfD_KqIcmuLob7QL_5H51-yewQHHXls21fsZHO9Ta-R-2zim-LmvwDPVwII
  priority: 102
  providerName: Directory of Open Access Journals
Title Induction of Intestinal Th17 Cells by Flagellins From Segmented Filamentous Bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/31824516
https://www.proquest.com/docview/2324912669
https://pubmed.ncbi.nlm.nih.gov/PMC6883716
https://doaj.org/article/81a56d1cc7244c91b174a6fb382673b2
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXxJvwqIzEhUPaOI5fB4RoRaiQyoVdaW-R49jtomwC-5DYf8-Mky4sWiEuUZTYcTIzzsznxzeEvBHGImsWT3ltdVpIxlKN04VWmCw45Z1kuMH58ou8mBafZ2L2e3v0KMDVQWiH-aSmy_bk54_te-jw7xBxgr89DfPFYoOrtMwJTsIBgL8NfklhPoPLMdj_NsTCnMeMm0zKIgVLLoZ5y4MP2fNTkc7_UAz691LKP3xTeZ_cG4NK-mGwggfklu8ekjtDmsntIzLB_Bxx_wLtA8UxQOjXWGFyzRQ99227ovWWli38W5Cie0XLZb-gX_1VZOxsaDkHu4HTfrOiZwO9s31MpuXHyflFOmZTSJ3I9Tp1MoRaAhwO0ugsZE4764Rw0jHuRZA2OAvwywNc9lnTmDx3yDbIM6OcbITnT8hR13f-GaFO-kZxbrPMisLqWgtVN7kzrvbBKiUTcnoju8qNVOOY8aKtAHKgtKso7QqlXUVpJ-Ttrsb3gWbjH2XPUB27ckiQHS_0y6tq7G-VZlbIhjmnIH5xhtWAvKwMNQc4pXidJ-T1jTIr6FA4S2I7D2KsMMQ0DOIWk5Cng3J3TcEPMMfMxglRe2rfe5f9O938OpJ2S605YNPn_9HuC3IXvxZ3POb5S3K0Xm78Kwh91vVxHDKA46cZO47W_QtVhQO0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+Intestinal+Th17+Cells+by+Flagellins+From+Segmented+Filamentous+Bacteria&rft.jtitle=Frontiers+in+immunology&rft.au=Wang%2C+Yanling&rft.au=Yin%2C+Yeshi&rft.au=Chen%2C+Xin&rft.au=Zhao%2C+Yongjia&rft.date=2019-11-22&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=10&rft.spage=2750&rft_id=info:doi/10.3389%2Ffimmu.2019.02750&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon