PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models

Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 112; no. 520; pp. 1393 - 1404
Main Authors Hong, Chuan, Ning, Yang, Wang, Shuang, Wu, Hao, Carroll, Raymond J., Chen, Yong
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.10.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
1537-274X
DOI10.1080/01621459.2017.1280405

Cover

Loading…
Abstract Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidentifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood-based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real dataset to identify differentially methylated sites between ovarian cancer subjects and normal subjects. Supplementary materials for this article are available online.
AbstractList Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidentifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood-based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real dataset to identify differentially methylated sites between ovarian cancer subjects and normal subjects. Supplementary materials for this article are available online.
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidentifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood-based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real dataset to identify differentially methylated sites between ovarian cancer subjects and normal subjects.
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and non-differentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g. mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and non-identifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood based expectation–maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real data set to identify differentially methylated sites between ovarian cancer subjects and normal subjects.
Author Hong, Chuan
Wang, Shuang
Wu, Hao
Chen, Yong
Carroll, Raymond J.
Ning, Yang
Author_xml – sequence: 1
  givenname: Chuan
  surname: Hong
  fullname: Hong, Chuan
  organization: Department of Biostatistics, Harvard School of Public Health
– sequence: 2
  givenname: Yang
  surname: Ning
  fullname: Ning, Yang
  organization: Department of Statistical Science, Cornell University
– sequence: 3
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Department of Biostatistics, Mailman School of Public Health, Columbia University
– sequence: 4
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University
– sequence: 5
  givenname: Raymond J.
  surname: Carroll
  fullname: Carroll, Raymond J.
  organization: Department of Biostatistics, Epidemiology and Informatics, Texas A&M University
– sequence: 6
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  email: ychen123@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania
BookMark eNqFkcFvFCEYxYmpsdvqn9CExIuXWYEBhtHEWJu1NdnVHubgjbAD07IywxaY2vWvl8muTexBuUDy_d77Hnkn4GjwgwHgDKM5RgK9RZgTTFk9JwhXc0wEoog9AzPMyqogFf1-BGYTU0zQMTiJcYPyqYR4AY5JTTHHNZoBd71crJp38Bx-9ffGwetoRu2d_WGcvfVeF59UNBouVrAxMcHOB3jle39jBmPTDtoBXuZnUM7-mrCHbU45JKscbKxLcGUf0hgMXHltXHwJnnfKRfPqcJ-C5vOiubgqlt8uv1ycL4uWEZGKNVFdqwTVvOwqXRPK1px3XVsZxQRvO6I50oSwStTMIF4jXimE67VRLaLYlKfgw952O657o9scKAeU22B7FXbSKyv_ngz2Vt74e8mqWtSIZIM3B4Pg78b8b9nb2Brn1GD8GCXBCJclRbzM6Osn6MaPYci_k6TkNRWCksmQ7ak2-BiD6R7DYCSnOuWfOuVUpzzUmXXvn-ham1Syfspt3X_VZ3v1JiYfHldShjJQTqk-7ud2yL326qcPTsukds6HLqihtVGW_17xGz5Ewvo
CitedBy_id crossref_primary_10_1080_03610926_2022_2031216
crossref_primary_10_1016_j_jspi_2020_12_004
crossref_primary_10_1214_22_AOAS1652
crossref_primary_10_1007_s10710_018_9338_z
crossref_primary_10_1214_19_AOAS1259
crossref_primary_10_1111_biom_13204
Cites_doi 10.1186/1471-2105-14-86
10.1038/ejhg.2014.136
10.1111/j.1541-0420.2011.01574.x
10.1186/s13059-014-0465-4
10.1172/JCI58780
10.1016/B978-0-12-380866-0.60010-1
10.1186/1755-8794-6-S1-S9
10.1111/j.2517-6161.1978.tb01666.x
10.2307/2335690
10.1101/gr.119685.110
10.1093/biomet/75.2.237
10.1093/bioinformatics/bth176
10.1200/JCO.2004.05.061
10.1046/j.1369-7412.2003.05379.x
10.1038/ng.865
10.1016/j.ygyno.2013.02.021
10.1186/1476-4598-12-156
10.1038/ng.897
10.4161/cbt.10.6.12537
10.1093/jnci/djt045
10.1371/journal.pgen.1000602
10.1159/000068838
10.2217/epi.10.32
10.1111/1467-9868.00346
10.1080/01621459.1997.10473658
10.1111/j.1541-0420.2010.01409.x
10.1093/biomet/asn059
10.1158/0008-5472.CAN-10-0824
10.1111/j.1467-9868.2008.00674.x
10.1111/1467-9868.00263
10.1158/2159-8290.CD-13-0349
10.1023/A:1010933404324
10.1002/gepi.20619
10.1016/j.molcel.2014.05.015
10.1186/1471-2105-9-365
10.1214/aos/1017938930
10.1080/01621459.1987.10478472
10.1016/j.csda.2004.07.021
10.1111/cas.12541
10.1093/biomet/asq031
10.1093/biomet/asp011
10.1101/gr.103606.109
10.1016/j.celrep.2014.06.053
10.1093/biomet/89.1.61
10.1186/gm323
10.2307/3316073
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
5PM
DOI 10.1080/01621459.2017.1280405
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


International Bibliography of the Social Sciences (IBSS)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1404
ExternalDocumentID PMC5798902
10_1080_01621459_2017_1280405
45028032
1280405
Genre Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADXHL
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
AMVHM
AAYXX
CITATION
TASJS
8BJ
FQK
JBE
K9.
7S9
L.6
5PM
ID FETCH-LOGICAL-c528t-b2afca84d63f7d9245b66ffc7ea586cf2d60d2257895e069067a019beac041e3
ISSN 0162-1459
1537-274X
IngestDate Thu Aug 21 18:42:11 EDT 2025
Wed Jul 02 04:35:06 EDT 2025
Wed Aug 13 04:04:42 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
Sun Aug 03 02:33:28 EDT 2025
Thu May 29 09:14:43 EDT 2025
Wed Dec 25 09:08:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 520
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c528t-b2afca84d63f7d9245b66ffc7ea586cf2d60d2257895e069067a019beac041e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5798902
PMID 29416190
PQID 2369488422
PQPubID 41715
PageCount 12
ParticipantIDs crossref_primary_10_1080_01621459_2017_1280405
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798902
informaworld_taylorfrancis_310_1080_01621459_2017_1280405
crossref_citationtrail_10_1080_01621459_2017_1280405
jstor_primary_45028032
proquest_miscellaneous_2101334063
proquest_journals_2369488422
PublicationCentury 2000
PublicationDate 2017-10-02
PublicationDateYYYYMMDD 2017-10-02
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0033
cit0034
cit0030
R Core Team (cit0018a) 2014
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
Fan J. (cit0016) 2009; 10
Choi Y. (cit0009) 2011; 21
Gao X. (cit0019) 2011; 21
cit0028
cit0029
Fu Y. (cit0017) 2006; 16
cit0027
cit0024
cit0025
cit0011
cit0055
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
Ahn S. (cit0001) 2013
(cit0012) 1987; 74
Kalbfleisch J. D. (cit0026) 1978; 40
(cit0018) 2006; 16
Van der Vaart A. W. (cit0049) 2000; 3
cit0015
cit0013
cit0057
cit0014
cit0044
cit0045
Liu Y. (cit0031) 2012
cit0042
cit0043
cit0040
cit0041
Liu Z.-Y. (cit0032) 2015; 8
cit0008
cit0006
cit0007
cit0004
cit0048
cit0005
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0023
  doi: 10.1186/1471-2105-14-86
– ident: cit0042
  doi: 10.1038/ejhg.2014.136
– ident: cit0013
  doi: 10.1111/j.1541-0420.2011.01574.x
– ident: cit0038
  doi: 10.1186/s13059-014-0465-4
– ident: cit0055
  doi: 10.1172/JCI58780
– ident: cit0025
  doi: 10.1016/B978-0-12-380866-0.60010-1
– volume: 16
  start-page: 805
  year: 2006
  ident: cit0018
  publication-title: Statistica Sinica
– ident: cit0008
  doi: 10.1186/1755-8794-6-S1-S9
– volume: 40
  start-page: 214
  year: 1978
  ident: cit0026
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1978.tb01666.x
– volume: 21
  start-page: 231
  year: 2011
  ident: cit0009
  publication-title: Statistica Sinica
– ident: cit0011
  doi: 10.2307/2335690
– ident: cit0020
  doi: 10.1101/gr.119685.110
– ident: cit0037
  doi: 10.1093/biomet/75.2.237
– volume: 74
  start-page: 33
  year: 1987
  ident: cit0012
  publication-title: Biometrika
– ident: cit0043
  doi: 10.1093/bioinformatics/bth176
– ident: cit0027
  doi: 10.1200/JCO.2004.05.061
– ident: cit0056
  doi: 10.1046/j.1369-7412.2003.05379.x
– volume: 21
  start-page: 165
  year: 2011
  ident: cit0019
  publication-title: Statistica Sinica
– ident: cit0021
  doi: 10.1038/ng.865
– ident: cit0044
  doi: 10.1016/j.ygyno.2013.02.021
– ident: cit0052
  doi: 10.1186/1476-4598-12-156
– ident: cit0024
  doi: 10.1038/ng.897
– ident: cit0028
– ident: cit0005
  doi: 10.4161/cbt.10.6.12537
– volume: 10
  start-page: 2013
  year: 2009
  ident: cit0016
  publication-title: The Journal of Machine Learning Research
– ident: cit0054
  doi: 10.1093/jnci/djt045
– ident: cit0010
  doi: 10.1371/journal.pgen.1000602
– ident: cit0034
  doi: 10.1159/000068838
– volume: 8
  start-page: 14750
  year: 2015
  ident: cit0032
  publication-title: International Journal of Clinical and Experimental Medicine
– ident: cit0033
  doi: 10.2217/epi.10.32
– ident: cit0045
  doi: 10.1111/1467-9868.00346
– ident: cit0002
  doi: 10.1080/01621459.1997.10473658
– ident: cit0040
  doi: 10.1111/j.1541-0420.2010.01409.x
– ident: cit0046
  doi: 10.1093/biomet/asn059
– ident: cit0035
  doi: 10.1158/0008-5472.CAN-10-0824
– ident: cit0015
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: cit0030
  doi: 10.1111/1467-9868.00263
– ident: cit0036
  doi: 10.1158/2159-8290.CD-13-0349
– ident: cit0003
  doi: 10.1023/A:1010933404324
– ident: cit0051
  doi: 10.1002/gepi.20619
– ident: cit0014
  doi: 10.1016/j.molcel.2014.05.015
– ident: cit0022
  doi: 10.1186/1471-2105-9-365
– year: 2014
  ident: cit0018a
  publication-title: R: A Language and Environment for Statistical Computing
– ident: cit0039
  doi: 10.1214/aos/1017938930
– ident: cit0041
  doi: 10.1080/01621459.1987.10478472
– volume: 16
  start-page: 805
  year: 2006
  ident: cit0017
  publication-title: Statistica Sinica
– volume: 3
  volume-title: Asymptotic Statistics
  year: 2000
  ident: cit0049
– ident: cit0050
  doi: 10.1016/j.csda.2004.07.021
– ident: cit0053
  doi: 10.1111/cas.12541
– start-page: 2012
  year: 2012
  ident: cit0031
  publication-title: Journal of Probability and Statistics
– ident: cit0007
  doi: 10.1093/biomet/asq031
– ident: cit0029
  doi: 10.1093/biomet/asp011
– ident: cit0048
  doi: 10.1101/gr.103606.109
– ident: cit0004
  doi: 10.1016/j.celrep.2014.06.053
– ident: cit0057
  doi: 10.1093/biomet/89.1.61
– start-page: 69
  year: 2013
  ident: cit0001
  publication-title: Pacific Symposium on Biocomputing
– ident: cit0047
  doi: 10.1186/gm323
– ident: cit0006
  doi: 10.2307/3316073
SSID ssj0000788
Score 2.26492
Snippet Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account...
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for...
SourceID pubmedcentral
proquest
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1393
SubjectTerms Applications and Case Studies
Asymptotics
Between-subjects design
Cancer
Chi-square test
Computer simulation
Conditional likelihood
data collection
Deoxyribonucleic acid
DNA
DNA methylation
Epigenetics
Nonregular problem
Ovarian cancer
ovarian neoplasms
Penalized likelihood
Penalty function
Permutations
Power
Regression analysis
Semiparametric mixture model
Simulation
Statistical methods
statistical models
Statistical tests
Statistics
variance
Title PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1280405
https://www.jstor.org/stable/45028032
https://www.proquest.com/docview/2369488422
https://www.proquest.com/docview/2101334063
https://pubmed.ncbi.nlm.nih.gov/PMC5798902
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcukF8aoIFLRI3CJHjtfrB7dSpYpQEji4UjhZtnetWrh2RWxU9S_xJ5lZv9YiUOBiRX5Nku_zfLPrmVlC3qUyclgcx4YZ-7Fhez74QZkIg0cM1M30fCmwGnmzdVaX9scd300mP7SspbqK58ndwbqS_0EV9gGuWCX7D8j2N4Ud8BnwhS0gDNu_wvjzerkJmtrybfld5uDOZC3KPPsq8wz7FRsfQKTEbLmZBeD9VUrhqrwu4YYSo--s6NpOZ3d42u1NWWD2ENbsZ3k122S36gUDLpiW738Tx2q1KWo14Eq1fj6AvErSbVzL-VU9sPJLO2W97VRUze-309h44rC3VkoZlfpcBegfvmkfRrbBL8uGaLlLanbTsYyF3bYIl51Hdg0YOu9GLnthadzklqm5YAhpmSbn2D7ooFS0uZVgEi1ikp87B7EGp8YHbezyAbafwovL9ToMlrvgAXlowZgEl8tg5naQfVctctr_hq5cDBu5HzIyCoRGbXK71NjRoGecsqvFQMFj8qgFnZ41THxCJrJ4So57zPfPSK4o-Z6eUUVIepiQdLmhSEgK34ZqhKRZQTVCUo2QFAlJW0LShpDPSXCxDM5XRrugh5Fwy6uM2IrSJPJs4bDUFTDy57HjpGniyoh7TpJawjGFhSLic6laaLsRDEFiCA5MeyHZCTkqwOwLQnmasCh10gjid9szU08I4fHETZlYyNiLpsTu_twwaZvd45orebjoeuK2mISISdhiMiXz_rKbptvLfRf4OnJhpRieNuQO2T3XniiYe0s2xzwHZk3JaYd72HqbfWgxxwextS04_LY_DFqAL_iiQpY1nAP6yhiE6GxK3BFfehvYTX58pMiuVFd57vqYc_Dyz8ZfkePhwT4lR9W3Wr6GsLyK36jH4Sd5IN4P
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOgFyqNiaQtG4polG8dOwq2grRbYrHoIUm-Rn2rUkFRsFlX99Z3JY9kgoR56tifWOONvxvb4G0I-OisFU0p5vkqUF8YJ4KDVxuOSgXfz48QafI2crsTiZ_j9gl_svIXBtErcQ7uOKKLFalzceBg9pMR9gjAFCbbxncksmgLCgiXyx-QJT0SEVQyYv_qLxlFbexJFPJQZXvH87zMj_zRiLx0yFkex6DiTcsc1nT0nelCqy0i5mm4aNdW3__A9PkzrA_Ksj1zpaWdqL8gjW70k-xisdlzPr0h5vpyn2Wd6Slf1H1vS87XdmLosrmxZIHuy9wVcpqHzlGagFQWd6aL-VYMJW9gL0KKiPQl2cYvdbq7rCnOZYNCsKBuaFjd43UGxfFu5fk2ys3n2deH11Rw8zYO48VQgnZZxaARzkYFtH1dCOKcjK3kstAuM8E2ACJJw2_InRxLiTwWewQ9nlh2SvQqGfUMod5pJJ5yE4C2MfRcbY2KuI8fMzKpYTkg4_MJc90znWHCjzGcDIWo_lTlOZd5P5YRMt2LXHdXHfQLJrn3kTXvG4rqCKDm7R_awNabtSCHHS24WTMjxYF15DyfrPGAiAaQNA2j-sG0GIMDbHVnZegN9AFwZg_iMTUg0ssrtGEglPm6pisuWUpxHCV44v32ARu_J00WWLvPlt9WPI7KPTW3SY3BM9prfG3sCwVuj3rWr8w4NPjbR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkVAvtDwq0gcsElcHx-td29wKJArQRDkYiZu1T9WqsSPiVFV_PTN-hBoJ9dDz7ng16_E3s57Zbwh576wUTCnl-SpRXhgngINWG49LBt7NjxNr8DbyYinmP8JvP3lfTbjpyirxDO1aoogGq_HjXhvXV8R9gCgF-bXxmskkGgPAgiHyx-SJQPJwvMXhL_-CcdS0nkQRD2X6Szz_e8zAPQ3IS_uCxUEoOiykvOOZZgdE9Tq1BSlX422txvr2H7rHByl9SJ51cSs9bw3tOXlkyxdkH0PVlun5JSlWF9NF-pGe02V1bQu62titqYr8yhY5cid7n8BhGjpd0BSUoqAynVe_KjBgCycBmpe0o8DOb3HazboqsZIJFk3zoqaL_AaTHRSbtxWbVySdTdPPc6_r5eBpHsS1pwLptIxDI5iLDBz6uBLCOR1ZyWOhXWCEbwLEj4Tbhj05khB9KvALfjix7IjslbDsa0K500w64SSEbmHsu9gYE3MdOWYmVsVyRML-DWa64znHdhtFNunpULutzHArs24rR2S8E1u3RB_3CSR3zSOrmz8srm2HkrF7ZI8aW9qtFHJMcbNgRE5748o6MNlkARMJ4GwYwPC73TDAAOZ2ZGmrLcwBaGUMojM2ItHAKHdrIJH4cKTMLxtCcR4lmG4-foBGb8nT1ZdZdvF1-f2E7ONIU_EYnJK9-vfWnkHkVqs3zbf5BwcuNXU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PLEMT%3A+A+Novel+Pseudolikelihood-Based+EM+Test+for+Homogeneity+in+Generalized+Exponential+Tilt+Mixture+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Hong%2C+Chuan&rft.au=Yang%2C+Ning&rft.au=Wang%2C+Shuang&rft.au=Wu%2C+Hao&rft.date=2017-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=520&rft.spage=1393&rft.epage=1404&rft_id=info:doi/10.1080%2F01621459.2017.1280405&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon