PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences...
Saved in:
Published in | Journal of the American Statistical Association Vol. 112; no. 520; pp. 1393 - 1404 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.10.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0162-1459 1537-274X 1537-274X |
DOI | 10.1080/01621459.2017.1280405 |
Cover
Loading…
Abstract | Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidentifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood-based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real dataset to identify differentially methylated sites between ovarian cancer subjects and normal subjects. Supplementary materials for this article are available online. |
---|---|
AbstractList | Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidentifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood-based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real dataset to identify differentially methylated sites between ovarian cancer subjects and normal subjects. Supplementary materials for this article are available online. Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidentifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood-based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real dataset to identify differentially methylated sites between ovarian cancer subjects and normal subjects. Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and non-differentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g. mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and non-identifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood based expectation–maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real data set to identify differentially methylated sites between ovarian cancer subjects and normal subjects. |
Author | Hong, Chuan Wang, Shuang Wu, Hao Chen, Yong Carroll, Raymond J. Ning, Yang |
Author_xml | – sequence: 1 givenname: Chuan surname: Hong fullname: Hong, Chuan organization: Department of Biostatistics, Harvard School of Public Health – sequence: 2 givenname: Yang surname: Ning fullname: Ning, Yang organization: Department of Statistical Science, Cornell University – sequence: 3 givenname: Shuang surname: Wang fullname: Wang, Shuang organization: Department of Biostatistics, Mailman School of Public Health, Columbia University – sequence: 4 givenname: Hao surname: Wu fullname: Wu, Hao organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University – sequence: 5 givenname: Raymond J. surname: Carroll fullname: Carroll, Raymond J. organization: Department of Biostatistics, Epidemiology and Informatics, Texas A&M University – sequence: 6 givenname: Yong surname: Chen fullname: Chen, Yong email: ychen123@pennmedicine.upenn.edu organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania |
BookMark | eNqFkcFvFCEYxYmpsdvqn9CExIuXWYEBhtHEWJu1NdnVHubgjbAD07IywxaY2vWvl8muTexBuUDy_d77Hnkn4GjwgwHgDKM5RgK9RZgTTFk9JwhXc0wEoog9AzPMyqogFf1-BGYTU0zQMTiJcYPyqYR4AY5JTTHHNZoBd71crJp38Bx-9ffGwetoRu2d_WGcvfVeF59UNBouVrAxMcHOB3jle39jBmPTDtoBXuZnUM7-mrCHbU45JKscbKxLcGUf0hgMXHltXHwJnnfKRfPqcJ-C5vOiubgqlt8uv1ycL4uWEZGKNVFdqwTVvOwqXRPK1px3XVsZxQRvO6I50oSwStTMIF4jXimE67VRLaLYlKfgw952O657o9scKAeU22B7FXbSKyv_ngz2Vt74e8mqWtSIZIM3B4Pg78b8b9nb2Brn1GD8GCXBCJclRbzM6Osn6MaPYci_k6TkNRWCksmQ7ak2-BiD6R7DYCSnOuWfOuVUpzzUmXXvn-ham1Syfspt3X_VZ3v1JiYfHldShjJQTqk-7ud2yL326qcPTsukds6HLqihtVGW_17xGz5Ewvo |
CitedBy_id | crossref_primary_10_1080_03610926_2022_2031216 crossref_primary_10_1016_j_jspi_2020_12_004 crossref_primary_10_1214_22_AOAS1652 crossref_primary_10_1007_s10710_018_9338_z crossref_primary_10_1214_19_AOAS1259 crossref_primary_10_1111_biom_13204 |
Cites_doi | 10.1186/1471-2105-14-86 10.1038/ejhg.2014.136 10.1111/j.1541-0420.2011.01574.x 10.1186/s13059-014-0465-4 10.1172/JCI58780 10.1016/B978-0-12-380866-0.60010-1 10.1186/1755-8794-6-S1-S9 10.1111/j.2517-6161.1978.tb01666.x 10.2307/2335690 10.1101/gr.119685.110 10.1093/biomet/75.2.237 10.1093/bioinformatics/bth176 10.1200/JCO.2004.05.061 10.1046/j.1369-7412.2003.05379.x 10.1038/ng.865 10.1016/j.ygyno.2013.02.021 10.1186/1476-4598-12-156 10.1038/ng.897 10.4161/cbt.10.6.12537 10.1093/jnci/djt045 10.1371/journal.pgen.1000602 10.1159/000068838 10.2217/epi.10.32 10.1111/1467-9868.00346 10.1080/01621459.1997.10473658 10.1111/j.1541-0420.2010.01409.x 10.1093/biomet/asn059 10.1158/0008-5472.CAN-10-0824 10.1111/j.1467-9868.2008.00674.x 10.1111/1467-9868.00263 10.1158/2159-8290.CD-13-0349 10.1023/A:1010933404324 10.1002/gepi.20619 10.1016/j.molcel.2014.05.015 10.1186/1471-2105-9-365 10.1214/aos/1017938930 10.1080/01621459.1987.10478472 10.1016/j.csda.2004.07.021 10.1111/cas.12541 10.1093/biomet/asq031 10.1093/biomet/asp011 10.1101/gr.103606.109 10.1016/j.celrep.2014.06.053 10.1093/biomet/89.1.61 10.1186/gm323 10.2307/3316073 |
ContentType | Journal Article |
Copyright | 2017 American Statistical Association 2017 Copyright © 2017 American Statistical Association 2017 American Statistical Association |
Copyright_xml | – notice: 2017 American Statistical Association 2017 – notice: Copyright © 2017 American Statistical Association – notice: 2017 American Statistical Association |
DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 5PM |
DOI | 10.1080/01621459.2017.1280405 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1404 |
ExternalDocumentID | PMC5798902 10_1080_01621459_2017_1280405 45028032 1280405 |
Genre | Article |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LJTGL LU7 M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADXHL ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV AMVHM AAYXX CITATION TASJS 8BJ FQK JBE K9. 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c528t-b2afca84d63f7d9245b66ffc7ea586cf2d60d2257895e069067a019beac041e3 |
ISSN | 0162-1459 1537-274X |
IngestDate | Thu Aug 21 18:42:11 EDT 2025 Wed Jul 02 04:35:06 EDT 2025 Wed Aug 13 04:04:42 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Sun Aug 03 02:33:28 EDT 2025 Thu May 29 09:14:43 EDT 2025 Wed Dec 25 09:08:21 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 520 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c528t-b2afca84d63f7d9245b66ffc7ea586cf2d60d2257895e069067a019beac041e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5798902 |
PMID | 29416190 |
PQID | 2369488422 |
PQPubID | 41715 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1080_01621459_2017_1280405 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5798902 informaworld_taylorfrancis_310_1080_01621459_2017_1280405 crossref_citationtrail_10_1080_01621459_2017_1280405 jstor_primary_45028032 proquest_miscellaneous_2101334063 proquest_journals_2369488422 |
PublicationCentury | 2000 |
PublicationDate | 2017-10-02 |
PublicationDateYYYYMMDD | 2017-10-02 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
References | cit0033 cit0034 cit0030 R Core Team (cit0018a) 2014 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 Fan J. (cit0016) 2009; 10 Choi Y. (cit0009) 2011; 21 Gao X. (cit0019) 2011; 21 cit0028 cit0029 Fu Y. (cit0017) 2006; 16 cit0027 cit0024 cit0025 cit0011 cit0055 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 Ahn S. (cit0001) 2013 (cit0012) 1987; 74 Kalbfleisch J. D. (cit0026) 1978; 40 (cit0018) 2006; 16 Van der Vaart A. W. (cit0049) 2000; 3 cit0015 cit0013 cit0057 cit0014 cit0044 cit0045 Liu Y. (cit0031) 2012 cit0042 cit0043 cit0040 cit0041 Liu Z.-Y. (cit0032) 2015; 8 cit0008 cit0006 cit0007 cit0004 cit0048 cit0005 cit0002 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0023 doi: 10.1186/1471-2105-14-86 – ident: cit0042 doi: 10.1038/ejhg.2014.136 – ident: cit0013 doi: 10.1111/j.1541-0420.2011.01574.x – ident: cit0038 doi: 10.1186/s13059-014-0465-4 – ident: cit0055 doi: 10.1172/JCI58780 – ident: cit0025 doi: 10.1016/B978-0-12-380866-0.60010-1 – volume: 16 start-page: 805 year: 2006 ident: cit0018 publication-title: Statistica Sinica – ident: cit0008 doi: 10.1186/1755-8794-6-S1-S9 – volume: 40 start-page: 214 year: 1978 ident: cit0026 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1978.tb01666.x – volume: 21 start-page: 231 year: 2011 ident: cit0009 publication-title: Statistica Sinica – ident: cit0011 doi: 10.2307/2335690 – ident: cit0020 doi: 10.1101/gr.119685.110 – ident: cit0037 doi: 10.1093/biomet/75.2.237 – volume: 74 start-page: 33 year: 1987 ident: cit0012 publication-title: Biometrika – ident: cit0043 doi: 10.1093/bioinformatics/bth176 – ident: cit0027 doi: 10.1200/JCO.2004.05.061 – ident: cit0056 doi: 10.1046/j.1369-7412.2003.05379.x – volume: 21 start-page: 165 year: 2011 ident: cit0019 publication-title: Statistica Sinica – ident: cit0021 doi: 10.1038/ng.865 – ident: cit0044 doi: 10.1016/j.ygyno.2013.02.021 – ident: cit0052 doi: 10.1186/1476-4598-12-156 – ident: cit0024 doi: 10.1038/ng.897 – ident: cit0028 – ident: cit0005 doi: 10.4161/cbt.10.6.12537 – volume: 10 start-page: 2013 year: 2009 ident: cit0016 publication-title: The Journal of Machine Learning Research – ident: cit0054 doi: 10.1093/jnci/djt045 – ident: cit0010 doi: 10.1371/journal.pgen.1000602 – ident: cit0034 doi: 10.1159/000068838 – volume: 8 start-page: 14750 year: 2015 ident: cit0032 publication-title: International Journal of Clinical and Experimental Medicine – ident: cit0033 doi: 10.2217/epi.10.32 – ident: cit0045 doi: 10.1111/1467-9868.00346 – ident: cit0002 doi: 10.1080/01621459.1997.10473658 – ident: cit0040 doi: 10.1111/j.1541-0420.2010.01409.x – ident: cit0046 doi: 10.1093/biomet/asn059 – ident: cit0035 doi: 10.1158/0008-5472.CAN-10-0824 – ident: cit0015 doi: 10.1111/j.1467-9868.2008.00674.x – ident: cit0030 doi: 10.1111/1467-9868.00263 – ident: cit0036 doi: 10.1158/2159-8290.CD-13-0349 – ident: cit0003 doi: 10.1023/A:1010933404324 – ident: cit0051 doi: 10.1002/gepi.20619 – ident: cit0014 doi: 10.1016/j.molcel.2014.05.015 – ident: cit0022 doi: 10.1186/1471-2105-9-365 – year: 2014 ident: cit0018a publication-title: R: A Language and Environment for Statistical Computing – ident: cit0039 doi: 10.1214/aos/1017938930 – ident: cit0041 doi: 10.1080/01621459.1987.10478472 – volume: 16 start-page: 805 year: 2006 ident: cit0017 publication-title: Statistica Sinica – volume: 3 volume-title: Asymptotic Statistics year: 2000 ident: cit0049 – ident: cit0050 doi: 10.1016/j.csda.2004.07.021 – ident: cit0053 doi: 10.1111/cas.12541 – start-page: 2012 year: 2012 ident: cit0031 publication-title: Journal of Probability and Statistics – ident: cit0007 doi: 10.1093/biomet/asq031 – ident: cit0029 doi: 10.1093/biomet/asp011 – ident: cit0048 doi: 10.1101/gr.103606.109 – ident: cit0004 doi: 10.1016/j.celrep.2014.06.053 – ident: cit0057 doi: 10.1093/biomet/89.1.61 – start-page: 69 year: 2013 ident: cit0001 publication-title: Pacific Symposium on Biocomputing – ident: cit0047 doi: 10.1186/gm323 – ident: cit0006 doi: 10.2307/3316073 |
SSID | ssj0000788 |
Score | 2.26492 |
Snippet | Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely, the generalized exponential tilt mixture model, to account... Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for... |
SourceID | pubmedcentral proquest crossref jstor informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1393 |
SubjectTerms | Applications and Case Studies Asymptotics Between-subjects design Cancer Chi-square test Computer simulation Conditional likelihood data collection Deoxyribonucleic acid DNA DNA methylation Epigenetics Nonregular problem Ovarian cancer ovarian neoplasms Penalized likelihood Penalty function Permutations Power Regression analysis Semiparametric mixture model Simulation Statistical methods statistical models Statistical tests Statistics variance |
Title | PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1280405 https://www.jstor.org/stable/45028032 https://www.proquest.com/docview/2369488422 https://www.proquest.com/docview/2101334063 https://pubmed.ncbi.nlm.nih.gov/PMC5798902 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcukF8aoIFLRI3CJHjtfrB7dSpYpQEji4UjhZtnetWrh2RWxU9S_xJ5lZv9YiUOBiRX5Nku_zfLPrmVlC3qUyclgcx4YZ-7Fhez74QZkIg0cM1M30fCmwGnmzdVaX9scd300mP7SspbqK58ndwbqS_0EV9gGuWCX7D8j2N4Ud8BnwhS0gDNu_wvjzerkJmtrybfld5uDOZC3KPPsq8wz7FRsfQKTEbLmZBeD9VUrhqrwu4YYSo--s6NpOZ3d42u1NWWD2ENbsZ3k122S36gUDLpiW738Tx2q1KWo14Eq1fj6AvErSbVzL-VU9sPJLO2W97VRUze-309h44rC3VkoZlfpcBegfvmkfRrbBL8uGaLlLanbTsYyF3bYIl51Hdg0YOu9GLnthadzklqm5YAhpmSbn2D7ooFS0uZVgEi1ikp87B7EGp8YHbezyAbafwovL9ToMlrvgAXlowZgEl8tg5naQfVctctr_hq5cDBu5HzIyCoRGbXK71NjRoGecsqvFQMFj8qgFnZ41THxCJrJ4So57zPfPSK4o-Z6eUUVIepiQdLmhSEgK34ZqhKRZQTVCUo2QFAlJW0LShpDPSXCxDM5XRrugh5Fwy6uM2IrSJPJs4bDUFTDy57HjpGniyoh7TpJawjGFhSLic6laaLsRDEFiCA5MeyHZCTkqwOwLQnmasCh10gjid9szU08I4fHETZlYyNiLpsTu_twwaZvd45orebjoeuK2mISISdhiMiXz_rKbptvLfRf4OnJhpRieNuQO2T3XniiYe0s2xzwHZk3JaYd72HqbfWgxxwextS04_LY_DFqAL_iiQpY1nAP6yhiE6GxK3BFfehvYTX58pMiuVFd57vqYc_Dyz8ZfkePhwT4lR9W3Wr6GsLyK36jH4Sd5IN4P |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOgFyqNiaQtG4polG8dOwq2grRbYrHoIUm-Rn2rUkFRsFlX99Z3JY9kgoR56tifWOONvxvb4G0I-OisFU0p5vkqUF8YJ4KDVxuOSgXfz48QafI2crsTiZ_j9gl_svIXBtErcQ7uOKKLFalzceBg9pMR9gjAFCbbxncksmgLCgiXyx-QJT0SEVQyYv_qLxlFbexJFPJQZXvH87zMj_zRiLx0yFkex6DiTcsc1nT0nelCqy0i5mm4aNdW3__A9PkzrA_Ksj1zpaWdqL8gjW70k-xisdlzPr0h5vpyn2Wd6Slf1H1vS87XdmLosrmxZIHuy9wVcpqHzlGagFQWd6aL-VYMJW9gL0KKiPQl2cYvdbq7rCnOZYNCsKBuaFjd43UGxfFu5fk2ys3n2deH11Rw8zYO48VQgnZZxaARzkYFtH1dCOKcjK3kstAuM8E2ACJJw2_InRxLiTwWewQ9nlh2SvQqGfUMod5pJJ5yE4C2MfRcbY2KuI8fMzKpYTkg4_MJc90znWHCjzGcDIWo_lTlOZd5P5YRMt2LXHdXHfQLJrn3kTXvG4rqCKDm7R_awNabtSCHHS24WTMjxYF15DyfrPGAiAaQNA2j-sG0GIMDbHVnZegN9AFwZg_iMTUg0ssrtGEglPm6pisuWUpxHCV44v32ARu_J00WWLvPlt9WPI7KPTW3SY3BM9prfG3sCwVuj3rWr8w4NPjbR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkVAvtDwq0gcsElcHx-td29wKJArQRDkYiZu1T9WqsSPiVFV_PTN-hBoJ9dDz7ng16_E3s57Zbwh576wUTCnl-SpRXhgngINWG49LBt7NjxNr8DbyYinmP8JvP3lfTbjpyirxDO1aoogGq_HjXhvXV8R9gCgF-bXxmskkGgPAgiHyx-SJQPJwvMXhL_-CcdS0nkQRD2X6Szz_e8zAPQ3IS_uCxUEoOiykvOOZZgdE9Tq1BSlX422txvr2H7rHByl9SJ51cSs9bw3tOXlkyxdkH0PVlun5JSlWF9NF-pGe02V1bQu62titqYr8yhY5cid7n8BhGjpd0BSUoqAynVe_KjBgCycBmpe0o8DOb3HazboqsZIJFk3zoqaL_AaTHRSbtxWbVySdTdPPc6_r5eBpHsS1pwLptIxDI5iLDBz6uBLCOR1ZyWOhXWCEbwLEj4Tbhj05khB9KvALfjix7IjslbDsa0K500w64SSEbmHsu9gYE3MdOWYmVsVyRML-DWa64znHdhtFNunpULutzHArs24rR2S8E1u3RB_3CSR3zSOrmz8srm2HkrF7ZI8aW9qtFHJMcbNgRE5748o6MNlkARMJ4GwYwPC73TDAAOZ2ZGmrLcwBaGUMojM2ItHAKHdrIJH4cKTMLxtCcR4lmG4-foBGb8nT1ZdZdvF1-f2E7ONIU_EYnJK9-vfWnkHkVqs3zbf5BwcuNXU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PLEMT%3A+A+Novel+Pseudolikelihood-Based+EM+Test+for+Homogeneity+in+Generalized+Exponential+Tilt+Mixture+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Hong%2C+Chuan&rft.au=Yang%2C+Ning&rft.au=Wang%2C+Shuang&rft.au=Wu%2C+Hao&rft.date=2017-10-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=520&rft.spage=1393&rft.epage=1404&rft_id=info:doi/10.1080%2F01621459.2017.1280405&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |