VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor
This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparti...
Saved in:
Published in | Nanomedicine Vol. 11; no. 4; pp. 825 - 833 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization.
This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.
MRI is one of the most powerful tools for tumor diagnostics, but still it has some limitations, which mostly associated with poor contrast between normal and pathological tissues. One approach to improve contrast in MRI is the use of contrast agent, such as magnetic iron oxide nanoparticles. In this study, we present VEGF-targeted iron oxide nanoparticles that act as glioma targeted T2 contrast agent, which can visualize brain tumor by MRI 24h post intravenous injection. [Display omitted] |
---|---|
AbstractList | This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization.
This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3 O4 ) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53 ± 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro ; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. From the Clinical Editor This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization.This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization.This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.FROM THE CLINICAL EDITORThis work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. MRI is one of the most powerful tools for tumor diagnostics, but still it has some limitations, which mostly associated with poor contrast between normal and pathological tissues. One approach to improve contrast in MRI is the use of contrast agent, such as magnetic iron oxide nanoparticles. In this study, we present VEGF-targeted iron oxide nanoparticles that act as glioma targeted T2 contrast agent, which can visualize brain tumor by MRI 24h post intravenous injection. [Display omitted] |
Author | Abakumov, Artem M. Abakumov, Maxim A. Grinenko, Nadezhda F. Sokolsky-Papkov, Marina Vishwasrao, Hemant M. Gubsky, Iliya L. Kabanov, Alexander V. Nukolova, Natalia V. Shein, Sergey A. Chekhonin, Vladimir P. Sandalova, Tatiana O. |
Author_xml | – sequence: 1 givenname: Maxim A. surname: Abakumov fullname: Abakumov, Maxim A. email: abakumov1988@gmail.com organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia – sequence: 2 givenname: Natalia V. surname: Nukolova fullname: Nukolova, Natalia V. organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia – sequence: 3 givenname: Marina surname: Sokolsky-Papkov fullname: Sokolsky-Papkov, Marina organization: Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 4 givenname: Sergey A. surname: Shein fullname: Shein, Sergey A. organization: Division of Fundamental and Applied Neurobiology, Serbsky State Research Center of Social and Forensic Psychiatry, Moscow, Russia – sequence: 5 givenname: Tatiana O. surname: Sandalova fullname: Sandalova, Tatiana O. organization: Division of Fundamental and Applied Neurobiology, Serbsky State Research Center of Social and Forensic Psychiatry, Moscow, Russia – sequence: 6 givenname: Hemant M. surname: Vishwasrao fullname: Vishwasrao, Hemant M. organization: Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA – sequence: 7 givenname: Nadezhda F. surname: Grinenko fullname: Grinenko, Nadezhda F. organization: Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 8 givenname: Iliya L. surname: Gubsky fullname: Gubsky, Iliya L. organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia – sequence: 9 givenname: Artem M. surname: Abakumov fullname: Abakumov, Artem M. organization: Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Belgium – sequence: 10 givenname: Alexander V. surname: Kabanov fullname: Kabanov, Alexander V. organization: Laboratory of Chemical Design of Bionanomaterials, Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia – sequence: 11 givenname: Vladimir P. surname: Chekhonin fullname: Chekhonin, Vladimir P. organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25652902$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1URF_8ARYoSzZJZxwnN0EIqar6uFIREhS2luNMKl8S-2I7lcqvx-G2LCpRVjOL853ROXPI9qyzxNgbhAIB65NNYZV1BQcUBfICEF-wA6xEm7e14Ht_91Lss8MQNgDlCqB9xfZ5VVe8BX7A1t_PLy_yqPwtReqzSd1aikZni_NW-bSOFLLB-ezTl3V2Z8KsRvNLReNs5oas88rYLM6T88fs5aDGQK8f5hH7dnF-c3aVX3--XJ-dXue64k3MOxiwKrFqey1ER4Bc1aSpV7UexMBLXA2oBEDNQQCHrqF24Bo1VVgr3nblEXu3891693OmEOVkgqZxVJbcHCTWDW_aVIZI0rcP0rmbqJdbbybl7-Vj_CRodgLtXQieBqlN_BMupmCjRJBL03Ijlz7k0rRELpN5QvkT9NH9WejDDqJU0J0hL4M2ZFN840lH2TvzPP7xCa5HY41W4w-6p7Bxs7epeokyJEB-Xf6_vB8rAMBVmwze_9vgf9d_Ax8mvrk |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2019_03_032 crossref_primary_10_3390_polym15193969 crossref_primary_10_1016_j_apmt_2024_102087 crossref_primary_10_1007_s10517_016_3398_y crossref_primary_10_3390_magnetochemistry9010012 crossref_primary_10_1039_C6NR07520G crossref_primary_10_1016_j_ijpharm_2019_02_012 crossref_primary_10_1007_s10854_019_02501_8 crossref_primary_10_3390_pharmaceutics17020142 crossref_primary_10_1016_j_ceramint_2019_11_230 crossref_primary_10_1039_C5RA08200E crossref_primary_10_3390_polym14142963 crossref_primary_10_1016_j_ijbiomac_2024_135356 crossref_primary_10_1038_s41571_023_00756_z crossref_primary_10_1039_C6TC04141H crossref_primary_10_1093_rb_rbab062 crossref_primary_10_1016_j_bbrc_2015_08_030 crossref_primary_10_1002_adhm_201901058 crossref_primary_10_3390_cancers14215389 crossref_primary_10_3389_fphar_2021_784864 crossref_primary_10_1007_s11481_016_9698_1 crossref_primary_10_3389_fonc_2018_00624 crossref_primary_10_3762_bjnano_14_75 crossref_primary_10_2174_0929867327666200525161359 crossref_primary_10_1021_acsomega_7b01168 crossref_primary_10_3390_biom9120790 crossref_primary_10_1016_j_jconrel_2020_01_009 crossref_primary_10_1016_j_jmmm_2018_11_041 crossref_primary_10_3390_pharmaceutics10040284 crossref_primary_10_34133_bmr_0076 crossref_primary_10_1007_s40139_018_0184_8 crossref_primary_10_1007_s12274_023_6214_9 crossref_primary_10_1039_D3NR01109G crossref_primary_10_1021_acs_langmuir_7b01759 crossref_primary_10_1016_j_actbio_2017_09_009 crossref_primary_10_1016_j_colsurfb_2015_11_009 crossref_primary_10_3390_magnetochemistry8020013 crossref_primary_10_1039_C7RA04903J crossref_primary_10_1007_s00204_015_1577_7 crossref_primary_10_1007_s11307_023_01856_z crossref_primary_10_1039_C6NR00147E crossref_primary_10_3390_ijms241612688 crossref_primary_10_1016_j_addr_2016_07_012 crossref_primary_10_1016_j_nantod_2019_03_007 crossref_primary_10_4155_tde_2019_0077 crossref_primary_10_1016_j_drudis_2019_01_006 crossref_primary_10_24075_vrgmu_2018_084 crossref_primary_10_3892_or_2016_4575 crossref_primary_10_1002_smll_201601029 crossref_primary_10_1021_acsbiomaterials_1c00942 crossref_primary_10_1002_adfm_201910402 crossref_primary_10_1016_j_fct_2018_04_058 crossref_primary_10_1016_j_jconrel_2016_10_023 crossref_primary_10_1016_j_nano_2018_04_019 crossref_primary_10_1039_C6CS00592F crossref_primary_10_1007_s11051_017_3746_5 crossref_primary_10_3103_S0027131416040118 crossref_primary_10_1134_S0036024421130203 crossref_primary_10_3390_pharmaceutics15102406 crossref_primary_10_1016_j_bioactmat_2021_10_014 crossref_primary_10_1016_j_xphs_2024_03_017 crossref_primary_10_1186_s12951_021_00866_9 crossref_primary_10_1039_C7TB00332C crossref_primary_10_1080_17425247_2021_1865306 crossref_primary_10_1021_acschemneuro_8b00652 crossref_primary_10_1007_s10517_019_04469_1 crossref_primary_10_1016_j_jallcom_2023_172737 crossref_primary_10_1021_acs_bioconjchem_9b00142 crossref_primary_10_1080_10717544_2022_2058645 crossref_primary_10_1007_s12034_020_02166_8 crossref_primary_10_1039_C7MH01071K crossref_primary_10_1002_advs_202413605 crossref_primary_10_1016_j_nano_2015_12_375 crossref_primary_10_1016_j_ymeth_2016_11_010 crossref_primary_10_1016_j_jconrel_2021_10_028 crossref_primary_10_1007_s11051_017_3754_5 crossref_primary_10_2147_IJN_S362192 crossref_primary_10_1016_j_rinp_2020_103350 crossref_primary_10_1007_s10517_019_04507_y crossref_primary_10_1016_j_ijpharm_2024_125142 crossref_primary_10_4155_fmc_2018_0521 crossref_primary_10_1039_C9RA01356C crossref_primary_10_1016_j_bbrc_2018_07_105 crossref_primary_10_1016_j_jddst_2018_03_018 crossref_primary_10_3762_bjnano_10_193 crossref_primary_10_1208_s12249_017_0874_2 |
Cites_doi | 10.1016/0730-725X(87)90023-3 10.1007/s00401-003-0810-2 10.1021/cr068445e 10.1016/j.biomaterials.2009.08.045 10.1159/000323492 10.1038/35025215 10.1634/theoncologist.9-suppl_1-2 10.1088/0022-3727/36/13/201 10.3390/ijms13055554 10.1038/359845a0 10.1021/la104278m 10.1007/s10517-012-1662-3 10.1002/wnan.1157 10.1021/am301551n 10.1016/j.jmmm.2009.02.083 10.1097/00004424-199007000-00004 10.1021/jp904004w 10.1002/(SICI)1097-0215(19990219)84:1<10::AID-IJC3>3.0.CO;2-L 10.1038/194495a0 10.1016/j.jconrel.2008.05.010 10.1038/nrneurol.2009.159 10.1007/s10517-007-0167-y |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.nano.2014.12.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-9642 |
EndPage | 833 |
ExternalDocumentID | 25652902 10_1016_j_nano_2014_12_011 S1549963415000179 1_s2_0_S1549963415000179 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Russian Federation Ministry of Science and Education grantid: 11.G34.31.0004; RSF 14-15-00698; 14-13-00731; RFBR 13-04-01383A |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABMAC ABMZM ABUDA ABWVN ABXDB ABXRA ABZDS ACDAQ ACGFS ACIEU ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AEUPX AEVXI AEZYN AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGEKW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BJAXD BKOJK BLXMC BNPGV CJTIS CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LUGTX M41 MAGPM MO0 N9A O-L O9- OAUVE OD~ OGGZJ OO0 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPC SSH SSI SSM SSP SST SSU SSZ T5K Z5R ~G- AACTN AFKWA AJOXV AMFUW RIG AAIAV AATCM ABLVK ABYKQ AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c528t-b0f153159dc44be012a6eceda6cf4f2317f1a4006204020b8e9f2c1ce516a29b3 |
IEDL.DBID | .~1 |
ISSN | 1549-9634 1549-9642 |
IngestDate | Fri Jul 11 02:09:06 EDT 2025 Wed Feb 19 02:27:22 EST 2025 Tue Jul 01 01:49:45 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Fri Feb 23 02:12:38 EST 2024 Sun Feb 23 10:18:48 EST 2025 Tue Aug 26 17:24:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Iron oxide nanoparticles MRI VEGF Glioblastoma |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-b0f153159dc44be012a6eceda6cf4f2317f1a4006204020b8e9f2c1ce516a29b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25652902 |
PQID | 1682890114 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1682890114 pubmed_primary_25652902 crossref_citationtrail_10_1016_j_nano_2014_12_011 crossref_primary_10_1016_j_nano_2014_12_011 elsevier_sciencedirect_doi_10_1016_j_nano_2014_12_011 elsevier_clinicalkeyesjournals_1_s2_0_S1549963415000179 elsevier_clinicalkey_doi_10_1016_j_nano_2014_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nanomedicine |
PublicationTitleAlternate | Nanomedicine |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Norden, Drappatz, Wen (bb0070) 2009; 5 Schmidt, Westphal, Hagel, Ergün, Stavrou, Rosen (bb0135) 1999; 84 Roohi, Lohrke, Ide, Schütz, Dassler (bb0055) 2012; 7 Giannopoulos, Kyritsis (bb0010) 2010; 79 (bb0020) 2011 Shein, Gurina, Leopol'd, Baklaushev, Korchagina, Grinenko (bb0090) 2012; 153 Amoozgar, Yeo (bb0130) 2012; 4 Laurent, Forge, Port, Roch, Vander, Muller (bb0040) 2008; 108 Ferrara (bb0115) 2004; 9 Santana, Dhadge, Roque (bb0035) 2012; 4 Ferguson, Minard, Krishnan (bb0050) 2009; 321 Yang, Liang, Han (bb0065) 2009; 113 Ancopoulos, Davis, Gale, Wiegand, Holash (bb0075) 2000; 407 Chen, Xie, Xu, Behera, Michalski, Biswal (bb0110) 2009; 30 Plate, Breier, Weich, Risau (bb0080) 1992; 359 Kratz (bb0125) 2008; 132 Barnhart, Kuhnert, Bakan, Berk (bb0015) 1987; 5 Wiogo, Lim, Bulmus, Yun, Amal (bb0060) 2011; 27 Rizvi, Asghar, Mehboob (bb0005) 2010; 9 Yu, Huang, Yu, Clyne (bb0045) 2012; 13 Pankhurst, Connolly, Jones, Dobson (bb0025) 2003; 36 Chekhonin, Baklaushev, Yusubalieva, Pavlov, Ukhova, Gurina (bb0105) 2007; 143 Paul, Beltz, Berger-Sweeney (bb0100) 2008; 3 Schneider, Ludwig, Tatenhorst, Braune, Oberleithner, Senner (bb0085) 2004; 107 Hunter, Greenwood (bb0095) 1962; 194 Majumdar, Zoghbi, Gore (bb0120) 1990; 25 Peng, Qian, Mao, Wang, Chen, Nie (bb0030) 2008; 3 Peng (10.1016/j.nano.2014.12.011_bb0030) 2008; 3 Pankhurst (10.1016/j.nano.2014.12.011_bb0025) 2003; 36 Yang (10.1016/j.nano.2014.12.011_bb0065) 2009; 113 Barnhart (10.1016/j.nano.2014.12.011_bb0015) 1987; 5 Yu (10.1016/j.nano.2014.12.011_bb0045) 2012; 13 Schmidt (10.1016/j.nano.2014.12.011_bb0135) 1999; 84 Giannopoulos (10.1016/j.nano.2014.12.011_bb0010) 2010; 79 Chekhonin (10.1016/j.nano.2014.12.011_bb0105) 2007; 143 Ferguson (10.1016/j.nano.2014.12.011_bb0050) 2009; 321 Roohi (10.1016/j.nano.2014.12.011_bb0055) 2012; 7 Norden (10.1016/j.nano.2014.12.011_bb0070) 2009; 5 Ancopoulos (10.1016/j.nano.2014.12.011_bb0075) 2000; 407 Schneider (10.1016/j.nano.2014.12.011_bb0085) 2004; 107 Shein (10.1016/j.nano.2014.12.011_bb0090) 2012; 153 Plate (10.1016/j.nano.2014.12.011_bb0080) 1992; 359 Amoozgar (10.1016/j.nano.2014.12.011_bb0130) 2012; 4 Chen (10.1016/j.nano.2014.12.011_bb0110) 2009; 30 Ferrara (10.1016/j.nano.2014.12.011_bb0115) 2004; 9 Wiogo (10.1016/j.nano.2014.12.011_bb0060) 2011; 27 Majumdar (10.1016/j.nano.2014.12.011_bb0120) 1990; 25 (10.1016/j.nano.2014.12.011_bb0020) 2011 Laurent (10.1016/j.nano.2014.12.011_bb0040) 2008; 108 Paul (10.1016/j.nano.2014.12.011_bb0100) 2008; 3 Hunter (10.1016/j.nano.2014.12.011_bb0095) 1962; 194 Santana (10.1016/j.nano.2014.12.011_bb0035) 2012; 4 Rizvi (10.1016/j.nano.2014.12.011_bb0005) 2010; 9 Kratz (10.1016/j.nano.2014.12.011_bb0125) 2008; 132 |
References_xml | – volume: 5 start-page: 610 year: 2009 end-page: 620 ident: bb0070 article-title: Antiangiogenic therapies for high-grade glioma publication-title: Nat Rev Neurol – volume: 321 start-page: 1548 year: 2009 end-page: 1551 ident: bb0050 article-title: Optimization of nanoparticle core size for magnetic particle imaging publication-title: J Magn Magn Mater – volume: 25 start-page: 771 year: 1990 end-page: 777 ident: bb0120 article-title: Pharmacokinetics of superparamagnetic iron-oxide MR contrast agents in the rat publication-title: Investig Radiol – volume: 113 start-page: 10454 year: 2009 end-page: 10458 ident: bb0065 article-title: Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques publication-title: J Phys Chem B – volume: 9 start-page: 773 year: 2010 end-page: 775 ident: bb0005 article-title: Gliosarcoma: A rare variant of glioblastoma multiforme publication-title: J Pak Med Assoc – volume: 194 start-page: 495 year: 1962 end-page: 496 ident: bb0095 article-title: Preparation of iodine-131 labelled human growth hormone of high specific activity publication-title: Nature – volume: 7 start-page: 4447 year: 2012 end-page: 4458 ident: bb0055 article-title: Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles publication-title: Int J Nanomedicine – volume: 30 start-page: 6912 year: 2009 end-page: 6919 ident: bb0110 article-title: Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting publication-title: Biomaterials – volume: 359 start-page: 845 year: 1992 end-page: 848 ident: bb0080 article-title: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo publication-title: Nature – volume: 84 start-page: 10 year: 1999 end-page: 18 ident: bb0135 article-title: evels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis publication-title: Int J Cancer – volume: 4 start-page: 5907 year: 2012 end-page: 5914 ident: bb0035 article-title: Dextran-coated magnetic supports modified with a biomimetic ligand for IgG purification publication-title: ACS Appl Mater Interfaces – volume: 153 start-page: 139 year: 2012 end-page: 142 ident: bb0090 article-title: Generation of monoclonal antibodies to recombinant vascular endothelial growth factor publication-title: Bull Exp Biol Med – volume: 79 start-page: 306 year: 2010 end-page: 312 ident: bb0010 article-title: Diagnosis and management of multifocal gliomas publication-title: Oncology – volume: 107 start-page: 272 year: 2004 end-page: 276 ident: bb0085 publication-title: Acta Neuropathol – volume: 36 start-page: 167 year: 2003 end-page: 181 ident: bb0025 article-title: Applications of magnetic nanoparticles in biomedicine publication-title: J Phys D Appl Phys – volume: 27 start-page: 843 year: 2011 end-page: 850 ident: bb0060 article-title: Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS) publication-title: Langmuir – volume: 5 start-page: 221 year: 1987 end-page: 231 ident: bb0015 article-title: Biodistribution of GdCl publication-title: Magn Reson Imaging – volume: 3 start-page: 311 year: 2008 end-page: 321 ident: bb0030 article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy publication-title: Int J Nanomedicine – volume: 108 start-page: 2064 year: 2008 end-page: 2110 ident: bb0040 article-title: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications publication-title: Chem Rev – volume: 132 start-page: 171 year: 2008 end-page: 183 ident: bb0125 article-title: Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles publication-title: J Control Release – volume: 407 start-page: 242 year: 2000 end-page: 248 ident: bb0075 article-title: Vascular-specific growth factors and blood vessel formation publication-title: Nature – volume: 4 start-page: 219 year: 2012 end-page: 233 ident: bb0130 article-title: Recent advances in stealth coating of nanoparticle drug delivery systems publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol – volume: 3 start-page: 1 year: 2008 end-page: 4 ident: bb0100 article-title: Perfusion of brain tissues with fixative publication-title: Cold Spring Harb Protoc – volume: 9 start-page: 2 year: 2004 end-page: 10 ident: bb0115 article-title: Vascular Endothelial Growth Factor as a target for anticancer therapy publication-title: Oncologist – year: 2011 ident: bb0020 article-title: ABLAVAR® [package insert] – volume: 13 start-page: 5554 year: 2012 end-page: 5570 ident: bb0045 article-title: Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture publication-title: Int J Mol Sci – volume: 143 start-page: 501 year: 2007 end-page: 509 ident: bb0105 article-title: Modeling and immunohistochemical analysis of C6 glioma in vivo publication-title: Bull Exp Biol Med – volume: 5 start-page: 221 year: 1987 ident: 10.1016/j.nano.2014.12.011_bb0015 article-title: Biodistribution of GdCl3 and Gd-DTPA and their influence on proton magnetic relaxation in rat tissues publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(87)90023-3 – year: 2011 ident: 10.1016/j.nano.2014.12.011_bb0020 – volume: 107 start-page: 272 year: 2004 ident: 10.1016/j.nano.2014.12.011_bb0085 publication-title: Acta Neuropathol doi: 10.1007/s00401-003-0810-2 – volume: 108 start-page: 2064 year: 2008 ident: 10.1016/j.nano.2014.12.011_bb0040 article-title: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications publication-title: Chem Rev doi: 10.1021/cr068445e – volume: 30 start-page: 6912 year: 2009 ident: 10.1016/j.nano.2014.12.011_bb0110 article-title: Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.045 – volume: 79 start-page: 306 year: 2010 ident: 10.1016/j.nano.2014.12.011_bb0010 article-title: Diagnosis and management of multifocal gliomas publication-title: Oncology doi: 10.1159/000323492 – volume: 407 start-page: 242 year: 2000 ident: 10.1016/j.nano.2014.12.011_bb0075 article-title: Vascular-specific growth factors and blood vessel formation publication-title: Nature doi: 10.1038/35025215 – volume: 7 start-page: 4447 year: 2012 ident: 10.1016/j.nano.2014.12.011_bb0055 article-title: Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles publication-title: Int J Nanomedicine – volume: 9 start-page: 2 year: 2004 ident: 10.1016/j.nano.2014.12.011_bb0115 article-title: Vascular Endothelial Growth Factor as a target for anticancer therapy publication-title: Oncologist doi: 10.1634/theoncologist.9-suppl_1-2 – volume: 36 start-page: 167 year: 2003 ident: 10.1016/j.nano.2014.12.011_bb0025 article-title: Applications of magnetic nanoparticles in biomedicine publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/36/13/201 – volume: 13 start-page: 5554 year: 2012 ident: 10.1016/j.nano.2014.12.011_bb0045 article-title: Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture publication-title: Int J Mol Sci doi: 10.3390/ijms13055554 – volume: 359 start-page: 845 year: 1992 ident: 10.1016/j.nano.2014.12.011_bb0080 article-title: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo publication-title: Nature doi: 10.1038/359845a0 – volume: 9 start-page: 773 year: 2010 ident: 10.1016/j.nano.2014.12.011_bb0005 article-title: Gliosarcoma: A rare variant of glioblastoma multiforme publication-title: J Pak Med Assoc – volume: 27 start-page: 843 year: 2011 ident: 10.1016/j.nano.2014.12.011_bb0060 article-title: Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS) publication-title: Langmuir doi: 10.1021/la104278m – volume: 153 start-page: 139 year: 2012 ident: 10.1016/j.nano.2014.12.011_bb0090 article-title: Generation of monoclonal antibodies to recombinant vascular endothelial growth factor publication-title: Bull Exp Biol Med doi: 10.1007/s10517-012-1662-3 – volume: 3 start-page: 311 year: 2008 ident: 10.1016/j.nano.2014.12.011_bb0030 article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy publication-title: Int J Nanomedicine – volume: 4 start-page: 219 year: 2012 ident: 10.1016/j.nano.2014.12.011_bb0130 article-title: Recent advances in stealth coating of nanoparticle drug delivery systems publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol doi: 10.1002/wnan.1157 – volume: 4 start-page: 5907 year: 2012 ident: 10.1016/j.nano.2014.12.011_bb0035 article-title: Dextran-coated magnetic supports modified with a biomimetic ligand for IgG purification publication-title: ACS Appl Mater Interfaces doi: 10.1021/am301551n – volume: 321 start-page: 1548 year: 2009 ident: 10.1016/j.nano.2014.12.011_bb0050 article-title: Optimization of nanoparticle core size for magnetic particle imaging publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2009.02.083 – volume: 25 start-page: 771 year: 1990 ident: 10.1016/j.nano.2014.12.011_bb0120 article-title: Pharmacokinetics of superparamagnetic iron-oxide MR contrast agents in the rat publication-title: Investig Radiol doi: 10.1097/00004424-199007000-00004 – volume: 113 start-page: 10454 year: 2009 ident: 10.1016/j.nano.2014.12.011_bb0065 article-title: Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques publication-title: J Phys Chem B doi: 10.1021/jp904004w – volume: 84 start-page: 10 year: 1999 ident: 10.1016/j.nano.2014.12.011_bb0135 article-title: evels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis publication-title: Int J Cancer doi: 10.1002/(SICI)1097-0215(19990219)84:1<10::AID-IJC3>3.0.CO;2-L – volume: 194 start-page: 495 year: 1962 ident: 10.1016/j.nano.2014.12.011_bb0095 article-title: Preparation of iodine-131 labelled human growth hormone of high specific activity publication-title: Nature doi: 10.1038/194495a0 – volume: 3 start-page: 1 year: 2008 ident: 10.1016/j.nano.2014.12.011_bb0100 article-title: Perfusion of brain tissues with fixative publication-title: Cold Spring Harb Protoc – volume: 132 start-page: 171 year: 2008 ident: 10.1016/j.nano.2014.12.011_bb0125 article-title: Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles publication-title: J Control Release doi: 10.1016/j.jconrel.2008.05.010 – volume: 5 start-page: 610 year: 2009 ident: 10.1016/j.nano.2014.12.011_bb0070 article-title: Antiangiogenic therapies for high-grade glioma publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.159 – volume: 143 start-page: 501 year: 2007 ident: 10.1016/j.nano.2014.12.011_bb0105 article-title: Modeling and immunohistochemical analysis of C6 glioma in vivo publication-title: Bull Exp Biol Med doi: 10.1007/s10517-007-0167-y |
SSID | ssj0037009 |
Score | 2.4576726 |
Snippet | This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization... Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 825 |
SubjectTerms | Animals Antibodies, Monoclonal, Murine-Derived - chemistry Antibodies, Monoclonal, Murine-Derived - pharmacology Brain Neoplasms - diagnostic imaging Brain Neoplasms - metabolism Cattle Contrast Media - chemistry Contrast Media - pharmacology Glioblastoma Glioma - diagnostic imaging Glioma - metabolism Internal Medicine Iron oxide nanoparticles Magnetic Resonance Imaging Magnetite Nanoparticles - chemistry MRI Radiography Rats Rats, Wistar Vascular Endothelial Growth Factor A - antagonists & inhibitors VEGF |
Title | VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1549963415000179 https://www.clinicalkey.es/playcontent/1-s2.0-S1549963415000179 https://dx.doi.org/10.1016/j.nano.2014.12.011 https://www.ncbi.nlm.nih.gov/pubmed/25652902 https://www.proquest.com/docview/1682890114 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelhbGX0e4z_UKFvg0vlizL8mMJzZK1KaNbR9-EJEslY3VCk_Sxf3vvbDkwtnawJ2Nzh6TjdB_W_U6EHHPLfWodpCU-lImwTCTgFgwEcqZS3FalsohGnlzI0ZX4cp1fb5BBh4XBsspo-1ub3ljr-KUfpdmfT6f9b9hcDNQHPFDT9QVBfEIUqOWfHtZlHlmRNmUeSJwgdQTOtDVetakRAMhE80uQsaec01PBZ-OEhtvkVYwe6Uk7wR2y4evX5MUkno-_IeMfp5-HSVvd7St6a25qBClSnMG8q4GjEKfSyeWY3k8XCKlsgZh0FqjF-yLocnU7u3tLroan3wejJF6WkLicq2Vi0wDGC4KTyglhPfgdIz0I0UgXRIAorgjMCIRMppgyWuXLwB1zPmfS8NJm78hmPav9B0KF8IVzWa6CdaIwyogqKBkyKUvlK6l6hHVS0i52EscLLX7prmTsp8Z1aZSsZlyDZHvk45pn3vbReJY664SvO4Qo2DQNZv5ZruJvXH4Rt-VCM70ASv2H6vRIvub8Tfv-OeJRpxkatiWetZjaz1YwksRUFrPNHnnfqsx63RBl5rxM-e5_jrpHXsJb3pZd7pPN5d3KH0BotLSHje4fkq2TweX5V3yOz0YXj3CMDVI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK9IL4pn0biDUWNHcdJHqdppWVrH2BDe7Nsx56KWFqt7f5-7hKnEoINidfEJzun893v4vudAT4KK3xqHaYlPlSJtFwmGBYMAjlTl8LWVWmJjTybq8m5_HKRX-zBUc-FobLK6Ps7n9566_hkFLU5Wi0Wo2_UXAzNByNQ2_Wlugf71J0qH8D-4fRkMu8dclakbaUHjU9IIHJnujKvxjTEAeSy_SvI-W3x6Tb82cah8SN4GAEkO-zW-Bj2fPME7s_iEflTmH4__jxOugJvX7Mrc9kQT5HRClZ9GRxDqMpmX6fsZrEmVmXHxWTLwCxdGcE226vl9TM4Hx-fHU2SeF9C4nJRbhKbBvRfiE9qJ6X1GHqM8qhHo1yQAYFcEbiRxJpMKWu0pa-CcNz5nCsjKps9h0GzbPxLYFL6wrksL4N1sjClkXUoVciUqkpfq3IIvNeSdrGZON1p8VP3VWM_NH2XJs1qLjRqdgifdjKrrpXGnaOzXvm6J4miW9Po6e-UKv4m5ddxZ64112scqf-wniHkO8nfDPCfM37oLUPjzqTjFtP45RZnUpTNUsI5hBedyey-G4FmLqpUvPrPWd_Dg8nZ7FSfTucnr-EA3-RdFeYbGGyut_4tIqWNfRd3wi80_g5u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VEGF-targeted+magnetic+nanoparticles+for+MRI+visualization+of+brain+tumor&rft.jtitle=Nanomedicine&rft.au=Abakumov%2C+Maxim+A.&rft.au=Nukolova%2C+Natalia+V.&rft.au=Sokolsky-Papkov%2C+Marina&rft.au=Shein%2C+Sergey+A.&rft.date=2015-05-01&rft.issn=1549-9634&rft.volume=11&rft.issue=4&rft.spage=825&rft.epage=833&rft_id=info:doi/10.1016%2Fj.nano.2014.12.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nano_2014_12_011 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15499634%2FS1549963415X00049%2Fcov150h.gif |