VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor

This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparti...

Full description

Saved in:
Bibliographic Details
Published inNanomedicine Vol. 11; no. 4; pp. 825 - 833
Main Authors Abakumov, Maxim A., Nukolova, Natalia V., Sokolsky-Papkov, Marina, Shein, Sergey A., Sandalova, Tatiana O., Vishwasrao, Hemant M., Grinenko, Nadezhda F., Gubsky, Iliya L., Abakumov, Artem M., Kabanov, Alexander V., Chekhonin, Vladimir P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. MRI is one of the most powerful tools for tumor diagnostics, but still it has some limitations, which mostly associated with poor contrast between normal and pathological tissues. One approach to improve contrast in MRI is the use of contrast agent, such as magnetic iron oxide nanoparticles. In this study, we present VEGF-targeted iron oxide nanoparticles that act as glioma targeted T2 contrast agent, which can visualize brain tumor by MRI 24h post intravenous injection. [Display omitted]
AbstractList This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.
Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3 O4 ) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53 ± 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro ; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. From the Clinical Editor This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.
This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization.This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization.This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.FROM THE CLINICAL EDITORThis work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.
This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent. MRI is one of the most powerful tools for tumor diagnostics, but still it has some limitations, which mostly associated with poor contrast between normal and pathological tissues. One approach to improve contrast in MRI is the use of contrast agent, such as magnetic iron oxide nanoparticles. In this study, we present VEGF-targeted iron oxide nanoparticles that act as glioma targeted T2 contrast agent, which can visualize brain tumor by MRI 24h post intravenous injection. [Display omitted]
Author Abakumov, Artem M.
Abakumov, Maxim A.
Grinenko, Nadezhda F.
Sokolsky-Papkov, Marina
Vishwasrao, Hemant M.
Gubsky, Iliya L.
Kabanov, Alexander V.
Nukolova, Natalia V.
Shein, Sergey A.
Chekhonin, Vladimir P.
Sandalova, Tatiana O.
Author_xml – sequence: 1
  givenname: Maxim A.
  surname: Abakumov
  fullname: Abakumov, Maxim A.
  email: abakumov1988@gmail.com
  organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
– sequence: 2
  givenname: Natalia V.
  surname: Nukolova
  fullname: Nukolova, Natalia V.
  organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
– sequence: 3
  givenname: Marina
  surname: Sokolsky-Papkov
  fullname: Sokolsky-Papkov, Marina
  organization: Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 4
  givenname: Sergey A.
  surname: Shein
  fullname: Shein, Sergey A.
  organization: Division of Fundamental and Applied Neurobiology, Serbsky State Research Center of Social and Forensic Psychiatry, Moscow, Russia
– sequence: 5
  givenname: Tatiana O.
  surname: Sandalova
  fullname: Sandalova, Tatiana O.
  organization: Division of Fundamental and Applied Neurobiology, Serbsky State Research Center of Social and Forensic Psychiatry, Moscow, Russia
– sequence: 6
  givenname: Hemant M.
  surname: Vishwasrao
  fullname: Vishwasrao, Hemant M.
  organization: Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
– sequence: 7
  givenname: Nadezhda F.
  surname: Grinenko
  fullname: Grinenko, Nadezhda F.
  organization: Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 8
  givenname: Iliya L.
  surname: Gubsky
  fullname: Gubsky, Iliya L.
  organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
– sequence: 9
  givenname: Artem M.
  surname: Abakumov
  fullname: Abakumov, Artem M.
  organization: Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Belgium
– sequence: 10
  givenname: Alexander V.
  surname: Kabanov
  fullname: Kabanov, Alexander V.
  organization: Laboratory of Chemical Design of Bionanomaterials, Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
– sequence: 11
  givenname: Vladimir P.
  surname: Chekhonin
  fullname: Chekhonin, Vladimir P.
  organization: Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25652902$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URF_8ARYoSzZJZxwnN0EIqar6uFIREhS2luNMKl8S-2I7lcqvx-G2LCpRVjOL853ROXPI9qyzxNgbhAIB65NNYZV1BQcUBfICEF-wA6xEm7e14Ht_91Lss8MQNgDlCqB9xfZ5VVe8BX7A1t_PLy_yqPwtReqzSd1aikZni_NW-bSOFLLB-ezTl3V2Z8KsRvNLReNs5oas88rYLM6T88fs5aDGQK8f5hH7dnF-c3aVX3--XJ-dXue64k3MOxiwKrFqey1ER4Bc1aSpV7UexMBLXA2oBEDNQQCHrqF24Bo1VVgr3nblEXu3891693OmEOVkgqZxVJbcHCTWDW_aVIZI0rcP0rmbqJdbbybl7-Vj_CRodgLtXQieBqlN_BMupmCjRJBL03Ijlz7k0rRELpN5QvkT9NH9WejDDqJU0J0hL4M2ZFN840lH2TvzPP7xCa5HY41W4w-6p7Bxs7epeokyJEB-Xf6_vB8rAMBVmwze_9vgf9d_Ax8mvrk
CitedBy_id crossref_primary_10_1016_j_matchemphys_2019_03_032
crossref_primary_10_3390_polym15193969
crossref_primary_10_1016_j_apmt_2024_102087
crossref_primary_10_1007_s10517_016_3398_y
crossref_primary_10_3390_magnetochemistry9010012
crossref_primary_10_1039_C6NR07520G
crossref_primary_10_1016_j_ijpharm_2019_02_012
crossref_primary_10_1007_s10854_019_02501_8
crossref_primary_10_3390_pharmaceutics17020142
crossref_primary_10_1016_j_ceramint_2019_11_230
crossref_primary_10_1039_C5RA08200E
crossref_primary_10_3390_polym14142963
crossref_primary_10_1016_j_ijbiomac_2024_135356
crossref_primary_10_1038_s41571_023_00756_z
crossref_primary_10_1039_C6TC04141H
crossref_primary_10_1093_rb_rbab062
crossref_primary_10_1016_j_bbrc_2015_08_030
crossref_primary_10_1002_adhm_201901058
crossref_primary_10_3390_cancers14215389
crossref_primary_10_3389_fphar_2021_784864
crossref_primary_10_1007_s11481_016_9698_1
crossref_primary_10_3389_fonc_2018_00624
crossref_primary_10_3762_bjnano_14_75
crossref_primary_10_2174_0929867327666200525161359
crossref_primary_10_1021_acsomega_7b01168
crossref_primary_10_3390_biom9120790
crossref_primary_10_1016_j_jconrel_2020_01_009
crossref_primary_10_1016_j_jmmm_2018_11_041
crossref_primary_10_3390_pharmaceutics10040284
crossref_primary_10_34133_bmr_0076
crossref_primary_10_1007_s40139_018_0184_8
crossref_primary_10_1007_s12274_023_6214_9
crossref_primary_10_1039_D3NR01109G
crossref_primary_10_1021_acs_langmuir_7b01759
crossref_primary_10_1016_j_actbio_2017_09_009
crossref_primary_10_1016_j_colsurfb_2015_11_009
crossref_primary_10_3390_magnetochemistry8020013
crossref_primary_10_1039_C7RA04903J
crossref_primary_10_1007_s00204_015_1577_7
crossref_primary_10_1007_s11307_023_01856_z
crossref_primary_10_1039_C6NR00147E
crossref_primary_10_3390_ijms241612688
crossref_primary_10_1016_j_addr_2016_07_012
crossref_primary_10_1016_j_nantod_2019_03_007
crossref_primary_10_4155_tde_2019_0077
crossref_primary_10_1016_j_drudis_2019_01_006
crossref_primary_10_24075_vrgmu_2018_084
crossref_primary_10_3892_or_2016_4575
crossref_primary_10_1002_smll_201601029
crossref_primary_10_1021_acsbiomaterials_1c00942
crossref_primary_10_1002_adfm_201910402
crossref_primary_10_1016_j_fct_2018_04_058
crossref_primary_10_1016_j_jconrel_2016_10_023
crossref_primary_10_1016_j_nano_2018_04_019
crossref_primary_10_1039_C6CS00592F
crossref_primary_10_1007_s11051_017_3746_5
crossref_primary_10_3103_S0027131416040118
crossref_primary_10_1134_S0036024421130203
crossref_primary_10_3390_pharmaceutics15102406
crossref_primary_10_1016_j_bioactmat_2021_10_014
crossref_primary_10_1016_j_xphs_2024_03_017
crossref_primary_10_1186_s12951_021_00866_9
crossref_primary_10_1039_C7TB00332C
crossref_primary_10_1080_17425247_2021_1865306
crossref_primary_10_1021_acschemneuro_8b00652
crossref_primary_10_1007_s10517_019_04469_1
crossref_primary_10_1016_j_jallcom_2023_172737
crossref_primary_10_1021_acs_bioconjchem_9b00142
crossref_primary_10_1080_10717544_2022_2058645
crossref_primary_10_1007_s12034_020_02166_8
crossref_primary_10_1039_C7MH01071K
crossref_primary_10_1002_advs_202413605
crossref_primary_10_1016_j_nano_2015_12_375
crossref_primary_10_1016_j_ymeth_2016_11_010
crossref_primary_10_1016_j_jconrel_2021_10_028
crossref_primary_10_1007_s11051_017_3754_5
crossref_primary_10_2147_IJN_S362192
crossref_primary_10_1016_j_rinp_2020_103350
crossref_primary_10_1007_s10517_019_04507_y
crossref_primary_10_1016_j_ijpharm_2024_125142
crossref_primary_10_4155_fmc_2018_0521
crossref_primary_10_1039_C9RA01356C
crossref_primary_10_1016_j_bbrc_2018_07_105
crossref_primary_10_1016_j_jddst_2018_03_018
crossref_primary_10_3762_bjnano_10_193
crossref_primary_10_1208_s12249_017_0874_2
Cites_doi 10.1016/0730-725X(87)90023-3
10.1007/s00401-003-0810-2
10.1021/cr068445e
10.1016/j.biomaterials.2009.08.045
10.1159/000323492
10.1038/35025215
10.1634/theoncologist.9-suppl_1-2
10.1088/0022-3727/36/13/201
10.3390/ijms13055554
10.1038/359845a0
10.1021/la104278m
10.1007/s10517-012-1662-3
10.1002/wnan.1157
10.1021/am301551n
10.1016/j.jmmm.2009.02.083
10.1097/00004424-199007000-00004
10.1021/jp904004w
10.1002/(SICI)1097-0215(19990219)84:1<10::AID-IJC3>3.0.CO;2-L
10.1038/194495a0
10.1016/j.jconrel.2008.05.010
10.1038/nrneurol.2009.159
10.1007/s10517-007-0167-y
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.nano.2014.12.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-9642
EndPage 833
ExternalDocumentID 25652902
10_1016_j_nano_2014_12_011
S1549963415000179
1_s2_0_S1549963415000179
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Russian Federation Ministry of Science and Education
  grantid: 11.G34.31.0004; RSF 14-15-00698; 14-13-00731; RFBR 13-04-01383A
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABXRA
ABZDS
ACDAQ
ACGFS
ACIEU
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CJTIS
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LUGTX
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OO0
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPC
SSH
SSI
SSM
SSP
SST
SSU
SSZ
T5K
Z5R
~G-
AACTN
AFKWA
AJOXV
AMFUW
RIG
AAIAV
AATCM
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c528t-b0f153159dc44be012a6eceda6cf4f2317f1a4006204020b8e9f2c1ce516a29b3
IEDL.DBID .~1
ISSN 1549-9634
1549-9642
IngestDate Fri Jul 11 02:09:06 EDT 2025
Wed Feb 19 02:27:22 EST 2025
Tue Jul 01 01:49:45 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Fri Feb 23 02:12:38 EST 2024
Sun Feb 23 10:18:48 EST 2025
Tue Aug 26 17:24:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Iron oxide nanoparticles
MRI
VEGF
Glioblastoma
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-b0f153159dc44be012a6eceda6cf4f2317f1a4006204020b8e9f2c1ce516a29b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25652902
PQID 1682890114
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1682890114
pubmed_primary_25652902
crossref_citationtrail_10_1016_j_nano_2014_12_011
crossref_primary_10_1016_j_nano_2014_12_011
elsevier_sciencedirect_doi_10_1016_j_nano_2014_12_011
elsevier_clinicalkeyesjournals_1_s2_0_S1549963415000179
elsevier_clinicalkey_doi_10_1016_j_nano_2014_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nanomedicine
PublicationTitleAlternate Nanomedicine
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Norden, Drappatz, Wen (bb0070) 2009; 5
Schmidt, Westphal, Hagel, Ergün, Stavrou, Rosen (bb0135) 1999; 84
Roohi, Lohrke, Ide, Schütz, Dassler (bb0055) 2012; 7
Giannopoulos, Kyritsis (bb0010) 2010; 79
(bb0020) 2011
Shein, Gurina, Leopol'd, Baklaushev, Korchagina, Grinenko (bb0090) 2012; 153
Amoozgar, Yeo (bb0130) 2012; 4
Laurent, Forge, Port, Roch, Vander, Muller (bb0040) 2008; 108
Ferrara (bb0115) 2004; 9
Santana, Dhadge, Roque (bb0035) 2012; 4
Ferguson, Minard, Krishnan (bb0050) 2009; 321
Yang, Liang, Han (bb0065) 2009; 113
Ancopoulos, Davis, Gale, Wiegand, Holash (bb0075) 2000; 407
Chen, Xie, Xu, Behera, Michalski, Biswal (bb0110) 2009; 30
Plate, Breier, Weich, Risau (bb0080) 1992; 359
Kratz (bb0125) 2008; 132
Barnhart, Kuhnert, Bakan, Berk (bb0015) 1987; 5
Wiogo, Lim, Bulmus, Yun, Amal (bb0060) 2011; 27
Rizvi, Asghar, Mehboob (bb0005) 2010; 9
Yu, Huang, Yu, Clyne (bb0045) 2012; 13
Pankhurst, Connolly, Jones, Dobson (bb0025) 2003; 36
Chekhonin, Baklaushev, Yusubalieva, Pavlov, Ukhova, Gurina (bb0105) 2007; 143
Paul, Beltz, Berger-Sweeney (bb0100) 2008; 3
Schneider, Ludwig, Tatenhorst, Braune, Oberleithner, Senner (bb0085) 2004; 107
Hunter, Greenwood (bb0095) 1962; 194
Majumdar, Zoghbi, Gore (bb0120) 1990; 25
Peng, Qian, Mao, Wang, Chen, Nie (bb0030) 2008; 3
Peng (10.1016/j.nano.2014.12.011_bb0030) 2008; 3
Pankhurst (10.1016/j.nano.2014.12.011_bb0025) 2003; 36
Yang (10.1016/j.nano.2014.12.011_bb0065) 2009; 113
Barnhart (10.1016/j.nano.2014.12.011_bb0015) 1987; 5
Yu (10.1016/j.nano.2014.12.011_bb0045) 2012; 13
Schmidt (10.1016/j.nano.2014.12.011_bb0135) 1999; 84
Giannopoulos (10.1016/j.nano.2014.12.011_bb0010) 2010; 79
Chekhonin (10.1016/j.nano.2014.12.011_bb0105) 2007; 143
Ferguson (10.1016/j.nano.2014.12.011_bb0050) 2009; 321
Roohi (10.1016/j.nano.2014.12.011_bb0055) 2012; 7
Norden (10.1016/j.nano.2014.12.011_bb0070) 2009; 5
Ancopoulos (10.1016/j.nano.2014.12.011_bb0075) 2000; 407
Schneider (10.1016/j.nano.2014.12.011_bb0085) 2004; 107
Shein (10.1016/j.nano.2014.12.011_bb0090) 2012; 153
Plate (10.1016/j.nano.2014.12.011_bb0080) 1992; 359
Amoozgar (10.1016/j.nano.2014.12.011_bb0130) 2012; 4
Chen (10.1016/j.nano.2014.12.011_bb0110) 2009; 30
Ferrara (10.1016/j.nano.2014.12.011_bb0115) 2004; 9
Wiogo (10.1016/j.nano.2014.12.011_bb0060) 2011; 27
Majumdar (10.1016/j.nano.2014.12.011_bb0120) 1990; 25
(10.1016/j.nano.2014.12.011_bb0020) 2011
Laurent (10.1016/j.nano.2014.12.011_bb0040) 2008; 108
Paul (10.1016/j.nano.2014.12.011_bb0100) 2008; 3
Hunter (10.1016/j.nano.2014.12.011_bb0095) 1962; 194
Santana (10.1016/j.nano.2014.12.011_bb0035) 2012; 4
Rizvi (10.1016/j.nano.2014.12.011_bb0005) 2010; 9
Kratz (10.1016/j.nano.2014.12.011_bb0125) 2008; 132
References_xml – volume: 5
  start-page: 610
  year: 2009
  end-page: 620
  ident: bb0070
  article-title: Antiangiogenic therapies for high-grade glioma
  publication-title: Nat Rev Neurol
– volume: 321
  start-page: 1548
  year: 2009
  end-page: 1551
  ident: bb0050
  article-title: Optimization of nanoparticle core size for magnetic particle imaging
  publication-title: J Magn Magn Mater
– volume: 25
  start-page: 771
  year: 1990
  end-page: 777
  ident: bb0120
  article-title: Pharmacokinetics of superparamagnetic iron-oxide MR contrast agents in the rat
  publication-title: Investig Radiol
– volume: 113
  start-page: 10454
  year: 2009
  end-page: 10458
  ident: bb0065
  article-title: Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques
  publication-title: J Phys Chem B
– volume: 9
  start-page: 773
  year: 2010
  end-page: 775
  ident: bb0005
  article-title: Gliosarcoma: A rare variant of glioblastoma multiforme
  publication-title: J Pak Med Assoc
– volume: 194
  start-page: 495
  year: 1962
  end-page: 496
  ident: bb0095
  article-title: Preparation of iodine-131 labelled human growth hormone of high specific activity
  publication-title: Nature
– volume: 7
  start-page: 4447
  year: 2012
  end-page: 4458
  ident: bb0055
  article-title: Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles
  publication-title: Int J Nanomedicine
– volume: 30
  start-page: 6912
  year: 2009
  end-page: 6919
  ident: bb0110
  article-title: Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting
  publication-title: Biomaterials
– volume: 359
  start-page: 845
  year: 1992
  end-page: 848
  ident: bb0080
  article-title: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo
  publication-title: Nature
– volume: 84
  start-page: 10
  year: 1999
  end-page: 18
  ident: bb0135
  article-title: evels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis
  publication-title: Int J Cancer
– volume: 4
  start-page: 5907
  year: 2012
  end-page: 5914
  ident: bb0035
  article-title: Dextran-coated magnetic supports modified with a biomimetic ligand for IgG purification
  publication-title: ACS Appl Mater Interfaces
– volume: 153
  start-page: 139
  year: 2012
  end-page: 142
  ident: bb0090
  article-title: Generation of monoclonal antibodies to recombinant vascular endothelial growth factor
  publication-title: Bull Exp Biol Med
– volume: 79
  start-page: 306
  year: 2010
  end-page: 312
  ident: bb0010
  article-title: Diagnosis and management of multifocal gliomas
  publication-title: Oncology
– volume: 107
  start-page: 272
  year: 2004
  end-page: 276
  ident: bb0085
  publication-title: Acta Neuropathol
– volume: 36
  start-page: 167
  year: 2003
  end-page: 181
  ident: bb0025
  article-title: Applications of magnetic nanoparticles in biomedicine
  publication-title: J Phys D Appl Phys
– volume: 27
  start-page: 843
  year: 2011
  end-page: 850
  ident: bb0060
  article-title: Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS)
  publication-title: Langmuir
– volume: 5
  start-page: 221
  year: 1987
  end-page: 231
  ident: bb0015
  article-title: Biodistribution of GdCl
  publication-title: Magn Reson Imaging
– volume: 3
  start-page: 311
  year: 2008
  end-page: 321
  ident: bb0030
  article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy
  publication-title: Int J Nanomedicine
– volume: 108
  start-page: 2064
  year: 2008
  end-page: 2110
  ident: bb0040
  article-title: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
  publication-title: Chem Rev
– volume: 132
  start-page: 171
  year: 2008
  end-page: 183
  ident: bb0125
  article-title: Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles
  publication-title: J Control Release
– volume: 407
  start-page: 242
  year: 2000
  end-page: 248
  ident: bb0075
  article-title: Vascular-specific growth factors and blood vessel formation
  publication-title: Nature
– volume: 4
  start-page: 219
  year: 2012
  end-page: 233
  ident: bb0130
  article-title: Recent advances in stealth coating of nanoparticle drug delivery systems
  publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol
– volume: 3
  start-page: 1
  year: 2008
  end-page: 4
  ident: bb0100
  article-title: Perfusion of brain tissues with fixative
  publication-title: Cold Spring Harb Protoc
– volume: 9
  start-page: 2
  year: 2004
  end-page: 10
  ident: bb0115
  article-title: Vascular Endothelial Growth Factor as a target for anticancer therapy
  publication-title: Oncologist
– year: 2011
  ident: bb0020
  article-title: ABLAVAR® [package insert]
– volume: 13
  start-page: 5554
  year: 2012
  end-page: 5570
  ident: bb0045
  article-title: Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture
  publication-title: Int J Mol Sci
– volume: 143
  start-page: 501
  year: 2007
  end-page: 509
  ident: bb0105
  article-title: Modeling and immunohistochemical analysis of C6 glioma in vivo
  publication-title: Bull Exp Biol Med
– volume: 5
  start-page: 221
  year: 1987
  ident: 10.1016/j.nano.2014.12.011_bb0015
  article-title: Biodistribution of GdCl3 and Gd-DTPA and their influence on proton magnetic relaxation in rat tissues
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(87)90023-3
– year: 2011
  ident: 10.1016/j.nano.2014.12.011_bb0020
– volume: 107
  start-page: 272
  year: 2004
  ident: 10.1016/j.nano.2014.12.011_bb0085
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-003-0810-2
– volume: 108
  start-page: 2064
  year: 2008
  ident: 10.1016/j.nano.2014.12.011_bb0040
  article-title: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
  publication-title: Chem Rev
  doi: 10.1021/cr068445e
– volume: 30
  start-page: 6912
  year: 2009
  ident: 10.1016/j.nano.2014.12.011_bb0110
  article-title: Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.045
– volume: 79
  start-page: 306
  year: 2010
  ident: 10.1016/j.nano.2014.12.011_bb0010
  article-title: Diagnosis and management of multifocal gliomas
  publication-title: Oncology
  doi: 10.1159/000323492
– volume: 407
  start-page: 242
  year: 2000
  ident: 10.1016/j.nano.2014.12.011_bb0075
  article-title: Vascular-specific growth factors and blood vessel formation
  publication-title: Nature
  doi: 10.1038/35025215
– volume: 7
  start-page: 4447
  year: 2012
  ident: 10.1016/j.nano.2014.12.011_bb0055
  article-title: Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles
  publication-title: Int J Nanomedicine
– volume: 9
  start-page: 2
  year: 2004
  ident: 10.1016/j.nano.2014.12.011_bb0115
  article-title: Vascular Endothelial Growth Factor as a target for anticancer therapy
  publication-title: Oncologist
  doi: 10.1634/theoncologist.9-suppl_1-2
– volume: 36
  start-page: 167
  year: 2003
  ident: 10.1016/j.nano.2014.12.011_bb0025
  article-title: Applications of magnetic nanoparticles in biomedicine
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/36/13/201
– volume: 13
  start-page: 5554
  year: 2012
  ident: 10.1016/j.nano.2014.12.011_bb0045
  article-title: Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms13055554
– volume: 359
  start-page: 845
  year: 1992
  ident: 10.1016/j.nano.2014.12.011_bb0080
  article-title: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo
  publication-title: Nature
  doi: 10.1038/359845a0
– volume: 9
  start-page: 773
  year: 2010
  ident: 10.1016/j.nano.2014.12.011_bb0005
  article-title: Gliosarcoma: A rare variant of glioblastoma multiforme
  publication-title: J Pak Med Assoc
– volume: 27
  start-page: 843
  year: 2011
  ident: 10.1016/j.nano.2014.12.011_bb0060
  article-title: Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS)
  publication-title: Langmuir
  doi: 10.1021/la104278m
– volume: 153
  start-page: 139
  year: 2012
  ident: 10.1016/j.nano.2014.12.011_bb0090
  article-title: Generation of monoclonal antibodies to recombinant vascular endothelial growth factor
  publication-title: Bull Exp Biol Med
  doi: 10.1007/s10517-012-1662-3
– volume: 3
  start-page: 311
  year: 2008
  ident: 10.1016/j.nano.2014.12.011_bb0030
  article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy
  publication-title: Int J Nanomedicine
– volume: 4
  start-page: 219
  year: 2012
  ident: 10.1016/j.nano.2014.12.011_bb0130
  article-title: Recent advances in stealth coating of nanoparticle drug delivery systems
  publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol
  doi: 10.1002/wnan.1157
– volume: 4
  start-page: 5907
  year: 2012
  ident: 10.1016/j.nano.2014.12.011_bb0035
  article-title: Dextran-coated magnetic supports modified with a biomimetic ligand for IgG purification
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am301551n
– volume: 321
  start-page: 1548
  year: 2009
  ident: 10.1016/j.nano.2014.12.011_bb0050
  article-title: Optimization of nanoparticle core size for magnetic particle imaging
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2009.02.083
– volume: 25
  start-page: 771
  year: 1990
  ident: 10.1016/j.nano.2014.12.011_bb0120
  article-title: Pharmacokinetics of superparamagnetic iron-oxide MR contrast agents in the rat
  publication-title: Investig Radiol
  doi: 10.1097/00004424-199007000-00004
– volume: 113
  start-page: 10454
  year: 2009
  ident: 10.1016/j.nano.2014.12.011_bb0065
  article-title: Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques
  publication-title: J Phys Chem B
  doi: 10.1021/jp904004w
– volume: 84
  start-page: 10
  year: 1999
  ident: 10.1016/j.nano.2014.12.011_bb0135
  article-title: evels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis
  publication-title: Int J Cancer
  doi: 10.1002/(SICI)1097-0215(19990219)84:1<10::AID-IJC3>3.0.CO;2-L
– volume: 194
  start-page: 495
  year: 1962
  ident: 10.1016/j.nano.2014.12.011_bb0095
  article-title: Preparation of iodine-131 labelled human growth hormone of high specific activity
  publication-title: Nature
  doi: 10.1038/194495a0
– volume: 3
  start-page: 1
  year: 2008
  ident: 10.1016/j.nano.2014.12.011_bb0100
  article-title: Perfusion of brain tissues with fixative
  publication-title: Cold Spring Harb Protoc
– volume: 132
  start-page: 171
  year: 2008
  ident: 10.1016/j.nano.2014.12.011_bb0125
  article-title: Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2008.05.010
– volume: 5
  start-page: 610
  year: 2009
  ident: 10.1016/j.nano.2014.12.011_bb0070
  article-title: Antiangiogenic therapies for high-grade glioma
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.159
– volume: 143
  start-page: 501
  year: 2007
  ident: 10.1016/j.nano.2014.12.011_bb0105
  article-title: Modeling and immunohistochemical analysis of C6 glioma in vivo
  publication-title: Bull Exp Biol Med
  doi: 10.1007/s10517-007-0167-y
SSID ssj0037009
Score 2.4576726
Snippet This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization...
Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 825
SubjectTerms Animals
Antibodies, Monoclonal, Murine-Derived - chemistry
Antibodies, Monoclonal, Murine-Derived - pharmacology
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - metabolism
Cattle
Contrast Media - chemistry
Contrast Media - pharmacology
Glioblastoma
Glioma - diagnostic imaging
Glioma - metabolism
Internal Medicine
Iron oxide nanoparticles
Magnetic Resonance Imaging
Magnetite Nanoparticles - chemistry
MRI
Radiography
Rats
Rats, Wistar
Vascular Endothelial Growth Factor A - antagonists & inhibitors
VEGF
Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1549963415000179
https://www.clinicalkey.es/playcontent/1-s2.0-S1549963415000179
https://dx.doi.org/10.1016/j.nano.2014.12.011
https://www.ncbi.nlm.nih.gov/pubmed/25652902
https://www.proquest.com/docview/1682890114
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelhbGX0e4z_UKFvg0vlizL8mMJzZK1KaNbR9-EJEslY3VCk_Sxf3vvbDkwtnawJ2Nzh6TjdB_W_U6EHHPLfWodpCU-lImwTCTgFgwEcqZS3FalsohGnlzI0ZX4cp1fb5BBh4XBsspo-1ub3ljr-KUfpdmfT6f9b9hcDNQHPFDT9QVBfEIUqOWfHtZlHlmRNmUeSJwgdQTOtDVetakRAMhE80uQsaec01PBZ-OEhtvkVYwe6Uk7wR2y4evX5MUkno-_IeMfp5-HSVvd7St6a25qBClSnMG8q4GjEKfSyeWY3k8XCKlsgZh0FqjF-yLocnU7u3tLroan3wejJF6WkLicq2Vi0wDGC4KTyglhPfgdIz0I0UgXRIAorgjMCIRMppgyWuXLwB1zPmfS8NJm78hmPav9B0KF8IVzWa6CdaIwyogqKBkyKUvlK6l6hHVS0i52EscLLX7prmTsp8Z1aZSsZlyDZHvk45pn3vbReJY664SvO4Qo2DQNZv5ZruJvXH4Rt-VCM70ASv2H6vRIvub8Tfv-OeJRpxkatiWetZjaz1YwksRUFrPNHnnfqsx63RBl5rxM-e5_jrpHXsJb3pZd7pPN5d3KH0BotLSHje4fkq2TweX5V3yOz0YXj3CMDVI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK9IL4pn0biDUWNHcdJHqdppWVrH2BDe7Nsx56KWFqt7f5-7hKnEoINidfEJzun893v4vudAT4KK3xqHaYlPlSJtFwmGBYMAjlTl8LWVWmJjTybq8m5_HKRX-zBUc-FobLK6Ps7n9566_hkFLU5Wi0Wo2_UXAzNByNQ2_Wlugf71J0qH8D-4fRkMu8dclakbaUHjU9IIHJnujKvxjTEAeSy_SvI-W3x6Tb82cah8SN4GAEkO-zW-Bj2fPME7s_iEflTmH4__jxOugJvX7Mrc9kQT5HRClZ9GRxDqMpmX6fsZrEmVmXHxWTLwCxdGcE226vl9TM4Hx-fHU2SeF9C4nJRbhKbBvRfiE9qJ6X1GHqM8qhHo1yQAYFcEbiRxJpMKWu0pa-CcNz5nCsjKps9h0GzbPxLYFL6wrksL4N1sjClkXUoVciUqkpfq3IIvNeSdrGZON1p8VP3VWM_NH2XJs1qLjRqdgifdjKrrpXGnaOzXvm6J4miW9Po6e-UKv4m5ddxZ64112scqf-wniHkO8nfDPCfM37oLUPjzqTjFtP45RZnUpTNUsI5hBedyey-G4FmLqpUvPrPWd_Dg8nZ7FSfTucnr-EA3-RdFeYbGGyut_4tIqWNfRd3wi80_g5u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VEGF-targeted+magnetic+nanoparticles+for+MRI+visualization+of+brain+tumor&rft.jtitle=Nanomedicine&rft.au=Abakumov%2C+Maxim+A.&rft.au=Nukolova%2C+Natalia+V.&rft.au=Sokolsky-Papkov%2C+Marina&rft.au=Shein%2C+Sergey+A.&rft.date=2015-05-01&rft.issn=1549-9634&rft.volume=11&rft.issue=4&rft.spage=825&rft.epage=833&rft_id=info:doi/10.1016%2Fj.nano.2014.12.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nano_2014_12_011
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15499634%2FS1549963415X00049%2Fcov150h.gif