Neutrophil Extracellular Traps Effectively Control Acute Chikungunya Virus Infection

The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to m...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 10; p. 3108
Main Authors Hiroki, Carlos H, Toller-Kawahisa, Juliana E, Fumagalli, Marcilio J, Colon, David F, Figueiredo, Luiz T M, Fonseca, Bendito A L D, Franca, Rafael F O, Cunha, Fernando Q
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 31.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. , mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. , NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.
AbstractList The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. , mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. , NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.
The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. In vitro, mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. In vivo, NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR−/− mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.
The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. In vitro , mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. In vivo , NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR −/− mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.
Author Franca, Rafael F O
Fumagalli, Marcilio J
Toller-Kawahisa, Juliana E
Hiroki, Carlos H
Fonseca, Bendito A L D
Colon, David F
Figueiredo, Luiz T M
Cunha, Fernando Q
AuthorAffiliation 4 Department of Virology and Experimental Therapy, Institute Aggeu Magalhaes, Oswaldo Cruz Foundation , Recife , Brazil
3 Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo , Ribeirao Preto , Brazil
1 Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo , Ribeirao Preto , Brazil
2 Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo , Ribeirao Preto , Brazil
AuthorAffiliation_xml – name: 4 Department of Virology and Experimental Therapy, Institute Aggeu Magalhaes, Oswaldo Cruz Foundation , Recife , Brazil
– name: 3 Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo , Ribeirao Preto , Brazil
– name: 2 Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo , Ribeirao Preto , Brazil
– name: 1 Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo , Ribeirao Preto , Brazil
Author_xml – sequence: 1
  givenname: Carlos H
  surname: Hiroki
  fullname: Hiroki, Carlos H
  organization: Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
– sequence: 2
  givenname: Juliana E
  surname: Toller-Kawahisa
  fullname: Toller-Kawahisa, Juliana E
  organization: Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
– sequence: 3
  givenname: Marcilio J
  surname: Fumagalli
  fullname: Fumagalli, Marcilio J
  organization: Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
– sequence: 4
  givenname: David F
  surname: Colon
  fullname: Colon, David F
  organization: Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
– sequence: 5
  givenname: Luiz T M
  surname: Figueiredo
  fullname: Figueiredo, Luiz T M
  organization: Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
– sequence: 6
  givenname: Bendito A L D
  surname: Fonseca
  fullname: Fonseca, Bendito A L D
  organization: Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
– sequence: 7
  givenname: Rafael F O
  surname: Franca
  fullname: Franca, Rafael F O
  organization: Department of Virology and Experimental Therapy, Institute Aggeu Magalhaes, Oswaldo Cruz Foundation, Recife, Brazil
– sequence: 8
  givenname: Fernando Q
  surname: Cunha
  fullname: Cunha, Fernando Q
  organization: Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32082301$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtvGyEUhVGVqkmT7LuqZtmNXeDOAzaVIstNLUXtxs0WMQzYpAy4MET1vw-20yhhcxGc-93H-YjOfPAaoU8EzwEY_2rsOOY5xYTPMRDM3qEL0rb1DCitz17dz9F1Sg-4nJoDQPMBnQPFjAImF2j9U-cpht3Wumr5b4pSaeeyk7FaR7lL1dIYrSb7qN2-WgRfpK66UXnS1WJr_2S_yX4vq3sbc6pW_qgN_gq9N9Ilff0cL9Hv78v14sfs7tftanFzN1MNZdNMGkWJYQq40l2DFRgN0A6khr7XpO8aQw20hNNadxjz2kjKaY8Hyo2RDe3gEq1O3CHIB7GLdpRxL4K04vgQ4kbIOFnltABQrGBVw7iq24bwmnWkawfoOZeE6cL6dmLtcj_qQekyq3RvoG9_vN2KTXgUpbWGUyiAL8-AGP5mnSYx2nTYpvQ65CQotBR3pAxSpPgkVTGkFLV5KUOwOHgrjt6Kg7fi6G1J-fy6vZeE_07CEztgo3Q
CitedBy_id crossref_primary_10_3390_pathogens12020209
crossref_primary_10_1038_s41598_020_75357_2
crossref_primary_10_15789_1563_0625_IDC_2594
crossref_primary_10_3389_fmicb_2021_744164
crossref_primary_10_3389_fmed_2020_00301
crossref_primary_10_1016_j_tru_2022_100117
crossref_primary_10_1093_infdis_jiad526
crossref_primary_10_1016_j_dci_2023_104728
crossref_primary_10_1016_j_semcancer_2021_07_011
crossref_primary_10_1111_joim_13585
crossref_primary_10_1111_bph_15587
crossref_primary_10_1016_j_mam_2021_100996
crossref_primary_10_3390_cells11233785
crossref_primary_10_3389_fimmu_2021_615527
crossref_primary_10_3390_ijms22094726
crossref_primary_10_4081_mrm_2021_758
crossref_primary_10_2139_ssrn_4166520
crossref_primary_10_3389_fimmu_2021_652470
crossref_primary_10_1084_jem_20201129
crossref_primary_10_3390_immuno2040043
crossref_primary_10_2139_ssrn_3589403
crossref_primary_10_3390_v16020245
crossref_primary_10_3390_cells11081322
crossref_primary_10_3389_fimmu_2021_781535
crossref_primary_10_3389_fmicb_2022_798853
crossref_primary_10_3390_cells11172717
crossref_primary_10_1016_j_thromres_2020_04_031
crossref_primary_10_1007_s11010_022_04356_w
crossref_primary_10_3389_fphar_2021_708302
crossref_primary_10_3389_fimmu_2022_850416
crossref_primary_10_3390_cells10081891
crossref_primary_10_1096_fj_202201904R
crossref_primary_10_1016_j_tips_2023_06_007
crossref_primary_10_3389_fimmu_2021_746203
crossref_primary_10_3390_jcm11092460
crossref_primary_10_1016_j_intimp_2021_108516
crossref_primary_10_3389_fimmu_2021_744183
crossref_primary_10_1073_pnas_2101497118
crossref_primary_10_1186_s12931_023_02336_2
crossref_primary_10_1002_bies_202000232
crossref_primary_10_1016_j_humimm_2022_01_006
crossref_primary_10_3389_fimmu_2020_582895
crossref_primary_10_1016_j_isci_2023_108074
crossref_primary_10_1002_mco2_162
crossref_primary_10_3389_fcvm_2021_785738
crossref_primary_10_3389_fcimb_2020_00407
crossref_primary_10_1242_dmm_049804
crossref_primary_10_3390_ijms241411385
crossref_primary_10_2174_2666796701999201204123259
crossref_primary_10_29328_journal_jsctt_1001020
crossref_primary_10_3389_fimmu_2021_775267
crossref_primary_10_1016_j_peptides_2021_170644
crossref_primary_10_20538_1682_0363_2024_1_56_63
crossref_primary_10_1007_s42977_023_00153_8
crossref_primary_10_1080_10715762_2020_1866757
crossref_primary_10_1128_jvi_01102_23
crossref_primary_10_1111_imr_13175
crossref_primary_10_1042_CS20220039
crossref_primary_10_1002_rth2_12808
crossref_primary_10_3389_fimmu_2023_1281667
crossref_primary_10_3390_life11070717
crossref_primary_10_3389_fimmu_2023_1254310
crossref_primary_10_3389_fimmu_2022_864387
crossref_primary_10_3390_cells10061324
crossref_primary_10_3390_ijms23073793
crossref_primary_10_3389_fimmu_2020_00695
crossref_primary_10_3389_fimmu_2021_680134
crossref_primary_10_1177_03009858211005537
crossref_primary_10_3389_fimmu_2021_633540
crossref_primary_10_3389_fimmu_2021_582935
crossref_primary_10_1080_14728222_2024_2351504
crossref_primary_10_3390_biology12101332
crossref_primary_10_3389_fimmu_2022_784443
crossref_primary_10_1007_s11926_021_00987_y
crossref_primary_10_3390_microorganisms8121925
crossref_primary_10_1016_j_dci_2022_104492
crossref_primary_10_3390_tropicalmed6010012
Cites_doi 10.1038/s41385-018-0045-0
10.1016/j.chom.2012.05.015
10.1038/nri.2017.105
10.1038/srep34581
10.1046/j.1440-1754.2001.00618.x
10.1002/path.4660
10.1016/j.chom.2013.01.005
10.1126/science.1092385
10.1016/j.humimm.2014.05.011
10.1089/dna.2013.2211
10.1016/j.jinf.2015.06.006
10.1371/journal.ppat.1003619
10.1099/vir.0.021915-0
10.1038/nm.4294
10.1371/journal.pntd.0005048
10.1038/s41584-018-0039-z
10.3389/fimmu.2018.03007
10.3389/fimmu.2018.02098
10.1016/j.jaci.2015.01.039
10.1084/jem.20131092
10.1371/journal.pone.0124082
10.1016/0035-9203(55)90081-X
10.1073/pnas.0900196106
10.1164/rccm.200601-103OC
10.3389/fimmu.2016.00325
10.3389/fimmu.2016.00366
10.15252/emmm.201404459
10.3201/eid1305.070015
10.1089/vim.2017.0052
10.1371/journal.pone.0148142
10.1159/000440723
10.1016/j.virusres.2016.11.033
10.1371/journal.ppat.0040029
10.1093/infdis/jix475
10.12688/f1000research.7171.1
10.1172/JCI83873
10.1016/S1473-3099(16)30385-1
ContentType Journal Article
Copyright Copyright © 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha.
Copyright © 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha. 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha
Copyright_xml – notice: Copyright © 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha.
– notice: Copyright © 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha. 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fimmu.2019.03108
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
EndPage 3108
ExternalDocumentID oai_doaj_org_article_33c83bbc589c46519487176d3b99a18e
10_3389_fimmu_2019_03108
32082301
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
IPNFZ
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RNS
RPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c528t-afc21f8c39ce750c3fe336d143bbe1b75f2f361924e70094fa292b0d29ffa5273
IEDL.DBID RPM
ISSN 1664-3224
IngestDate Tue Oct 22 15:16:40 EDT 2024
Tue Sep 17 21:21:14 EDT 2024
Thu Oct 24 22:21:27 EDT 2024
Thu Sep 26 15:47:00 EDT 2024
Sat Sep 28 08:30:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chikungunya
NETs
viral infection
neutrophils
innate response
Language English
License Copyright © 2020 Hiroki, Toller-Kawahisa, Fumagalli, Colon, Figueiredo, Fonseca, Franca and Cunha.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-afc21f8c39ce750c3fe336d143bbe1b75f2f361924e70094fa292b0d29ffa5273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Lisa F. P. Ng, Singapore Immunology Network (A*STAR), Singapore
This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology
Reviewed by: E. Ashley Moseman, Duke University School of Medicine, United States; Pierre Roques, CEA Saclay, France
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005923/
PMID 32082301
PQID 2362071009
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_33c83bbc589c46519487176d3b99a18e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7005923
proquest_miscellaneous_2362071009
crossref_primary_10_3389_fimmu_2019_03108
pubmed_primary_32082301
PublicationCentury 2000
PublicationDate 2020-01-31
PublicationDateYYYYMMDD 2020-01-31
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Alves-Filho (B16) 2009; 106
Her (B32) 2015; 7
Raftery (B27) 2014; 211
Cortjens (B34) 2016; 238
Apel (B37) 2018; 14
Burt (B1) 2017; 17
Donald (B14) 2016; 10
Lumsden (B2) 1955; 49
Smith (B7) 2001; 37
Czaikoski (B18) 2016; 11
Palha (B13) 2013; 9
Petitdemange (B4) 2015; 135
Schönrich (B12) 2016; 7
Barr (B35) 2018; 11
Moreno-Altamirano (B29) 2015; 58
Gasque (B5) 2015; 71
Opasawatchai (B31) 2018; 9
Lanciotti (B20) 2007; 13
Yost (B30) 2016; 126
Brinkmann (B10) 2004; 303
Amdekar (B26) 2017; 30
Trevelin (B15) 2016; 6
Urbaczek (B19) 2014; 75
Jorch (B11) 2017; 23
Papayannopoulos (B33) 2018; 18
Rios-Santos (B17) 2007; 175
Jenne (B36) 2013; 13
Akk (B28) 2016; 7
Strandin (B24) 2018; 9
Funchal (B22) 2015; 10
Gabriel (B6) 2013; 32
Zhu (B25) 2018; 217
Agraz-Cibrian (B9) 2017; 228
Wojtasiak (B8) 2010; 91
Saitoh (B21) 2012; 12
Couderc (B23) 2008; 4
Petersen (B3) 2016; 5
References_xml – volume: 11
  start-page: 1420
  year: 2018
  ident: B35
  article-title: Neutrophil extracellular traps prevent HIV infection in the female genital tract
  publication-title: Muco Immunol.
  doi: 10.1038/s41385-018-0045-0
  contributor:
    fullname: Barr
– volume: 12
  start-page: 109
  year: 2012
  ident: B21
  article-title: Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2012.05.015
  contributor:
    fullname: Saitoh
– volume: 18
  start-page: 134
  year: 2018
  ident: B33
  article-title: Neutrophil extracellular traps in immunity and disease
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri.2017.105
  contributor:
    fullname: Papayannopoulos
– volume: 6
  start-page: 34581
  year: 2016
  ident: B15
  article-title: Apocynin and Nox2 regulate NF-κB by modifying thioredoxin-1 redox-state
  publication-title: Sci Rep.
  doi: 10.1038/srep34581
  contributor:
    fullname: Trevelin
– volume: 37
  start-page: 146
  year: 2001
  ident: B7
  article-title: Leucocyte populations in respiratory syncytial virus-induced bronchiolitis
  publication-title: J Paediatr Child Health.
  doi: 10.1046/j.1440-1754.2001.00618.x
  contributor:
    fullname: Smith
– volume: 238
  start-page: 401
  year: 2016
  ident: B34
  article-title: Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease
  publication-title: J Pathol.
  doi: 10.1002/path.4660
  contributor:
    fullname: Cortjens
– volume: 13
  start-page: 169
  year: 2013
  ident: B36
  article-title: Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2013.01.005
  contributor:
    fullname: Jenne
– volume: 303
  start-page: 1532
  year: 2004
  ident: B10
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science.
  doi: 10.1126/science.1092385
  contributor:
    fullname: Brinkmann
– volume: 75
  start-page: 785
  year: 2014
  ident: B19
  article-title: Influence of FcγRIIIb polymorphism on its ability to cooperate with FcγRIIa and CR3 in mediating the oxidative burst of human neutrophils
  publication-title: Hum Immunol.
  doi: 10.1016/j.humimm.2014.05.011
  contributor:
    fullname: Urbaczek
– volume: 32
  start-page: 665
  year: 2013
  ident: B6
  article-title: Neutrophils: neglected players in viral diseases
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2013.2211
  contributor:
    fullname: Gabriel
– volume: 71
  start-page: 413
  year: 2015
  ident: B5
  article-title: The immunology and inflammatory responses of human melanocytes in infectious diseases
  publication-title: J Infect.
  doi: 10.1016/j.jinf.2015.06.006
  contributor:
    fullname: Gasque
– volume: 9
  start-page: e1003619
  year: 2013
  ident: B13
  article-title: Real-time whole-body visualization of chikungunya virus infection and host interferon response in zebrafish
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003619
  contributor:
    fullname: Palha
– volume: 91
  start-page: 2158
  year: 2010
  ident: B8
  article-title: Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection
  publication-title: J Gene Virol.
  doi: 10.1099/vir.0.021915-0
  contributor:
    fullname: Wojtasiak
– volume: 23
  start-page: 279
  year: 2017
  ident: B11
  article-title: An emerging role for neutrophil extracellular traps in noninfectious disease
  publication-title: Nat Med.
  doi: 10.1038/nm.4294
  contributor:
    fullname: Jorch
– volume: 10
  start-page: e0005048
  year: 2016
  ident: B14
  article-title: Full genome sequence and sfRNA interferon antagonist activity of zika virus from recife, Brazil
  publication-title: PLoS Negl Trop Dis.
  doi: 10.1371/journal.pntd.0005048
  contributor:
    fullname: Donald
– volume: 14
  start-page: 467
  year: 2018
  ident: B37
  article-title: The role of neutrophil extracellular traps in rheumatic diseases
  publication-title: Nat Rev Rheumatol.
  doi: 10.1038/s41584-018-0039-z
  contributor:
    fullname: Apel
– volume: 9
  start-page: 3007
  year: 2018
  ident: B31
  article-title: Neutrophil activation and early features of NET formation are associated with dengue virus infection in human
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2018.03007
  contributor:
    fullname: Opasawatchai
– volume: 9
  start-page: 2098
  year: 2018
  ident: B24
  article-title: Neutrophil activation in acute hemorrhagic fever with renal syndrome is mediated by hantavirus-infected microvascular endothelial cells
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2018.02098
  contributor:
    fullname: Strandin
– volume: 135
  start-page: 846
  year: 2015
  ident: B4
  article-title: Control of immunopathology during chikungunya virus infection
  publication-title: J Allergy Clin Immunol.
  doi: 10.1016/j.jaci.2015.01.039
  contributor:
    fullname: Petitdemange
– volume: 211
  start-page: 1485
  year: 2014
  ident: B27
  article-title: β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps
  publication-title: J Exp Med.
  doi: 10.1084/jem.20131092
  contributor:
    fullname: Raftery
– volume: 10
  start-page: e0124082
  year: 2015
  ident: B22
  article-title: Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0124082
  contributor:
    fullname: Funchal
– volume: 49
  start-page: 33
  year: 1955
  ident: B2
  article-title: An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953
  publication-title: Trans R Soc Trop Med Hyg.
  doi: 10.1016/0035-9203(55)90081-X
  contributor:
    fullname: Lumsden
– volume: 106
  start-page: 4018
  year: 2009
  ident: B16
  article-title: Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0900196106
  contributor:
    fullname: Alves-Filho
– volume: 175
  start-page: 490
  year: 2007
  ident: B17
  article-title: Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide
  publication-title: Am J Respir Crit Care Med.
  doi: 10.1164/rccm.200601-103OC
  contributor:
    fullname: Rios-Santos
– volume: 7
  start-page: 325
  year: 2016
  ident: B28
  article-title: Neutrophil extracellular traps enhance early inflammatory response in sendai virus-induced asthma phenotype
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2016.00325
  contributor:
    fullname: Akk
– volume: 7
  start-page: 366
  year: 2016
  ident: B12
  article-title: Neutrophil extracellular traps go viral
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2016.00366
  contributor:
    fullname: Schönrich
– volume: 7
  start-page: 24
  year: 2015
  ident: B32
  article-title: Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response
  publication-title: EMBO Mol Med.
  doi: 10.15252/emmm.201404459
  contributor:
    fullname: Her
– volume: 13
  start-page: 764
  year: 2007
  ident: B20
  article-title: Chikungunya virus in US travelers returning from India, 2006
  publication-title: Emerg Infect Dis.
  doi: 10.3201/eid1305.070015
  contributor:
    fullname: Lanciotti
– volume: 30
  start-page: 691
  year: 2017
  ident: B26
  article-title: Chikungunya virus-induced arthritis: role of host and viral factors in the pathogenesis
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2017.0052
  contributor:
    fullname: Amdekar
– volume: 11
  start-page: e0148142
  year: 2016
  ident: B18
  article-title: Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0148142
  contributor:
    fullname: Czaikoski
– volume: 58
  start-page: 250
  year: 2015
  ident: B29
  article-title: Dengue virus serotype-2 interferes with the formation of neutrophil extracellular traps
  publication-title: Intervirology.
  doi: 10.1159/000440723
  contributor:
    fullname: Moreno-Altamirano
– volume: 228
  start-page: 124
  year: 2017
  ident: B9
  article-title: Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.11.033
  contributor:
    fullname: Agraz-Cibrian
– volume: 4
  start-page: e29
  year: 2008
  ident: B23
  article-title: A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0040029
  contributor:
    fullname: Couderc
– volume: 217
  start-page: 428
  year: 2018
  ident: B25
  article-title: High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza A infection
  publication-title: J Infect Dis.
  doi: 10.1093/infdis/jix475
  contributor:
    fullname: Zhu
– volume: 5
  year: 2016
  ident: B3
  article-title: Chikungunya: epidemiology
  publication-title: F1000Res
  doi: 10.12688/f1000research.7171.1
  contributor:
    fullname: Petersen
– volume: 126
  start-page: 3783
  year: 2016
  ident: B30
  article-title: Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation
  publication-title: J Clin Invest.
  doi: 10.1172/JCI83873
  contributor:
    fullname: Yost
– volume: 17
  start-page: e107
  year: 2017
  ident: B1
  article-title: Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen
  publication-title: Lancet Infect Dis.
  doi: 10.1016/S1473-3099(16)30385-1
  contributor:
    fullname: Burt
SSID ssj0000493335
Score 2.5451777
Snippet The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3108
SubjectTerms Chikungunya
Immunology
innate response
NETs
neutrophils
viral infection
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBC8eitvEJs1RlxUV9KTiLSRpwtZHd9ltwf33TpJ12RXBi9c2tOGbSeabZvoNQqdMWc5y4lLHOSQomulU5EKDLxtDyhzS7SDHcP_Abp4u7l7yl7lWX74mLMoDR-DOKTUF1drkhTC-b7cAhp1xVlIthMoKG3bfDplLpl4j76WU5vFcErIwce6qj4_Wl3J5UdPMd5Oci0NBrv83jvmzVHIu9lyvo7UpacSXcbIbaMnWm2gltpGcbKHHB9s2o8GwX73j3ic8wH-N9-WlGCLRcIyjQjFsa-8T3I2l6fjStI3F3X71Bqu9rScKP1ejdoxvp8VZ9TZ6uu49dm_SabeE1OSkaFLlDMlcYagwFmiAoc5SykrgQ1rbTPPcEUdDvmW5ryd0igiiOyURzikvw7aDlutBbfcQVgxMWzJYz1YBobNKl4LBYNURVvFMJ-jsGzs5jKIYEpIJj7MMOEuPsww4J-jKgzsb5-WswwUwspwaWf5l5ASdfJtGgvt7FFVtB-1YEgjAQaFIJGg3mmr2KkrCMWKWIL5gxIW5LN6pq36Q2Ob-p1xC9_9j8gdolfgkvZNBwDtEy82otUfAZBp9HJz2CxAN8ns
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmpklcJvaLBTbkSbvskNHYix0f0NRVVGwSnOjELbIdm4aVtKSJRP973nMCrKhHrkmcWN_z8_te_PyZkK9COylS5mMvJSQoRphYpcrAWLaWFSmk20GO4fRMnEx-_LlILx63R_cALjemdnie1KSefb-9Wf0Ehz_CjBPi7aEvr69brNJCvdIEd_6-ZBAXscDrtCf7Vx0X5pyn3VrlxoZrsSlI-G_inU_LJ_-LR-Md8ronknTYWf4NeeGqt-RVd7Tk6h05P3NtU88X03JGj2_hBfiHHktOKUSnxZJ2qsUw1c1WdNSVq9OhbRtHR9PyH8wAbbXS9G9Zt0v6uy_Yqt6Tyfj4fHQS9ycoxDZlWRNrb1niM8uVdUANLPeOc1EARzLGJUamnnkecjAnscbQa6aYGRRMea9Rmu0D2armlftIqBZg7kKAjzsNJM9pUygBD-uBclomJiLf7rHLF51QRg4JBuKcB5xzxDkPOEfkF4L78BxKXIcL8_oy7z0GWtoMumnTTFk8sF1BapVIUXCjlE4yF5Ev96bJwSUQRV25ebvMGQTloFqkIrLbmerhU5yFpcUkInLNiGt9Wb9TldMguy1xoy7je8_R-X2yzTBxHyQQBD-RraZu3WdgN405CIP2Dmbk-x8
  priority: 102
  providerName: Scholars Portal
Title Neutrophil Extracellular Traps Effectively Control Acute Chikungunya Virus Infection
URI https://www.ncbi.nlm.nih.gov/pubmed/32082301
https://search.proquest.com/docview/2362071009
https://pubmed.ncbi.nlm.nih.gov/PMC7005923
https://doaj.org/article/33c83bbc589c46519487176d3b99a18e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7aJiFxQfwmDCYjceGQtbYXOz6OamMgdeKwod4i27FpoE2rNpHW_55nJ5lWxImLD4mdWO_Zee-LP38G-Ci0kyJjPvVSIkAxwqQqUwbHsrWszBBuRzmG6bW4uj37NstmB5ANe2Eiad-a6rReLE_rah65leulHQ08sdH36USGLZOMjw7hEMPvA4j-q0t5OedZtySJAEyNfLVctoHFFfRM6Tgc0cdZXGGie9Eoivb_K9P8mzD5IAJdPoUnfepIzrsuPoMDVz-HR91hkrsXcHPt2mazWs-rBbm4wweEf_KBZEowHq23pNMpxo_bYkcmHUGdnNu2cWQyr37jnG_rnSY_qk27JV97ilb9Em4vL24mV2l_ZkJqM5Y3qfaWUZ9brqzDZMBy7zgXJWZFxjhqZOaZ5xF1ORlYhV4zxcy4ZMp7HcTYXsFRvardGyBaoINLgbPaaUzrnDalElhZj5XTkpoEPg22K9adNEaBkCKYvIgmL4LJi2jyBD4H497XC6LW8cJq87PoXYstbY7dtFmubDiiXSGYolKU3Cilae4S-DC4psBJEKyoa7dqtwXDMBx1ilQCrztX3b9qcHUCcs-Je33Zv4PjLgpt9-Ps7X-3PIbHLODzMcVY9w6Omk3r3mMS05iTCP6x_DKjWE7P8pM4jP8A_LP2fA
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ4hdEL8JP43EhUPWxp7j-DiqTR2sFYcO7RbZjr0G2rRqE4n-9zw7ybQiTlwTO7Hee857X_z5M8CnVFmRcupiJwQCFJ3qWHKpMZaNoQVHuB3kGCbTdHx18vWaXx8A7_fCBNK-0eVxtVgeV-U8cCvXSzPoeWKD75OR8FsmKRvcg_ucCZncAek_26KXMcbbRUmEYHLgyuWy8Twur2iaDP0hfYyGNaZkLx8F2f5_1Zp_Uybv5KDzx_CoKx7JaTvIJ3Bgq6fwoD1OcvcMZlPb1JvVel4uyNlvfID_K-9ppgQz0npLWqVi_LwtdmTUUtTJqWlqS0bz8hfO-qbaKfKj3DRbctGRtKrncHV-NhuN4-7UhNhwmtWxcoYmLjNMGovlgGHOMpYWWBdpbRMtuKOOBdxlhecVOkUl1cOCSueUl2N7AYfVqrKvgKgUXVykOK-twsLOKl3IFBurobRKJDqCz73t8nUrjpEjqPAmz4PJc2_yPJg8gi_euLftvKx1uLDa3OSdc7GnyXCYhmfS-EPaJcKpRKQF01KqJLMRfOxdk-M08FZUlV0125xiIg5KRTKCl62rbl_VuzoCsefEvbHs38HIC1LbXaS9_u-eH-DheDa5zC8vpt_ewBH1aH2YYOZ7C4f1prHvsKSp9fsQwH8AuGP3EQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgEYgL4pvwaSQuHLJpbGzHx6VstQtstYddtDfLduxtoE2jNpHov2fspKsWceKaxIk1M87Mi1_eIPSBayc4Iz71QgBAMdykkkkDsWwtKRnA7SjHcDblJ5efvl6xq51WX5G0b011WM8Xh3U1i9zKZmGzLU8sOz8bi_DLJKFZU_rsNrrDKATZDlD_2Re-lFLWb0wCDJOZrxaLLnC5gqppPgqN-iiJ-0z5Xk6K0v3_qjf_pk3u5KHJQ_RgKCDxUT_RR-iWqx-ju31Lyc0TdDF1XbtaNrNqjo9_ww3Cl_lANcWQlZo17tWK4RU33-BxT1PHR7ZrHR7Pql-w8rt6o_GPatWt8elA1KqfosvJ8cX4JB06J6SWkaJNtbck94Wl0jooCSz1jlJeQm1kjMuNYJ54GrGXE4Fb6DWRxIxKIr3XQZLtGTqol7V7gbDm4OaSw9p2Goo7p00pOVysR9JpkZsEfdzaTjW9QIYCYBFMrqLJVTC5iiZP0Odg3JvrgrR1PLBcXavBwTDSFjBNywppQ6N2CZAqF7ykRkqdFy5B77euUbAUghV17ZbdWhFIxlGtSCboee-qm0dtXZ0gsefEvbnsn4Hoi3LbQ7S9_O-R79C98y8T9f10-u0Vuk8CYB_lkPxeo4N21bk3UNW05m2M3z8_Zvgk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrophil+Extracellular+Traps+Effectively+Control+Acute+Chikungunya+Virus+Infection&rft.jtitle=Frontiers+in+immunology&rft.au=Carlos+H.+Hiroki&rft.au=Juliana+E.+Toller-Kawahisa&rft.au=Marcilio+J.+Fumagalli&rft.au=David+F.+Colon&rft.date=2020-01-31&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=10&rft_id=info:doi/10.3389%2Ffimmu.2019.03108&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_33c83bbc589c46519487176d3b99a18e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon