Congestive heart failure detection using random forest classifier

•Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random forest method gives 100% classification accuracy in detecting CHF. Automatic electrocardiogram (ECG) heartbeat classification is substantial...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 130; pp. 54 - 64
Main Authors Masetic, Zerina, Subasi, Abdulhamit
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.07.2016
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
DOI10.1016/j.cmpb.2016.03.020

Cover

Loading…
Abstract •Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random forest method gives 100% classification accuracy in detecting CHF. Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine.
AbstractList Background and objectives: Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. Methods: The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. Results: The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Conclusions: Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine.
Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine.
•Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random forest method gives 100% classification accuracy in detecting CHF. Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine.
BACKGROUND AND OBJECTIVESAutomatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series.METHODSThe study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments.RESULTSThe experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy.CONCLUSIONSImpressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine.
Highlights • Heartbeat classification is substantial for diagnosing heart failure. • Machine learning methods classifies normal and congestive heart failure (CHF). • The experimental results are showed that the Random Forest method gives 100% classification accuracy in detecting congestive heart failure (CHF).
Author Subasi, Abdulhamit
Masetic, Zerina
Author_xml – sequence: 1
  givenname: Zerina
  surname: Masetic
  fullname: Masetic, Zerina
  email: zmasetic@ibu.edu.ba
  organization: International Burch University, Faculty of Engineering and Information Technologies, 71000 Sarajevo, Bosnia and Herzegovina
– sequence: 2
  givenname: Abdulhamit
  surname: Subasi
  fullname: Subasi, Abdulhamit
  email: absubasi@effatuniversity.edu.sa
  organization: Effat University, College of Engineering, Computer Science Department, Jeddah 21478, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27208521$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rFTEUhoNU7G31D7iQWbqZ8SQz-RIRysUvKLhQ1yGTOam5zp1ck5lC_30z3OqiYCsEEsjznoTznDNyMsUJCXlJoaFAxZtd4_aHvmHl3EDbAIMnZEOVZLXkgp-QTbnQNRMgT8lZzjsAYJyLZ-SUSQaKM7ohF9s4XWGewzVWP9GmufI2jEvCasAZ3RziVC05TFdVstMQ95WPqeCVG23OwQdMz8lTb8eML-72c_Lj44fv28_15ddPX7YXl7XjTM21tVwPwnm0tu9679GLjlEHvFeAGvqyrOCdVBI622qlUULLvOu19i0Muj0nr491Dyn-XsofzD5kh-NoJ4xLNlQx3impuPgPFJRodQft46jUICjvtCzoqzt06fc4mEMKe5tuzJ9mFoAdAZdizgn9X4SCWY2ZnVmNmdWYgdYUYyWk7oVcmO3a9zkVEw9H3x2jWNp-XVSY7AJODoeQijozxPBw_P29uBvDFJwdf-EN5l1c0lSEGmoyM2C-rdO0DhPlbWmcWI28_XeBx16_BSST2HA
CitedBy_id crossref_primary_10_3390_app9010171
crossref_primary_10_1080_09640568_2020_1817729
crossref_primary_10_1109_TASE_2020_2983061
crossref_primary_10_1007_s13042_020_01128_0
crossref_primary_10_1016_j_bspc_2022_104392
crossref_primary_10_1515_bams_2020_0033
crossref_primary_10_1016_j_eswa_2024_124702
crossref_primary_10_3390_diagnostics11101863
crossref_primary_10_1007_s13369_021_05972_2
crossref_primary_10_1016_j_compbiomed_2021_104457
crossref_primary_10_3389_fneur_2020_538052
crossref_primary_10_26599_TST_2022_9010008
crossref_primary_10_1371_journal_pone_0281466
crossref_primary_10_1016_j_knosys_2019_105441
crossref_primary_10_1080_09603123_2020_1793921
crossref_primary_10_1080_24725854_2022_2081745
crossref_primary_10_1186_s12911_023_02240_1
crossref_primary_10_3389_fnhum_2024_1427532
crossref_primary_10_1007_s10489_019_01470_z
crossref_primary_10_1016_j_csbj_2016_11_001
crossref_primary_10_1016_j_scitotenv_2020_139954
crossref_primary_10_1016_j_artmed_2018_09_004
crossref_primary_10_1155_2021_5802722
crossref_primary_10_1016_j_knosys_2017_06_026
crossref_primary_10_1016_j_geomorph_2019_01_006
crossref_primary_10_3389_feart_2022_1100363
crossref_primary_10_1109_ACCESS_2019_2945422
crossref_primary_10_1007_s12046_022_02027_6
crossref_primary_10_1109_ACCESS_2019_2895998
crossref_primary_10_1080_13682199_2022_2157533
crossref_primary_10_1109_ACCESS_2022_3213065
crossref_primary_10_1016_j_compbiomed_2017_01_019
crossref_primary_10_1080_23808993_2018_1528871
crossref_primary_10_1016_j_eswa_2019_06_012
crossref_primary_10_1093_eurheartj_ehy404
crossref_primary_10_3390_e22010057
crossref_primary_10_21923_jesd_824703
crossref_primary_10_1016_j_eswa_2020_113375
crossref_primary_10_3390_ijgi9120696
crossref_primary_10_3390_rs11212530
crossref_primary_10_1002_ejhf_2994
crossref_primary_10_1016_j_bspc_2023_105506
crossref_primary_10_1007_s10462_022_10170_z
crossref_primary_10_1007_s40200_021_00968_z
crossref_primary_10_1109_ACCESS_2020_3012836
crossref_primary_10_1155_2018_2016282
crossref_primary_10_3390_diagnostics11111962
crossref_primary_10_1016_j_geoderma_2019_01_050
crossref_primary_10_1007_s11042_022_12773_8
crossref_primary_10_1007_s13755_023_00244_9
crossref_primary_10_22376_ijpbs_2017_8_2_b389_394
crossref_primary_10_1109_ACCESS_2021_3105581
crossref_primary_10_1016_j_compag_2020_105327
crossref_primary_10_1186_s12866_023_02895_w
crossref_primary_10_32604_iasc_2023_036628
crossref_primary_10_1016_j_artmed_2019_101789
crossref_primary_10_1080_10255842_2020_1821192
crossref_primary_10_35940_ijeat_F3043_0810621
crossref_primary_10_1161_HYPERTENSIONAHA_120_15885
crossref_primary_10_1007_s00521_017_2839_5
crossref_primary_10_1007_s41870_021_00650_w
crossref_primary_10_1007_s12553_024_00832_z
crossref_primary_10_1016_j_ijid_2020_06_058
crossref_primary_10_1007_s00464_023_09955_2
crossref_primary_10_1039_D2TB02733J
crossref_primary_10_1016_j_cmpb_2024_108107
crossref_primary_10_3390_diagnostics12010116
crossref_primary_10_1016_j_ahj_2020_07_009
crossref_primary_10_48175_IJARSCT_9759
crossref_primary_10_1016_j_chemolab_2020_104103
crossref_primary_10_4258_hir_2018_24_1_29
crossref_primary_10_1088_1757_899X_1074_1_012006
crossref_primary_10_1016_j_eswa_2023_121772
crossref_primary_10_3390_e23121669
crossref_primary_10_1161_CIRCOUTCOMES_120_006556
crossref_primary_10_1016_j_mehy_2020_110323
crossref_primary_10_3390_rs12213568
crossref_primary_10_1016_j_eswa_2021_114707
crossref_primary_10_3846_jcem_2021_14649
crossref_primary_10_1016_j_scitotenv_2018_06_389
crossref_primary_10_1109_ACCESS_2019_2963053
crossref_primary_10_1007_s13042_018_00916_z
crossref_primary_10_1080_03772063_2021_1999864
crossref_primary_10_1155_2022_9288452
crossref_primary_10_1016_j_bspc_2022_104185
crossref_primary_10_7717_peerj_cs_1917
crossref_primary_10_1016_j_bspc_2019_101597
crossref_primary_10_1088_1757_899X_1099_1_012053
crossref_primary_10_3390_s22239190
crossref_primary_10_1016_j_jenvman_2021_112067
crossref_primary_10_1016_j_bspc_2019_101629
crossref_primary_10_1016_j_bspc_2022_103889
crossref_primary_10_1016_j_bspc_2022_103929
crossref_primary_10_1016_j_ssci_2019_06_034
crossref_primary_10_1088_1361_6579_ac010f
crossref_primary_10_3390_en10101522
crossref_primary_10_1007_s11277_021_08408_0
crossref_primary_10_3390_app8112057
crossref_primary_10_2166_wcc_2024_726
crossref_primary_10_3390_e22080871
crossref_primary_10_1016_j_bspc_2019_101583
crossref_primary_10_1007_s11069_021_04971_8
crossref_primary_10_1016_j_cogsys_2018_12_017
crossref_primary_10_1097_HCO_0000000000000833
crossref_primary_10_1016_j_bspc_2020_102326
crossref_primary_10_1016_j_bspc_2022_104230
crossref_primary_10_1016_j_bspc_2021_102692
crossref_primary_10_1016_j_jbi_2019_103203
crossref_primary_10_1080_07391102_2023_2270056
crossref_primary_10_1109_ACCESS_2021_3053759
crossref_primary_10_4018_IJSI_315659
crossref_primary_10_1371_journal_pone_0229131
crossref_primary_10_1016_j_biosystems_2016_11_002
crossref_primary_10_1016_j_catena_2021_105795
crossref_primary_10_1080_10106049_2020_1837258
crossref_primary_10_3390_f11080830
crossref_primary_10_3390_rs12213620
crossref_primary_10_4070_kcj_2018_0446
crossref_primary_10_1515_bmt_2023_0099
crossref_primary_10_1007_s10489_018_1179_1
crossref_primary_10_1007_s11069_021_04601_3
crossref_primary_10_1007_s00500_023_08565_3
crossref_primary_10_1080_10255842_2023_2185477
crossref_primary_10_1142_S1793351X21400055
crossref_primary_10_1016_j_cmpb_2018_01_019
crossref_primary_10_1007_s40846_018_0411_0
crossref_primary_10_1049_iet_spr_2020_0315
crossref_primary_10_3390_life14010145
crossref_primary_10_1016_j_measurement_2022_110733
crossref_primary_10_3390_s20051313
crossref_primary_10_36462_H_Bioinfo_202101
crossref_primary_10_31083_j_rcm2204121
crossref_primary_10_1007_s11042_022_14227_7
crossref_primary_10_1016_j_bspc_2021_102834
crossref_primary_10_1186_s12916_021_01940_7
crossref_primary_10_1016_j_optlastec_2021_107649
crossref_primary_10_3389_fmicb_2021_772736
crossref_primary_10_17671_gazibtd_1059378
crossref_primary_10_1016_j_jum_2024_11_009
crossref_primary_10_1097_HCO_0000000000000491
crossref_primary_10_1007_s12665_021_09889_9
crossref_primary_10_1142_S0219691323500546
crossref_primary_10_1007_s12518_021_00358_3
crossref_primary_10_1038_s41598_024_60500_0
crossref_primary_10_1109_JIOT_2020_3023105
crossref_primary_10_3390_e22050520
crossref_primary_10_1016_j_jksuci_2019_04_009
crossref_primary_10_1016_j_asr_2024_06_030
crossref_primary_10_2174_1574362417666220412132348
crossref_primary_10_1007_s00521_022_06889_z
crossref_primary_10_1016_j_eswa_2023_122705
crossref_primary_10_4018_IJSPPC_313587
crossref_primary_10_1088_1742_6596_1913_1_012099
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_1016_j_ctarc_2021_100396
crossref_primary_10_56294_dm2024_356
crossref_primary_10_1007_s10064_021_02546_2
crossref_primary_10_3390_rs15041007
crossref_primary_10_3390_su16219482
crossref_primary_10_1016_j_procs_2024_04_155
crossref_primary_10_1080_10106049_2021_2009921
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_1109_ACCESS_2020_3015757
crossref_primary_10_1109_ACCESS_2022_3227712
crossref_primary_10_1080_10106049_2024_2326005
crossref_primary_10_1016_j_cmpb_2019_03_008
crossref_primary_10_1049_iet_ipr_2017_1154
crossref_primary_10_1016_j_measurement_2018_05_033
crossref_primary_10_1109_TIM_2020_3018840
crossref_primary_10_1109_ACCESS_2019_2956859
crossref_primary_10_1007_s11042_019_08376_5
crossref_primary_10_1109_TSMC_2022_3221843
crossref_primary_10_1111_exsy_12396
crossref_primary_10_1016_j_imu_2021_100538
crossref_primary_10_3389_fmed_2022_829977
crossref_primary_10_3390_life12060842
crossref_primary_10_26636_jtit_2022_161622
crossref_primary_10_1109_LRA_2020_3000678
crossref_primary_10_1016_j_bea_2022_100048
crossref_primary_10_1080_03007995_2019_1595552
crossref_primary_10_1186_s12911_019_0978_6
crossref_primary_10_3390_sym12010067
crossref_primary_10_7717_peerj_cs_2535
crossref_primary_10_1109_ACCESS_2024_3406748
crossref_primary_10_1142_S0218001422500318
crossref_primary_10_1016_j_infsof_2024_107488
crossref_primary_10_3390_app13074381
crossref_primary_10_1002_ecs2_3797
Cites_doi 10.2478/msr-2014-0040
10.1016/j.chemolab.2005.09.003
10.1016/j.bspc.2007.05.008
10.1038/323533a0
10.1016/S0735-1097(86)80478-8
10.1016/j.medengphy.2007.02.003
10.1016/j.cmpb.2011.12.015
10.1007/978-1-60327-241-4_13
10.1016/j.compbiomed.2007.01.012
10.1109/TITB.2010.2091647
10.1023/A:1010933404324
10.1109/TITB.2005.863865
10.1016/j.compbiomed.2013.01.020
10.1021/ci034160g
10.1016/j.jbi.2012.04.013
10.1007/BF02478259
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cmpb.2016.03.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Engineering Research Database
MEDLINE

Computer and Information Systems Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 64
ExternalDocumentID 27208521
10_1016_j_cmpb_2016_03_020
S0169260715303369
1_s2_0_S0169260715303369
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AFCTW
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c528t-aa59d6cfeaab4bffef6421c05b80e90b90ba65478704a3989e7032fcb99f30d93
IEDL.DBID AIKHN
ISSN 0169-2607
IngestDate Thu Sep 04 17:56:33 EDT 2025
Fri Sep 05 14:03:13 EDT 2025
Fri Sep 05 12:31:06 EDT 2025
Wed Feb 19 02:09:11 EST 2025
Tue Jul 01 02:40:45 EDT 2025
Thu Apr 24 23:09:02 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Aug 26 16:33:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Autoregressive (AR) modeling
Random forest
Congestive heart failure (CHF)
Electrocardiogram (ECG)
Machine learning
Congestive Heart Failure (CHF)
Autoregressive (AR) Modeling
Machine Learning
Random Forest
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-aa59d6cfeaab4bffef6421c05b80e90b90ba65478704a3989e7032fcb99f30d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27208521
PQID 1790615497
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1825487856
proquest_miscellaneous_1808639403
proquest_miscellaneous_1790615497
pubmed_primary_27208521
crossref_primary_10_1016_j_cmpb_2016_03_020
crossref_citationtrail_10_1016_j_cmpb_2016_03_020
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_03_020
elsevier_clinicalkeyesjournals_1_s2_0_S0169260715303369
elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_03_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2016
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Peterson (bib0435) 2009
Mitchell (bib0420) 1997
Palaniappan (bib0410) 2010
Rumelhart, Hinton, Williams (bib0465) 1986; 323
Passanisi (bib0325) 2004
Ben-Hur, Weston (bib0480) 2010
Rokach, Maimon (bib0505) 2008
Quinn (bib0315) 2006
Son, Kim, Kim, Park, Kim (bib0330) 2012
Jekova, Bortolan, Christov (bib0515) 2008; 30
Ustun, Melssen, Buydens (bib0485) 2006
Breiman (bib0490) 2001; 45
Salzberg (bib0520) 2007
Fausett (bib0460) 1993
Townsend, Luengo-Fernandez, Leal, Gray, Nichols (bib0320) 2012
Subasi (bib0335) 2013
Kuntamalla, Reddy (bib0350) 2010; 2
Jovic, Bogunovic (bib0540) 2010
Isler, Kuntalp (bib0375) 2007; 37
Fix, Hodges (bib0430) 1951
Che, Chiang, Che (bib0470) 2011; 7
Thuraisingham (bib0345) 2009
Kumar, Kumaraswamy (bib0535) 2012; 37
Hanley, McNeil (bib0510) 1982; 143
Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (bib0395) 2003; 43
Zhang, McAllister, Scotney, McClean, Houston (bib0500) 2006; 10
Krose, van der Smagt (bib0455) 1996
(bib0310) 2008
Baim, Colucci, Monrad, Smith, Wright, Lanoue, Gauthier, Ransil, Grossman, Braunwald (bib0340) 1986; 7
Yu, Lee (bib0370) 2012; I
Kuntamalla, Reddy (bib0355) 2014; 14
Hastie, Tibshirani, Friedman (bib0445) 2009
Pecchia, Melillo, Sansone, Bracale (bib0385) 2011; 15
Belgacem, Nait-Ali, Fournier, Bereksi-Reguig (bib0530) 2012; 2
Asyali (bib0380) 2003
Boser, Guyon, Vapnik (bib0475) 1992
Maimon, Rokach (bib0400) 2005
Quinlan (bib0425) 1993
Witten, Frank (bib0495) 2005
Hossen, Al-Ghunaimi (bib0365) 2007; 2
McCulloch, Pitts (bib0450) 1943
Emery, Thomson (bib0415) 2004
(bib0440) 2003
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0405) 2000
Hossen, Al-Ghunaimi (bib0360) 2008
Masetic, Subasi (bib0390) 2013; 2
Emanet (bib0525) 2009
Fausett (10.1016/j.cmpb.2016.03.020_bib0460) 1993
Kuntamalla (10.1016/j.cmpb.2016.03.020_bib0355) 2014; 14
Rumelhart (10.1016/j.cmpb.2016.03.020_bib0465) 1986; 323
Isler (10.1016/j.cmpb.2016.03.020_bib0375) 2007; 37
Maimon (10.1016/j.cmpb.2016.03.020_bib0400) 2005
Krose (10.1016/j.cmpb.2016.03.020_bib0455) 1996
Fix (10.1016/j.cmpb.2016.03.020_bib0430) 1951
McCulloch (10.1016/j.cmpb.2016.03.020_bib0450) 1943
Jovic (10.1016/j.cmpb.2016.03.020_bib0540) 2010
Breiman (10.1016/j.cmpb.2016.03.020_bib0490) 2001; 45
Jekova (10.1016/j.cmpb.2016.03.020_bib0515) 2008; 30
Hossen (10.1016/j.cmpb.2016.03.020_bib0360) 2008
Pecchia (10.1016/j.cmpb.2016.03.020_bib0385) 2011; 15
Goldberger (10.1016/j.cmpb.2016.03.020_bib0405) 2000
Hanley (10.1016/j.cmpb.2016.03.020_bib0510) 1982; 143
Son (10.1016/j.cmpb.2016.03.020_bib0330) 2012
Mitchell (10.1016/j.cmpb.2016.03.020_bib0420) 1997
Yu (10.1016/j.cmpb.2016.03.020_bib0370) 2012; I
Belgacem (10.1016/j.cmpb.2016.03.020_bib0530) 2012; 2
Zhang (10.1016/j.cmpb.2016.03.020_bib0500) 2006; 10
Witten (10.1016/j.cmpb.2016.03.020_bib0495) 2005
Boser (10.1016/j.cmpb.2016.03.020_bib0475) 1992
Palaniappan (10.1016/j.cmpb.2016.03.020_bib0410) 2010
Svetnik (10.1016/j.cmpb.2016.03.020_bib0395) 2003; 43
Hastie (10.1016/j.cmpb.2016.03.020_bib0445) 2009
(10.1016/j.cmpb.2016.03.020_bib0440) 2003
Ustun (10.1016/j.cmpb.2016.03.020_bib0485) 2006
Quinn (10.1016/j.cmpb.2016.03.020_bib0315) 2006
Subasi (10.1016/j.cmpb.2016.03.020_bib0335) 2013
Ben-Hur (10.1016/j.cmpb.2016.03.020_bib0480) 2010
Emanet (10.1016/j.cmpb.2016.03.020_bib0525) 2009
Baim (10.1016/j.cmpb.2016.03.020_bib0340) 1986; 7
Thuraisingham (10.1016/j.cmpb.2016.03.020_bib0345) 2009
Emery (10.1016/j.cmpb.2016.03.020_bib0415) 2004
Peterson (10.1016/j.cmpb.2016.03.020_bib0435) 2009
Masetic (10.1016/j.cmpb.2016.03.020_bib0390) 2013; 2
(10.1016/j.cmpb.2016.03.020_bib0310) 2008
Quinlan (10.1016/j.cmpb.2016.03.020_bib0425) 1993
Che (10.1016/j.cmpb.2016.03.020_bib0470) 2011; 7
Salzberg (10.1016/j.cmpb.2016.03.020_bib0520) 2007
Townsend (10.1016/j.cmpb.2016.03.020_bib0320) 2012
Passanisi (10.1016/j.cmpb.2016.03.020_bib0325) 2004
Kuntamalla (10.1016/j.cmpb.2016.03.020_bib0350) 2010; 2
Kumar (10.1016/j.cmpb.2016.03.020_bib0535) 2012; 37
Asyali (10.1016/j.cmpb.2016.03.020_bib0380) 2003
Hossen (10.1016/j.cmpb.2016.03.020_bib0365) 2007; 2
Rokach (10.1016/j.cmpb.2016.03.020_bib0505) 2008
References_xml – volume: 2
  start-page: 135
  year: 2007
  end-page: 143
  ident: bib0365
  article-title: A wavelet-based soft decision technique for screening of patients with congestive heart failure
  publication-title: Biomed. Signal Process. Control
– year: 2008
  ident: bib0505
  article-title: Data Mining with Decision Trees: Theory and Applications
– start-page: 29
  year: 2006
  end-page: 40
  ident: bib0485
  article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2010
  ident: bib0540
  article-title: Random forest-based classification of heart rate variability signals by using combinations of linear and nonlinear features
  publication-title: XII Mediterranean Conference on Medical and Biological Engineering and Computing
– year: 2005
  ident: bib0400
  article-title: Data Mining and Knowledge Discovery Handbook
– year: 2000
  ident: bib0405
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiological Signals
– year: 1993
  ident: bib0460
  article-title: Fundamentals of Neural Networks, Architectures, Algorithms, and Applications
– year: 2009
  ident: bib0445
  article-title: The Elements of Statistical Learning Data Mining, Inference, and Prediction
– year: 2004
  ident: bib0325
  article-title: Electrocardiography
– year: 2003
  ident: bib0440
  publication-title: A Beginner's Guide to Microarrays
– volume: 10
  start-page: 458
  year: 2006
  end-page: 467
  ident: bib0500
  article-title: Combining wavelet analysis and Bayesian networks for the classification auditory brainstem response
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– year: 2004
  ident: bib0415
  article-title: Data Analysis Methods in Physical Oceanography
– year: 2008
  ident: bib0310
  publication-title: Diseases and Disorders
– year: 2006
  ident: bib0315
  article-title: 100 Questions and Answers About Congestive Heart Failure
– volume: 2
  year: 2012
  ident: bib0530
  article-title: ECG based human authentication using wavelets and random forests
  publication-title: Int. J. Cryptogr. Inf. Secur.
– start-page: 576
  year: 2013
  end-page: 586
  ident: bib0335
  article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders
  publication-title: Comput. Biol. Med.
– volume: 2
  start-page: 74
  year: 2013
  end-page: 77
  ident: bib0390
  article-title: Detection of congestive heart failure using C4.5 decision tree
  publication-title: Southeast Eur. J. Soft Comput.
– year: 1993
  ident: bib0425
  article-title: C4.5: Programs for Machine Learning
– year: 2009
  ident: bib0525
  article-title: ECG beat classification by using discrete wavelet transform and random forest algorithm
  publication-title: Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control
– volume: 14
  start-page: 294
  year: 2014
  end-page: 301
  ident: bib0355
  article-title: Reduced data dualscale entropy analysis of HRV signals for improved congestive heart failure detection
  publication-title: Meas. Sci. Rev.
– volume: 15
  start-page: 40
  year: 2011
  end-page: 46
  ident: bib0385
  article-title: Discrimination power of short-term heart rate variability measures for CHF assessment
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0490
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 43
  start-page: 1947
  year: 2003
  end-page: 1958
  ident: bib0395
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
– year: 1997
  ident: bib0420
  article-title: Machine Learning
– volume: 7
  start-page: 661
  year: 1986
  end-page: 670
  ident: bib0340
  article-title: Survival of patients with severe congestive heart failure treated with oral milrinone
  publication-title: J. Am. Coll. Cardiol.
– volume: 30
  start-page: 248
  year: 2008
  end-page: 257
  ident: bib0515
  article-title: Assessment and comparison of different methods for heartbeat classification
  publication-title: Med. Eng. Phys.
– year: 2005
  ident: bib0495
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– start-page: 999
  year: 2012
  end-page: 1008
  ident: bib0330
  article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches
  publication-title: J. Biomed. Inform.
– volume: 37
  start-page: 1502
  year: 2007
  end-page: 1510
  ident: bib0375
  article-title: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure
  publication-title: Comput. Biol. Med.
– year: 2003
  ident: bib0380
  article-title: Discrimination power of long-term heart rate variability measures
  publication-title: Engineering in Medicine and Biology Society: Proceeding of the 25th Annual International Conference of the IEEE EMBS
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0465
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 1996
  ident: bib0455
  article-title: An introduction to Neural Networks
– volume: 7
  start-page: 5839
  year: 2011
  end-page: 5850
  ident: bib0470
  article-title: Feed-forward neural networks training: a comparison between genetic algorithm and back-propagation learning algorithm
  publication-title: Int. J. Innov. Comput. Inf. Control
– year: 2009
  ident: bib0345
  article-title: A classification system to detect congestive heart failure using second-order difference plot of RR intervals
  publication-title: Cardiol. Res. Pract.
– volume: 2
  start-page: 7329
  year: 2010
  end-page: 7334
  ident: bib0350
  article-title: Detecting congestive heart failure using heart rate sequential trend analysis plot
  publication-title: Int. J. Eng. Sci. Technol.
– start-page: 317
  year: 2007
  end-page: 328
  ident: bib0520
  article-title: On comparing classifiers: pitfalls to avoid and a recommended approach
  publication-title: Data Min. Knowl. Discov.
– year: 2010
  ident: bib0410
  article-title: Biological Signal Analysis
– year: 1992
  ident: bib0475
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Fifth Annual ACM Conference on Computational Learning Theory
– volume: I
  start-page: 299
  year: 2012
  end-page: 309
  ident: bib0370
  article-title: Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability
  publication-title: Comput. Methods Programs Biomed.
– volume: 37
  start-page: 31
  year: 2012
  end-page: 34
  ident: bib0535
  article-title: Investigating cardiac arrhythmia in ECG using random forest classification
  publication-title: Int. J. Comput. Appl.
– start-page: 115
  year: 1943
  end-page: 133
  ident: bib0450
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: bib0510
  article-title: The meaning and the use of the area under a receiver operating characteristic curve
  publication-title: Radiol. Soc. N. Am.
– year: 2010
  ident: bib0480
  article-title: A user's guide to support vector machine
  publication-title: Methods Mol. Biol.
– year: 2012
  ident: bib0320
  article-title: European Cardiovascular Disease Statistics 2012
– start-page: 21
  year: 2008
  end-page: 24
  ident: bib0360
  article-title: Identification of patients with congestive heart failure by recognition of sub-bands spectral patterns
  publication-title: World Acad. Sci. Eng. Technol.
– year: 1951
  ident: bib0430
  article-title: Discriminatory Analysis. Nonaparametric Discrimination; Consistency Properties, Texas
– year: 2009
  ident: bib0435
  article-title: K-Nearest Neighbor
– issue: November
  year: 2009
  ident: 10.1016/j.cmpb.2016.03.020_bib0345
  article-title: A classification system to detect congestive heart failure using second-order difference plot of RR intervals
  publication-title: Cardiol. Res. Pract.
– volume: 14
  start-page: 294
  issue: 5
  year: 2014
  ident: 10.1016/j.cmpb.2016.03.020_bib0355
  article-title: Reduced data dualscale entropy analysis of HRV signals for improved congestive heart failure detection
  publication-title: Meas. Sci. Rev.
  doi: 10.2478/msr-2014-0040
– start-page: 29
  year: 2006
  ident: 10.1016/j.cmpb.2016.03.020_bib0485
  article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2005.09.003
– volume: 7
  start-page: 5839
  issue: October
  year: 2011
  ident: 10.1016/j.cmpb.2016.03.020_bib0470
  article-title: Feed-forward neural networks training: a comparison between genetic algorithm and back-propagation learning algorithm
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 2
  start-page: 135
  year: 2007
  ident: 10.1016/j.cmpb.2016.03.020_bib0365
  article-title: A wavelet-based soft decision technique for screening of patients with congestive heart failure
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.05.008
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.cmpb.2016.03.020_bib0465
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 7
  start-page: 661
  issue: March (3)
  year: 1986
  ident: 10.1016/j.cmpb.2016.03.020_bib0340
  article-title: Survival of patients with severe congestive heart failure treated with oral milrinone
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(86)80478-8
– year: 2003
  ident: 10.1016/j.cmpb.2016.03.020_bib0440
– year: 2008
  ident: 10.1016/j.cmpb.2016.03.020_bib0505
– year: 2009
  ident: 10.1016/j.cmpb.2016.03.020_bib0435
– volume: 2
  issue: June (2)
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.020_bib0530
  article-title: ECG based human authentication using wavelets and random forests
  publication-title: Int. J. Cryptogr. Inf. Secur.
– year: 2004
  ident: 10.1016/j.cmpb.2016.03.020_bib0415
– year: 2009
  ident: 10.1016/j.cmpb.2016.03.020_bib0445
– volume: 30
  start-page: 248
  year: 2008
  ident: 10.1016/j.cmpb.2016.03.020_bib0515
  article-title: Assessment and comparison of different methods for heartbeat classification
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2007.02.003
– volume: I
  start-page: 299
  issue: 8
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.020_bib0370
  article-title: Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.12.015
– year: 2010
  ident: 10.1016/j.cmpb.2016.03.020_bib0480
  article-title: A user's guide to support vector machine
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-241-4_13
– year: 2004
  ident: 10.1016/j.cmpb.2016.03.020_bib0325
– volume: 37
  start-page: 1502
  year: 2007
  ident: 10.1016/j.cmpb.2016.03.020_bib0375
  article-title: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.01.012
– year: 2000
  ident: 10.1016/j.cmpb.2016.03.020_bib0405
– volume: 37
  start-page: 31
  issue: January (4)
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.020_bib0535
  article-title: Investigating cardiac arrhythmia in ECG using random forest classification
  publication-title: Int. J. Comput. Appl.
– volume: 15
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2016.03.020_bib0385
  article-title: Discrimination power of short-term heart rate variability measures for CHF assessment
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2091647
– volume: 45
  start-page: 5
  issue: October (1)
  year: 2001
  ident: 10.1016/j.cmpb.2016.03.020_bib0490
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2008
  ident: 10.1016/j.cmpb.2016.03.020_bib0310
– year: 1997
  ident: 10.1016/j.cmpb.2016.03.020_bib0420
– volume: 143
  start-page: 29
  issue: April (1)
  year: 1982
  ident: 10.1016/j.cmpb.2016.03.020_bib0510
  article-title: The meaning and the use of the area under a receiver operating characteristic curve
  publication-title: Radiol. Soc. N. Am.
– year: 2009
  ident: 10.1016/j.cmpb.2016.03.020_bib0525
  article-title: ECG beat classification by using discrete wavelet transform and random forest algorithm
– start-page: 21
  year: 2008
  ident: 10.1016/j.cmpb.2016.03.020_bib0360
  article-title: Identification of patients with congestive heart failure by recognition of sub-bands spectral patterns
  publication-title: World Acad. Sci. Eng. Technol.
– year: 1993
  ident: 10.1016/j.cmpb.2016.03.020_bib0460
– year: 1992
  ident: 10.1016/j.cmpb.2016.03.020_bib0475
  article-title: A training algorithm for optimal margin classifiers
– volume: 2
  start-page: 74
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.020_bib0390
  article-title: Detection of congestive heart failure using C4.5 decision tree
  publication-title: Southeast Eur. J. Soft Comput.
– year: 2010
  ident: 10.1016/j.cmpb.2016.03.020_bib0540
  article-title: Random forest-based classification of heart rate variability signals by using combinations of linear and nonlinear features
– year: 2005
  ident: 10.1016/j.cmpb.2016.03.020_bib0400
– year: 2006
  ident: 10.1016/j.cmpb.2016.03.020_bib0315
– start-page: 317
  year: 2007
  ident: 10.1016/j.cmpb.2016.03.020_bib0520
  article-title: On comparing classifiers: pitfalls to avoid and a recommended approach
  publication-title: Data Min. Knowl. Discov.
– volume: 10
  start-page: 458
  issue: 3
  year: 2006
  ident: 10.1016/j.cmpb.2016.03.020_bib0500
  article-title: Combining wavelet analysis and Bayesian networks for the classification auditory brainstem response
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.863865
– year: 2010
  ident: 10.1016/j.cmpb.2016.03.020_bib0410
– start-page: 576
  issue: 43
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.020_bib0335
  article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.01.020
– year: 2012
  ident: 10.1016/j.cmpb.2016.03.020_bib0320
– year: 1993
  ident: 10.1016/j.cmpb.2016.03.020_bib0425
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 10.1016/j.cmpb.2016.03.020_bib0395
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– year: 1996
  ident: 10.1016/j.cmpb.2016.03.020_bib0455
– year: 2005
  ident: 10.1016/j.cmpb.2016.03.020_bib0495
– year: 1951
  ident: 10.1016/j.cmpb.2016.03.020_bib0430
– start-page: 999
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.020_bib0330
  article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2012.04.013
– volume: 2
  start-page: 7329
  issue: 12
  year: 2010
  ident: 10.1016/j.cmpb.2016.03.020_bib0350
  article-title: Detecting congestive heart failure using heart rate sequential trend analysis plot
  publication-title: Int. J. Eng. Sci. Technol.
– year: 2003
  ident: 10.1016/j.cmpb.2016.03.020_bib0380
  article-title: Discrimination power of long-term heart rate variability measures
– start-page: 115
  issue: 5
  year: 1943
  ident: 10.1016/j.cmpb.2016.03.020_bib0450
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
SSID ssj0002556
Score 2.57757
Snippet •Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random...
Highlights • Heartbeat classification is substantial for diagnosing heart failure. • Machine learning methods classifies normal and congestive heart failure...
Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of...
BACKGROUND AND OBJECTIVESAutomatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to...
Background and objectives: Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms Accuracy
Algorithms
Automation
Autoregressive (AR) modeling
Classification
Classifiers
Congestive heart failure (CHF)
Decision trees
Echocardiography
Electrocardiogram (ECG)
Electrocardiography
Failure
Feature extraction
Heart Failure - diagnosis
Humans
Internal Medicine
Machine learning
Other
Random forest
Support Vector Machine
Title Congestive heart failure detection using random forest classifier
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715303369
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715303369
https://dx.doi.org/10.1016/j.cmpb.2016.03.020
https://www.ncbi.nlm.nih.gov/pubmed/27208521
https://www.proquest.com/docview/1790615497
https://www.proquest.com/docview/1808639403
https://www.proquest.com/docview/1825487856
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4SB0ovoenTfYQt9FZUy_vS7tGYBrclubSB3JbVare4NLKJlWt_e2eslaE0dSGgi8QMWoZ5sjPfALwzNcfq3_uCa44Figmp8I2UhRWhChYDXi1p3vn8Qi8u5ecrdXUA82EWhtoqs-_vffrWW-cvkyzNyXq5nHwlHBFO8GgK3bDQ9hCOuLBajeBo9unL4mLnkAllq4f4tgUx5NmZvs0rXK9r6vDSW6xTWvt9d3z6V_65jUNnj-A4J5Bs1p_xBA5i-xgenOcr8icwm69aujNCL8ZoW3XHkl9S7zlrYrftu2oZNbt_ZxilmtU1w6wVyVmgNHqZ8BRP4fLs47f5osh7EoqguOkK75VtdEjR-1rWKcVE06uhVLUpoy1rfDztGEbTlF5YYyOaOU-htjaJsrHiGYzaVRtfAFMNUqQqRG6TtF56gp8vo9BGq1AKM4bpIB0XMog47bL46YZusR-OJOpIoq4UDiU6hvc7nnUPobGXWgxCd8NwKLozhx5-L1d1F1fcZIvcuKnbcFe6v7RmDGrH-Yfi_fePbweNcGiRdM3i27i6xT9VlvJEaas9NAZLSVpKL_bRcConjdJjeN6r3E5-dHtuMPN6ec_Tv4KH9Nb3Hb-GUXdzG99gdtXVp3D44df0NNvQb-4QIYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxJvlaSRuKGzqR2IfqxXVAt1eaKXeLNuxq0U0u2LTK7-dmcRZhCiLhJRTMqNYo3nK38wAvNWeY_XvXMErjgWKDqlwjZSFEaEOBgOel9TvvDip5mfy07k634PZ2AtDsMrs-wef3nvr_GaapTldL5fTLzRHhNN4NIVuWFTmBtyUStSE63v_4xfOg2ZsDQO-TUHkuXNmAHmFy7UnfFfVTzqlpd_XR6e_ZZ99FDq6B3dz-sgOhxPeh73YPoBbi3xB_hAOZ6uWbozQhzHaVd2x5JaEPGdN7HrUVcsI6n7BMEY1q0uGOSuSs0BJ9DLhKR7B2dGH09m8yFsSiqC47grnlGmqkKJzXvqUYqLe1VAqr8toSo-Pow3DaJjSCaNNRCPnKXhjkigbIx7Dfrtq41NgqkGKVIfITZLGSUfD58soKl2pUAo9gYNROjbkEeK0yeKbHbFiXy1J1JJEbSksSnQC77Y862GAxk5qMQrdjq2h6Mws-vedXPV1XHGT7XFjD-yG29L-oTMTUFvO39Tun398M2qERXukSxbXxtUV_qk2lCVKU--g0VhI0kp6sYuGUzGpVTWBJ4PKbeVHd-ca865n_3n613B7fro4tscfTz4_hzv0ZUAgv4D97vtVfIl5Vudf9Xb0E2LkIks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Congestive+heart+failure+detection+using+random+forest+classifier&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Masetic%2C+Zerina&rft.au=Subasi%2C+Abdulhamit&rft.date=2016-07-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=130&rft.spage=54&rft.epage=64&rft_id=info:doi/10.1016%2Fj.cmpb.2016.03.020&rft.externalDocID=S0169260715303369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon