Congestive heart failure detection using random forest classifier
•Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random forest method gives 100% classification accuracy in detecting CHF. Automatic electrocardiogram (ECG) heartbeat classification is substantial...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 130; pp. 54 - 64 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 |
DOI | 10.1016/j.cmpb.2016.03.020 |
Cover
Loading…
Abstract | •Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random forest method gives 100% classification accuracy in detecting CHF.
Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series.
The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments.
The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy.
Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine. |
---|---|
AbstractList | Background and objectives: Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. Methods: The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. Results: The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Conclusions: Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine. Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine. •Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random forest method gives 100% classification accuracy in detecting CHF. Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series. The study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments. The experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy. Impressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine. BACKGROUND AND OBJECTIVESAutomatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of machine learning methods in creating the model which classifies normal and congestive heart failure (CHF) on the long-term ECG time series.METHODSThe study was performed in two phases: feature extraction and classification phase. In feature extraction phase, autoregressive (AR) Burg method is applied for extracting features. In classification phase, five different classifiers are examined namely, C4.5 decision tree, k-nearest neighbor, support vector machine, artificial neural networks and random forest classifier. The ECG signals were acquired from BIDMC Congestive Heart Failure and PTB Diagnostic ECG databases and classified by applying various experiments.RESULTSThe experimental results are evaluated in several statistical measures (sensitivity, specificity, accuracy, F-measure and ROC curve) and showed that the random forest method gives 100% classification accuracy.CONCLUSIONSImpressive performance of random forest method proves that it plays significant role in detecting congestive heart failure (CHF) and can be valuable in expressing knowledge useful in medicine. Highlights • Heartbeat classification is substantial for diagnosing heart failure. • Machine learning methods classifies normal and congestive heart failure (CHF). • The experimental results are showed that the Random Forest method gives 100% classification accuracy in detecting congestive heart failure (CHF). |
Author | Subasi, Abdulhamit Masetic, Zerina |
Author_xml | – sequence: 1 givenname: Zerina surname: Masetic fullname: Masetic, Zerina email: zmasetic@ibu.edu.ba organization: International Burch University, Faculty of Engineering and Information Technologies, 71000 Sarajevo, Bosnia and Herzegovina – sequence: 2 givenname: Abdulhamit surname: Subasi fullname: Subasi, Abdulhamit email: absubasi@effatuniversity.edu.sa organization: Effat University, College of Engineering, Computer Science Department, Jeddah 21478, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27208521$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rFTEUhoNU7G31D7iQWbqZ8SQz-RIRysUvKLhQ1yGTOam5zp1ck5lC_30z3OqiYCsEEsjznoTznDNyMsUJCXlJoaFAxZtd4_aHvmHl3EDbAIMnZEOVZLXkgp-QTbnQNRMgT8lZzjsAYJyLZ-SUSQaKM7ohF9s4XWGewzVWP9GmufI2jEvCasAZ3RziVC05TFdVstMQ95WPqeCVG23OwQdMz8lTb8eML-72c_Lj44fv28_15ddPX7YXl7XjTM21tVwPwnm0tu9679GLjlEHvFeAGvqyrOCdVBI622qlUULLvOu19i0Muj0nr491Dyn-XsofzD5kh-NoJ4xLNlQx3impuPgPFJRodQft46jUICjvtCzoqzt06fc4mEMKe5tuzJ9mFoAdAZdizgn9X4SCWY2ZnVmNmdWYgdYUYyWk7oVcmO3a9zkVEw9H3x2jWNp-XVSY7AJODoeQijozxPBw_P29uBvDFJwdf-EN5l1c0lSEGmoyM2C-rdO0DhPlbWmcWI28_XeBx16_BSST2HA |
CitedBy_id | crossref_primary_10_3390_app9010171 crossref_primary_10_1080_09640568_2020_1817729 crossref_primary_10_1109_TASE_2020_2983061 crossref_primary_10_1007_s13042_020_01128_0 crossref_primary_10_1016_j_bspc_2022_104392 crossref_primary_10_1515_bams_2020_0033 crossref_primary_10_1016_j_eswa_2024_124702 crossref_primary_10_3390_diagnostics11101863 crossref_primary_10_1007_s13369_021_05972_2 crossref_primary_10_1016_j_compbiomed_2021_104457 crossref_primary_10_3389_fneur_2020_538052 crossref_primary_10_26599_TST_2022_9010008 crossref_primary_10_1371_journal_pone_0281466 crossref_primary_10_1016_j_knosys_2019_105441 crossref_primary_10_1080_09603123_2020_1793921 crossref_primary_10_1080_24725854_2022_2081745 crossref_primary_10_1186_s12911_023_02240_1 crossref_primary_10_3389_fnhum_2024_1427532 crossref_primary_10_1007_s10489_019_01470_z crossref_primary_10_1016_j_csbj_2016_11_001 crossref_primary_10_1016_j_scitotenv_2020_139954 crossref_primary_10_1016_j_artmed_2018_09_004 crossref_primary_10_1155_2021_5802722 crossref_primary_10_1016_j_knosys_2017_06_026 crossref_primary_10_1016_j_geomorph_2019_01_006 crossref_primary_10_3389_feart_2022_1100363 crossref_primary_10_1109_ACCESS_2019_2945422 crossref_primary_10_1007_s12046_022_02027_6 crossref_primary_10_1109_ACCESS_2019_2895998 crossref_primary_10_1080_13682199_2022_2157533 crossref_primary_10_1109_ACCESS_2022_3213065 crossref_primary_10_1016_j_compbiomed_2017_01_019 crossref_primary_10_1080_23808993_2018_1528871 crossref_primary_10_1016_j_eswa_2019_06_012 crossref_primary_10_1093_eurheartj_ehy404 crossref_primary_10_3390_e22010057 crossref_primary_10_21923_jesd_824703 crossref_primary_10_1016_j_eswa_2020_113375 crossref_primary_10_3390_ijgi9120696 crossref_primary_10_3390_rs11212530 crossref_primary_10_1002_ejhf_2994 crossref_primary_10_1016_j_bspc_2023_105506 crossref_primary_10_1007_s10462_022_10170_z crossref_primary_10_1007_s40200_021_00968_z crossref_primary_10_1109_ACCESS_2020_3012836 crossref_primary_10_1155_2018_2016282 crossref_primary_10_3390_diagnostics11111962 crossref_primary_10_1016_j_geoderma_2019_01_050 crossref_primary_10_1007_s11042_022_12773_8 crossref_primary_10_1007_s13755_023_00244_9 crossref_primary_10_22376_ijpbs_2017_8_2_b389_394 crossref_primary_10_1109_ACCESS_2021_3105581 crossref_primary_10_1016_j_compag_2020_105327 crossref_primary_10_1186_s12866_023_02895_w crossref_primary_10_32604_iasc_2023_036628 crossref_primary_10_1016_j_artmed_2019_101789 crossref_primary_10_1080_10255842_2020_1821192 crossref_primary_10_35940_ijeat_F3043_0810621 crossref_primary_10_1161_HYPERTENSIONAHA_120_15885 crossref_primary_10_1007_s00521_017_2839_5 crossref_primary_10_1007_s41870_021_00650_w crossref_primary_10_1007_s12553_024_00832_z crossref_primary_10_1016_j_ijid_2020_06_058 crossref_primary_10_1007_s00464_023_09955_2 crossref_primary_10_1039_D2TB02733J crossref_primary_10_1016_j_cmpb_2024_108107 crossref_primary_10_3390_diagnostics12010116 crossref_primary_10_1016_j_ahj_2020_07_009 crossref_primary_10_48175_IJARSCT_9759 crossref_primary_10_1016_j_chemolab_2020_104103 crossref_primary_10_4258_hir_2018_24_1_29 crossref_primary_10_1088_1757_899X_1074_1_012006 crossref_primary_10_1016_j_eswa_2023_121772 crossref_primary_10_3390_e23121669 crossref_primary_10_1161_CIRCOUTCOMES_120_006556 crossref_primary_10_1016_j_mehy_2020_110323 crossref_primary_10_3390_rs12213568 crossref_primary_10_1016_j_eswa_2021_114707 crossref_primary_10_3846_jcem_2021_14649 crossref_primary_10_1016_j_scitotenv_2018_06_389 crossref_primary_10_1109_ACCESS_2019_2963053 crossref_primary_10_1007_s13042_018_00916_z crossref_primary_10_1080_03772063_2021_1999864 crossref_primary_10_1155_2022_9288452 crossref_primary_10_1016_j_bspc_2022_104185 crossref_primary_10_7717_peerj_cs_1917 crossref_primary_10_1016_j_bspc_2019_101597 crossref_primary_10_1088_1757_899X_1099_1_012053 crossref_primary_10_3390_s22239190 crossref_primary_10_1016_j_jenvman_2021_112067 crossref_primary_10_1016_j_bspc_2019_101629 crossref_primary_10_1016_j_bspc_2022_103889 crossref_primary_10_1016_j_bspc_2022_103929 crossref_primary_10_1016_j_ssci_2019_06_034 crossref_primary_10_1088_1361_6579_ac010f crossref_primary_10_3390_en10101522 crossref_primary_10_1007_s11277_021_08408_0 crossref_primary_10_3390_app8112057 crossref_primary_10_2166_wcc_2024_726 crossref_primary_10_3390_e22080871 crossref_primary_10_1016_j_bspc_2019_101583 crossref_primary_10_1007_s11069_021_04971_8 crossref_primary_10_1016_j_cogsys_2018_12_017 crossref_primary_10_1097_HCO_0000000000000833 crossref_primary_10_1016_j_bspc_2020_102326 crossref_primary_10_1016_j_bspc_2022_104230 crossref_primary_10_1016_j_bspc_2021_102692 crossref_primary_10_1016_j_jbi_2019_103203 crossref_primary_10_1080_07391102_2023_2270056 crossref_primary_10_1109_ACCESS_2021_3053759 crossref_primary_10_4018_IJSI_315659 crossref_primary_10_1371_journal_pone_0229131 crossref_primary_10_1016_j_biosystems_2016_11_002 crossref_primary_10_1016_j_catena_2021_105795 crossref_primary_10_1080_10106049_2020_1837258 crossref_primary_10_3390_f11080830 crossref_primary_10_3390_rs12213620 crossref_primary_10_4070_kcj_2018_0446 crossref_primary_10_1515_bmt_2023_0099 crossref_primary_10_1007_s10489_018_1179_1 crossref_primary_10_1007_s11069_021_04601_3 crossref_primary_10_1007_s00500_023_08565_3 crossref_primary_10_1080_10255842_2023_2185477 crossref_primary_10_1142_S1793351X21400055 crossref_primary_10_1016_j_cmpb_2018_01_019 crossref_primary_10_1007_s40846_018_0411_0 crossref_primary_10_1049_iet_spr_2020_0315 crossref_primary_10_3390_life14010145 crossref_primary_10_1016_j_measurement_2022_110733 crossref_primary_10_3390_s20051313 crossref_primary_10_36462_H_Bioinfo_202101 crossref_primary_10_31083_j_rcm2204121 crossref_primary_10_1007_s11042_022_14227_7 crossref_primary_10_1016_j_bspc_2021_102834 crossref_primary_10_1186_s12916_021_01940_7 crossref_primary_10_1016_j_optlastec_2021_107649 crossref_primary_10_3389_fmicb_2021_772736 crossref_primary_10_17671_gazibtd_1059378 crossref_primary_10_1016_j_jum_2024_11_009 crossref_primary_10_1097_HCO_0000000000000491 crossref_primary_10_1007_s12665_021_09889_9 crossref_primary_10_1142_S0219691323500546 crossref_primary_10_1007_s12518_021_00358_3 crossref_primary_10_1038_s41598_024_60500_0 crossref_primary_10_1109_JIOT_2020_3023105 crossref_primary_10_3390_e22050520 crossref_primary_10_1016_j_jksuci_2019_04_009 crossref_primary_10_1016_j_asr_2024_06_030 crossref_primary_10_2174_1574362417666220412132348 crossref_primary_10_1007_s00521_022_06889_z crossref_primary_10_1016_j_eswa_2023_122705 crossref_primary_10_4018_IJSPPC_313587 crossref_primary_10_1088_1742_6596_1913_1_012099 crossref_primary_10_1007_s11831_024_10194_4 crossref_primary_10_1016_j_ctarc_2021_100396 crossref_primary_10_56294_dm2024_356 crossref_primary_10_1007_s10064_021_02546_2 crossref_primary_10_3390_rs15041007 crossref_primary_10_3390_su16219482 crossref_primary_10_1016_j_procs_2024_04_155 crossref_primary_10_1080_10106049_2021_2009921 crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_1109_ACCESS_2020_3015757 crossref_primary_10_1109_ACCESS_2022_3227712 crossref_primary_10_1080_10106049_2024_2326005 crossref_primary_10_1016_j_cmpb_2019_03_008 crossref_primary_10_1049_iet_ipr_2017_1154 crossref_primary_10_1016_j_measurement_2018_05_033 crossref_primary_10_1109_TIM_2020_3018840 crossref_primary_10_1109_ACCESS_2019_2956859 crossref_primary_10_1007_s11042_019_08376_5 crossref_primary_10_1109_TSMC_2022_3221843 crossref_primary_10_1111_exsy_12396 crossref_primary_10_1016_j_imu_2021_100538 crossref_primary_10_3389_fmed_2022_829977 crossref_primary_10_3390_life12060842 crossref_primary_10_26636_jtit_2022_161622 crossref_primary_10_1109_LRA_2020_3000678 crossref_primary_10_1016_j_bea_2022_100048 crossref_primary_10_1080_03007995_2019_1595552 crossref_primary_10_1186_s12911_019_0978_6 crossref_primary_10_3390_sym12010067 crossref_primary_10_7717_peerj_cs_2535 crossref_primary_10_1109_ACCESS_2024_3406748 crossref_primary_10_1142_S0218001422500318 crossref_primary_10_1016_j_infsof_2024_107488 crossref_primary_10_3390_app13074381 crossref_primary_10_1002_ecs2_3797 |
Cites_doi | 10.2478/msr-2014-0040 10.1016/j.chemolab.2005.09.003 10.1016/j.bspc.2007.05.008 10.1038/323533a0 10.1016/S0735-1097(86)80478-8 10.1016/j.medengphy.2007.02.003 10.1016/j.cmpb.2011.12.015 10.1007/978-1-60327-241-4_13 10.1016/j.compbiomed.2007.01.012 10.1109/TITB.2010.2091647 10.1023/A:1010933404324 10.1109/TITB.2005.863865 10.1016/j.compbiomed.2013.01.020 10.1021/ci034160g 10.1016/j.jbi.2012.04.013 10.1007/BF02478259 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ireland Ltd Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ireland Ltd – notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1016/j.cmpb.2016.03.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Engineering Research Database MEDLINE Computer and Information Systems Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 64 |
ExternalDocumentID | 27208521 10_1016_j_cmpb_2016_03_020 S0169260715303369 1_s2_0_S0169260715303369 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AFCTW AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c528t-aa59d6cfeaab4bffef6421c05b80e90b90ba65478704a3989e7032fcb99f30d93 |
IEDL.DBID | AIKHN |
ISSN | 0169-2607 |
IngestDate | Thu Sep 04 17:56:33 EDT 2025 Fri Sep 05 14:03:13 EDT 2025 Fri Sep 05 12:31:06 EDT 2025 Wed Feb 19 02:09:11 EST 2025 Tue Jul 01 02:40:45 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 Fri Feb 23 02:26:00 EST 2024 Fri May 16 01:02:24 EDT 2025 Tue Aug 26 16:33:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Autoregressive (AR) modeling Random forest Congestive heart failure (CHF) Electrocardiogram (ECG) Machine learning Congestive Heart Failure (CHF) Autoregressive (AR) Modeling Machine Learning Random Forest |
Language | English |
License | Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-aa59d6cfeaab4bffef6421c05b80e90b90ba65478704a3989e7032fcb99f30d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27208521 |
PQID | 1790615497 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1825487856 proquest_miscellaneous_1808639403 proquest_miscellaneous_1790615497 pubmed_primary_27208521 crossref_primary_10_1016_j_cmpb_2016_03_020 crossref_citationtrail_10_1016_j_cmpb_2016_03_020 elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_03_020 elsevier_clinicalkeyesjournals_1_s2_0_S0169260715303369 elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_03_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2016 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Peterson (bib0435) 2009 Mitchell (bib0420) 1997 Palaniappan (bib0410) 2010 Rumelhart, Hinton, Williams (bib0465) 1986; 323 Passanisi (bib0325) 2004 Ben-Hur, Weston (bib0480) 2010 Rokach, Maimon (bib0505) 2008 Quinn (bib0315) 2006 Son, Kim, Kim, Park, Kim (bib0330) 2012 Jekova, Bortolan, Christov (bib0515) 2008; 30 Ustun, Melssen, Buydens (bib0485) 2006 Breiman (bib0490) 2001; 45 Salzberg (bib0520) 2007 Fausett (bib0460) 1993 Townsend, Luengo-Fernandez, Leal, Gray, Nichols (bib0320) 2012 Subasi (bib0335) 2013 Kuntamalla, Reddy (bib0350) 2010; 2 Jovic, Bogunovic (bib0540) 2010 Isler, Kuntalp (bib0375) 2007; 37 Fix, Hodges (bib0430) 1951 Che, Chiang, Che (bib0470) 2011; 7 Thuraisingham (bib0345) 2009 Kumar, Kumaraswamy (bib0535) 2012; 37 Hanley, McNeil (bib0510) 1982; 143 Svetnik, Liaw, Tong, Culberson, Sheridan, Feuston (bib0395) 2003; 43 Zhang, McAllister, Scotney, McClean, Houston (bib0500) 2006; 10 Krose, van der Smagt (bib0455) 1996 (bib0310) 2008 Baim, Colucci, Monrad, Smith, Wright, Lanoue, Gauthier, Ransil, Grossman, Braunwald (bib0340) 1986; 7 Yu, Lee (bib0370) 2012; I Kuntamalla, Reddy (bib0355) 2014; 14 Hastie, Tibshirani, Friedman (bib0445) 2009 Pecchia, Melillo, Sansone, Bracale (bib0385) 2011; 15 Belgacem, Nait-Ali, Fournier, Bereksi-Reguig (bib0530) 2012; 2 Asyali (bib0380) 2003 Boser, Guyon, Vapnik (bib0475) 1992 Maimon, Rokach (bib0400) 2005 Quinlan (bib0425) 1993 Witten, Frank (bib0495) 2005 Hossen, Al-Ghunaimi (bib0365) 2007; 2 McCulloch, Pitts (bib0450) 1943 Emery, Thomson (bib0415) 2004 (bib0440) 2003 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib0405) 2000 Hossen, Al-Ghunaimi (bib0360) 2008 Masetic, Subasi (bib0390) 2013; 2 Emanet (bib0525) 2009 Fausett (10.1016/j.cmpb.2016.03.020_bib0460) 1993 Kuntamalla (10.1016/j.cmpb.2016.03.020_bib0355) 2014; 14 Rumelhart (10.1016/j.cmpb.2016.03.020_bib0465) 1986; 323 Isler (10.1016/j.cmpb.2016.03.020_bib0375) 2007; 37 Maimon (10.1016/j.cmpb.2016.03.020_bib0400) 2005 Krose (10.1016/j.cmpb.2016.03.020_bib0455) 1996 Fix (10.1016/j.cmpb.2016.03.020_bib0430) 1951 McCulloch (10.1016/j.cmpb.2016.03.020_bib0450) 1943 Jovic (10.1016/j.cmpb.2016.03.020_bib0540) 2010 Breiman (10.1016/j.cmpb.2016.03.020_bib0490) 2001; 45 Jekova (10.1016/j.cmpb.2016.03.020_bib0515) 2008; 30 Hossen (10.1016/j.cmpb.2016.03.020_bib0360) 2008 Pecchia (10.1016/j.cmpb.2016.03.020_bib0385) 2011; 15 Goldberger (10.1016/j.cmpb.2016.03.020_bib0405) 2000 Hanley (10.1016/j.cmpb.2016.03.020_bib0510) 1982; 143 Son (10.1016/j.cmpb.2016.03.020_bib0330) 2012 Mitchell (10.1016/j.cmpb.2016.03.020_bib0420) 1997 Yu (10.1016/j.cmpb.2016.03.020_bib0370) 2012; I Belgacem (10.1016/j.cmpb.2016.03.020_bib0530) 2012; 2 Zhang (10.1016/j.cmpb.2016.03.020_bib0500) 2006; 10 Witten (10.1016/j.cmpb.2016.03.020_bib0495) 2005 Boser (10.1016/j.cmpb.2016.03.020_bib0475) 1992 Palaniappan (10.1016/j.cmpb.2016.03.020_bib0410) 2010 Svetnik (10.1016/j.cmpb.2016.03.020_bib0395) 2003; 43 Hastie (10.1016/j.cmpb.2016.03.020_bib0445) 2009 (10.1016/j.cmpb.2016.03.020_bib0440) 2003 Ustun (10.1016/j.cmpb.2016.03.020_bib0485) 2006 Quinn (10.1016/j.cmpb.2016.03.020_bib0315) 2006 Subasi (10.1016/j.cmpb.2016.03.020_bib0335) 2013 Ben-Hur (10.1016/j.cmpb.2016.03.020_bib0480) 2010 Emanet (10.1016/j.cmpb.2016.03.020_bib0525) 2009 Baim (10.1016/j.cmpb.2016.03.020_bib0340) 1986; 7 Thuraisingham (10.1016/j.cmpb.2016.03.020_bib0345) 2009 Emery (10.1016/j.cmpb.2016.03.020_bib0415) 2004 Peterson (10.1016/j.cmpb.2016.03.020_bib0435) 2009 Masetic (10.1016/j.cmpb.2016.03.020_bib0390) 2013; 2 (10.1016/j.cmpb.2016.03.020_bib0310) 2008 Quinlan (10.1016/j.cmpb.2016.03.020_bib0425) 1993 Che (10.1016/j.cmpb.2016.03.020_bib0470) 2011; 7 Salzberg (10.1016/j.cmpb.2016.03.020_bib0520) 2007 Townsend (10.1016/j.cmpb.2016.03.020_bib0320) 2012 Passanisi (10.1016/j.cmpb.2016.03.020_bib0325) 2004 Kuntamalla (10.1016/j.cmpb.2016.03.020_bib0350) 2010; 2 Kumar (10.1016/j.cmpb.2016.03.020_bib0535) 2012; 37 Asyali (10.1016/j.cmpb.2016.03.020_bib0380) 2003 Hossen (10.1016/j.cmpb.2016.03.020_bib0365) 2007; 2 Rokach (10.1016/j.cmpb.2016.03.020_bib0505) 2008 |
References_xml | – volume: 2 start-page: 135 year: 2007 end-page: 143 ident: bib0365 article-title: A wavelet-based soft decision technique for screening of patients with congestive heart failure publication-title: Biomed. Signal Process. Control – year: 2008 ident: bib0505 article-title: Data Mining with Decision Trees: Theory and Applications – start-page: 29 year: 2006 end-page: 40 ident: bib0485 article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel publication-title: Chemom. Intell. Lab. Syst. – year: 2010 ident: bib0540 article-title: Random forest-based classification of heart rate variability signals by using combinations of linear and nonlinear features publication-title: XII Mediterranean Conference on Medical and Biological Engineering and Computing – year: 2005 ident: bib0400 article-title: Data Mining and Knowledge Discovery Handbook – year: 2000 ident: bib0405 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiological Signals – year: 1993 ident: bib0460 article-title: Fundamentals of Neural Networks, Architectures, Algorithms, and Applications – year: 2009 ident: bib0445 article-title: The Elements of Statistical Learning Data Mining, Inference, and Prediction – year: 2004 ident: bib0325 article-title: Electrocardiography – year: 2003 ident: bib0440 publication-title: A Beginner's Guide to Microarrays – volume: 10 start-page: 458 year: 2006 end-page: 467 ident: bib0500 article-title: Combining wavelet analysis and Bayesian networks for the classification auditory brainstem response publication-title: IEEE Trans. Inf. Technol. Biomed. – year: 2004 ident: bib0415 article-title: Data Analysis Methods in Physical Oceanography – year: 2008 ident: bib0310 publication-title: Diseases and Disorders – year: 2006 ident: bib0315 article-title: 100 Questions and Answers About Congestive Heart Failure – volume: 2 year: 2012 ident: bib0530 article-title: ECG based human authentication using wavelets and random forests publication-title: Int. J. Cryptogr. Inf. Secur. – start-page: 576 year: 2013 end-page: 586 ident: bib0335 article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders publication-title: Comput. Biol. Med. – volume: 2 start-page: 74 year: 2013 end-page: 77 ident: bib0390 article-title: Detection of congestive heart failure using C4.5 decision tree publication-title: Southeast Eur. J. Soft Comput. – year: 1993 ident: bib0425 article-title: C4.5: Programs for Machine Learning – year: 2009 ident: bib0525 article-title: ECG beat classification by using discrete wavelet transform and random forest algorithm publication-title: Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control – volume: 14 start-page: 294 year: 2014 end-page: 301 ident: bib0355 article-title: Reduced data dualscale entropy analysis of HRV signals for improved congestive heart failure detection publication-title: Meas. Sci. Rev. – volume: 15 start-page: 40 year: 2011 end-page: 46 ident: bib0385 article-title: Discrimination power of short-term heart rate variability measures for CHF assessment publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0490 article-title: Random forests publication-title: Mach. Learn. – volume: 43 start-page: 1947 year: 2003 end-page: 1958 ident: bib0395 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Comput. Sci. – year: 1997 ident: bib0420 article-title: Machine Learning – volume: 7 start-page: 661 year: 1986 end-page: 670 ident: bib0340 article-title: Survival of patients with severe congestive heart failure treated with oral milrinone publication-title: J. Am. Coll. Cardiol. – volume: 30 start-page: 248 year: 2008 end-page: 257 ident: bib0515 article-title: Assessment and comparison of different methods for heartbeat classification publication-title: Med. Eng. Phys. – year: 2005 ident: bib0495 article-title: Data Mining: Practical Machine Learning Tools and Techniques – start-page: 999 year: 2012 end-page: 1008 ident: bib0330 article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches publication-title: J. Biomed. Inform. – volume: 37 start-page: 1502 year: 2007 end-page: 1510 ident: bib0375 article-title: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure publication-title: Comput. Biol. Med. – year: 2003 ident: bib0380 article-title: Discrimination power of long-term heart rate variability measures publication-title: Engineering in Medicine and Biology Society: Proceeding of the 25th Annual International Conference of the IEEE EMBS – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0465 article-title: Learning representations by back-propagating errors publication-title: Nature – year: 1996 ident: bib0455 article-title: An introduction to Neural Networks – volume: 7 start-page: 5839 year: 2011 end-page: 5850 ident: bib0470 article-title: Feed-forward neural networks training: a comparison between genetic algorithm and back-propagation learning algorithm publication-title: Int. J. Innov. Comput. Inf. Control – year: 2009 ident: bib0345 article-title: A classification system to detect congestive heart failure using second-order difference plot of RR intervals publication-title: Cardiol. Res. Pract. – volume: 2 start-page: 7329 year: 2010 end-page: 7334 ident: bib0350 article-title: Detecting congestive heart failure using heart rate sequential trend analysis plot publication-title: Int. J. Eng. Sci. Technol. – start-page: 317 year: 2007 end-page: 328 ident: bib0520 article-title: On comparing classifiers: pitfalls to avoid and a recommended approach publication-title: Data Min. Knowl. Discov. – year: 2010 ident: bib0410 article-title: Biological Signal Analysis – year: 1992 ident: bib0475 article-title: A training algorithm for optimal margin classifiers publication-title: Fifth Annual ACM Conference on Computational Learning Theory – volume: I start-page: 299 year: 2012 end-page: 309 ident: bib0370 article-title: Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability publication-title: Comput. Methods Programs Biomed. – volume: 37 start-page: 31 year: 2012 end-page: 34 ident: bib0535 article-title: Investigating cardiac arrhythmia in ECG using random forest classification publication-title: Int. J. Comput. Appl. – start-page: 115 year: 1943 end-page: 133 ident: bib0450 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: bib0510 article-title: The meaning and the use of the area under a receiver operating characteristic curve publication-title: Radiol. Soc. N. Am. – year: 2010 ident: bib0480 article-title: A user's guide to support vector machine publication-title: Methods Mol. Biol. – year: 2012 ident: bib0320 article-title: European Cardiovascular Disease Statistics 2012 – start-page: 21 year: 2008 end-page: 24 ident: bib0360 article-title: Identification of patients with congestive heart failure by recognition of sub-bands spectral patterns publication-title: World Acad. Sci. Eng. Technol. – year: 1951 ident: bib0430 article-title: Discriminatory Analysis. Nonaparametric Discrimination; Consistency Properties, Texas – year: 2009 ident: bib0435 article-title: K-Nearest Neighbor – issue: November year: 2009 ident: 10.1016/j.cmpb.2016.03.020_bib0345 article-title: A classification system to detect congestive heart failure using second-order difference plot of RR intervals publication-title: Cardiol. Res. Pract. – volume: 14 start-page: 294 issue: 5 year: 2014 ident: 10.1016/j.cmpb.2016.03.020_bib0355 article-title: Reduced data dualscale entropy analysis of HRV signals for improved congestive heart failure detection publication-title: Meas. Sci. Rev. doi: 10.2478/msr-2014-0040 – start-page: 29 year: 2006 ident: 10.1016/j.cmpb.2016.03.020_bib0485 article-title: Facilitating the application of support vector regression by using a universal Pearson VII function based kernel publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.09.003 – volume: 7 start-page: 5839 issue: October year: 2011 ident: 10.1016/j.cmpb.2016.03.020_bib0470 article-title: Feed-forward neural networks training: a comparison between genetic algorithm and back-propagation learning algorithm publication-title: Int. J. Innov. Comput. Inf. Control – volume: 2 start-page: 135 year: 2007 ident: 10.1016/j.cmpb.2016.03.020_bib0365 article-title: A wavelet-based soft decision technique for screening of patients with congestive heart failure publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.05.008 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.cmpb.2016.03.020_bib0465 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 7 start-page: 661 issue: March (3) year: 1986 ident: 10.1016/j.cmpb.2016.03.020_bib0340 article-title: Survival of patients with severe congestive heart failure treated with oral milrinone publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(86)80478-8 – year: 2003 ident: 10.1016/j.cmpb.2016.03.020_bib0440 – year: 2008 ident: 10.1016/j.cmpb.2016.03.020_bib0505 – year: 2009 ident: 10.1016/j.cmpb.2016.03.020_bib0435 – volume: 2 issue: June (2) year: 2012 ident: 10.1016/j.cmpb.2016.03.020_bib0530 article-title: ECG based human authentication using wavelets and random forests publication-title: Int. J. Cryptogr. Inf. Secur. – year: 2004 ident: 10.1016/j.cmpb.2016.03.020_bib0415 – year: 2009 ident: 10.1016/j.cmpb.2016.03.020_bib0445 – volume: 30 start-page: 248 year: 2008 ident: 10.1016/j.cmpb.2016.03.020_bib0515 article-title: Assessment and comparison of different methods for heartbeat classification publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2007.02.003 – volume: I start-page: 299 issue: 8 year: 2012 ident: 10.1016/j.cmpb.2016.03.020_bib0370 article-title: Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.12.015 – year: 2010 ident: 10.1016/j.cmpb.2016.03.020_bib0480 article-title: A user's guide to support vector machine publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-241-4_13 – year: 2004 ident: 10.1016/j.cmpb.2016.03.020_bib0325 – volume: 37 start-page: 1502 year: 2007 ident: 10.1016/j.cmpb.2016.03.020_bib0375 article-title: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.01.012 – year: 2000 ident: 10.1016/j.cmpb.2016.03.020_bib0405 – volume: 37 start-page: 31 issue: January (4) year: 2012 ident: 10.1016/j.cmpb.2016.03.020_bib0535 article-title: Investigating cardiac arrhythmia in ECG using random forest classification publication-title: Int. J. Comput. Appl. – volume: 15 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.cmpb.2016.03.020_bib0385 article-title: Discrimination power of short-term heart rate variability measures for CHF assessment publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2091647 – volume: 45 start-page: 5 issue: October (1) year: 2001 ident: 10.1016/j.cmpb.2016.03.020_bib0490 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2008 ident: 10.1016/j.cmpb.2016.03.020_bib0310 – year: 1997 ident: 10.1016/j.cmpb.2016.03.020_bib0420 – volume: 143 start-page: 29 issue: April (1) year: 1982 ident: 10.1016/j.cmpb.2016.03.020_bib0510 article-title: The meaning and the use of the area under a receiver operating characteristic curve publication-title: Radiol. Soc. N. Am. – year: 2009 ident: 10.1016/j.cmpb.2016.03.020_bib0525 article-title: ECG beat classification by using discrete wavelet transform and random forest algorithm – start-page: 21 year: 2008 ident: 10.1016/j.cmpb.2016.03.020_bib0360 article-title: Identification of patients with congestive heart failure by recognition of sub-bands spectral patterns publication-title: World Acad. Sci. Eng. Technol. – year: 1993 ident: 10.1016/j.cmpb.2016.03.020_bib0460 – year: 1992 ident: 10.1016/j.cmpb.2016.03.020_bib0475 article-title: A training algorithm for optimal margin classifiers – volume: 2 start-page: 74 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2016.03.020_bib0390 article-title: Detection of congestive heart failure using C4.5 decision tree publication-title: Southeast Eur. J. Soft Comput. – year: 2010 ident: 10.1016/j.cmpb.2016.03.020_bib0540 article-title: Random forest-based classification of heart rate variability signals by using combinations of linear and nonlinear features – year: 2005 ident: 10.1016/j.cmpb.2016.03.020_bib0400 – year: 2006 ident: 10.1016/j.cmpb.2016.03.020_bib0315 – start-page: 317 year: 2007 ident: 10.1016/j.cmpb.2016.03.020_bib0520 article-title: On comparing classifiers: pitfalls to avoid and a recommended approach publication-title: Data Min. Knowl. Discov. – volume: 10 start-page: 458 issue: 3 year: 2006 ident: 10.1016/j.cmpb.2016.03.020_bib0500 article-title: Combining wavelet analysis and Bayesian networks for the classification auditory brainstem response publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.863865 – year: 2010 ident: 10.1016/j.cmpb.2016.03.020_bib0410 – start-page: 576 issue: 43 year: 2013 ident: 10.1016/j.cmpb.2016.03.020_bib0335 article-title: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.01.020 – year: 2012 ident: 10.1016/j.cmpb.2016.03.020_bib0320 – year: 1993 ident: 10.1016/j.cmpb.2016.03.020_bib0425 – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 10.1016/j.cmpb.2016.03.020_bib0395 article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034160g – year: 1996 ident: 10.1016/j.cmpb.2016.03.020_bib0455 – year: 2005 ident: 10.1016/j.cmpb.2016.03.020_bib0495 – year: 1951 ident: 10.1016/j.cmpb.2016.03.020_bib0430 – start-page: 999 year: 2012 ident: 10.1016/j.cmpb.2016.03.020_bib0330 article-title: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2012.04.013 – volume: 2 start-page: 7329 issue: 12 year: 2010 ident: 10.1016/j.cmpb.2016.03.020_bib0350 article-title: Detecting congestive heart failure using heart rate sequential trend analysis plot publication-title: Int. J. Eng. Sci. Technol. – year: 2003 ident: 10.1016/j.cmpb.2016.03.020_bib0380 article-title: Discrimination power of long-term heart rate variability measures – start-page: 115 issue: 5 year: 1943 ident: 10.1016/j.cmpb.2016.03.020_bib0450 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 |
SSID | ssj0002556 |
Score | 2.57757 |
Snippet | •Heartbeat classification is substantial for diagnosing heart failure.•Machine learning methods classify normal and congestive heart failure (CHF).•The random... Highlights • Heartbeat classification is substantial for diagnosing heart failure. • Machine learning methods classifies normal and congestive heart failure... Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to evaluate the effect of... BACKGROUND AND OBJECTIVESAutomatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to... Background and objectives: Automatic electrocardiogram (ECG) heartbeat classification is substantial for diagnosing heart failure. The aim of this paper is to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54 |
SubjectTerms | Accuracy Algorithms Automation Autoregressive (AR) modeling Classification Classifiers Congestive heart failure (CHF) Decision trees Echocardiography Electrocardiogram (ECG) Electrocardiography Failure Feature extraction Heart Failure - diagnosis Humans Internal Medicine Machine learning Other Random forest Support Vector Machine |
Title | Congestive heart failure detection using random forest classifier |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715303369 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715303369 https://dx.doi.org/10.1016/j.cmpb.2016.03.020 https://www.ncbi.nlm.nih.gov/pubmed/27208521 https://www.proquest.com/docview/1790615497 https://www.proquest.com/docview/1808639403 https://www.proquest.com/docview/1825487856 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4SB0ovoenTfYQt9FZUy_vS7tGYBrclubSB3JbVare4NLKJlWt_e2eslaE0dSGgi8QMWoZ5sjPfALwzNcfq3_uCa44Figmp8I2UhRWhChYDXi1p3vn8Qi8u5ecrdXUA82EWhtoqs-_vffrWW-cvkyzNyXq5nHwlHBFO8GgK3bDQ9hCOuLBajeBo9unL4mLnkAllq4f4tgUx5NmZvs0rXK9r6vDSW6xTWvt9d3z6V_65jUNnj-A4J5Bs1p_xBA5i-xgenOcr8icwm69aujNCL8ZoW3XHkl9S7zlrYrftu2oZNbt_ZxilmtU1w6wVyVmgNHqZ8BRP4fLs47f5osh7EoqguOkK75VtdEjR-1rWKcVE06uhVLUpoy1rfDztGEbTlF5YYyOaOU-htjaJsrHiGYzaVRtfAFMNUqQqRG6TtF56gp8vo9BGq1AKM4bpIB0XMog47bL46YZusR-OJOpIoq4UDiU6hvc7nnUPobGXWgxCd8NwKLozhx5-L1d1F1fcZIvcuKnbcFe6v7RmDGrH-Yfi_fePbweNcGiRdM3i27i6xT9VlvJEaas9NAZLSVpKL_bRcConjdJjeN6r3E5-dHtuMPN6ec_Tv4KH9Nb3Hb-GUXdzG99gdtXVp3D44df0NNvQb-4QIYA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxJvlaSRuKGzqR2IfqxXVAt1eaKXeLNuxq0U0u2LTK7-dmcRZhCiLhJRTMqNYo3nK38wAvNWeY_XvXMErjgWKDqlwjZSFEaEOBgOel9TvvDip5mfy07k634PZ2AtDsMrs-wef3nvr_GaapTldL5fTLzRHhNN4NIVuWFTmBtyUStSE63v_4xfOg2ZsDQO-TUHkuXNmAHmFy7UnfFfVTzqlpd_XR6e_ZZ99FDq6B3dz-sgOhxPeh73YPoBbi3xB_hAOZ6uWbozQhzHaVd2x5JaEPGdN7HrUVcsI6n7BMEY1q0uGOSuSs0BJ9DLhKR7B2dGH09m8yFsSiqC47grnlGmqkKJzXvqUYqLe1VAqr8toSo-Pow3DaJjSCaNNRCPnKXhjkigbIx7Dfrtq41NgqkGKVIfITZLGSUfD58soKl2pUAo9gYNROjbkEeK0yeKbHbFiXy1J1JJEbSksSnQC77Y862GAxk5qMQrdjq2h6Mws-vedXPV1XHGT7XFjD-yG29L-oTMTUFvO39Tun398M2qERXukSxbXxtUV_qk2lCVKU--g0VhI0kp6sYuGUzGpVTWBJ4PKbeVHd-ca865n_3n613B7fro4tscfTz4_hzv0ZUAgv4D97vtVfIl5Vudf9Xb0E2LkIks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Congestive+heart+failure+detection+using+random+forest+classifier&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Masetic%2C+Zerina&rft.au=Subasi%2C+Abdulhamit&rft.date=2016-07-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=130&rft.spage=54&rft.epage=64&rft_id=info:doi/10.1016%2Fj.cmpb.2016.03.020&rft.externalDocID=S0169260715303369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |