Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling
After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure and function. Wound closure in periodontal tissues involves the tightly regulated coordination of resident cells in epithelial and connectiv...
Saved in:
Published in | Frontiers in physiology Vol. 10; p. 270 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
24.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure and function. Wound closure in periodontal tissues involves the tightly regulated coordination of resident cells in epithelial and connective tissue compartments. Multiple cell populations in these compartments synergize their metabolic activities to reestablish a mucosal seal that involves the underlying periodontal connective tissues and the attachment of these tissues to the tooth surface. The formation of an impermeable seal around the circumference of the tooth is of particular significance in oral health since colonization of tooth surfaces by pathogenic biofilms promotes inflammation, which can contribute to periodontal tissue degradation and tooth loss. The reformation of periodontal tissue structures in the healing response centrally involves fibroblasts, which synthesize and organize the collagen fibers that link alveolar bone and gingiva to the cementum covering the tooth root. The synthesis and remodeling of nascent collagen matrices are of fundamental importance for the reestablishment of a functional periodontium and are mediated by diverse, multi-functional fibroblast populations that reside within the connective tissues of gingiva and periodontal ligament. Notably, after gingival wounding, a fibroblast sub-type (myofibroblast) arises, which is centrally involved in collagen synthesis and fibrillar remodeling. While myofibroblasts are not usually seen in healthy, mature connective tissues, their formation is enhanced by wound-healing cytokines. The formation of myofibroblasts is also modulated by the stiffness of the extracellular matrix, which is mechanosensed by resident precursor cells in the gingival connective tissue microenvironment. Here, we consider the cellular origins and the factors that control the differentiation and matrix remodeling functions of periodontal fibroblasts. An improved understanding of the regulation and function of periodontal fibroblasts will be critical for the development of new therapies to optimize the restoration of periodontal structure and function after wounding. |
---|---|
AbstractList | After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure and function. Wound closure in periodontal tissues involves the tightly regulated coordination of resident cells in epithelial and connective tissue compartments. Multiple cell populations in these compartments synergize their metabolic activities to reestablish a mucosal seal that involves the underlying periodontal connective tissues and the attachment of these tissues to the tooth surface. The formation of an impermeable seal around the circumference of the tooth is of particular significance in oral health since colonization of tooth surfaces by pathogenic biofilms promotes inflammation, which can contribute to periodontal tissue degradation and tooth loss. The reformation of periodontal tissue structures in the healing response centrally involves fibroblasts, which synthesize and organize the collagen fibers that link alveolar bone and gingiva to the cementum covering the tooth root. The synthesis and remodeling of nascent collagen matrices are of fundamental importance for the reestablishment of a functional periodontium and are mediated by diverse, multi-functional fibroblast populations that reside within the connective tissues of gingiva and periodontal ligament. Notably, after gingival wounding, a fibroblast sub-type (myofibroblast) arises, which is centrally involved in collagen synthesis and fibrillar remodeling. While myofibroblasts are not usually seen in healthy, mature connective tissues, their formation is enhanced by wound-healing cytokines. The formation of myofibroblasts is also modulated by the stiffness of the extracellular matrix, which is mechanosensed by resident precursor cells in the gingival connective tissue microenvironment. Here, we consider the cellular origins and the factors that control the differentiation and matrix remodeling functions of periodontal fibroblasts. An improved understanding of the regulation and function of periodontal fibroblasts will be critical for the development of new therapies to optimize the restoration of periodontal structure and function after wounding. After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure and function. Wound closure in periodontal tissues involves the tightly regulated coordination of resident cells in epithelial and connective tissue compartments. Multiple cell populations in these compartments synergize their metabolic activities to reestablish a mucosal seal that involves the underlying periodontal connective tissues and the attachment of these tissues to the tooth surface. The formation of an impermeable seal around the circumference of the tooth is of particular significance in oral health since colonization of tooth surfaces by pathogenic biofilms promotes inflammation, which can contribute to periodontal tissue degradation and tooth loss. The reformation of periodontal tissue structures in the healing response centrally involves fibroblasts, which synthesize and organize the collagen fibers that link alveolar bone and gingiva to the cementum covering the tooth root. The synthesis and remodeling of nascent collagen matrices are of fundamental importance for the reestablishment of a functional periodontium and are mediated by diverse, multi-functional fibroblast populations that reside within the connective tissues of gingiva and periodontal ligament. Notably, after gingival wounding, a fibroblast sub-type (myofibroblast) arises, which is centrally involved in collagen synthesis and fibrillar remodeling. While myofibroblasts are not usually seen in healthy, mature connective tissues, their formation is enhanced by wound-healing cytokines. The formation of myofibroblasts is also modulated by the stiffness of the extracellular matrix, which is mechanosensed by resident precursor cells in the gingival connective tissue microenvironment. Here, we consider the cellular origins and the factors that control the differentiation and matrix remodeling functions of periodontal fibroblasts. An improved understanding of the regulation and function of periodontal fibroblasts will be critical for the development of new therapies to optimize the restoration of periodontal structure and function after wounding.After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure and function. Wound closure in periodontal tissues involves the tightly regulated coordination of resident cells in epithelial and connective tissue compartments. Multiple cell populations in these compartments synergize their metabolic activities to reestablish a mucosal seal that involves the underlying periodontal connective tissues and the attachment of these tissues to the tooth surface. The formation of an impermeable seal around the circumference of the tooth is of particular significance in oral health since colonization of tooth surfaces by pathogenic biofilms promotes inflammation, which can contribute to periodontal tissue degradation and tooth loss. The reformation of periodontal tissue structures in the healing response centrally involves fibroblasts, which synthesize and organize the collagen fibers that link alveolar bone and gingiva to the cementum covering the tooth root. The synthesis and remodeling of nascent collagen matrices are of fundamental importance for the reestablishment of a functional periodontium and are mediated by diverse, multi-functional fibroblast populations that reside within the connective tissues of gingiva and periodontal ligament. Notably, after gingival wounding, a fibroblast sub-type (myofibroblast) arises, which is centrally involved in collagen synthesis and fibrillar remodeling. While myofibroblasts are not usually seen in healthy, mature connective tissues, their formation is enhanced by wound-healing cytokines. The formation of myofibroblasts is also modulated by the stiffness of the extracellular matrix, which is mechanosensed by resident precursor cells in the gingival connective tissue microenvironment. Here, we consider the cellular origins and the factors that control the differentiation and matrix remodeling functions of periodontal fibroblasts. An improved understanding of the regulation and function of periodontal fibroblasts will be critical for the development of new therapies to optimize the restoration of periodontal structure and function after wounding. |
Author | Martínez, Jorge Martínez, Constanza McCulloch, Christopher A. Smith, Patricio C. |
AuthorAffiliation | 1 Faculty of Medicine, School of Dentistry, Pontificia Universidad Católica de Chile , Santiago , Chile 2 Laboratory of Cell Biology, Institute of Nutrition and Food Technology, INTA, Universidad de Chile , Santiago , Chile 3 Faculty of Dentistry, University of Toronto , Toronto, ON , Canada |
AuthorAffiliation_xml | – name: 3 Faculty of Dentistry, University of Toronto , Toronto, ON , Canada – name: 1 Faculty of Medicine, School of Dentistry, Pontificia Universidad Católica de Chile , Santiago , Chile – name: 2 Laboratory of Cell Biology, Institute of Nutrition and Food Technology, INTA, Universidad de Chile , Santiago , Chile |
Author_xml | – sequence: 1 givenname: Patricio C. surname: Smith fullname: Smith, Patricio C. – sequence: 2 givenname: Constanza surname: Martínez fullname: Martínez, Constanza – sequence: 3 givenname: Jorge surname: Martínez fullname: Martínez, Jorge – sequence: 4 givenname: Christopher A. surname: McCulloch fullname: McCulloch, Christopher A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31068825$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LXDEUxUNRqrXuuypv2c1M8z3JplCkVkGoFYvuQl5yM0YyyTR5r-B_3zczVlRoNrnce87vXjjv0F4uGRD6QPCcMaU_h_XdQ5tTTPQcY7rAb9AhkZLPMKe3e8_qA3Tc2j2eHscUY_IWHTCCpVJUHKKfVyVBV0J3Gvta-mTb0F2W9ZjsEEtuXczdJdRYfMmDTd1NGbPvzsCmmJednerr2NoI3RWsiodN9z3aDzY1OH78j9Cv02_XJ2ezix_fz0--XsycoGqYWa4YliFQmI7h_UL0igjsKAEviHRCBw0LL7hXuNdYE5BMWmWlJT33wTF2hM53XF_svVnXuLL1wRQbzbZR6tLYOkSXwAjLiabEeYcFZ5r0gSuQynqAwLzUE-vLjrUe-xV4B3moNr2AvpzkeGeW5Y-RXBNJ1QT49Aio5fcIbTCr2BykZDOUsRlKGdFCYLmYpB-f73pa8i-TSYB3AldLaxXCk4Rgs0nebJM3m-TNNvnJIl9ZXBy2CU7XxvR_419oPLSO |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2021_10_023 crossref_primary_10_1111_jre_13261 crossref_primary_10_2174_1874210602014010450 crossref_primary_10_1002_sctm_21_0086 crossref_primary_10_1016_j_jtemb_2021_126754 crossref_primary_10_1007_s13577_021_00621_0 crossref_primary_10_3389_fphys_2021_676512 crossref_primary_10_1055_s_0043_1764422 crossref_primary_10_3390_ijms25116161 crossref_primary_10_1002_ppap_202000225 crossref_primary_10_1016_j_jtumed_2023_05_006 crossref_primary_10_1096_fj_202402322R crossref_primary_10_1016_j_actbio_2024_05_031 crossref_primary_10_3390_cells10010050 crossref_primary_10_1186_s12903_023_03682_9 crossref_primary_10_3390_ijms23158723 crossref_primary_10_1007_s11033_022_07335_y crossref_primary_10_1016_j_peptides_2023_171074 crossref_primary_10_3390_dj9090101 crossref_primary_10_3390_pharmaceutics13111764 crossref_primary_10_3390_ijms22063024 crossref_primary_10_1016_j_jormas_2023_101595 crossref_primary_10_4103_jisp_jisp_167_22 crossref_primary_10_1016_j_wneu_2021_06_125 crossref_primary_10_1089_ten_tea_2020_0278 crossref_primary_10_1139_bcb_2022_0080 crossref_primary_10_1155_2021_5562340 crossref_primary_10_1039_D2TB01352E crossref_primary_10_1038_s41419_019_1992_4 crossref_primary_10_1016_j_jds_2024_08_019 crossref_primary_10_3390_ph14010045 crossref_primary_10_1111_iej_13795 crossref_primary_10_3390_dj13030124 crossref_primary_10_1111_jre_13248 crossref_primary_10_3390_ijms251910563 crossref_primary_10_3390_polym15122591 crossref_primary_10_1088_1758_5090_ace935 crossref_primary_10_15789_1563_0625_COA_2156 crossref_primary_10_3390_biomimetics8070517 crossref_primary_10_34172_jlms_2024_53 crossref_primary_10_1111_jcpe_13439 crossref_primary_10_4012_dmj_2022_096 crossref_primary_10_1002_JPER_21_0225 crossref_primary_10_1007_s00259_021_05472_3 crossref_primary_10_1002_JPER_23_0811 crossref_primary_10_7717_peerj_14232 crossref_primary_10_1016_j_jmps_2022_105137 crossref_primary_10_1152_ajpheart_00216_2023 crossref_primary_10_1111_php_13816 crossref_primary_10_22159_ijap_2024_v16s2_13 crossref_primary_10_1002_jcp_29933 crossref_primary_10_1016_j_colsurfb_2019_110748 crossref_primary_10_1002_jbm_a_37414 crossref_primary_10_1016_j_mtbio_2022_100432 crossref_primary_10_1155_2022_1630260 crossref_primary_10_1016_j_ajodo_2021_04_023 crossref_primary_10_1016_j_aanat_2021_151829 crossref_primary_10_1016_j_msec_2020_111283 crossref_primary_10_1002_mbo3_1128 crossref_primary_10_1016_j_msec_2021_112090 crossref_primary_10_3390_ani10111938 crossref_primary_10_1016_j_pdpdt_2020_101967 crossref_primary_10_3390_jcm13185591 crossref_primary_10_1093_ejo_cjad011 crossref_primary_10_1016_j_jormas_2023_101564 crossref_primary_10_1038_s41415_024_7786_9 crossref_primary_10_3390_ijms23010476 crossref_primary_10_1111_adj_12996 crossref_primary_10_1002_JPER_22_0338 crossref_primary_10_1016_j_colsurfa_2024_134429 crossref_primary_10_1016_j_ijbiomac_2022_03_195 crossref_primary_10_1016_j_mtbio_2024_101399 crossref_primary_10_1155_2023_4376579 crossref_primary_10_5125_jkaoms_2024_50_4_206 crossref_primary_10_12968_ijtr_2019_0119 crossref_primary_10_2147_IJN_S448743 crossref_primary_10_1115_1_4048810 crossref_primary_10_1002_cre2_533 crossref_primary_10_1016_j_burns_2022_08_005 crossref_primary_10_3390_ijms24043256 crossref_primary_10_1111_jre_13217 crossref_primary_10_3390_polym12092081 crossref_primary_10_1002_jbio_202300166 crossref_primary_10_1186_s12903_024_04630_x crossref_primary_10_3390_biology10070641 crossref_primary_10_1111_jocd_14882 crossref_primary_10_1002_adhm_202304537 crossref_primary_10_3389_fbioe_2022_833595 crossref_primary_10_3390_ijms23095256 crossref_primary_10_3390_plants12132546 crossref_primary_10_3390_ijms23052647 crossref_primary_10_1016_j_jds_2022_08_030 crossref_primary_10_3390_biomedicines11030786 crossref_primary_10_1002_adhm_202001985 crossref_primary_10_1002_jbm_b_34591 crossref_primary_10_1016_j_bjoms_2023_10_018 crossref_primary_10_1007_s00256_023_04335_2 crossref_primary_10_3389_fmolb_2021_679548 crossref_primary_10_1016_j_aanat_2020_151528 crossref_primary_10_1038_s41598_020_71593_8 crossref_primary_10_1155_2022_3503164 crossref_primary_10_3389_fdmed_2021_763308 crossref_primary_10_1016_j_archoralbio_2022_105554 crossref_primary_10_2478_sjecr_2020_0024 crossref_primary_10_1016_j_jormas_2023_101500 crossref_primary_10_1038_s41598_023_37945_w crossref_primary_10_1016_j_pharmthera_2025_108798 crossref_primary_10_1042_BST20200514 crossref_primary_10_1016_j_msec_2021_112062 crossref_primary_10_1038_s41368_021_00124_6 crossref_primary_10_1016_j_jfma_2021_08_014 crossref_primary_10_1039_D2BM01959K crossref_primary_10_3389_fmats_2021_798391 crossref_primary_10_1111_jre_12986 crossref_primary_10_3390_biology10050356 crossref_primary_10_1089_cell_2024_0062 crossref_primary_10_3390_plants12233953 crossref_primary_10_7759_cureus_50381 crossref_primary_10_1021_acsomega_3c04252 crossref_primary_10_1111_odi_14292 crossref_primary_10_1186_s12906_025_04828_8 crossref_primary_10_1016_j_bpj_2022_08_024 crossref_primary_10_1007_s11090_024_10482_8 crossref_primary_10_1080_20002297_2021_2003617 crossref_primary_10_1371_journal_pcbi_1010902 crossref_primary_10_1111_php_13577 crossref_primary_10_1186_s12903_023_03034_7 crossref_primary_10_1002_jbm_a_37579 |
Cites_doi | 10.1189/jlb.1012512 10.1902/jop.2017.160730 10.1016/j.retram.2016.09.003 10.1074/jbc.272.35.22103 10.1083/jcb.122.1.103 10.1126/science.283.5398.83 10.1089/ten.tea.2009.0796 10.1111/jre.12228 10.1177/0022034513497961 10.22203/eCM.v031a04 10.1083/jcb.120.6.1381 10.1016/j.celrep.2017.01.061 10.1242/bio.20135090 10.1016/j.biomaterials.2013.10.059 10.1083/jcb.39.1.135 10.1111/j.1749-6632.2003.tb03224.x 10.1177/154405910608500207 10.1016/S0002-9440(10)65334-5 10.1083/jcb.76.3.561 10.1016/j.yexcr.2004.06.007 10.1242/jcs.114.1.119 10.1038/nri3399 10.1159/000451078 10.1111/j.1524-475X.2011.00707.x 10.1007/s00441-016-2440-8 10.1097/00006534-200201000-00026 10.1177/00220345960750030601 10.1242/jcs.114.18.3285 10.1002/jcp.22405 10.1038/ni.2705 10.1111/j.1600-0765.1980.tb00258.x 10.1371/journal.pone.0036173 10.1189/jlb.0802406 10.1001/jama.2018.12426 10.3109/03008208409013684 10.1002/path.4359 10.1038/nature07039 10.1016/j.jdermsci.2009.09.005 10.1074/jbc.M104179200 10.1371/journal.pone.0042596 10.1002/ar.1091700312 10.1096/fj.11-196279 10.1083/jcb.44.3.645 10.1097/SLA.0b013e3182251559 10.1902/jop.2015.150360 10.4049/jimmunol.173.5.3514 10.15252/msb.20178174 10.1002/aja.1001670105 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Smith, Martínez, Martínez and McCulloch. 2019 Smith, Martínez, Martínez and McCulloch |
Copyright_xml | – notice: Copyright © 2019 Smith, Martínez, Martínez and McCulloch. 2019 Smith, Martínez, Martínez and McCulloch |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2019.00270 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_5a41921cdc054391bf48e68adeef3d69 PMC6491628 31068825 10_3389_fphys_2019_00270 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Chilean Fund for Science and Technology grantid: 1170555; 1181007; 1181168 – fundername: Canadian Institutes of Health Research grantid: 416228 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-a48306ff2e3104b75b8150c21ed516c59f9e7d54d80b9091e636a8a6a1b4dfc33 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:23:42 EDT 2025 Thu Aug 21 13:43:31 EDT 2025 Fri Jul 11 04:56:17 EDT 2025 Thu Jan 02 23:00:38 EST 2025 Tue Jul 01 04:18:40 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | wound healing gingival fibroblast periodontal connective tissue |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-a48306ff2e3104b75b8150c21ed516c59f9e7d54d80b9091e636a8a6a1b4dfc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Natalina Quarto, University of Naples Federico II, Italy; Monica Mattioli-Belmonte, Polytechnical University of Marche, Italy This article was submitted to Craniofacial Biology and Dental Research, a section of the journal Frontiers in Physiology Edited by: Ophir D. Klein, University of California, San Francisco, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2019.00270 |
PMID | 31068825 |
PQID | 2231955067 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a41921cdc054391bf48e68adeef3d69 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6491628 proquest_miscellaneous_2231955067 pubmed_primary_31068825 crossref_primary_10_3389_fphys_2019_00270 crossref_citationtrail_10_3389_fphys_2019_00270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-24 |
PublicationDateYYYYMMDD | 2019-04-24 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Mak (ref28) 2009; 56 Kao (ref26) 2011; 254 Desmoulière (ref11) 1995; 146 Fournier (ref16) 2010; 16 Martinez (ref29) 2016; 87 Dumin (ref15) 2001; 276 Jones (ref25) 2018; 320 Sudbeck (ref43) 1997; 272 Chiron (ref3) 2012; 7 Williams (ref47) 1984; 12 Gould (ref20) 1980; 15 Gurtner (ref21) 2008; 453 Kolaczkowska (ref580) 2013; 3 Mirastschijski (ref31) 2004; 299 Klinkert (ref27) 2017; 58 Arora (ref1) 1999; 154 Mohammadi (ref32) 2014; 35 Chrysanthopoulou (ref4) 2014; 233 Davies (ref8) 2013; 14 Smith (ref41) 2006; 85 Dugina (ref14) 2001; 114 Tang (ref44) 2011; 226 Segal (ref40) 2001; 114 Coelho (ref5) 2016; 365 Giannopoulou (ref19) 1996; 75 Fournier (ref17) 2016; 31 Coelho (ref6) 2017; 18 Desmoulière (ref10) 1993; 122 Rognoni (ref38) 2018; 14 Iyer (ref23) 1999; 283 Dor (ref12) 2003; 995 Novak (ref33) 2013; 93 Ogawa (ref35) 2011; 19 Retamal (ref37) 2017; 88 Beanes (ref2) 2002; 109 Jin (ref24) 2015; 50 Odland (ref34) 1968; 39 Staudinger (ref42) 2013; 2 Desmoulière (ref9) 1992; 67 Hinz (ref22) 2016; 64 McCulloch (ref30) 1983; 167 Zhang (ref49) 2004; 173 Pacios (ref36) 2012; 26 Ten Cate (ref45) 1971; 170 Xu (ref48) 2013; 92 Toriseva (ref46) 2012; 7 Ross (ref39) 1970; 44 Conrad (ref7) 1993; 120 Dovi (ref13) 2003; 73 Gabbiani (ref18) 1978; 76 |
References_xml | – volume: 93 start-page: 875 year: 2013 ident: ref33 article-title: Macrophage phenotypes during tissue repair publication-title: J. Leukocyte Biol. doi: 10.1189/jlb.1012512 – volume: 88 start-page: 926 year: 2017 ident: ref37 article-title: Glycated collagen stimulates differentiation of gingival myofibroblasts publication-title: J. Periodontol. doi: 10.1902/jop.2017.160730 – volume: 64 start-page: 171 year: 2016 ident: ref22 article-title: The role of myofibroblasts in wound healing publication-title: Curr. Res. Transl. Med. doi: 10.1016/j.retram.2016.09.003 – volume: 272 start-page: 22103 year: 1997 ident: ref43 article-title: Induction and repression of collagenase-1 by keratinocytes is controlled by distinct components of different extracellular matrix compartments publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.35.22103 – volume: 122 start-page: 103 year: 1993 ident: ref10 article-title: Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts publication-title: J. Cell. Biol. doi: 10.1083/jcb.122.1.103 – volume: 283 start-page: 83 year: 1999 ident: ref23 article-title: The transcriptional program in the response of human fibroblasts to serum publication-title: Science doi: 10.1126/science.283.5398.83 – volume: 16 start-page: 2891 year: 2010 ident: ref16 article-title: Multipotent progenitor cells in gingival connective tissue publication-title: Tissue Eng. Part A. doi: 10.1089/ten.tea.2009.0796 – volume: 50 start-page: 461 year: 2015 ident: ref24 article-title: Isolation and characterization of human mesenchymal stem cells from gingival connective tissue publication-title: J. Periodontal. Res. doi: 10.1111/jre.12228 – volume: 92 start-page: 825 year: 2013 ident: ref48 article-title: Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells publication-title: J. Dent. Res. doi: 10.1177/0022034513497961 – volume: 31 start-page: 40 year: 2016 ident: ref17 article-title: Characterization of human gingival neural crest-derived stem cells in monolayer and neurosphere cultures publication-title: Eur. Cell. Mater. doi: 10.22203/eCM.v031a04 – volume: 120 start-page: 1381 year: 1993 ident: ref7 article-title: Relative distribution of actin, myosin I, and myosin II during the wound healing response of fibroblasts publication-title: J. Cell. Biol. doi: 10.1083/jcb.120.6.1381 – volume: 67 start-page: 716 year: 1992 ident: ref9 article-title: Heparin induces alpha-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts publication-title: Lab. Invest. – volume: 18 start-page: 1774 year: 2017 ident: ref6 article-title: Discoidin domain receptor 1 mediates myosin-dependent collagen contraction publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.061 – volume: 2 start-page: 1148 year: 2013 ident: ref42 article-title: Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen publication-title: Biol. Open doi: 10.1242/bio.20135090 – volume: 35 start-page: 1138 year: 2014 ident: ref32 article-title: Lateral boundary mechanosensing by adherent cells in a collagen gel system publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.059 – volume: 39 start-page: 135 year: 1968 ident: ref34 article-title: Human wound repair I. Epidermal regeneration publication-title: J. Cell. Biol. doi: 10.1083/jcb.39.1.135 – volume: 995 start-page: 208 year: 2003 ident: ref12 article-title: Induction of vascular networks in adult organs: implications to proangiogenic therapy publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.2003.tb03224.x – volume: 85 start-page: 150 year: 2006 ident: ref41 article-title: Differential uPA expression by TGF-beta1 in gingival fibroblasts publication-title: J. Dent. Res. doi: 10.1177/154405910608500207 – volume: 154 start-page: 871 year: 1999 ident: ref1 article-title: The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65334-5 – volume: 76 start-page: 561 year: 1978 ident: ref18 article-title: Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing publication-title: J. Cell. Biol. doi: 10.1083/jcb.76.3.561 – volume: 299 start-page: 465 year: 2004 ident: ref31 article-title: Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds publication-title: Exp. Cell. Res. doi: 10.1016/j.yexcr.2004.06.007 – volume: 114 start-page: 119 year: 2001 ident: ref40 article-title: Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts publication-title: J. Cell Sci. doi: 10.1242/jcs.114.1.119 – volume: 3 start-page: 159 year: 2013 ident: ref580 article-title: Neutrophil recruitment and function in health and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3399 – volume: 58 start-page: 109 year: 2017 ident: ref27 article-title: Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds publication-title: Eur. Surg. Res. doi: 10.1159/000451078 – volume: 19 start-page: s2 year: 2011 ident: ref35 article-title: Mechanobiology of scarring publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2011.00707.x – volume: 365 start-page: 521 year: 2016 ident: ref5 article-title: Contribution of collagen adhesion receptors to tissue fibrosis publication-title: Cell Tissue Res. doi: 10.1007/s00441-016-2440-8 – volume: 109 start-page: 160 year: 2002 ident: ref2 article-title: Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-200201000-00026 – volume: 75 start-page: 895 year: 1996 ident: ref19 article-title: Functional characteristics of gingival and periodontal ligament fibroblasts publication-title: J. Dent. Res. doi: 10.1177/00220345960750030601 – volume: 114 start-page: 3285 year: 2001 ident: ref14 article-title: Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors publication-title: J. Cell Sci. doi: 10.1242/jcs.114.18.3285 – volume: 226 start-page: 832 year: 2011 ident: ref44 article-title: Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22405 – volume: 14 start-page: 986 year: 2013 ident: ref8 article-title: Tissue-resident macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2705 – volume: 15 start-page: 20 year: 1980 ident: ref20 article-title: Migration and division of progenitor cell populations in periodontal ligament after wounding publication-title: J. Periodontal. Res. doi: 10.1111/j.1600-0765.1980.tb00258.x – volume: 7 start-page: e36173 year: 2012 ident: ref3 article-title: Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix publication-title: PLoS One doi: 10.1371/journal.pone.0036173 – volume: 73 start-page: 448 year: 2003 ident: ref13 article-title: Accelerated wound closure in neutrophil-depleted mice publication-title: J. Leukocyte Biol. doi: 10.1189/jlb.0802406 – volume: 320 start-page: 1481 year: 2018 ident: ref25 article-title: Management of chronic wounds publication-title: JAMA doi: 10.1001/jama.2018.12426 – volume: 12 start-page: 211 year: 1984 ident: ref47 article-title: The distribution of types I and III collagen and fibronectin in the healing equine tendon publication-title: Connect. Tissue Res. doi: 10.3109/03008208409013684 – volume: 233 start-page: 294 year: 2014 ident: ref4 article-title: Neutrophil extracellular traps promote differentiation and function of fibroblasts publication-title: J. Pathol. doi: 10.1002/path.4359 – volume: 453 start-page: 314 year: 2008 ident: ref21 article-title: Wound repair and regeneration publication-title: Nature doi: 10.1038/nature07039 – volume: 56 start-page: 168 year: 2009 ident: ref28 article-title: Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model publication-title: J. Dermatol. Sci. doi: 10.1016/j.jdermsci.2009.09.005 – volume: 276 start-page: 29368 year: 2001 ident: ref15 article-title: Pro-collagenase-1 (matrix metalloproteinase-1) binds the alpha(2)beta(1) integrin upon release from keratinocytes migrating on type I collagen publication-title: J. Biol. Chem. doi: 10.1074/jbc.M104179200 – volume: 146 start-page: 56 year: 1995 ident: ref11 article-title: Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar publication-title: Am. J. Pathol. – volume: 7 start-page: e42596 year: 2012 ident: ref46 article-title: MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability publication-title: PLoS One doi: 10.1371/journal.pone.0042596 – volume: 170 start-page: 365 year: 1971 ident: ref45 article-title: The development of the periodontium. A transplantation and autoradiographic study publication-title: Anat. Rec. doi: 10.1002/ar.1091700312 – volume: 26 start-page: 1423 year: 2012 ident: ref36 article-title: Diabetes aggravates periodontitis by limiting repair through enhanced inflammation publication-title: FASEB J. doi: 10.1096/fj.11-196279 – volume: 44 start-page: 645 year: 1970 ident: ref39 article-title: Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis publication-title: J. Cell. Biol. doi: 10.1083/jcb.44.3.645 – volume: 254 start-page: 1066 year: 2011 ident: ref26 article-title: Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis publication-title: Ann. Surg. doi: 10.1097/SLA.0b013e3182251559 – volume: 87 start-page: e18 year: 2016 ident: ref29 article-title: Platelet poor plasma and platelet rich plasma stimulate bone lineage differentiation in periodontal ligament stem cells publication-title: J. Periodontol. doi: 10.1902/jop.2015.150360 – volume: 173 start-page: 3514 year: 2004 ident: ref49 article-title: Short- and long-term effects of IL-1 and TNF antagonists on periodontal wound healing publication-title: J. Immunol. doi: 10.4049/jimmunol.173.5.3514 – volume: 14 start-page: e8174 year: 2018 ident: ref38 article-title: Fibroblast state switching orchestrates dermal maturation and wound healing publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178174 – volume: 167 start-page: 43 year: 1983 ident: ref30 article-title: Cell density and cell generation in the periodontal ligament of mice publication-title: Am. J. Anat. doi: 10.1002/aja.1001670105 |
SSID | ssj0000402001 |
Score | 2.5483465 |
SecondaryResourceType | review_article |
Snippet | After injury to periodontal tissues, a sequentially phased healing response is initiated that enables wound closure and partial restoration of tissue structure... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 270 |
SubjectTerms | connective tissue fibroblast gingival periodontal Physiology wound healing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dS-QwFA2LT76I6-hav8jCsrAPw0zbJE0eVRxkwcUVZX0rSZOwgrai44P_3nPTmWFGlt2XhRZKP0g497b3nCa5l7EvzleuKvECOlvIoZBjMXQBmseKHFvprbK0UPjihzq_Ed9v5e1SqS-aE9anB-6BG0lL45R54xuQi9LkLgodlLY-hFh6lZbuIeYtian0DSZZNM77cUmoMDOK9KeApnJRfsqCahMvxaGUrv9PHPP9VMml2DPZZBsz0siP-85-ZB9Cu8UGxy0E88Mr_8rTNM70f3zAfl5194F3kU8ghDsHcjzll4sqXc_8ruWX8DqoUVoHyX9RWSVOi5EQw7jF8XUyBb8KqUgOzm6zm8nZ9en5cFY3YdjIQk-Bs4YQiLEI4G7CVdJp0L6myIOXuWqkiSZUXgqvx84Au6BKZTWskjvhY1OWO2yt7dqwy7hRMWhAWVlhhAjKIORJqplusDdWZWw0R7FuZknFqbbFfQ1xQbjXCfeacK8T7hn7tnjisU-o8Zd7T8gwi_soFXY6AQepZw5S_8tBMvZ5btYarw6Nh9g2dC9oCNzWQKGpKmOfejMvmgJyCuJDZqxacYCVvqxeae9-p_TcSoByF3rvf3R-n60THDR8VYgDtjZ9egmHYEFTd5Qc_g3E1wZR priority: 102 providerName: Directory of Open Access Journals |
Title | Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31068825 https://www.proquest.com/docview/2231955067 https://pubmed.ncbi.nlm.nih.gov/PMC6491628 https://doaj.org/article/5a41921cdc054391bf48e68adeef3d69 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB6kBemLWLxFbRnBFx_WNslcH6SouBShUksX9y3MZGZsYUl0uwX9935nNru6sgoJhFwmmXPm5HzfXM5h7KUP2usaBuhdJUdCHouRj-A8TpTY6uCUo4XCZ5_U6UR8nMrp7-XRgwBvtlI7yic1mc9e__j-8wQG_4YYJ_ztUaJOAJqlRaEnKw0Cvwu_pMlMzwawn__LRJVyPuRSKZp9UU2X45ZbC9ljd4F8FACo3HBZObL_Njj696zKP9zU-D67N-BL_nbZIPbZndg9YJ8v-lnkfeJjkOPeAzAv-Pk6c9cNv-74OVoiGCqtjeRfKNUSpwVK8Gvc4fgyq4dfxJw4B2cfssn4w-X709GQS2HUysosIHsDcpBSFVEr4bX0BlCwrcoYZKlaaZONOkgRzLG3wBBR1coZaKr0IqS2rh-xna7v4hPGrUrRQJTaCStEVBZuUFIedYu9dapgRytxNe0QaJzyXcwaEA6SdZNl3ZCsmyzrgr1aP_FtGWTjP_e-Iw2s76Pw2PlEP__aDNbWSEeD22UbWiDS2pY-CROVcSHGVAdlC_Zipb8G5kRjJK6L_S1eBLxrwdqULtjjpT7Xr1q1h4LpDU1vfMvmle76KofsVgIwvDJP_1nmM7ZHdaRxqko8ZzuL-W08ANxZ-MPcTXCY2_IvFpT8Fw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Fibroblast+Populations+in+Periodontal+Wound+Healing+and+Tissue+Remodeling&rft.jtitle=Frontiers+in+physiology&rft.au=Smith%2C+Patricio+C&rft.au=Mart%C3%ADnez%2C+Constanza&rft.au=Mart%C3%ADnez%2C+Jorge&rft.au=McCulloch%2C+Christopher+A&rft.date=2019-04-24&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=10&rft.spage=270&rft_id=info:doi/10.3389%2Ffphys.2019.00270&rft_id=info%3Apmid%2F31068825&rft.externalDocID=31068825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |