Global water cycle and the coevolution of the Earth's interior and surface environment
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the p...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 375; no. 2094; p. 20150393 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
28.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.
This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. |
---|---|
AbstractList | The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10
g yr
on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×10 14 g yr −1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×1014 g yr-1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×1014 g yr-1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. |
Author | Planavsky, Noah J. Korenaga, Jun Evans, David A. D. |
AuthorAffiliation | Department of Geology and Geophysics , Yale University , New Haven, CT 06520, USA |
AuthorAffiliation_xml | – name: Department of Geology and Geophysics , Yale University , New Haven, CT 06520, USA |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-4785-2273 surname: Korenaga fullname: Korenaga, Jun email: jun.korenaga@yale.edu – sequence: 2 givenname: Noah J. surname: Planavsky fullname: Planavsky, Noah J. – sequence: 3 givenname: David A. D. surname: Evans fullname: Evans, David A. D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28416728$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFDEYxoO02A-9epQBD_Yya74ncxFKqVUo9FLFW3g3k3FTsklNMiv735vptqUtekpIfs-T581zhPZCDBahdwQvCO7Vp5QLLCgmYoFZz16hQ8I70tJe0r26Z5K3ArOfB-go5xuMCZGCvkYHVHEiO6oO0Y8LH5fgmz9QbGrM1njbQBiasrKNiXYT_VRcDE0c747OIZXVx9y4UHEX0x2bpzSCsY0NG5diWNtQ3qD9EXy2b-_XY_T9y_n12df28uri29npZWsEVaXtrSKSdEqxGlgNwxJGDtgAI8RwMnakZ0uqqBzoCNwYioENAuNhVGzgQkp2jD7vfG-n5doOpj6dwOvb5NaQtjqC089vglvpX3GjBes5FbPByb1Bir8nm4teu2ys9xBsnLImSvVMya7jFf3wAr2JUwp1PE16xSoolajU-6eJHqM8fHkFFjvApJhzsuMjQrCeO9Vzp3ruVM-dVgF_ITCuwNxKncj5_8vYTpbitmaMxtmyfRL536q_Zzm3_Q |
CitedBy_id | crossref_primary_10_1016_j_precamres_2022_106574 crossref_primary_10_1038_s41561_020_0538_9 crossref_primary_10_3390_rs11192301 crossref_primary_10_1038_s41586_018_0408_4 crossref_primary_10_1130_G51221_1 crossref_primary_10_2138_rmg_2024_90_14 crossref_primary_10_1038_s41598_020_62650_3 crossref_primary_10_1016_j_epsl_2024_119095 crossref_primary_10_1016_j_precamres_2021_106178 crossref_primary_10_2138_gselements_20_3_157 crossref_primary_10_1038_s41467_022_31586_9 crossref_primary_10_1089_ast_2021_0165 crossref_primary_10_1017_S1473550421000082 crossref_primary_10_1029_2021GL095748 crossref_primary_10_3847_PSJ_ac6033 crossref_primary_10_1029_2023GC011170 crossref_primary_10_1093_mnras_stad3138 crossref_primary_10_1016_j_earscirev_2020_103185 crossref_primary_10_1038_s43017_024_00603_4 crossref_primary_10_1029_2019GC008232 crossref_primary_10_1016_j_chemgeo_2022_121025 crossref_primary_10_3390_life11050429 crossref_primary_10_1016_j_earscirev_2019_103065 crossref_primary_10_1016_j_earscirev_2024_104790 crossref_primary_10_1360_TB_2022_1181 crossref_primary_10_3390_life8030035 crossref_primary_10_1016_j_epsl_2020_116090 crossref_primary_10_1016_j_gca_2018_09_017 crossref_primary_10_3799_dqkx_2022_302 crossref_primary_10_1016_j_gsf_2024_101794 crossref_primary_10_1038_s43247_025_02090_x crossref_primary_10_1144_SP503_2020_182 crossref_primary_10_1038_s41561_025_01649_9 crossref_primary_10_1098_rsta_2017_0408 crossref_primary_10_2138_gselements_20_4_253 crossref_primary_10_4131_jshpreview_33_168 crossref_primary_10_1038_s41598_024_54700_x crossref_primary_10_1098_rsos_211165 crossref_primary_10_1038_s41598_021_99240_w crossref_primary_10_1038_s41598_023_39716_z crossref_primary_10_3390_philosophies6020033 crossref_primary_10_1029_2023JB027800 crossref_primary_10_1038_s41561_020_00673_1 crossref_primary_10_1126_sciadv_ade6923 crossref_primary_10_1007_s11214_023_00995_7 crossref_primary_10_1038_s41561_023_01167_6 crossref_primary_10_1089_ast_2020_2304 crossref_primary_10_5194_se_11_1475_2020 crossref_primary_10_1016_j_epsl_2023_118312 crossref_primary_10_1016_j_earscirev_2019_02_008 crossref_primary_10_1016_j_icarus_2019_07_016 crossref_primary_10_1016_j_gca_2021_01_040 crossref_primary_10_1126_sciadv_adq1952 crossref_primary_10_1073_pnas_2221149120 crossref_primary_10_3390_life8040041 crossref_primary_10_1007_s11214_019_0624_8 crossref_primary_10_1029_2021GL096049 crossref_primary_10_2138_rmg_2024_90_10 crossref_primary_10_1029_2022JE007223 crossref_primary_10_1038_s41561_022_00902_9 crossref_primary_10_3390_life11111142 crossref_primary_10_1038_s41561_023_01133_2 crossref_primary_10_1016_j_epsl_2020_116181 crossref_primary_10_1038_s41586_018_0388_4 crossref_primary_10_1016_j_gca_2019_01_014 crossref_primary_10_1029_2024GC011786 crossref_primary_10_1038_s41598_021_00719_3 crossref_primary_10_1126_science_abf1876 crossref_primary_10_1038_s41586_018_0131_1 crossref_primary_10_3390_life8040055 crossref_primary_10_1016_j_earscirev_2017_06_012 crossref_primary_10_1038_s43017_020_0029_y crossref_primary_10_1007_s00300_024_03296_z crossref_primary_10_1029_2020GC009106 crossref_primary_10_1073_pnas_2307524120 crossref_primary_10_2138_rmg_2021_86_08 crossref_primary_10_1016_j_epsl_2018_06_016 crossref_primary_10_3847_1538_4357_aad6e0 crossref_primary_10_1029_2020JB021528 crossref_primary_10_1016_j_gca_2020_01_027 crossref_primary_10_1039_D3QI01553J crossref_primary_10_1017_S1743921319001807 crossref_primary_10_1038_s41467_019_11541_x crossref_primary_10_1039_D3JA00422H crossref_primary_10_1073_pnas_2105746118 crossref_primary_10_1126_science_adp1058 crossref_primary_10_1029_2021GL094442 crossref_primary_10_12797_AdAmericam_25_2024_25_08 crossref_primary_10_1038_s41467_021_23304_8 crossref_primary_10_3390_life14050601 crossref_primary_10_1016_j_epsl_2019_115881 crossref_primary_10_1029_2020JE006643 crossref_primary_10_1089_ast_2021_0126 crossref_primary_10_1016_j_precamres_2023_107170 crossref_primary_10_1016_j_chemgeo_2021_120300 crossref_primary_10_3724_j_issn_1007_2802_20240141 crossref_primary_10_1080_00206814_2017_1340853 crossref_primary_10_1186_s40623_021_01527_9 crossref_primary_10_3390_life13051103 crossref_primary_10_1029_2023CN000223 crossref_primary_10_1073_pnas_2002175117 crossref_primary_10_2138_am_2022_8329 crossref_primary_10_1038_s41467_017_01940_3 crossref_primary_10_1029_2020JB020982 crossref_primary_10_1146_annurev_earth_071620_055024 crossref_primary_10_1016_j_freeradbiomed_2019_05_004 crossref_primary_10_1016_j_icarus_2023_115564 crossref_primary_10_1089_ast_2023_0076 crossref_primary_10_1126_sciadv_aaz6234 crossref_primary_10_1130_G45180_1 crossref_primary_10_1186_s40645_020_00379_3 crossref_primary_10_1086_716515 crossref_primary_10_1093_icb_icac081 crossref_primary_10_1038_s41586_019_1258_4 crossref_primary_10_1038_s43017_020_00116_w crossref_primary_10_1073_pnas_2116083118 crossref_primary_10_1002_syst_201900035 crossref_primary_10_1038_s41586_021_04371_9 crossref_primary_10_1016_j_crte_2019_02_001 crossref_primary_10_3847_1538_3881_aab608 crossref_primary_10_1111_gbi_12375 crossref_primary_10_1360_TB_2022_1285 crossref_primary_10_1126_sciadv_abn2226 crossref_primary_10_1080_00206814_2024_2394994 crossref_primary_10_1016_j_chemgeo_2022_120944 crossref_primary_10_2138_am_2019_6956 crossref_primary_10_1021_acsearthspacechem_8b00145 |
Cites_doi | 10.2475/ajs.298.8.621 10.1016/S0040-1951(02)000642-X 10.1016/0009-2541(94)00140-4 10.1126/sciadv.1500777 10.1126/science.1258966 10.1130/0091-7613(1996)024<0119:WKOACC>2.3.CO;2 10.1029/2005JB004223 10.1016/j.epsl.2010.02.038 10.1029/164GM03 10.1038/srep02752 10.1016/0016-7037(83)90188-6 10.1130/G31619.1 10.1016/S0012-821X(02)01108-1 10.1111/j.1365-246X.1981.tb02759.x 10.1016/S0012-821X(01)00566-0 10.1029/JB084iB13p07411 10.1016/B978-0-444-53802-4.00114-7 10.1016/0016-7037(75)90102-7 10.1029/JB087iB01p00289 10.1146/annurev-earth-050212-124022 10.1016/S0301-9268(99)00030-3 10.1016/S0031-9201(02)00017-1 10.1016/j.epsl.2007.04.056 10.1098/rsta.1981.0122 10.1029/2003GL016982 10.1146/annurev-earth-050212-124007 10.1126/science.164.3885.1229 10.1146/annurev.ea.17.050189.001041 10.1016/j.earscirev.2008.08.001 10.1029/2011JB008410 10.1016/0016-7037(88)90110-X 10.1016/j.earscirev.2011.09.004 10.1016/j.precamres.2014.11.029 10.1029/178GM14 10.1038/ngeo622 10.1016/S0009-2541(97)00146-0 10.1029/2001GC000266 10.1144/SP294.2 10.1016/S0301-9268(98)00083-7 10.1016/j.epsl.2010.01.022 10.1029/JC086iC10p09776 10.1002/jgrd.50808 10.1029/JB093iB01p00338 10.1016/j.epsl.2015.12.015 10.1016/j.gsf.2014.01.002 10.1146/annurev.astro.41.071601.170049 10.1130/0091-7613(1998)026<0739:WKW>2.3.CO;2 10.1017/CBO9780511529429.016 10.1086/628690 10.1038/nature10800 10.1016/j.lithos.2010.07.024 10.1038/ngeo2605 10.1016/j.precamres.2014.07.015 10.1038/22941 10.1007/978-3-662-01141-6_4 10.1016/j.epsl.2011.11.024 10.1029/2011RG000375 10.1016/S0012-821X(99)00042-4 10.1130/G36247.1 10.1016/j.epsl.2010.11.038 10.1029/2010JB007670 10.1111/j.1365-3121.2008.00843.x 10.1029/JZ069i020p04377 10.1016/S0012-821X(00)00368-X 10.1016/j.epsl.2013.11.049 10.1016/S0012-821X(00)00362-9 10.1130/G30910.1 10.1016/B978-044452748-6.00099-7 10.1016/S0016-7037(99)00169-6 10.1038/316336a0 10.1016/0301-9268(86)90003-3 10.1016/j.epsl.2011.10.040 10.1016/j.precamres.2015.05.014 10.1089/153110702753621321 10.1029/2003JB002475 10.1029/GL010i011p01061 10.1038/359123a0 10.1016/B978-0-444-53802-4.00156-1 10.1038/386262a0 10.1038/nature01073 10.1007/s10712-011-9118-2 10.1126/science.1064280 10.1016/j.precamres.2010.02.018 10.1080/08120099108727995 10.1016/B0-08-043751-6/02015-6 10.1016/0304-4203(72)90004-7 10.1016/S0012-821X(01)00359-4 10.1016/j.epsl.2005.04.047 10.1002/2015GL065333 10.1016/0012-821X(83)90136-X 10.1029/2006GC001390 10.1016/S0012-821X(97)00104-0 10.1016/j.chemgeo.2009.02.008 10.1144/SP424.5 10.1029/SP016p0001 10.1016/j.lithos.2012.01.010 10.1029/96JB03271 10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2 10.1016/j.earscirev.2012.06.007 10.1038/nature01215 10.1029/2005JB004224 10.2475/ajs.295.7.787 10.1130/L245.1 10.1093/petrology/Special_Volume.1.11 10.1029/2012GC004334 10.1016/S0024-4937(99)00026-2 10.1038/385219a0 10.1111/j.1365-3121.2006.00723.x 10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2 10.1016/j.epsl.2008.08.029 10.1016/j.epsl.2004.04.018 10.1016/S0024-4937(99)00025-0 10.1016/j.precamres.2013.12.005 10.1016/j.epsl.2008.03.062 10.1016/j.chemgeo.2010.03.009 10.1029/95JB00259 10.1038/ngeo2122 10.1016/0012-821X(92)90110-H 10.1073/pnas.1115705109 10.1515/9780691220239 10.1016/0012-821X(90)90163-R 10.1130/2011.2478(13) 10.1016/j.earscirev.2006.07.001 10.1016/0012-821X(89)90120-9 10.2110/jsr.2009.043 10.1016/j.icarus.2012.10.015 10.1111/gbi.12030 10.1016/S0031-9201(96)03239-6 10.1016/j.epsl.2011.11.031 10.1016/j.tecto.2009.04.011 10.1016/j.epsl.2007.12.022 10.1038/nature13068 10.1029/2007RG000241 10.2475/ajs.303.4.319 10.1016/0012-821X(89)90121-0 10.1029/1999GL900425 10.1029/2006JB004502 10.1016/0012-821X(95)00203-O 10.1029/2004RG000156 10.1016/S0301-9268(00)00135-2 10.1016/j.epsl.2007.03.010 10.2475/ajs.283.7.641 10.1029/GM074p0041 10.1130/2015.2514(11) 10.1038/ngeo708 10.1029/GM096 10.1038/nature12426 10.1093/oso/9780195173338.001.0001 10.1146/annurev.earth.29.1.365 10.1016/S0012-821X(98)00031-4 10.1016/j.epsl.2008.12.023 10.1111/j.1365-3091.2004.00670.x 10.1029/2002GC000392 10.1029/96GL01118 10.1017/S1089332600002965 10.1029/98GL02805 10.2475/04.2014.03 10.1146/annurev-earth-050212-124208 10.1016/S0012-821X(98)00233-7 10.1130/B30950.1 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) 2017 The Author(s). Copyright The Royal Society Publishing May 28, 2017 2017 The Author(s) 2017 |
Copyright_xml | – notice: 2017 The Author(s) – notice: 2017 The Author(s). – notice: Copyright The Royal Society Publishing May 28, 2017 – notice: 2017 The Author(s) 2017 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1098/rsta.2015.0393 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
DocumentTitleAlternate | Global water cycle and Earth evolution |
EISSN | 1471-2962 |
EndPage | 20150393 |
ExternalDocumentID | PMC5394256 28416728 10_1098_rsta_2015_0393 |
Genre | Journal Article |
GrantInformation_xml | – fundername: US National Aeronautics and Space Administration; ; grantid: NNA15BB03A – fundername: ; grantid: NNA15BB03A |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE ABBHK ABFAN ABPLY ABPTK ABTLG ABXXB ABYWD ACGFO ACIWK ACMTB ACNCT ACQIA ACTMH ADBBV ADODI ADULT ADZLD AEUPB AEXZC AFVYC AFXKK ALMA_UNASSIGNED_HOLDINGS BTFSW DCCCD DIK DNJUQ DOOOF DQDLB DSRWC DWIUU EBS ECEWR EFSUC EJD F5P HH5 HQ6 HZ~ ICLEN JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JSODD JST K-O KQ8 MRS MV1 NSAHA O9- OK1 OP1 P2P RHF RRY SA0 TN5 TR2 V1E W8F XSW YNT ~02 AAWIL AAYXX ABXSQ ACHIC ADQXQ AGLNM AIHAF ALMYZ ALRMG AQVQM CITATION H13 IPSME NPM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-9e816178839628ddbaf4a0ca311c41f7193b2826d2fa4cc20a3d500df83d45663 |
ISSN | 1364-503X |
IngestDate | Thu Aug 21 13:46:46 EDT 2025 Fri Jul 11 05:46:30 EDT 2025 Mon Jun 30 09:38:49 EDT 2025 Thu Apr 03 06:58:55 EDT 2025 Tue Jul 01 01:48:25 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Wed Jan 17 02:37:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2094 |
Keywords | oceans continental freeboard mantle convection |
Language | English |
License | http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved. 2017 The Author(s). Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c528t-9e816178839628ddbaf4a0ca311c41f7193b2826d2fa4cc20a3d500df83d45663 |
Notes | Theo Murphy meeting issue “The origin, history and role of water in the evolution of the inner Solar System” organized and edited by Sara S. Russell, Chris Ballentine, Monica M. Grady ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 One contribution of 9 to a Theo Murphy meeting issue ‘The origin, history and role of water in the evolution of the inner Solar System’. |
ORCID | 0000-0002-4785-2273 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0393 |
PMID | 28416728 |
PQID | 1983889685 |
PQPubID | 2046218 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1098_rsta_2015_0393 proquest_journals_1983889685 pubmed_primary_28416728 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394256 royalsociety_journals_10_1098_rsta_2015_0393 proquest_miscellaneous_1889386774 crossref_citationtrail_10_1098_rsta_2015_0393 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-28 |
PublicationDateYYYYMMDD | 2017-05-28 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAbbrev | Phil. Trans. R. Soc. A |
PublicationTitleAlternate | Philos Trans A Math Phys Eng Sci |
PublicationYear | 2017 |
Publisher | The Royal Society Publishing |
Publisher_xml | – name: The Royal Society Publishing |
References | e_1_3_4_3_2 e_1_3_4_152_2 e_1_3_4_110_2 e_1_3_4_133_2 e_1_3_4_156_2 e_1_3_4_114_2 e_1_3_4_137_2 e_1_3_4_61_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_118_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_27_2 e_1_3_4_65_2 e_1_3_4_46_2 e_1_3_4_88_2 Holland HD (e_1_3_4_4_2) 1984 Lee CTA (e_1_3_4_72_2) 2004; 108 e_1_3_4_163_2 e_1_3_4_140_2 e_1_3_4_121_2 e_1_3_4_167_2 e_1_3_4_102_2 e_1_3_4_144_2 e_1_3_4_125_2 e_1_3_4_95_2 e_1_3_4_106_2 e_1_3_4_148_2 e_1_3_4_30_2 e_1_3_4_129_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_99_2 e_1_3_4_19_2 e_1_3_4_2_2 e_1_3_4_151_2 e_1_3_4_132_2 e_1_3_4_113_2 e_1_3_4_155_2 Bebout GE (e_1_3_4_39_2) 1996 e_1_3_4_136_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_117_2 e_1_3_4_159_2 e_1_3_4_6_2 e_1_3_4_20_2 Thorne AM (e_1_3_4_94_2) 2001 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_120_2 e_1_3_4_162_2 e_1_3_4_101_2 e_1_3_4_124_2 e_1_3_4_143_2 e_1_3_4_166_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_105_2 e_1_3_4_128_2 e_1_3_4_147_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_109_2 e_1_3_4_12_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_77_2 e_1_3_4_35_2 e_1_3_4_131_2 e_1_3_4_150_2 e_1_3_4_112_2 e_1_3_4_135_2 e_1_3_4_154_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_116_2 e_1_3_4_139_2 e_1_3_4_158_2 e_1_3_4_63_2 e_1_3_4_40_2 Wise DU (e_1_3_4_43_2) 1974 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_48_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_142_2 e_1_3_4_161_2 e_1_3_4_100_2 e_1_3_4_146_2 e_1_3_4_123_2 e_1_3_4_165_2 e_1_3_4_93_2 e_1_3_4_104_2 e_1_3_4_74_2 e_1_3_4_127_2 e_1_3_4_51_2 e_1_3_4_108_2 e_1_3_4_70_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_97_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_17_2 Walker JCG (e_1_3_4_42_2) 1977 Taylor SR (e_1_3_4_68_2) 1985 e_1_3_4_153_2 e_1_3_4_130_2 e_1_3_4_111_2 e_1_3_4_157_2 e_1_3_4_134_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_115_2 e_1_3_4_8_2 e_1_3_4_138_2 e_1_3_4_41_2 e_1_3_4_119_2 e_1_3_4_22_2 e_1_3_4_45_2 Eakins B (e_1_3_4_81_2) 2010 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_160_2 e_1_3_4_141_2 e_1_3_4_164_2 e_1_3_4_122_2 e_1_3_4_145_2 e_1_3_4_168_2 Berner RA (e_1_3_4_5_2) 2004 e_1_3_4_71_2 e_1_3_4_103_2 e_1_3_4_126_2 e_1_3_4_149_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_107_2 e_1_3_4_79_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_75_2 e_1_3_4_98_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_56_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_88_2 doi: 10.2475/ajs.298.8.621 – ident: e_1_3_4_126_2 doi: 10.1016/S0040-1951(02)000642-X – ident: e_1_3_4_24_2 doi: 10.1016/0009-2541(94)00140-4 – ident: e_1_3_4_103_2 doi: 10.1126/sciadv.1500777 – ident: e_1_3_4_152_2 doi: 10.1126/science.1258966 – ident: e_1_3_4_151_2 doi: 10.1130/0091-7613(1996)024<0119:WKOACC>2.3.CO;2 – ident: e_1_3_4_17_2 doi: 10.1029/2005JB004223 – ident: e_1_3_4_138_2 doi: 10.1016/j.epsl.2010.02.038 – ident: e_1_3_4_61_2 doi: 10.1029/164GM03 – volume: 108 start-page: 2441 year: 2004 ident: e_1_3_4_72_2 article-title: Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle publication-title: J. Geophys. Res. – ident: e_1_3_4_145_2 doi: 10.1038/srep02752 – ident: e_1_3_4_91_2 – ident: e_1_3_4_37_2 doi: 10.1016/0016-7037(83)90188-6 – ident: e_1_3_4_148_2 doi: 10.1130/G31619.1 – ident: e_1_3_4_22_2 doi: 10.1016/S0012-821X(02)01108-1 – ident: e_1_3_4_59_2 doi: 10.1111/j.1365-246X.1981.tb02759.x – ident: e_1_3_4_156_2 doi: 10.1016/S0012-821X(01)00566-0 – ident: e_1_3_4_14_2 doi: 10.1029/JB084iB13p07411 – ident: e_1_3_4_70_2 doi: 10.1016/B978-0-444-53802-4.00114-7 – ident: e_1_3_4_146_2 doi: 10.1016/0016-7037(75)90102-7 – ident: e_1_3_4_60_2 doi: 10.1029/JB087iB01p00289 – ident: e_1_3_4_30_2 doi: 10.1146/annurev-earth-050212-124022 – ident: e_1_3_4_96_2 doi: 10.1016/S0301-9268(99)00030-3 – ident: e_1_3_4_32_2 doi: 10.1016/S0031-9201(02)00017-1 – ident: e_1_3_4_129_2 doi: 10.1016/j.epsl.2007.04.056 – ident: e_1_3_4_55_2 doi: 10.1098/rsta.1981.0122 – ident: e_1_3_4_52_2 doi: 10.1029/2003GL016982 – ident: e_1_3_4_35_2 doi: 10.1146/annurev-earth-050212-124007 – ident: e_1_3_4_85_2 doi: 10.1126/science.164.3885.1229 – ident: e_1_3_4_99_2 doi: 10.1146/annurev.ea.17.050189.001041 – ident: e_1_3_4_119_2 doi: 10.1016/j.earscirev.2008.08.001 – ident: e_1_3_4_58_2 doi: 10.1029/2011JB008410 – ident: e_1_3_4_8_2 doi: 10.1016/0016-7037(88)90110-X – volume-title: Volumes of the World’s Oceans from ETOPO1 year: 2010 ident: e_1_3_4_81_2 – ident: e_1_3_4_116_2 doi: 10.1016/j.earscirev.2011.09.004 – ident: e_1_3_4_139_2 doi: 10.1016/j.precamres.2014.11.029 – ident: e_1_3_4_144_2 doi: 10.1029/178GM14 – ident: e_1_3_4_130_2 doi: 10.1038/ngeo622 – ident: e_1_3_4_7_2 doi: 10.1016/S0009-2541(97)00146-0 – ident: e_1_3_4_100_2 doi: 10.1029/2001GC000266 – ident: e_1_3_4_128_2 doi: 10.1144/SP294.2 – ident: e_1_3_4_46_2 doi: 10.1016/S0301-9268(98)00083-7 – ident: e_1_3_4_53_2 doi: 10.1016/j.epsl.2010.01.022 – ident: e_1_3_4_104_2 doi: 10.1029/JC086iC10p09776 – ident: e_1_3_4_108_2 doi: 10.1002/jgrd.50808 – ident: e_1_3_4_118_2 doi: 10.1029/JB093iB01p00338 – ident: e_1_3_4_140_2 doi: 10.1016/j.epsl.2015.12.015 – ident: e_1_3_4_124_2 doi: 10.1016/j.gsf.2014.01.002 – ident: e_1_3_4_2_2 doi: 10.1146/annurev.astro.41.071601.170049 – ident: e_1_3_4_155_2 doi: 10.1130/0091-7613(1998)026<0739:WKW>2.3.CO;2 – ident: e_1_3_4_106_2 doi: 10.1017/CBO9780511529429.016 – ident: e_1_3_4_57_2 doi: 10.1086/628690 – ident: e_1_3_4_122_2 doi: 10.1038/nature10800 – volume-title: The continental crust: its composition and evolution year: 1985 ident: e_1_3_4_68_2 – ident: e_1_3_4_86_2 doi: 10.1016/j.lithos.2010.07.024 – volume-title: Geology of the Fortescue Group, Pilbara Craton, Western Australia year: 2001 ident: e_1_3_4_94_2 – ident: e_1_3_4_161_2 doi: 10.1038/ngeo2605 – ident: e_1_3_4_123_2 doi: 10.1016/j.precamres.2014.07.015 – ident: e_1_3_4_110_2 doi: 10.1038/22941 – start-page: 45 volume-title: Geology of continental margins year: 1974 ident: e_1_3_4_43_2 doi: 10.1007/978-3-662-01141-6_4 – ident: e_1_3_4_41_2 doi: 10.1016/j.epsl.2011.11.024 – ident: e_1_3_4_107_2 doi: 10.1029/2011RG000375 – ident: e_1_3_4_127_2 doi: 10.1016/S0012-821X(99)00042-4 – ident: e_1_3_4_137_2 doi: 10.1130/G36247.1 – ident: e_1_3_4_27_2 doi: 10.1016/j.epsl.2010.11.038 – ident: e_1_3_4_163_2 doi: 10.1029/2010JB007670 – ident: e_1_3_4_48_2 doi: 10.1111/j.1365-3121.2008.00843.x – ident: e_1_3_4_31_2 doi: 10.1029/JZ069i020p04377 – ident: e_1_3_4_45_2 doi: 10.1016/S0012-821X(00)00368-X – ident: e_1_3_4_114_2 doi: 10.1016/j.epsl.2013.11.049 – ident: e_1_3_4_78_2 doi: 10.1016/S0012-821X(00)00362-9 – ident: e_1_3_4_136_2 doi: 10.1130/G30910.1 – ident: e_1_3_4_135_2 doi: 10.1016/B978-044452748-6.00099-7 – ident: e_1_3_4_21_2 doi: 10.1016/S0016-7037(99)00169-6 – ident: e_1_3_4_44_2 doi: 10.1038/316336a0 – ident: e_1_3_4_90_2 doi: 10.1016/0301-9268(86)90003-3 – ident: e_1_3_4_143_2 – ident: e_1_3_4_19_2 doi: 10.1016/j.epsl.2011.10.040 – ident: e_1_3_4_93_2 doi: 10.1016/j.precamres.2015.05.014 – ident: e_1_3_4_111_2 doi: 10.1089/153110702753621321 – ident: e_1_3_4_134_2 doi: 10.1029/2003JB002475 – ident: e_1_3_4_6_2 doi: 10.1029/GL010i011p01061 – ident: e_1_3_4_65_2 doi: 10.1038/359123a0 – ident: e_1_3_4_36_2 doi: 10.1016/B978-0-444-53802-4.00156-1 – ident: e_1_3_4_109_2 doi: 10.1038/386262a0 – ident: e_1_3_4_9_2 doi: 10.1038/nature01073 – ident: e_1_3_4_28_2 doi: 10.1007/s10712-011-9118-2 – ident: e_1_3_4_149_2 doi: 10.1126/science.1064280 – ident: e_1_3_4_131_2 doi: 10.1016/j.precamres.2010.02.018 – ident: e_1_3_4_83_2 doi: 10.1080/08120099108727995 – ident: e_1_3_4_34_2 doi: 10.1016/B0-08-043751-6/02015-6 – ident: e_1_3_4_101_2 doi: 10.1016/0304-4203(72)90004-7 – ident: e_1_3_4_157_2 doi: 10.1016/S0012-821X(01)00359-4 – ident: e_1_3_4_13_2 doi: 10.1016/j.epsl.2005.04.047 – ident: e_1_3_4_112_2 doi: 10.1002/2015GL065333 – ident: e_1_3_4_15_2 doi: 10.1016/0012-821X(83)90136-X – ident: e_1_3_4_54_2 doi: 10.1029/2006GC001390 – ident: e_1_3_4_158_2 doi: 10.1016/S0012-821X(97)00104-0 – ident: e_1_3_4_20_2 doi: 10.1016/j.chemgeo.2009.02.008 – ident: e_1_3_4_141_2 doi: 10.1144/SP424.5 – ident: e_1_3_4_71_2 doi: 10.1029/SP016p0001 – ident: e_1_3_4_75_2 doi: 10.1016/j.lithos.2012.01.010 – ident: e_1_3_4_79_2 doi: 10.1029/96JB03271 – ident: e_1_3_4_98_2 doi: 10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2 – ident: e_1_3_4_120_2 doi: 10.1016/j.earscirev.2012.06.007 – ident: e_1_3_4_12_2 doi: 10.1038/nature01215 – ident: e_1_3_4_18_2 doi: 10.1029/2005JB004224 – ident: e_1_3_4_50_2 doi: 10.2475/ajs.295.7.787 – ident: e_1_3_4_164_2 doi: 10.1130/L245.1 – ident: e_1_3_4_84_2 doi: 10.1093/petrology/Special_Volume.1.11 – ident: e_1_3_4_25_2 doi: 10.1029/2012GC004334 – ident: e_1_3_4_74_2 doi: 10.1016/S0024-4937(99)00026-2 – ident: e_1_3_4_16_2 doi: 10.1038/385219a0 – volume-title: Evolution of the atmosphere year: 1977 ident: e_1_3_4_42_2 – ident: e_1_3_4_89_2 doi: 10.1111/j.1365-3121.2006.00723.x – ident: e_1_3_4_142_2 doi: 10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2 – ident: e_1_3_4_49_2 doi: 10.1016/j.epsl.2008.08.029 – ident: e_1_3_4_40_2 doi: 10.1016/j.epsl.2004.04.018 – ident: e_1_3_4_80_2 doi: 10.1016/S0024-4937(99)00025-0 – ident: e_1_3_4_133_2 doi: 10.1016/j.precamres.2013.12.005 – ident: e_1_3_4_167_2 doi: 10.1016/j.epsl.2008.03.062 – ident: e_1_3_4_153_2 doi: 10.1016/j.chemgeo.2010.03.009 – ident: e_1_3_4_67_2 doi: 10.1029/95JB00259 – ident: e_1_3_4_113_2 doi: 10.1038/ngeo2122 – ident: e_1_3_4_165_2 doi: 10.1016/0012-821X(92)90110-H – ident: e_1_3_4_154_2 doi: 10.1073/pnas.1115705109 – volume-title: The chemical evolution of the atmosphere and oceans year: 1984 ident: e_1_3_4_4_2 doi: 10.1515/9780691220239 – ident: e_1_3_4_26_2 doi: 10.1016/0012-821X(90)90163-R – ident: e_1_3_4_77_2 doi: 10.1130/2011.2478(13) – ident: e_1_3_4_87_2 doi: 10.1016/j.earscirev.2006.07.001 – ident: e_1_3_4_82_2 doi: 10.1016/0012-821X(89)90120-9 – ident: e_1_3_4_147_2 doi: 10.2110/jsr.2009.043 – ident: e_1_3_4_168_2 doi: 10.1016/j.icarus.2012.10.015 – ident: e_1_3_4_102_2 doi: 10.1111/gbi.12030 – ident: e_1_3_4_160_2 doi: 10.1016/S0031-9201(96)03239-6 – ident: e_1_3_4_29_2 doi: 10.1016/j.epsl.2011.11.031 – ident: e_1_3_4_76_2 doi: 10.1016/j.tecto.2009.04.011 – ident: e_1_3_4_64_2 doi: 10.1016/j.epsl.2007.12.022 – ident: e_1_3_4_115_2 doi: 10.1038/nature13068 – ident: e_1_3_4_51_2 doi: 10.1029/2007RG000241 – ident: e_1_3_4_56_2 doi: 10.2475/ajs.303.4.319 – ident: e_1_3_4_159_2 doi: 10.1016/0012-821X(89)90121-0 – ident: e_1_3_4_47_2 doi: 10.1029/1999GL900425 – ident: e_1_3_4_162_2 doi: 10.1029/2006JB004502 – ident: e_1_3_4_10_2 doi: 10.1016/0012-821X(95)00203-O – ident: e_1_3_4_69_2 doi: 10.1029/2004RG000156 – ident: e_1_3_4_95_2 doi: 10.1016/S0301-9268(00)00135-2 – ident: e_1_3_4_63_2 doi: 10.1016/j.epsl.2007.03.010 – ident: e_1_3_4_105_2 doi: 10.2475/ajs.283.7.641 – ident: e_1_3_4_166_2 doi: 10.1029/GM074p0041 – ident: e_1_3_4_66_2 doi: 10.1130/2015.2514(11) – ident: e_1_3_4_121_2 doi: 10.1038/ngeo708 – start-page: 179 volume-title: Subduction: top to bottom year: 1996 ident: e_1_3_4_39_2 doi: 10.1029/GM096 – ident: e_1_3_4_92_2 doi: 10.1038/nature12426 – volume-title: The phanerozoic carbon cycle: CO2 and O2 year: 2004 ident: e_1_3_4_5_2 doi: 10.1093/oso/9780195173338.001.0001 – ident: e_1_3_4_33_2 doi: 10.1146/annurev.earth.29.1.365 – ident: e_1_3_4_125_2 doi: 10.1016/S0012-821X(98)00031-4 – ident: e_1_3_4_23_2 doi: 10.1016/j.epsl.2008.12.023 – ident: e_1_3_4_150_2 doi: 10.1111/j.1365-3091.2004.00670.x – ident: e_1_3_4_38_2 doi: 10.1029/2002GC000392 – ident: e_1_3_4_62_2 doi: 10.1029/96GL01118 – ident: e_1_3_4_117_2 doi: 10.1017/S1089332600002965 – ident: e_1_3_4_11_2 doi: 10.1029/98GL02805 – ident: e_1_3_4_132_2 doi: 10.2475/04.2014.03 – ident: e_1_3_4_3_2 doi: 10.1146/annurev-earth-050212-124208 – ident: e_1_3_4_73_2 doi: 10.1016/S0012-821X(98)00233-7 – ident: e_1_3_4_97_2 doi: 10.1130/B30950.1 |
SSID | ssj0011652 |
Score | 2.5698094 |
Snippet | The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a... |
SourceID | pubmedcentral proquest pubmed crossref royalsociety |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20150393 |
SubjectTerms | Continental Freeboard Continents Earth surface Evaporation Freeboard Geochemistry Geological surveys Hydrologic cycle Indoor environments Inner solar system Mantle Mantle Convection Oceans Plate tectonics Sea level Solar system Solar system evolution Surface water |
Title | Global water cycle and the coevolution of the Earth's interior and surface environment |
URI | https://royalsocietypublishing.org/doi/full/10.1098/rsta.2015.0393 https://www.ncbi.nlm.nih.gov/pubmed/28416728 https://www.proquest.com/docview/1983889685 https://www.proquest.com/docview/1889386774 https://pubmed.ncbi.nlm.nih.gov/PMC5394256 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OiqAfxFatp1UiCFViYm43L5uPRSvlpEWhlX4Lm82GFiQpl7sW_Y_-J2d2N2_cCdYvR24zJJvMk52d3ZlnCHkTpInA4CevTCKJpNrUy5mQHkwVqCxpMpM6w_v4JD46C-fn0flk8nsQtbRa5r78tTGv5H-0Cm2gV8ySvYVmu4tCAxyDfuEXNAy__6RjQ9jv3ghkOpQ_4WwXEClrdW3v3YYBHAodDZg0miNicWnDJ5vVohTwdQ9S3oYz1q9trQOtzWVfXrxpr2tWINrwT9xz0CVCfByHwA939RL-cUcPqysM2BUVc4y9UD0vomutcr_NVC9UJcwK8HzVoRnrLYlru_h7UosLd-6vOwgYs-8e-O4nf7jAAUYziNqE8TZFbvwg_QLdYOBmcehFga4tDHbNtIHh9Wg6Hu2ZKdRiYU0DU2J5zZAEKSZHYHIRhv9FPqYw9yazC2Q0W_g8Q8EMBTMUvEPuUvBasKDGl2_9ptYs1gWguq52HKL8w_hG4znSmuOzIX53gS-oMe9nMD86fUQeWsfGOTAo3SYTVe2QBwO6S_jXg6DZIfd08DEebVsD0zhvLQv6u8fkuwG3o8HtaHA7ABQHruAMwO3UpW7S4N5vnBbaWtZC2xlA-wk5-3x4-vHIs0VAPBlRvvRSxdEF5zCRjykvilyUoQikYDMYRmZlAg5ITsFHLmgpQilpIFgRBUFRclaAcxCzp2Srqiv1jDhlBGJKxXCJIszzSPCQlTTlZaiQlTGcEq997Zm0DPlYqOVHtlnNU7LfyV8Zbpi_Su61Wszs-NFks5QzztOYR1PyujsNoztu2YlK1SuQAQGGlJPQuV2j9O5WFCMGEsqnJBnBoRNA5vjxmeryQjPIRywFWx1PyfshcAZd2_gUz28n_oLc7z_nPbK1XKzUS5jBL_NX-rv4A52a9kI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+water+cycle+and+the+coevolution+of+the+Earth%27s+interior+and+surface+environment&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Korenaga%2C+Jun&rft.au=Planavsky%2C+Noah+J.&rft.au=Evans%2C+David+A.+D.&rft.date=2017-05-28&rft.pub=The+Royal+Society+Publishing&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=375&rft.issue=2094&rft_id=info:doi/10.1098%2Frsta.2015.0393&rft.externalDocID=10_1098_rsta_2015_0393 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |