Global water cycle and the coevolution of the Earth's interior and surface environment

The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the p...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 375; no. 2094; p. 20150393
Main Authors Korenaga, Jun, Planavsky, Noah J., Evans, David A. D.
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 28.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
AbstractList The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10  g yr on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×10 14  g yr −1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×1014 g yr-1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×1014 g yr-1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Author Planavsky, Noah J.
Korenaga, Jun
Evans, David A. D.
AuthorAffiliation Department of Geology and Geophysics , Yale University , New Haven, CT 06520, USA
AuthorAffiliation_xml – name: Department of Geology and Geophysics , Yale University , New Haven, CT 06520, USA
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-4785-2273
  surname: Korenaga
  fullname: Korenaga, Jun
  email: jun.korenaga@yale.edu
– sequence: 2
  givenname: Noah J.
  surname: Planavsky
  fullname: Planavsky, Noah J.
– sequence: 3
  givenname: David A. D.
  surname: Evans
  fullname: Evans, David A. D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28416728$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFDEYxoO02A-9epQBD_Yya74ncxFKqVUo9FLFW3g3k3FTsklNMiv735vptqUtekpIfs-T581zhPZCDBahdwQvCO7Vp5QLLCgmYoFZz16hQ8I70tJe0r26Z5K3ArOfB-go5xuMCZGCvkYHVHEiO6oO0Y8LH5fgmz9QbGrM1njbQBiasrKNiXYT_VRcDE0c747OIZXVx9y4UHEX0x2bpzSCsY0NG5diWNtQ3qD9EXy2b-_XY_T9y_n12df28uri29npZWsEVaXtrSKSdEqxGlgNwxJGDtgAI8RwMnakZ0uqqBzoCNwYioENAuNhVGzgQkp2jD7vfG-n5doOpj6dwOvb5NaQtjqC089vglvpX3GjBes5FbPByb1Bir8nm4teu2ys9xBsnLImSvVMya7jFf3wAr2JUwp1PE16xSoolajU-6eJHqM8fHkFFjvApJhzsuMjQrCeO9Vzp3ruVM-dVgF_ITCuwNxKncj5_8vYTpbitmaMxtmyfRL536q_Zzm3_Q
CitedBy_id crossref_primary_10_1016_j_precamres_2022_106574
crossref_primary_10_1038_s41561_020_0538_9
crossref_primary_10_3390_rs11192301
crossref_primary_10_1038_s41586_018_0408_4
crossref_primary_10_1130_G51221_1
crossref_primary_10_2138_rmg_2024_90_14
crossref_primary_10_1038_s41598_020_62650_3
crossref_primary_10_1016_j_epsl_2024_119095
crossref_primary_10_1016_j_precamres_2021_106178
crossref_primary_10_2138_gselements_20_3_157
crossref_primary_10_1038_s41467_022_31586_9
crossref_primary_10_1089_ast_2021_0165
crossref_primary_10_1017_S1473550421000082
crossref_primary_10_1029_2021GL095748
crossref_primary_10_3847_PSJ_ac6033
crossref_primary_10_1029_2023GC011170
crossref_primary_10_1093_mnras_stad3138
crossref_primary_10_1016_j_earscirev_2020_103185
crossref_primary_10_1038_s43017_024_00603_4
crossref_primary_10_1029_2019GC008232
crossref_primary_10_1016_j_chemgeo_2022_121025
crossref_primary_10_3390_life11050429
crossref_primary_10_1016_j_earscirev_2019_103065
crossref_primary_10_1016_j_earscirev_2024_104790
crossref_primary_10_1360_TB_2022_1181
crossref_primary_10_3390_life8030035
crossref_primary_10_1016_j_epsl_2020_116090
crossref_primary_10_1016_j_gca_2018_09_017
crossref_primary_10_3799_dqkx_2022_302
crossref_primary_10_1016_j_gsf_2024_101794
crossref_primary_10_1038_s43247_025_02090_x
crossref_primary_10_1144_SP503_2020_182
crossref_primary_10_1038_s41561_025_01649_9
crossref_primary_10_1098_rsta_2017_0408
crossref_primary_10_2138_gselements_20_4_253
crossref_primary_10_4131_jshpreview_33_168
crossref_primary_10_1038_s41598_024_54700_x
crossref_primary_10_1098_rsos_211165
crossref_primary_10_1038_s41598_021_99240_w
crossref_primary_10_1038_s41598_023_39716_z
crossref_primary_10_3390_philosophies6020033
crossref_primary_10_1029_2023JB027800
crossref_primary_10_1038_s41561_020_00673_1
crossref_primary_10_1126_sciadv_ade6923
crossref_primary_10_1007_s11214_023_00995_7
crossref_primary_10_1038_s41561_023_01167_6
crossref_primary_10_1089_ast_2020_2304
crossref_primary_10_5194_se_11_1475_2020
crossref_primary_10_1016_j_epsl_2023_118312
crossref_primary_10_1016_j_earscirev_2019_02_008
crossref_primary_10_1016_j_icarus_2019_07_016
crossref_primary_10_1016_j_gca_2021_01_040
crossref_primary_10_1126_sciadv_adq1952
crossref_primary_10_1073_pnas_2221149120
crossref_primary_10_3390_life8040041
crossref_primary_10_1007_s11214_019_0624_8
crossref_primary_10_1029_2021GL096049
crossref_primary_10_2138_rmg_2024_90_10
crossref_primary_10_1029_2022JE007223
crossref_primary_10_1038_s41561_022_00902_9
crossref_primary_10_3390_life11111142
crossref_primary_10_1038_s41561_023_01133_2
crossref_primary_10_1016_j_epsl_2020_116181
crossref_primary_10_1038_s41586_018_0388_4
crossref_primary_10_1016_j_gca_2019_01_014
crossref_primary_10_1029_2024GC011786
crossref_primary_10_1038_s41598_021_00719_3
crossref_primary_10_1126_science_abf1876
crossref_primary_10_1038_s41586_018_0131_1
crossref_primary_10_3390_life8040055
crossref_primary_10_1016_j_earscirev_2017_06_012
crossref_primary_10_1038_s43017_020_0029_y
crossref_primary_10_1007_s00300_024_03296_z
crossref_primary_10_1029_2020GC009106
crossref_primary_10_1073_pnas_2307524120
crossref_primary_10_2138_rmg_2021_86_08
crossref_primary_10_1016_j_epsl_2018_06_016
crossref_primary_10_3847_1538_4357_aad6e0
crossref_primary_10_1029_2020JB021528
crossref_primary_10_1016_j_gca_2020_01_027
crossref_primary_10_1039_D3QI01553J
crossref_primary_10_1017_S1743921319001807
crossref_primary_10_1038_s41467_019_11541_x
crossref_primary_10_1039_D3JA00422H
crossref_primary_10_1073_pnas_2105746118
crossref_primary_10_1126_science_adp1058
crossref_primary_10_1029_2021GL094442
crossref_primary_10_12797_AdAmericam_25_2024_25_08
crossref_primary_10_1038_s41467_021_23304_8
crossref_primary_10_3390_life14050601
crossref_primary_10_1016_j_epsl_2019_115881
crossref_primary_10_1029_2020JE006643
crossref_primary_10_1089_ast_2021_0126
crossref_primary_10_1016_j_precamres_2023_107170
crossref_primary_10_1016_j_chemgeo_2021_120300
crossref_primary_10_3724_j_issn_1007_2802_20240141
crossref_primary_10_1080_00206814_2017_1340853
crossref_primary_10_1186_s40623_021_01527_9
crossref_primary_10_3390_life13051103
crossref_primary_10_1029_2023CN000223
crossref_primary_10_1073_pnas_2002175117
crossref_primary_10_2138_am_2022_8329
crossref_primary_10_1038_s41467_017_01940_3
crossref_primary_10_1029_2020JB020982
crossref_primary_10_1146_annurev_earth_071620_055024
crossref_primary_10_1016_j_freeradbiomed_2019_05_004
crossref_primary_10_1016_j_icarus_2023_115564
crossref_primary_10_1089_ast_2023_0076
crossref_primary_10_1126_sciadv_aaz6234
crossref_primary_10_1130_G45180_1
crossref_primary_10_1186_s40645_020_00379_3
crossref_primary_10_1086_716515
crossref_primary_10_1093_icb_icac081
crossref_primary_10_1038_s41586_019_1258_4
crossref_primary_10_1038_s43017_020_00116_w
crossref_primary_10_1073_pnas_2116083118
crossref_primary_10_1002_syst_201900035
crossref_primary_10_1038_s41586_021_04371_9
crossref_primary_10_1016_j_crte_2019_02_001
crossref_primary_10_3847_1538_3881_aab608
crossref_primary_10_1111_gbi_12375
crossref_primary_10_1360_TB_2022_1285
crossref_primary_10_1126_sciadv_abn2226
crossref_primary_10_1080_00206814_2024_2394994
crossref_primary_10_1016_j_chemgeo_2022_120944
crossref_primary_10_2138_am_2019_6956
crossref_primary_10_1021_acsearthspacechem_8b00145
Cites_doi 10.2475/ajs.298.8.621
10.1016/S0040-1951(02)000642-X
10.1016/0009-2541(94)00140-4
10.1126/sciadv.1500777
10.1126/science.1258966
10.1130/0091-7613(1996)024<0119:WKOACC>2.3.CO;2
10.1029/2005JB004223
10.1016/j.epsl.2010.02.038
10.1029/164GM03
10.1038/srep02752
10.1016/0016-7037(83)90188-6
10.1130/G31619.1
10.1016/S0012-821X(02)01108-1
10.1111/j.1365-246X.1981.tb02759.x
10.1016/S0012-821X(01)00566-0
10.1029/JB084iB13p07411
10.1016/B978-0-444-53802-4.00114-7
10.1016/0016-7037(75)90102-7
10.1029/JB087iB01p00289
10.1146/annurev-earth-050212-124022
10.1016/S0301-9268(99)00030-3
10.1016/S0031-9201(02)00017-1
10.1016/j.epsl.2007.04.056
10.1098/rsta.1981.0122
10.1029/2003GL016982
10.1146/annurev-earth-050212-124007
10.1126/science.164.3885.1229
10.1146/annurev.ea.17.050189.001041
10.1016/j.earscirev.2008.08.001
10.1029/2011JB008410
10.1016/0016-7037(88)90110-X
10.1016/j.earscirev.2011.09.004
10.1016/j.precamres.2014.11.029
10.1029/178GM14
10.1038/ngeo622
10.1016/S0009-2541(97)00146-0
10.1029/2001GC000266
10.1144/SP294.2
10.1016/S0301-9268(98)00083-7
10.1016/j.epsl.2010.01.022
10.1029/JC086iC10p09776
10.1002/jgrd.50808
10.1029/JB093iB01p00338
10.1016/j.epsl.2015.12.015
10.1016/j.gsf.2014.01.002
10.1146/annurev.astro.41.071601.170049
10.1130/0091-7613(1998)026<0739:WKW>2.3.CO;2
10.1017/CBO9780511529429.016
10.1086/628690
10.1038/nature10800
10.1016/j.lithos.2010.07.024
10.1038/ngeo2605
10.1016/j.precamres.2014.07.015
10.1038/22941
10.1007/978-3-662-01141-6_4
10.1016/j.epsl.2011.11.024
10.1029/2011RG000375
10.1016/S0012-821X(99)00042-4
10.1130/G36247.1
10.1016/j.epsl.2010.11.038
10.1029/2010JB007670
10.1111/j.1365-3121.2008.00843.x
10.1029/JZ069i020p04377
10.1016/S0012-821X(00)00368-X
10.1016/j.epsl.2013.11.049
10.1016/S0012-821X(00)00362-9
10.1130/G30910.1
10.1016/B978-044452748-6.00099-7
10.1016/S0016-7037(99)00169-6
10.1038/316336a0
10.1016/0301-9268(86)90003-3
10.1016/j.epsl.2011.10.040
10.1016/j.precamres.2015.05.014
10.1089/153110702753621321
10.1029/2003JB002475
10.1029/GL010i011p01061
10.1038/359123a0
10.1016/B978-0-444-53802-4.00156-1
10.1038/386262a0
10.1038/nature01073
10.1007/s10712-011-9118-2
10.1126/science.1064280
10.1016/j.precamres.2010.02.018
10.1080/08120099108727995
10.1016/B0-08-043751-6/02015-6
10.1016/0304-4203(72)90004-7
10.1016/S0012-821X(01)00359-4
10.1016/j.epsl.2005.04.047
10.1002/2015GL065333
10.1016/0012-821X(83)90136-X
10.1029/2006GC001390
10.1016/S0012-821X(97)00104-0
10.1016/j.chemgeo.2009.02.008
10.1144/SP424.5
10.1029/SP016p0001
10.1016/j.lithos.2012.01.010
10.1029/96JB03271
10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2
10.1016/j.earscirev.2012.06.007
10.1038/nature01215
10.1029/2005JB004224
10.2475/ajs.295.7.787
10.1130/L245.1
10.1093/petrology/Special_Volume.1.11
10.1029/2012GC004334
10.1016/S0024-4937(99)00026-2
10.1038/385219a0
10.1111/j.1365-3121.2006.00723.x
10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
10.1016/j.epsl.2008.08.029
10.1016/j.epsl.2004.04.018
10.1016/S0024-4937(99)00025-0
10.1016/j.precamres.2013.12.005
10.1016/j.epsl.2008.03.062
10.1016/j.chemgeo.2010.03.009
10.1029/95JB00259
10.1038/ngeo2122
10.1016/0012-821X(92)90110-H
10.1073/pnas.1115705109
10.1515/9780691220239
10.1016/0012-821X(90)90163-R
10.1130/2011.2478(13)
10.1016/j.earscirev.2006.07.001
10.1016/0012-821X(89)90120-9
10.2110/jsr.2009.043
10.1016/j.icarus.2012.10.015
10.1111/gbi.12030
10.1016/S0031-9201(96)03239-6
10.1016/j.epsl.2011.11.031
10.1016/j.tecto.2009.04.011
10.1016/j.epsl.2007.12.022
10.1038/nature13068
10.1029/2007RG000241
10.2475/ajs.303.4.319
10.1016/0012-821X(89)90121-0
10.1029/1999GL900425
10.1029/2006JB004502
10.1016/0012-821X(95)00203-O
10.1029/2004RG000156
10.1016/S0301-9268(00)00135-2
10.1016/j.epsl.2007.03.010
10.2475/ajs.283.7.641
10.1029/GM074p0041
10.1130/2015.2514(11)
10.1038/ngeo708
10.1029/GM096
10.1038/nature12426
10.1093/oso/9780195173338.001.0001
10.1146/annurev.earth.29.1.365
10.1016/S0012-821X(98)00031-4
10.1016/j.epsl.2008.12.023
10.1111/j.1365-3091.2004.00670.x
10.1029/2002GC000392
10.1029/96GL01118
10.1017/S1089332600002965
10.1029/98GL02805
10.2475/04.2014.03
10.1146/annurev-earth-050212-124208
10.1016/S0012-821X(98)00233-7
10.1130/B30950.1
ContentType Journal Article
Copyright 2017 The Author(s)
2017 The Author(s).
Copyright The Royal Society Publishing May 28, 2017
2017 The Author(s) 2017
Copyright_xml – notice: 2017 The Author(s)
– notice: 2017 The Author(s).
– notice: Copyright The Royal Society Publishing May 28, 2017
– notice: 2017 The Author(s) 2017
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rsta.2015.0393
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
DocumentTitleAlternate Global water cycle and Earth evolution
EISSN 1471-2962
EndPage 20150393
ExternalDocumentID PMC5394256
28416728
10_1098_rsta_2015_0393
Genre Journal Article
GrantInformation_xml – fundername: US National Aeronautics and Space Administration; ;
  grantid: NNA15BB03A
– fundername: ;
  grantid: NNA15BB03A
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
ABBHK
ABFAN
ABPLY
ABPTK
ABTLG
ABXXB
ABYWD
ACGFO
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
ADODI
ADULT
ADZLD
AEUPB
AEXZC
AFVYC
AFXKK
ALMA_UNASSIGNED_HOLDINGS
BTFSW
DCCCD
DIK
DNJUQ
DOOOF
DQDLB
DSRWC
DWIUU
EBS
ECEWR
EFSUC
EJD
F5P
HH5
HQ6
HZ~
ICLEN
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RRY
SA0
TN5
TR2
V1E
W8F
XSW
YNT
~02
AAWIL
AAYXX
ABXSQ
ACHIC
ADQXQ
AGLNM
AIHAF
ALMYZ
ALRMG
AQVQM
CITATION
H13
IPSME
NPM
7X8
5PM
ID FETCH-LOGICAL-c528t-9e816178839628ddbaf4a0ca311c41f7193b2826d2fa4cc20a3d500df83d45663
ISSN 1364-503X
IngestDate Thu Aug 21 13:46:46 EDT 2025
Fri Jul 11 05:46:30 EDT 2025
Mon Jun 30 09:38:49 EDT 2025
Thu Apr 03 06:58:55 EDT 2025
Tue Jul 01 01:48:25 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Wed Jan 17 02:37:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2094
Keywords oceans
continental freeboard
mantle convection
Language English
License http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved.
2017 The Author(s).
Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c528t-9e816178839628ddbaf4a0ca311c41f7193b2826d2fa4cc20a3d500df83d45663
Notes Theo Murphy meeting issue “The origin, history and role of water in the evolution of the inner Solar System” organized and edited by Sara S. Russell, Chris Ballentine, Monica M. Grady
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
One contribution of 9 to a Theo Murphy meeting issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
ORCID 0000-0002-4785-2273
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0393
PMID 28416728
PQID 1983889685
PQPubID 2046218
PageCount 1
ParticipantIDs crossref_primary_10_1098_rsta_2015_0393
proquest_journals_1983889685
pubmed_primary_28416728
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394256
royalsociety_journals_10_1098_rsta_2015_0393
proquest_miscellaneous_1889386774
crossref_citationtrail_10_1098_rsta_2015_0393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-28
PublicationDateYYYYMMDD 2017-05-28
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAbbrev Phil. Trans. R. Soc. A
PublicationTitleAlternate Philos Trans A Math Phys Eng Sci
PublicationYear 2017
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References e_1_3_4_3_2
e_1_3_4_152_2
e_1_3_4_110_2
e_1_3_4_133_2
e_1_3_4_156_2
e_1_3_4_114_2
e_1_3_4_137_2
e_1_3_4_61_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_118_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_69_2
e_1_3_4_27_2
e_1_3_4_65_2
e_1_3_4_46_2
e_1_3_4_88_2
Holland HD (e_1_3_4_4_2) 1984
Lee CTA (e_1_3_4_72_2) 2004; 108
e_1_3_4_163_2
e_1_3_4_140_2
e_1_3_4_121_2
e_1_3_4_167_2
e_1_3_4_102_2
e_1_3_4_144_2
e_1_3_4_125_2
e_1_3_4_95_2
e_1_3_4_106_2
e_1_3_4_148_2
e_1_3_4_30_2
e_1_3_4_129_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_99_2
e_1_3_4_19_2
e_1_3_4_2_2
e_1_3_4_151_2
e_1_3_4_132_2
e_1_3_4_113_2
e_1_3_4_155_2
Bebout GE (e_1_3_4_39_2) 1996
e_1_3_4_136_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_117_2
e_1_3_4_159_2
e_1_3_4_6_2
e_1_3_4_20_2
Thorne AM (e_1_3_4_94_2) 2001
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_120_2
e_1_3_4_162_2
e_1_3_4_101_2
e_1_3_4_124_2
e_1_3_4_143_2
e_1_3_4_166_2
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_105_2
e_1_3_4_128_2
e_1_3_4_147_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_109_2
e_1_3_4_12_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_77_2
e_1_3_4_35_2
e_1_3_4_131_2
e_1_3_4_150_2
e_1_3_4_112_2
e_1_3_4_135_2
e_1_3_4_154_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_116_2
e_1_3_4_139_2
e_1_3_4_158_2
e_1_3_4_63_2
e_1_3_4_40_2
Wise DU (e_1_3_4_43_2) 1974
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_48_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_142_2
e_1_3_4_161_2
e_1_3_4_100_2
e_1_3_4_146_2
e_1_3_4_123_2
e_1_3_4_165_2
e_1_3_4_93_2
e_1_3_4_104_2
e_1_3_4_74_2
e_1_3_4_127_2
e_1_3_4_51_2
e_1_3_4_108_2
e_1_3_4_70_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_97_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_17_2
Walker JCG (e_1_3_4_42_2) 1977
Taylor SR (e_1_3_4_68_2) 1985
e_1_3_4_153_2
e_1_3_4_130_2
e_1_3_4_111_2
e_1_3_4_157_2
e_1_3_4_134_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_115_2
e_1_3_4_8_2
e_1_3_4_138_2
e_1_3_4_41_2
e_1_3_4_119_2
e_1_3_4_22_2
e_1_3_4_45_2
Eakins B (e_1_3_4_81_2) 2010
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_160_2
e_1_3_4_141_2
e_1_3_4_164_2
e_1_3_4_122_2
e_1_3_4_145_2
e_1_3_4_168_2
Berner RA (e_1_3_4_5_2) 2004
e_1_3_4_71_2
e_1_3_4_103_2
e_1_3_4_126_2
e_1_3_4_149_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_107_2
e_1_3_4_79_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_75_2
e_1_3_4_98_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_56_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_88_2
  doi: 10.2475/ajs.298.8.621
– ident: e_1_3_4_126_2
  doi: 10.1016/S0040-1951(02)000642-X
– ident: e_1_3_4_24_2
  doi: 10.1016/0009-2541(94)00140-4
– ident: e_1_3_4_103_2
  doi: 10.1126/sciadv.1500777
– ident: e_1_3_4_152_2
  doi: 10.1126/science.1258966
– ident: e_1_3_4_151_2
  doi: 10.1130/0091-7613(1996)024<0119:WKOACC>2.3.CO;2
– ident: e_1_3_4_17_2
  doi: 10.1029/2005JB004223
– ident: e_1_3_4_138_2
  doi: 10.1016/j.epsl.2010.02.038
– ident: e_1_3_4_61_2
  doi: 10.1029/164GM03
– volume: 108
  start-page: 2441
  year: 2004
  ident: e_1_3_4_72_2
  article-title: Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle
  publication-title: J. Geophys. Res.
– ident: e_1_3_4_145_2
  doi: 10.1038/srep02752
– ident: e_1_3_4_91_2
– ident: e_1_3_4_37_2
  doi: 10.1016/0016-7037(83)90188-6
– ident: e_1_3_4_148_2
  doi: 10.1130/G31619.1
– ident: e_1_3_4_22_2
  doi: 10.1016/S0012-821X(02)01108-1
– ident: e_1_3_4_59_2
  doi: 10.1111/j.1365-246X.1981.tb02759.x
– ident: e_1_3_4_156_2
  doi: 10.1016/S0012-821X(01)00566-0
– ident: e_1_3_4_14_2
  doi: 10.1029/JB084iB13p07411
– ident: e_1_3_4_70_2
  doi: 10.1016/B978-0-444-53802-4.00114-7
– ident: e_1_3_4_146_2
  doi: 10.1016/0016-7037(75)90102-7
– ident: e_1_3_4_60_2
  doi: 10.1029/JB087iB01p00289
– ident: e_1_3_4_30_2
  doi: 10.1146/annurev-earth-050212-124022
– ident: e_1_3_4_96_2
  doi: 10.1016/S0301-9268(99)00030-3
– ident: e_1_3_4_32_2
  doi: 10.1016/S0031-9201(02)00017-1
– ident: e_1_3_4_129_2
  doi: 10.1016/j.epsl.2007.04.056
– ident: e_1_3_4_55_2
  doi: 10.1098/rsta.1981.0122
– ident: e_1_3_4_52_2
  doi: 10.1029/2003GL016982
– ident: e_1_3_4_35_2
  doi: 10.1146/annurev-earth-050212-124007
– ident: e_1_3_4_85_2
  doi: 10.1126/science.164.3885.1229
– ident: e_1_3_4_99_2
  doi: 10.1146/annurev.ea.17.050189.001041
– ident: e_1_3_4_119_2
  doi: 10.1016/j.earscirev.2008.08.001
– ident: e_1_3_4_58_2
  doi: 10.1029/2011JB008410
– ident: e_1_3_4_8_2
  doi: 10.1016/0016-7037(88)90110-X
– volume-title: Volumes of the World’s Oceans from ETOPO1
  year: 2010
  ident: e_1_3_4_81_2
– ident: e_1_3_4_116_2
  doi: 10.1016/j.earscirev.2011.09.004
– ident: e_1_3_4_139_2
  doi: 10.1016/j.precamres.2014.11.029
– ident: e_1_3_4_144_2
  doi: 10.1029/178GM14
– ident: e_1_3_4_130_2
  doi: 10.1038/ngeo622
– ident: e_1_3_4_7_2
  doi: 10.1016/S0009-2541(97)00146-0
– ident: e_1_3_4_100_2
  doi: 10.1029/2001GC000266
– ident: e_1_3_4_128_2
  doi: 10.1144/SP294.2
– ident: e_1_3_4_46_2
  doi: 10.1016/S0301-9268(98)00083-7
– ident: e_1_3_4_53_2
  doi: 10.1016/j.epsl.2010.01.022
– ident: e_1_3_4_104_2
  doi: 10.1029/JC086iC10p09776
– ident: e_1_3_4_108_2
  doi: 10.1002/jgrd.50808
– ident: e_1_3_4_118_2
  doi: 10.1029/JB093iB01p00338
– ident: e_1_3_4_140_2
  doi: 10.1016/j.epsl.2015.12.015
– ident: e_1_3_4_124_2
  doi: 10.1016/j.gsf.2014.01.002
– ident: e_1_3_4_2_2
  doi: 10.1146/annurev.astro.41.071601.170049
– ident: e_1_3_4_155_2
  doi: 10.1130/0091-7613(1998)026<0739:WKW>2.3.CO;2
– ident: e_1_3_4_106_2
  doi: 10.1017/CBO9780511529429.016
– ident: e_1_3_4_57_2
  doi: 10.1086/628690
– ident: e_1_3_4_122_2
  doi: 10.1038/nature10800
– volume-title: The continental crust: its composition and evolution
  year: 1985
  ident: e_1_3_4_68_2
– ident: e_1_3_4_86_2
  doi: 10.1016/j.lithos.2010.07.024
– volume-title: Geology of the Fortescue Group, Pilbara Craton, Western Australia
  year: 2001
  ident: e_1_3_4_94_2
– ident: e_1_3_4_161_2
  doi: 10.1038/ngeo2605
– ident: e_1_3_4_123_2
  doi: 10.1016/j.precamres.2014.07.015
– ident: e_1_3_4_110_2
  doi: 10.1038/22941
– start-page: 45
  volume-title: Geology of continental margins
  year: 1974
  ident: e_1_3_4_43_2
  doi: 10.1007/978-3-662-01141-6_4
– ident: e_1_3_4_41_2
  doi: 10.1016/j.epsl.2011.11.024
– ident: e_1_3_4_107_2
  doi: 10.1029/2011RG000375
– ident: e_1_3_4_127_2
  doi: 10.1016/S0012-821X(99)00042-4
– ident: e_1_3_4_137_2
  doi: 10.1130/G36247.1
– ident: e_1_3_4_27_2
  doi: 10.1016/j.epsl.2010.11.038
– ident: e_1_3_4_163_2
  doi: 10.1029/2010JB007670
– ident: e_1_3_4_48_2
  doi: 10.1111/j.1365-3121.2008.00843.x
– ident: e_1_3_4_31_2
  doi: 10.1029/JZ069i020p04377
– ident: e_1_3_4_45_2
  doi: 10.1016/S0012-821X(00)00368-X
– ident: e_1_3_4_114_2
  doi: 10.1016/j.epsl.2013.11.049
– ident: e_1_3_4_78_2
  doi: 10.1016/S0012-821X(00)00362-9
– ident: e_1_3_4_136_2
  doi: 10.1130/G30910.1
– ident: e_1_3_4_135_2
  doi: 10.1016/B978-044452748-6.00099-7
– ident: e_1_3_4_21_2
  doi: 10.1016/S0016-7037(99)00169-6
– ident: e_1_3_4_44_2
  doi: 10.1038/316336a0
– ident: e_1_3_4_90_2
  doi: 10.1016/0301-9268(86)90003-3
– ident: e_1_3_4_143_2
– ident: e_1_3_4_19_2
  doi: 10.1016/j.epsl.2011.10.040
– ident: e_1_3_4_93_2
  doi: 10.1016/j.precamres.2015.05.014
– ident: e_1_3_4_111_2
  doi: 10.1089/153110702753621321
– ident: e_1_3_4_134_2
  doi: 10.1029/2003JB002475
– ident: e_1_3_4_6_2
  doi: 10.1029/GL010i011p01061
– ident: e_1_3_4_65_2
  doi: 10.1038/359123a0
– ident: e_1_3_4_36_2
  doi: 10.1016/B978-0-444-53802-4.00156-1
– ident: e_1_3_4_109_2
  doi: 10.1038/386262a0
– ident: e_1_3_4_9_2
  doi: 10.1038/nature01073
– ident: e_1_3_4_28_2
  doi: 10.1007/s10712-011-9118-2
– ident: e_1_3_4_149_2
  doi: 10.1126/science.1064280
– ident: e_1_3_4_131_2
  doi: 10.1016/j.precamres.2010.02.018
– ident: e_1_3_4_83_2
  doi: 10.1080/08120099108727995
– ident: e_1_3_4_34_2
  doi: 10.1016/B0-08-043751-6/02015-6
– ident: e_1_3_4_101_2
  doi: 10.1016/0304-4203(72)90004-7
– ident: e_1_3_4_157_2
  doi: 10.1016/S0012-821X(01)00359-4
– ident: e_1_3_4_13_2
  doi: 10.1016/j.epsl.2005.04.047
– ident: e_1_3_4_112_2
  doi: 10.1002/2015GL065333
– ident: e_1_3_4_15_2
  doi: 10.1016/0012-821X(83)90136-X
– ident: e_1_3_4_54_2
  doi: 10.1029/2006GC001390
– ident: e_1_3_4_158_2
  doi: 10.1016/S0012-821X(97)00104-0
– ident: e_1_3_4_20_2
  doi: 10.1016/j.chemgeo.2009.02.008
– ident: e_1_3_4_141_2
  doi: 10.1144/SP424.5
– ident: e_1_3_4_71_2
  doi: 10.1029/SP016p0001
– ident: e_1_3_4_75_2
  doi: 10.1016/j.lithos.2012.01.010
– ident: e_1_3_4_79_2
  doi: 10.1029/96JB03271
– ident: e_1_3_4_98_2
  doi: 10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2
– ident: e_1_3_4_120_2
  doi: 10.1016/j.earscirev.2012.06.007
– ident: e_1_3_4_12_2
  doi: 10.1038/nature01215
– ident: e_1_3_4_18_2
  doi: 10.1029/2005JB004224
– ident: e_1_3_4_50_2
  doi: 10.2475/ajs.295.7.787
– ident: e_1_3_4_164_2
  doi: 10.1130/L245.1
– ident: e_1_3_4_84_2
  doi: 10.1093/petrology/Special_Volume.1.11
– ident: e_1_3_4_25_2
  doi: 10.1029/2012GC004334
– ident: e_1_3_4_74_2
  doi: 10.1016/S0024-4937(99)00026-2
– ident: e_1_3_4_16_2
  doi: 10.1038/385219a0
– volume-title: Evolution of the atmosphere
  year: 1977
  ident: e_1_3_4_42_2
– ident: e_1_3_4_89_2
  doi: 10.1111/j.1365-3121.2006.00723.x
– ident: e_1_3_4_142_2
  doi: 10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2
– ident: e_1_3_4_49_2
  doi: 10.1016/j.epsl.2008.08.029
– ident: e_1_3_4_40_2
  doi: 10.1016/j.epsl.2004.04.018
– ident: e_1_3_4_80_2
  doi: 10.1016/S0024-4937(99)00025-0
– ident: e_1_3_4_133_2
  doi: 10.1016/j.precamres.2013.12.005
– ident: e_1_3_4_167_2
  doi: 10.1016/j.epsl.2008.03.062
– ident: e_1_3_4_153_2
  doi: 10.1016/j.chemgeo.2010.03.009
– ident: e_1_3_4_67_2
  doi: 10.1029/95JB00259
– ident: e_1_3_4_113_2
  doi: 10.1038/ngeo2122
– ident: e_1_3_4_165_2
  doi: 10.1016/0012-821X(92)90110-H
– ident: e_1_3_4_154_2
  doi: 10.1073/pnas.1115705109
– volume-title: The chemical evolution of the atmosphere and oceans
  year: 1984
  ident: e_1_3_4_4_2
  doi: 10.1515/9780691220239
– ident: e_1_3_4_26_2
  doi: 10.1016/0012-821X(90)90163-R
– ident: e_1_3_4_77_2
  doi: 10.1130/2011.2478(13)
– ident: e_1_3_4_87_2
  doi: 10.1016/j.earscirev.2006.07.001
– ident: e_1_3_4_82_2
  doi: 10.1016/0012-821X(89)90120-9
– ident: e_1_3_4_147_2
  doi: 10.2110/jsr.2009.043
– ident: e_1_3_4_168_2
  doi: 10.1016/j.icarus.2012.10.015
– ident: e_1_3_4_102_2
  doi: 10.1111/gbi.12030
– ident: e_1_3_4_160_2
  doi: 10.1016/S0031-9201(96)03239-6
– ident: e_1_3_4_29_2
  doi: 10.1016/j.epsl.2011.11.031
– ident: e_1_3_4_76_2
  doi: 10.1016/j.tecto.2009.04.011
– ident: e_1_3_4_64_2
  doi: 10.1016/j.epsl.2007.12.022
– ident: e_1_3_4_115_2
  doi: 10.1038/nature13068
– ident: e_1_3_4_51_2
  doi: 10.1029/2007RG000241
– ident: e_1_3_4_56_2
  doi: 10.2475/ajs.303.4.319
– ident: e_1_3_4_159_2
  doi: 10.1016/0012-821X(89)90121-0
– ident: e_1_3_4_47_2
  doi: 10.1029/1999GL900425
– ident: e_1_3_4_162_2
  doi: 10.1029/2006JB004502
– ident: e_1_3_4_10_2
  doi: 10.1016/0012-821X(95)00203-O
– ident: e_1_3_4_69_2
  doi: 10.1029/2004RG000156
– ident: e_1_3_4_95_2
  doi: 10.1016/S0301-9268(00)00135-2
– ident: e_1_3_4_63_2
  doi: 10.1016/j.epsl.2007.03.010
– ident: e_1_3_4_105_2
  doi: 10.2475/ajs.283.7.641
– ident: e_1_3_4_166_2
  doi: 10.1029/GM074p0041
– ident: e_1_3_4_66_2
  doi: 10.1130/2015.2514(11)
– ident: e_1_3_4_121_2
  doi: 10.1038/ngeo708
– start-page: 179
  volume-title: Subduction: top to bottom
  year: 1996
  ident: e_1_3_4_39_2
  doi: 10.1029/GM096
– ident: e_1_3_4_92_2
  doi: 10.1038/nature12426
– volume-title: The phanerozoic carbon cycle: CO2 and O2
  year: 2004
  ident: e_1_3_4_5_2
  doi: 10.1093/oso/9780195173338.001.0001
– ident: e_1_3_4_33_2
  doi: 10.1146/annurev.earth.29.1.365
– ident: e_1_3_4_125_2
  doi: 10.1016/S0012-821X(98)00031-4
– ident: e_1_3_4_23_2
  doi: 10.1016/j.epsl.2008.12.023
– ident: e_1_3_4_150_2
  doi: 10.1111/j.1365-3091.2004.00670.x
– ident: e_1_3_4_38_2
  doi: 10.1029/2002GC000392
– ident: e_1_3_4_62_2
  doi: 10.1029/96GL01118
– ident: e_1_3_4_117_2
  doi: 10.1017/S1089332600002965
– ident: e_1_3_4_11_2
  doi: 10.1029/98GL02805
– ident: e_1_3_4_132_2
  doi: 10.2475/04.2014.03
– ident: e_1_3_4_3_2
  doi: 10.1146/annurev-earth-050212-124208
– ident: e_1_3_4_73_2
  doi: 10.1016/S0012-821X(98)00233-7
– ident: e_1_3_4_97_2
  doi: 10.1130/B30950.1
SSID ssj0011652
Score 2.5698094
Snippet The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20150393
SubjectTerms Continental Freeboard
Continents
Earth surface
Evaporation
Freeboard
Geochemistry
Geological surveys
Hydrologic cycle
Indoor environments
Inner solar system
Mantle
Mantle Convection
Oceans
Plate tectonics
Sea level
Solar system
Solar system evolution
Surface water
Title Global water cycle and the coevolution of the Earth's interior and surface environment
URI https://royalsocietypublishing.org/doi/full/10.1098/rsta.2015.0393
https://www.ncbi.nlm.nih.gov/pubmed/28416728
https://www.proquest.com/docview/1983889685
https://www.proquest.com/docview/1889386774
https://pubmed.ncbi.nlm.nih.gov/PMC5394256
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF7OiqAfxFatp1UiCFViYm43L5uPRSvlpEWhlX4Lm82GFiQpl7sW_Y_-J2d2N2_cCdYvR24zJJvMk52d3ZlnCHkTpInA4CevTCKJpNrUy5mQHkwVqCxpMpM6w_v4JD46C-fn0flk8nsQtbRa5r78tTGv5H-0Cm2gV8ySvYVmu4tCAxyDfuEXNAy__6RjQ9jv3ghkOpQ_4WwXEClrdW3v3YYBHAodDZg0miNicWnDJ5vVohTwdQ9S3oYz1q9trQOtzWVfXrxpr2tWINrwT9xz0CVCfByHwA939RL-cUcPqysM2BUVc4y9UD0vomutcr_NVC9UJcwK8HzVoRnrLYlru_h7UosLd-6vOwgYs-8e-O4nf7jAAUYziNqE8TZFbvwg_QLdYOBmcehFga4tDHbNtIHh9Wg6Hu2ZKdRiYU0DU2J5zZAEKSZHYHIRhv9FPqYw9yazC2Q0W_g8Q8EMBTMUvEPuUvBasKDGl2_9ptYs1gWguq52HKL8w_hG4znSmuOzIX53gS-oMe9nMD86fUQeWsfGOTAo3SYTVe2QBwO6S_jXg6DZIfd08DEebVsD0zhvLQv6u8fkuwG3o8HtaHA7ABQHruAMwO3UpW7S4N5vnBbaWtZC2xlA-wk5-3x4-vHIs0VAPBlRvvRSxdEF5zCRjykvilyUoQikYDMYRmZlAg5ITsFHLmgpQilpIFgRBUFRclaAcxCzp2Srqiv1jDhlBGJKxXCJIszzSPCQlTTlZaiQlTGcEq997Zm0DPlYqOVHtlnNU7LfyV8Zbpi_Su61Wszs-NFks5QzztOYR1PyujsNoztu2YlK1SuQAQGGlJPQuV2j9O5WFCMGEsqnJBnBoRNA5vjxmeryQjPIRywFWx1PyfshcAZd2_gUz28n_oLc7z_nPbK1XKzUS5jBL_NX-rv4A52a9kI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+water+cycle+and+the+coevolution+of+the+Earth%27s+interior+and+surface+environment&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Korenaga%2C+Jun&rft.au=Planavsky%2C+Noah+J.&rft.au=Evans%2C+David+A.+D.&rft.date=2017-05-28&rft.pub=The+Royal+Society+Publishing&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=375&rft.issue=2094&rft_id=info:doi/10.1098%2Frsta.2015.0393&rft.externalDocID=10_1098_rsta_2015_0393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon