Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1

The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can le...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in molecular biosciences Vol. 6; p. 11
Main Authors Adams, Christopher J., Kopp, Megan C., Larburu, Natacha, Nowak, Piotr R., Ali, Maruf M. U.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 12.03.2019
Subjects
Online AccessGet full text
ISSN2296-889X
2296-889X
DOI10.3389/fmolb.2019.00011

Cover

Loading…
Abstract The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.
AbstractList The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as “ER stress.” The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.
The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.
Author Ali, Maruf M. U.
Nowak, Piotr R.
Adams, Christopher J.
Kopp, Megan C.
Larburu, Natacha
AuthorAffiliation Department of Life Sciences, Imperial College London , London , United Kingdom
AuthorAffiliation_xml – name: Department of Life Sciences, Imperial College London , London , United Kingdom
Author_xml – sequence: 1
  givenname: Christopher J.
  surname: Adams
  fullname: Adams, Christopher J.
– sequence: 2
  givenname: Megan C.
  surname: Kopp
  fullname: Kopp, Megan C.
– sequence: 3
  givenname: Natacha
  surname: Larburu
  fullname: Larburu, Natacha
– sequence: 4
  givenname: Piotr R.
  surname: Nowak
  fullname: Nowak, Piotr R.
– sequence: 5
  givenname: Maruf M. U.
  surname: Ali
  fullname: Ali, Maruf M. U.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30931312$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1rFDEUxQep2Fr77pPk0Zdd8zGZmbwIpay60KJsLfgWMsnNbkomWZNMof-9sx-WVvApIfmdcw_c87Y6CTFAVb0neM5YJz7ZIfp-TjERc4wxIa-qM0pFM-s68evk2f20usj5fodwzNqmflOdMiwYYYSeVfG2pFGXMQFSwaCb6EGPXiV0A3qjgssDihYtVmjiIGd069ZBeRfWqH9EZQPoLtjoDRj0I8UCLqAV5G0MGY4outTFPagSE1quFuRd9doqn-HieJ5Xd18WP6--za6_f11eXV7PNKddmU3xuOis7UBg3eGuJkz0vKat0BgsgYYqiwXta2Vo3fSkxsCZaRTHtqXAG3ZeLQ--Jqp7uU1uUOlRRuXk_iGmtVSpOO1BGtqaDreCd9rWujaCaaoUN63ClHNlJ6_PB6_t2A9gNISSlH9h-vInuI1cxwfZ1JRNmSeDj0eDFH-PkIscXNbgvQoQxyzptMSWtHUrJvTD81lPQ_5ubALwAdAp5pzAPiEEy10v5L4XctcLue_FJGn-kWhXVHFxl9b5_wv_ABxXvgQ
CitedBy_id crossref_primary_10_3390_biomedicines10112725
crossref_primary_10_3389_fendo_2020_614123
crossref_primary_10_3390_antiox12020492
crossref_primary_10_1007_s12192_020_01178_x
crossref_primary_10_1371_journal_pbio_3000687
crossref_primary_10_1038_s42004_023_01092_0
crossref_primary_10_3390_ijms24032546
crossref_primary_10_3390_cells13131141
crossref_primary_10_1016_j_bbadis_2022_166485
crossref_primary_10_3389_fphar_2021_647350
crossref_primary_10_1016_j_ejphar_2024_176899
crossref_primary_10_31857_S0026898423060071
crossref_primary_10_3389_fphar_2024_1339146
crossref_primary_10_1016_j_cbpb_2024_110982
crossref_primary_10_1002_jcp_30948
crossref_primary_10_1186_s12974_020_01796_3
crossref_primary_10_1016_j_critrevonc_2020_103182
crossref_primary_10_1155_2022_1225578
crossref_primary_10_61186_JoMMID_12_3_171
crossref_primary_10_1039_D0CS00259C
crossref_primary_10_1186_s12964_024_01514_z
crossref_primary_10_3390_nu15245082
crossref_primary_10_3390_antiox12081648
crossref_primary_10_1096_fba_2021_00005
crossref_primary_10_1038_s41416_023_02322_x
crossref_primary_10_3389_fmolb_2025_1554717
crossref_primary_10_3390_ijms21082661
crossref_primary_10_3390_ijms22010465
crossref_primary_10_1016_j_cotox_2020_05_002
crossref_primary_10_4103_egjp_egjp_7_22
crossref_primary_10_17826_cumj_637075
crossref_primary_10_1038_s41556_019_0338_x
crossref_primary_10_1016_j_bbapap_2021_140680
crossref_primary_10_1038_s41420_024_01911_w
crossref_primary_10_1016_j_bbagen_2022_130269
crossref_primary_10_1021_acs_jafc_3c03602
crossref_primary_10_1007_s12010_022_03814_x
crossref_primary_10_1111_gtc_13151
crossref_primary_10_1371_journal_pone_0275342
crossref_primary_10_3389_fcell_2021_684526
crossref_primary_10_1007_s00253_022_11799_0
crossref_primary_10_1016_j_comtox_2021_100179
crossref_primary_10_1016_j_isci_2021_102970
crossref_primary_10_1016_j_jbc_2023_104884
crossref_primary_10_1016_j_tins_2021_06_003
crossref_primary_10_3389_fcvm_2021_732708
crossref_primary_10_1016_j_mce_2019_110630
crossref_primary_10_1016_j_neuro_2025_02_006
crossref_primary_10_1016_j_jbc_2024_108029
crossref_primary_10_1016_j_biocel_2022_106277
crossref_primary_10_1007_s13353_024_00833_8
crossref_primary_10_2147_CCID_S412588
crossref_primary_10_3390_ijms24054914
crossref_primary_10_3389_fphar_2024_1442700
crossref_primary_10_1016_j_drudis_2025_104335
crossref_primary_10_1021_acs_inorgchem_2c01375
crossref_primary_10_3390_ijms22168863
crossref_primary_10_1007_s12192_023_01323_2
crossref_primary_10_31083_j_fbl2906221
crossref_primary_10_3389_fnmol_2022_963083
crossref_primary_10_1007_s00109_020_01904_z
crossref_primary_10_1126_science_abf6548
crossref_primary_10_1101_cshperspect_a041400
crossref_primary_10_1186_s12935_022_02540_y
crossref_primary_10_3389_fphar_2023_1133863
crossref_primary_10_3390_biology13100774
crossref_primary_10_1016_j_bbamcr_2024_119676
crossref_primary_10_3390_ani11010221
crossref_primary_10_1080_19768354_2021_2020901
crossref_primary_10_3390_ijms21176127
crossref_primary_10_3390_ph16030432
crossref_primary_10_1177_1176934321999640
crossref_primary_10_1007_s12192_023_01335_y
crossref_primary_10_1016_j_cyto_2024_156832
crossref_primary_10_1002_cbf_70007
crossref_primary_10_1007_s43032_021_00814_w
crossref_primary_10_3389_fphys_2023_1152576
crossref_primary_10_1042_BST20200836
crossref_primary_10_3390_ijms22010004
crossref_primary_10_1016_j_steroids_2023_109238
crossref_primary_10_3389_fcell_2020_00756
crossref_primary_10_3390_biomedicines12112481
crossref_primary_10_5114_aoms_186658
crossref_primary_10_1016_j_molmet_2024_101921
crossref_primary_10_1186_s12929_022_00796_0
crossref_primary_10_3389_fnins_2023_1236815
crossref_primary_10_3389_fimmu_2022_940122
crossref_primary_10_3389_fimmu_2022_823157
crossref_primary_10_3389_fmolb_2023_1155784
crossref_primary_10_1371_journal_pone_0282442
crossref_primary_10_3390_antiox10091492
crossref_primary_10_3390_cells9030750
crossref_primary_10_3390_ijms20225538
crossref_primary_10_2147_OPTH_S254504
crossref_primary_10_1080_10715762_2021_1892090
crossref_primary_10_3390_antiox11112228
crossref_primary_10_1038_s44319_024_00197_4
crossref_primary_10_1172_jci_insight_185548
crossref_primary_10_1093_hmg_ddab078
crossref_primary_10_1002_smll_202406809
crossref_primary_10_1016_j_ceca_2021_102453
crossref_primary_10_3389_fphar_2020_582310
crossref_primary_10_1021_acschemneuro_3c00671
crossref_primary_10_3390_ijms23010106
crossref_primary_10_1083_jcb_202011078
crossref_primary_10_1165_rcmb_2023_0109OC
crossref_primary_10_3390_metabo11010052
crossref_primary_10_1038_s41420_024_02200_2
crossref_primary_10_3389_fncel_2023_1344090
crossref_primary_10_3390_ijms22094494
crossref_primary_10_3748_wjg_v26_i28_4036
crossref_primary_10_1002_1878_0261_13607
crossref_primary_10_1016_j_bbamcr_2024_119854
crossref_primary_10_1091_mbc_E24_03_0121
crossref_primary_10_33483_jfpau_1129575
crossref_primary_10_1007_s11033_022_08065_x
crossref_primary_10_3389_fmed_2021_758311
crossref_primary_10_1016_j_gep_2020_119130
crossref_primary_10_1016_j_ecoenv_2021_112596
crossref_primary_10_1177_17590914211028364
crossref_primary_10_1016_j_tips_2021_11_011
crossref_primary_10_3389_fpls_2024_1389658
crossref_primary_10_1007_s11033_020_06044_8
crossref_primary_10_1016_j_phyplu_2021_100202
crossref_primary_10_3390_cells12071032
crossref_primary_10_1007_s00436_023_07902_7
crossref_primary_10_1093_pnasnexus_pgae140
crossref_primary_10_3390_biomedicines10020430
crossref_primary_10_3390_biomedicines12102299
crossref_primary_10_1016_j_molmet_2021_101169
crossref_primary_10_3389_fcell_2023_1023327
crossref_primary_10_4014_jmb_2109_09012
crossref_primary_10_1038_s41419_022_04999_z
crossref_primary_10_1111_tpj_16612
crossref_primary_10_1038_s41419_022_05444_x
crossref_primary_10_3389_fcell_2021_673395
crossref_primary_10_1016_j_ijbiomac_2024_137566
crossref_primary_10_1016_j_freeradbiomed_2024_05_039
crossref_primary_10_1155_2021_5529810
crossref_primary_10_1016_j_crfs_2022_01_006
crossref_primary_10_3390_ijerph191710864
crossref_primary_10_3389_fragi_2022_860404
crossref_primary_10_1080_17435390_2022_2028919
crossref_primary_10_1021_acscentsci_4c01506
crossref_primary_10_1210_endrev_bnab006
crossref_primary_10_1016_j_scitotenv_2023_166167
crossref_primary_10_1177_09603271241307859
crossref_primary_10_1016_j_bja_2024_01_007
crossref_primary_10_14814_phy2_14607
crossref_primary_10_1002_jat_4519
crossref_primary_10_3389_fimmu_2024_1427859
crossref_primary_10_3390_biom12121882
crossref_primary_10_1016_j_tranon_2023_101792
crossref_primary_10_1128_mbio_02415_22
crossref_primary_10_7554_eLife_83884
crossref_primary_10_3390_cells10082031
crossref_primary_10_4049_jimmunol_1901131
crossref_primary_10_1038_s41565_023_01393_4
crossref_primary_10_18621_eurj_1049381
crossref_primary_10_2174_1568026622666220831114838
crossref_primary_10_3389_fonc_2024_1445222
crossref_primary_10_1016_j_acthis_2022_151951
crossref_primary_10_1152_ajpcell_00445_2022
crossref_primary_10_4103_NRR_NRR_D_23_01403
crossref_primary_10_1242_jcs_218107
crossref_primary_10_1016_j_jbc_2022_102836
crossref_primary_10_1128_mbio_03068_22
crossref_primary_10_1134_S0026893323060067
crossref_primary_10_1038_s41598_024_60474_z
crossref_primary_10_1038_s41419_022_05153_5
crossref_primary_10_1021_acsbiomaterials_4c00549
crossref_primary_10_7554_eLife_82568
crossref_primary_10_1016_j_lfs_2024_122892
crossref_primary_10_3390_oxygen2040030
crossref_primary_10_3389_fcell_2022_772230
crossref_primary_10_1186_s13578_021_00538_z
crossref_primary_10_3390_ijms24032017
crossref_primary_10_3390_cells12222633
crossref_primary_10_1080_10428194_2024_2349950
crossref_primary_10_1080_10641963_2021_1984501
crossref_primary_10_1080_15548627_2021_1917129
crossref_primary_10_3390_ijms20225614
crossref_primary_10_1016_j_mocell_2024_100158
crossref_primary_10_1177_20530196211001517
crossref_primary_10_3349_ymj_2022_0354
crossref_primary_10_1016_j_biochi_2022_04_004
crossref_primary_10_3390_ijms23168896
crossref_primary_10_1007_s11064_023_03960_6
crossref_primary_10_1146_annurev_animal_111523_102249
crossref_primary_10_3390_ijms21114171
crossref_primary_10_1002_mc_23453
crossref_primary_10_1016_j_bbagen_2019_129422
crossref_primary_10_3389_fimmu_2020_629777
crossref_primary_10_33483_jfpau_1487169
crossref_primary_10_1016_j_bbadis_2021_166120
crossref_primary_10_3390_pharmaceutics15102420
crossref_primary_10_1002_tox_23680
crossref_primary_10_1155_2021_1246491
crossref_primary_10_1371_journal_pntd_0009192
crossref_primary_10_3390_cancers12092470
crossref_primary_10_3390_ani11103004
crossref_primary_10_1016_j_envpol_2024_123565
crossref_primary_10_19113_sdufenbed_1073225
crossref_primary_10_1016_j_nbd_2019_104520
crossref_primary_10_1523_JNEUROSCI_1799_22_2023
crossref_primary_10_3390_biomedicines10051092
crossref_primary_10_1002_jbmr_4501
crossref_primary_10_59368_agingbio_20230001
crossref_primary_10_3389_fmolb_2020_00199
crossref_primary_10_1038_s41594_019_0324_9
crossref_primary_10_1097_CM9_0000000000003186
crossref_primary_10_1142_S2737416523500527
crossref_primary_10_1136_gutjnl_2021_325013
crossref_primary_10_2174_1566523222666220801141450
crossref_primary_10_1007_s00018_023_04815_7
crossref_primary_10_3389_fendo_2023_1090039
crossref_primary_10_3390_ijms21020450
crossref_primary_10_1016_j_jbc_2023_103031
crossref_primary_10_3389_fped_2021_755365
crossref_primary_10_1007_s11033_022_07873_5
crossref_primary_10_3390_ijms241311003
crossref_primary_10_1038_s42003_023_05386_w
crossref_primary_10_1007_s10989_024_10637_3
crossref_primary_10_3390_cells13131096
crossref_primary_10_1111_jcmm_18464
crossref_primary_10_1002_jcp_30537
crossref_primary_10_1016_j_pccm_2024_08_007
crossref_primary_10_1073_pnas_2208317119
crossref_primary_10_1016_j_kint_2021_12_031
crossref_primary_10_3390_antiox13121564
crossref_primary_10_3390_biomedicines12030572
crossref_primary_10_3390_microorganisms12112126
crossref_primary_10_3390_antiox10030378
crossref_primary_10_1080_10409238_2020_1856769
crossref_primary_10_3390_ijms24054754
crossref_primary_10_3390_ijms25136901
crossref_primary_10_1016_j_chemosphere_2021_130588
crossref_primary_10_1016_j_virusres_2023_199282
crossref_primary_10_3390_ijms22189722
crossref_primary_10_3390_pharmaceutics15071858
crossref_primary_10_1007_s11011_023_01239_x
crossref_primary_10_18632_oncotarget_28334
crossref_primary_10_1016_j_bbadis_2023_166905
crossref_primary_10_1016_j_bcp_2022_114980
crossref_primary_10_3390_antiox10081170
crossref_primary_10_1038_s41585_022_00649_3
crossref_primary_10_1096_fj_202201272R
crossref_primary_10_3390_cells10112965
crossref_primary_10_1002_fsn3_2847
crossref_primary_10_1016_j_semcdb_2021_12_009
crossref_primary_10_1038_s41577_022_00682_8
crossref_primary_10_1210_endocr_bqab212
crossref_primary_10_1002_tox_23793
crossref_primary_10_4014_jmb_2110_10019
crossref_primary_10_1515_tjb_2022_0292
crossref_primary_10_1098_rsob_200089
crossref_primary_10_3390_cimb46050261
crossref_primary_10_1007_s13105_024_01008_z
crossref_primary_10_20517_cdr_2023_108
crossref_primary_10_3390_ph12040144
crossref_primary_10_1016_j_biochi_2022_01_017
crossref_primary_10_1021_acschemneuro_0c00808
crossref_primary_10_1038_s44318_023_00015_y
crossref_primary_10_3390_biomedicines11041126
crossref_primary_10_1165_rcmb_2021_0114OC
crossref_primary_10_1016_j_jbc_2022_101930
crossref_primary_10_1016_j_ejphar_2022_174891
crossref_primary_10_1002_cbic_202100641
crossref_primary_10_15252_emmm_202114502
crossref_primary_10_1128_mbio_00703_22
crossref_primary_10_1093_g3journal_jkae017
crossref_primary_10_1093_brain_awad258
crossref_primary_10_3389_fendo_2022_947294
crossref_primary_10_3390_biomedicines9020156
crossref_primary_10_1016_j_prp_2023_154905
crossref_primary_10_3390_cancers15041064
crossref_primary_10_3390_nu14204277
crossref_primary_10_1038_s41467_024_52188_7
crossref_primary_10_3390_cells9092066
crossref_primary_10_2174_1871520622666220823094350
crossref_primary_10_3390_ijms241814066
crossref_primary_10_1016_j_omtm_2021_11_006
crossref_primary_10_1002_advs_202204038
crossref_primary_10_3390_plants12081666
crossref_primary_10_1007_s12035_024_04340_z
crossref_primary_10_3390_ijms22115436
crossref_primary_10_1016_j_ejphar_2024_176613
crossref_primary_10_3390_biomedicines11020354
crossref_primary_10_1016_j_cstres_2024_11_001
crossref_primary_10_3390_nano10112177
crossref_primary_10_1080_1120009X_2023_2300224
crossref_primary_10_1111_febs_16337
crossref_primary_10_1007_s12010_024_04859_w
crossref_primary_10_1016_j_apsb_2021_07_004
crossref_primary_10_1016_j_ibmb_2020_103368
crossref_primary_10_1016_j_tice_2023_102129
crossref_primary_10_3389_fphar_2022_841068
crossref_primary_10_1186_s12935_025_03694_1
crossref_primary_10_1016_j_ab_2020_113775
crossref_primary_10_1016_j_yfrne_2021_100972
crossref_primary_10_1186_s13287_022_02827_x
crossref_primary_10_3390_antiox11071306
crossref_primary_10_1002_cbin_12114
crossref_primary_10_1007_s12079_022_00720_z
crossref_primary_10_3389_fimmu_2022_980680
crossref_primary_10_1172_JCI151591
crossref_primary_10_3389_fphys_2021_793171
crossref_primary_10_1016_j_isci_2022_104282
crossref_primary_10_1186_s13071_022_05394_5
crossref_primary_10_1016_j_pharmthera_2023_108413
crossref_primary_10_1271_kagakutoseibutsu_58_404
crossref_primary_10_1016_j_scitotenv_2024_171774
crossref_primary_10_1038_s41385_021_00412_8
crossref_primary_10_1093_glycob_cwab033
crossref_primary_10_1016_j_yfrne_2024_101144
crossref_primary_10_1152_ajplung_00469_2020
crossref_primary_10_33483_jfpau_1232868
crossref_primary_10_1002_med_21921
crossref_primary_10_1186_s12929_022_00850_x
crossref_primary_10_1371_journal_pone_0271695
crossref_primary_10_3389_fcimb_2022_1057774
crossref_primary_10_3389_fnins_2019_01444
crossref_primary_10_3390_antiox9101018
crossref_primary_10_1016_j_ejphar_2024_176962
crossref_primary_10_1186_s13046_021_02010_9
crossref_primary_10_1016_j_ijpddr_2021_01_003
crossref_primary_10_1007_s00232_022_00227_z
crossref_primary_10_26508_lsa_202402702
crossref_primary_10_3390_antiox12051072
crossref_primary_10_1021_acs_inorgchem_0c01442
crossref_primary_10_1016_j_jaut_2023_103152
crossref_primary_10_1055_s_0042_1755316
crossref_primary_10_1007_s10787_023_01287_w
crossref_primary_10_1002_jbt_23636
crossref_primary_10_1016_j_bbalip_2024_159510
crossref_primary_10_1016_j_biopha_2025_117992
crossref_primary_10_1016_j_bbalip_2024_159515
crossref_primary_10_1038_s41598_020_74347_8
crossref_primary_10_3389_fimmu_2021_756548
crossref_primary_10_1016_j_freeradbiomed_2024_01_006
crossref_primary_10_1016_j_ceca_2023_102753
crossref_primary_10_3389_fcell_2022_878395
crossref_primary_10_3390_toxins11060350
crossref_primary_10_1016_j_isci_2024_109405
crossref_primary_10_1038_s41598_023_38375_4
crossref_primary_10_3390_cancers15010030
crossref_primary_10_3390_molecules27061849
crossref_primary_10_4103_RPS_RPS_96_24
crossref_primary_10_3390_ijms24021307
crossref_primary_10_1002_1873_3468_13863
crossref_primary_10_1016_j_cellsig_2022_110577
crossref_primary_10_3390_ijms25094995
crossref_primary_10_1007_s11655_024_3654_3
crossref_primary_10_1016_j_biochi_2023_10_019
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022040055
crossref_primary_10_1021_acsnano_3c01733
crossref_primary_10_3390_pharmaceutics14010113
crossref_primary_10_1161_HYPERTENSIONAHA_122_19175
crossref_primary_10_1007_s12291_024_01221_z
crossref_primary_10_1016_j_virol_2022_11_002
crossref_primary_10_1016_j_crphar_2022_100087
crossref_primary_10_1111_jnc_16294
crossref_primary_10_1016_j_cellsig_2023_110745
crossref_primary_10_3390_cells10112812
crossref_primary_10_3390_genes15060658
crossref_primary_10_1002_jcb_30173
Cites_doi 10.1016/0092-8674(93)90648-A
10.1074/jbc.M110.199737
10.1016/S1534-5807(02)00203-4
10.1038/nsmb846
10.1038/16729
10.1016/S0092-8674(00)81360-4
10.1083/jcb.153.5.1011
10.1074/jbc.RA117.001294
10.1038/nature10317
10.1101/cshperspect.a033886
10.1038/ncomms5202
10.1038/nature07641
10.1182/blood-2010-08-303099
10.1073/pnas.1217611110
10.1128/MCB.20.16.5879-5887.2000
10.1038/s41556-018-0141-0
10.1038/emboj.2011.318
10.1371/journal.pbio.1000415
10.1083/jcb.200405153
10.1016/j.cell.2007.10.057
10.1038/emboj.2008.8
10.1006/bbrc.2000.3987
10.1038/emboj.2011.18
10.7554/eLife.30700
10.1091/mbc.e03-11-0851
10.1038/35014014
10.1074/jbc.M004454200
10.1016/j.cell.2017.10.040
10.1016/j.molcel.2017.06.017
10.1038/nchembio.1094
10.1101/gad.12.12.1812
10.1111/febs.14608
10.1038/s41467-017-00029-1
10.1101/gad.839400
10.1016/0092-8674(93)90521-Q
10.1038/nature17041
10.1126/science.287.5453.664
10.1016/j.devcel.2012.11.006
10.1073/pnas.0606480103
10.1016/j.cmet.2017.04.026
10.1073/pnas.0509487102
10.1038/nature07661
10.1042/BJ20050640
10.1016/j.molcel.2017.12.028
10.1126/science.1090031
10.1126/science.1209126
10.1016/j.tibs.2013.08.001
10.1016/j.yexcr.2009.06.009
10.1038/415092a
10.7554/eLife.30257
10.1016/S0092-8674(01)00611-0
10.1016/j.tibs.2007.06.004
10.1074/jbc.M114.562868
10.1038/ncomms4554
10.1126/science.1209038
10.1124/mol.115.100917
10.1073/pnas.1115623109
10.1182/blood-2011-07-366633
10.1016/j.jmb.2015.02.011
10.1126/science.1129631
10.1073/pnas.0400541101
10.1091/mbc.10.11.3787
10.1091/mbc.E17-10-0594
10.1074/jbc.271.30.18181
10.7554/eLife.07426
10.1016/S0092-8674(00)80369-4
10.1016/j.molcel.2014.01.004
10.1091/mbc.e02-11-0708
10.1074/jbc.M200903200
10.1016/j.molcel.2017.06.012
10.1038/nrm2941
10.1016/j.devcel.2018.04.023
10.1101/gad.6.7.1153
10.1016/j.jmb.2007.01.009
10.1101/cshperspect.a033894
10.7554/eLife.03522
10.1186/s12915-017-0474-3
10.1091/mbc.e11-04-0295
10.1083/jcb.200704166
10.18632/oncotarget.3864
10.1016/S0955-0674(02)00358-7
10.1126/science.1083379
10.15252/embj.201489183
10.1021/acschembio.5b00940
10.1002/j.1460-2075.1996.tb00666.x
ContentType Journal Article
Copyright Copyright © 2019 Adams, Kopp, Larburu, Nowak and Ali. 2019 Adams, Kopp, Larburu, Nowak and Ali
Copyright_xml – notice: Copyright © 2019 Adams, Kopp, Larburu, Nowak and Ali. 2019 Adams, Kopp, Larburu, Nowak and Ali
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmolb.2019.00011
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-889X
ExternalDocumentID oai_doaj_org_article_d27d807958cf4c4d93c2aa5d7a0255af
PMC6423427
30931312
10_3389_fmolb_2019_00011
Genre Journal Article
Review
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 20752
– fundername: Cancer Research UK
  grantid: C33269/A20752; C33269/A23215
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-931598ff8e90c8084139b54279c0ef1e62af092b4ad246b140e53d6a50f72e563
IEDL.DBID M48
ISSN 2296-889X
IngestDate Wed Aug 27 01:31:39 EDT 2025
Thu Aug 21 18:42:37 EDT 2025
Fri Jul 11 16:25:31 EDT 2025
Sat May 31 02:12:12 EDT 2025
Tue Jul 01 03:27:57 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords BiP
ER stress
Hsp70
IRE1 inositol-requiring enzyme 1
crystal structures
unfolded protein response (UPR)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-931598ff8e90c8084139b54279c0ef1e62af092b4ad246b140e53d6a50f72e563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Sebastian Schuck, Universität Heidelberg, Germany; Robert Ernst, Saarland University, Germany
This article was submitted to Protein Folding, Misfolding and Degradation, a section of the journal Frontiers in Molecular Biosciences
Edited by: Matthias Peter Mayer, Universität Heidelberg, Germany
OpenAccessLink https://doaj.org/article/d27d807958cf4c4d93c2aa5d7a0255af
PMID 30931312
PQID 2201717479
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d27d807958cf4c4d93c2aa5d7a0255af
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423427
proquest_miscellaneous_2201717479
pubmed_primary_30931312
crossref_primary_10_3389_fmolb_2019_00011
crossref_citationtrail_10_3389_fmolb_2019_00011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-12
PublicationDateYYYYMMDD 2019-03-12
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in molecular biosciences
PublicationTitleAlternate Front Mol Biosci
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hartl (B25) 2011; 475
Urano (B73) 2000; 287
Liu (B42) 2003; 300
Papandreou (B55) 2011; 117
D'Silva (B18) 2004; 11
Halbleib (B22) 2017; 67
Wang (B79) 2012; 12
Abravaya (B1) 1992; 6
Karagoz (B33) 2019
Sundaram (B68) 2018; 29
Preissler (B60) 2018
Lee (B40) 2008; 132
Volkmann (B76) 2011; 286
Volmer (B77) 2013; 110
Walter (B78) 2011; 334
Oikawa (B51) 2005; 391
Amin-Wetzel (B4) 2017; 171
Hollien (B29) 2006; 313
Sanches (B63) 2014; 5
Behnke (B6) 2015; 427
Joshi (B30) 2015; 6
Pincus (B57) 2010; 8
Cox (B14) 1996; 87
Tam (B69) 2018; 46
Oikawa (B50) 2009; 315
Papa (B54) 2003; 302
Aragón (B5) 2008; 457
Shamu (B65) 1996; 15
Zhou (B84) 2006; 103
Mayer (B44) 2013; 38
Vattem (B75) 2004; 101
Feldman (B20) 2016; 11
Morita (B47) 2017; 25
Tirasophon (B71) 1998; 12
Ma (B43) 2002; 277
Harding (B24) 1999; 397
Ali (B2) 2011; 30
Gardner (B21) 2011; 333
Wang (B81) 2018; 293
Korennykh (B38) 2008; 457
Pike (B56) 2008; 27
Carrara (B9); 34
Credle (B16) 2005; 102
Castillo (B11) 2011; 30
Hetz (B28) 2017; 69
Yoshida (B83) 2001; 107
Carrara (B10)
Cross (B17) 2012; 109
Mimura (B45) 2012; 119
He (B27) 2012; 23
Eletto (B19) 2014; 53
Pinkaew (B58) 2017; 8
Hampton (B23) 2002; 14
Kimata (B34) 2004; 167
Almanza (B3) 2018; 286
Krimmer (B39) 2000; 20
Haze (B26) 1999; 10
Kimata (B35) 2007; 179
Sepulveda (B64) 2018; 69
Cox (B13) 1993; 73
Zhu (B85) 2014; 289
Nguyen (B48) 2004; 15
Prischi (B61) 2014; 5
Promlek (B62) 2011; 22
Urra (B74) 2018; 20
Mori (B46) 1993; 74
Todd-Corlett (B72) 2007; 367
Calfon (B8) 2002; 415
Concha (B12) 2015; 88
Welihinda (B82) 1996; 271
Wang (B80) 2016; 529
Karagöz (B32) 2017; 6
Oliver (B53) 2007; 32
Craig (B15) 2018; 16
Kopp (B37) 2018; 7
Shen (B66) 2002; 3
Okamura (B52) 2000; 279
Kampinga (B31) 2010; 11
Tirasophon (B70) 2000; 14
Liu (B41) 2000; 275
Kimata (B36) 2003; 14
Sidrauski (B67) 1997; 90
Plumb (B59) 2015; 4
Bertolotti (B7) 2000; 2
Novoa (B49) 2001; 153
References_xml – volume: 73
  start-page: 1197
  year: 1993
  ident: B13
  article-title: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90648-A
– volume: 286
  start-page: 12743
  year: 2011
  ident: B76
  article-title: Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.199737
– volume: 3
  start-page: 99
  year: 2002
  ident: B66
  article-title: ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00203-4
– volume: 11
  start-page: 1084
  year: 2004
  ident: B18
  article-title: Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb846
– volume: 397
  start-page: 271
  year: 1999
  ident: B24
  article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
  publication-title: Nature
  doi: 10.1038/16729
– volume: 87
  start-page: 391
  year: 1996
  ident: B14
  article-title: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81360-4
– volume: 153
  start-page: 1011
  year: 2001
  ident: B49
  article-title: Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.5.1011
– volume: 293
  start-page: 4110
  year: 2018
  ident: B81
  article-title: The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001294
– volume: 475
  start-page: 324
  year: 2011
  ident: B25
  article-title: Molecular chaperones in protein folding and proteostasis
  publication-title: Nature
  doi: 10.1038/nature10317
– year: 2019
  ident: B33
  article-title: The unfolded protein response: detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a033886
– volume: 5
  start-page: 4202
  year: 2014
  ident: B63
  article-title: Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5202
– volume: 457
  start-page: 736
  year: 2008
  ident: B5
  article-title: Messenger RNA targeting to endoplasmic reticulum stress signalling sites
  publication-title: Nature
  doi: 10.1038/nature07641
– volume: 117
  start-page: 1311
  year: 2011
  ident: B55
  article-title: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2010-08-303099
– volume: 110
  start-page: 4628
  year: 2013
  ident: B77
  article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1217611110
– volume: 20
  start-page: 5879
  year: 2000
  ident: B39
  article-title: Mitochondrial protein import motor: the ATPase domain of matrix Hsp70 is crucial for binding to Tim44, while the peptide binding domain and the carboxy-terminal segment play a stimulatory role
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.16.5879-5887.2000
– volume: 20
  start-page: 942
  year: 2018
  ident: B74
  article-title: IRE1alpha governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0141-0
– volume: 30
  start-page: 4465
  year: 2011
  ident: B11
  article-title: BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.318
– volume: 8
  start-page: e1000415
  year: 2010
  ident: B57
  article-title: BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000415
– volume: 167
  start-page: 445
  year: 2004
  ident: B34
  article-title: A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200405153
– volume: 132
  start-page: 89
  year: 2008
  ident: B40
  article-title: Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.057
– volume: 27
  start-page: 704
  year: 2008
  ident: B56
  article-title: Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.8
– volume: 279
  start-page: 445
  year: 2000
  ident: B52
  article-title: Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3987
– volume: 30
  start-page: 894
  year: 2011
  ident: B2
  article-title: Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.18
– volume: 6
  start-page: e30700
  year: 2017
  ident: B32
  article-title: An unfolded protein-induced conformational switch activates mammalian IRE1
  publication-title: Elife
  doi: 10.7554/eLife.30700
– volume: 15
  start-page: 4248
  year: 2004
  ident: B48
  article-title: Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-11-0851
– volume: 2
  start-page: 326
  year: 2000
  ident: B7
  article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35014014
– volume: 275
  start-page: 24881
  year: 2000
  ident: B41
  article-title: Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004454200
– volume: 171
  start-page: 1625
  year: 2017
  ident: B4
  article-title: A J-Protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.040
– volume: 69
  start-page: 169
  year: 2017
  ident: B28
  article-title: The unfolded protein response and cell fate control
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.017
– volume: 12
  start-page: 982
  year: 2012
  ident: B79
  article-title: Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1094
– volume: 12
  start-page: 1812
  year: 1998
  ident: B71
  article-title: A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.12.1812
– volume: 286
  start-page: 241
  year: 2018
  ident: B3
  article-title: Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications
  publication-title: FEBS J
  doi: 10.1111/febs.14608
– volume: 8
  start-page: 18
  year: 2017
  ident: B58
  article-title: Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00029-1
– volume: 14
  start-page: 2725
  year: 2000
  ident: B70
  article-title: The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response
  publication-title: Genes Dev.
  doi: 10.1101/gad.839400
– volume: 74
  start-page: 743
  year: 1993
  ident: B46
  article-title: A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90521-Q
– volume: 529
  start-page: 326
  year: 2016
  ident: B80
  article-title: Protein misfolding in the endoplasmic reticulum as a conduit to human disease
  publication-title: Nature
  doi: 10.1038/nature17041
– volume: 287
  start-page: 664
  year: 2000
  ident: B73
  article-title: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
  publication-title: Science
  doi: 10.1126/science.287.5453.664
– volume: 23
  start-page: 1141
  year: 2012
  ident: B27
  article-title: Nonmuscle myosin IIB links cytoskeleton to IRE1alpha signaling during ER stress
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.11.006
– volume: 103
  start-page: 14343
  year: 2006
  ident: B84
  article-title: The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0606480103
– volume: 25
  start-page: 883
  year: 2017
  ident: B47
  article-title: Targeting ABL-IRE1alpha signaling spares ER-stressed pancreatic beta cells to reverse autoimmune diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.04.026
– volume: 102
  start-page: 18773
  year: 2005
  ident: B16
  article-title: On the mechanism of sensing unfolded protein in the endoplasmic reticulum
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0509487102
– volume: 457
  start-page: 687
  year: 2008
  ident: B38
  article-title: The unfolded protein response signals through high-order assembly of Ire1
  publication-title: Nature
  doi: 10.1038/nature07661
– volume: 391
  start-page: 135
  year: 2005
  ident: B51
  article-title: An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20050640
– volume: 69
  start-page: 238
  year: 2018
  ident: B64
  article-title: Interactome screening identifies the ER luminal Chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1alpha
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.12.028
– volume: 302
  start-page: 1533
  year: 2003
  ident: B54
  article-title: Bypassing a kinase activity with an ATP-competitive drug
  publication-title: Science
  doi: 10.1126/science.1090031
– volume: 333
  start-page: 1891
  year: 2011
  ident: B21
  article-title: Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response
  publication-title: Science
  doi: 10.1126/science.1209126
– volume: 38
  start-page: 507
  year: 2013
  ident: B44
  article-title: Hsp70 chaperone dynamics and molecular mechanism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.08.001
– volume: 315
  start-page: 2496
  year: 2009
  ident: B50
  article-title: Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2009.06.009
– volume: 415
  start-page: 92
  year: 2002
  ident: B8
  article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
  publication-title: Nature
  doi: 10.1038/415092a
– volume: 7
  start-page: e30257
  year: 2018
  ident: B37
  article-title: In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress
  publication-title: Elife
  doi: 10.7554/eLife.30257
– volume: 107
  start-page: 881
  year: 2001
  ident: B83
  article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00611-0
– volume: 32
  start-page: 351
  year: 2007
  ident: B53
  article-title: Activation segment exchange: a common mechanism of kinase autophosphorylation?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2007.06.004
– volume: 289
  start-page: 30567
  year: 2014
  ident: B85
  article-title: Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.562868
– volume: 5
  start-page: 3554
  year: 2014
  ident: B61
  article-title: Phosphoregulation of Ire1 RNase splicing activity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4554
– volume: 334
  start-page: 1081
  year: 2011
  ident: B78
  article-title: The unfolded protein response: from stress pathway to homeostatic regulation
  publication-title: Science
  doi: 10.1126/science.1209038
– volume: 88
  start-page: 1011
  year: 2015
  ident: B12
  article-title: Long-range inhibitor-induced conformational regulation of human IRE1alpha endoribonuclease activity
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.115.100917
– volume: 109
  start-page: E869
  year: 2012
  ident: B17
  article-title: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1115623109
– volume: 119
  start-page: 5772
  year: 2012
  ident: B45
  article-title: Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2011-07-366633
– volume: 427
  start-page: 1589
  year: 2015
  ident: B6
  article-title: BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.02.011
– volume: 313
  start-page: 104
  year: 2006
  ident: B29
  article-title: Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response
  publication-title: Science
  doi: 10.1126/science.1129631
– volume: 101
  start-page: 11269
  year: 2004
  ident: B75
  article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0400541101
– volume: 10
  start-page: 3787
  year: 1999
  ident: B26
  article-title: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.11.3787
– volume: 29
  start-page: 1376
  year: 2018
  ident: B68
  article-title: Dynamic changes in complexes of IRE1alpha, PERK, and ATF6alpha during endoplasmic reticulum stress
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E17-10-0594
– volume: 271
  start-page: 18181
  year: 1996
  ident: B82
  article-title: The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.30.18181
– volume: 4
  start-page: e07426
  year: 2015
  ident: B59
  article-title: A functional link between the co-translational protein translocation pathway and the UPR
  publication-title: Elife
  doi: 10.7554/eLife.07426
– volume: 90
  start-page: 1031
  year: 1997
  ident: B67
  article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80369-4
– volume: 53
  start-page: 562
  year: 2014
  ident: B19
  article-title: Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.01.004
– volume: 14
  start-page: 2559
  year: 2003
  ident: B36
  article-title: Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-11-0708
– volume: 277
  start-page: 18728
  year: 2002
  ident: B43
  article-title: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200903200
– volume: 67
  start-page: 673
  year: 2017
  ident: B22
  article-title: Activation of the unfolded protein response by lipid bilayer stress
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.06.012
– volume: 11
  start-page: 579
  year: 2010
  ident: B31
  article-title: The HSP70 chaperone machinery: J proteins as drivers of functional specificity
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2941
– volume: 46
  start-page: 327
  year: 2018
  ident: B69
  article-title: The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2018.04.023
– volume: 6
  start-page: 1153
  year: 1992
  ident: B1
  article-title: The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression
  publication-title: Genes Dev.
  doi: 10.1101/gad.6.7.1153
– volume: 367
  start-page: 770
  year: 2007
  ident: B72
  article-title: Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae. J
  publication-title: Mol. Biol.
  doi: 10.1016/j.jmb.2007.01.009
– year: 2018
  ident: B60
  article-title: Early events in the endoplasmic reticulum unfolded protein response
  publication-title: Cold Spring Harb. Perspect. Biol
  doi: 10.1101/cshperspect.a033894
– ident: B10
  article-title: Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling
  publication-title: Elife
  doi: 10.7554/eLife.03522
– volume: 16
  start-page: 11
  year: 2018
  ident: B15
  article-title: Hsp70 at the membrane: driving protein translocation
  publication-title: BMC Biol.
  doi: 10.1186/s12915-017-0474-3
– volume: 22
  start-page: 3520
  year: 2011
  ident: B62
  article-title: Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-04-0295
– volume: 179
  start-page: 75
  year: 2007
  ident: B35
  article-title: Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200704166
– volume: 6
  start-page: 13019
  year: 2015
  ident: B30
  article-title: Molecular mechanisms of human IRE1 activation through dimerization and ligand binding
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3864
– volume: 14
  start-page: 476
  year: 2002
  ident: B23
  article-title: ER-associated degradation in protein quality control and cellular regulation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(02)00358-7
– volume: 300
  start-page: 139
  year: 2003
  ident: B42
  article-title: Regulated cycling of mitochondrial Hsp70 at the protein import channel
  publication-title: Science
  doi: 10.1126/science.1083379
– volume: 34
  start-page: 1589
  ident: B9
  article-title: Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling
  publication-title: EMBO J.
  doi: 10.15252/embj.201489183
– volume: 11
  start-page: 2195
  year: 2016
  ident: B20
  article-title: Structural and functional analysis of the allosteric inhibition of IRE1α with ATP-competitive ligands
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00940
– volume: 15
  start-page: 3028
  year: 1996
  ident: B65
  article-title: Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00666.x
SSID ssj0001503764
Score 2.5724914
SecondaryResourceType review_article
Snippet The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11
SubjectTerms BiP
crystal structures
ER stress
Hsp70
IRE1 inositol-requiring enzyme 1
Molecular Biosciences
unfolded protein response (UPR)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37YvInjx0GySTtLJcZVZVmFEZhzYW5POYx0Yu2Ufh_33ViU9w4yIXrx2J3SoqnR9RVV9Rcg7Lb3mToTaG-1rGYOrwa-HOgF0kMr52LfY4Dz_os9W8vO5Ot8b9YU1YYUeuAjuOIg2GNZaZXySXgbbeOGcCq1DNOwS_n3B5-0FU6U_mMHNkSUvCVGYBTWNmx5LuZCfknF-4IcyXf-fMObvpZJ7vuf0Abk_gUZ6Ug77kNyJwyNyt4yRvH1MxmUmgb25jNQNgc63E2_pPGJf7_rqBx0TnS3oMjeG0OX6AuH3cEH7WwoAkK7AyjYhBvoVWRvWA12Uytk4LaUnPk9BGy_pp8WMPyGr09m3j2f1NEih9kqY69o2AFpMSiZa5g0z4Lhsr6RorWcx8aiFS8yKXrogpO4h5oqqCdoplloRlW6ekqNhHOJzQqMwOvDYILG8FMn2IUgHoMKzYADKyYocb8Xa-YllHIddbDqINlARXVZEh4rIiW9ekfe7HT8Lw8Zf1n5ATe3WITd2fgAW000W0_3LYirydqvnDu4SJkjcEMebq04IZA-CAMtW5FnR--5TmDHmDRcVaQ8s4uAsh2-G9ffM1w0hXgPCfvE_Dv-S3ENxYBUcF6_IEdhXfA2w6Lp_k2_AL3FvDBw
  priority: 102
  providerName: Directory of Open Access Journals
Title Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1
URI https://www.ncbi.nlm.nih.gov/pubmed/30931312
https://www.proquest.com/docview/2201717479
https://pubmed.ncbi.nlm.nih.gov/PMC6423427
https://doaj.org/article/d27d807958cf4c4d93c2aa5d7a0255af
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bq9NAEF7kiOCLeDdeDiv44kN0s9nd7D6IHKWHo1CR1kLfwmYvtVATbc8B---d2aTVShFfk81tLsw3mZ1vCHmhhFOF5T53WrlcBG9ziOs-jwAdhLQuNBU2OI8_qYuZ-DiX89_t0YMAN0dTO5wnNVuvXv38sX0LDv8GM06It6CBbtXgLi2knmTY6Hsd4lKFbjoewH7fM8zAm7DMzLlRudZm3tctj97kIE4lOv9jGPTvrZR_xKbz2-TWACrpWW8Fd8i10N4lN_oxk9t7pJsmktirdaC29XS8m4hLxwH7fpebb7SLdDSh09Q4QqfLBcLzdkGbLQWASGcgl5UPnn5GVodlSyf9ztowLKVnLk1J69b0w2RU3Cez89GX9xf5MGghd5Lry9yUAGp0jDoY5jTTENhMIwWvjGMhFkFxG5nhjbCeC9VAThZk6ZWVLFY8SFU-ICdt14ZHhAaulS9CicTzgkfTeC8sgA7HvAaoJzLyeifW2g0s5DgMY1VDNoKKqJMialREKowXGXm5v-J7z8Dxj7XvUFP7dcidnQ5060U9uGLteeU1q4zULgonvCkdt1b6ymJ-ZWNGnu_0XIOvYQHFtqG72tScI7sQJGAmIw97ve8fhRXloix4RqoDizh4l8Mz7fJr4vOGFLAEYT_-j-c-ITfxa3ETXMGfkhMwn_AMUNFlc5r-Jpwmk_8FjL8Lvg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Molecular+Mechanism+of+ER+Stress+Signaling+by+the+Unfolded+Protein+Response+Signal+Activator+IRE1&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Adams%2C+Christopher+J&rft.au=Kopp%2C+Megan+C&rft.au=Larburu%2C+Natacha&rft.au=Nowak%2C+Piotr+R&rft.date=2019-03-12&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=6&rft.spage=11&rft_id=info:doi/10.3389%2Ffmolb.2019.00011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon