Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1
The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can le...
Saved in:
Published in | Frontiers in molecular biosciences Vol. 6; p. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
12.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-889X 2296-889X |
DOI | 10.3389/fmolb.2019.00011 |
Cover
Loading…
Abstract | The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix. |
---|---|
AbstractList | The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as “ER stress.” The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix. The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix. |
Author | Ali, Maruf M. U. Nowak, Piotr R. Adams, Christopher J. Kopp, Megan C. Larburu, Natacha |
AuthorAffiliation | Department of Life Sciences, Imperial College London , London , United Kingdom |
AuthorAffiliation_xml | – name: Department of Life Sciences, Imperial College London , London , United Kingdom |
Author_xml | – sequence: 1 givenname: Christopher J. surname: Adams fullname: Adams, Christopher J. – sequence: 2 givenname: Megan C. surname: Kopp fullname: Kopp, Megan C. – sequence: 3 givenname: Natacha surname: Larburu fullname: Larburu, Natacha – sequence: 4 givenname: Piotr R. surname: Nowak fullname: Nowak, Piotr R. – sequence: 5 givenname: Maruf M. U. surname: Ali fullname: Ali, Maruf M. U. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30931312$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt1rFDEUxQep2Fr77pPk0Zdd8zGZmbwIpay60KJsLfgWMsnNbkomWZNMof-9sx-WVvApIfmdcw_c87Y6CTFAVb0neM5YJz7ZIfp-TjERc4wxIa-qM0pFM-s68evk2f20usj5fodwzNqmflOdMiwYYYSeVfG2pFGXMQFSwaCb6EGPXiV0A3qjgssDihYtVmjiIGd069ZBeRfWqH9EZQPoLtjoDRj0I8UCLqAV5G0MGY4outTFPagSE1quFuRd9doqn-HieJ5Xd18WP6--za6_f11eXV7PNKddmU3xuOis7UBg3eGuJkz0vKat0BgsgYYqiwXta2Vo3fSkxsCZaRTHtqXAG3ZeLQ--Jqp7uU1uUOlRRuXk_iGmtVSpOO1BGtqaDreCd9rWujaCaaoUN63ClHNlJ6_PB6_t2A9gNISSlH9h-vInuI1cxwfZ1JRNmSeDj0eDFH-PkIscXNbgvQoQxyzptMSWtHUrJvTD81lPQ_5ubALwAdAp5pzAPiEEy10v5L4XctcLue_FJGn-kWhXVHFxl9b5_wv_ABxXvgQ |
CitedBy_id | crossref_primary_10_3390_biomedicines10112725 crossref_primary_10_3389_fendo_2020_614123 crossref_primary_10_3390_antiox12020492 crossref_primary_10_1007_s12192_020_01178_x crossref_primary_10_1371_journal_pbio_3000687 crossref_primary_10_1038_s42004_023_01092_0 crossref_primary_10_3390_ijms24032546 crossref_primary_10_3390_cells13131141 crossref_primary_10_1016_j_bbadis_2022_166485 crossref_primary_10_3389_fphar_2021_647350 crossref_primary_10_1016_j_ejphar_2024_176899 crossref_primary_10_31857_S0026898423060071 crossref_primary_10_3389_fphar_2024_1339146 crossref_primary_10_1016_j_cbpb_2024_110982 crossref_primary_10_1002_jcp_30948 crossref_primary_10_1186_s12974_020_01796_3 crossref_primary_10_1016_j_critrevonc_2020_103182 crossref_primary_10_1155_2022_1225578 crossref_primary_10_61186_JoMMID_12_3_171 crossref_primary_10_1039_D0CS00259C crossref_primary_10_1186_s12964_024_01514_z crossref_primary_10_3390_nu15245082 crossref_primary_10_3390_antiox12081648 crossref_primary_10_1096_fba_2021_00005 crossref_primary_10_1038_s41416_023_02322_x crossref_primary_10_3389_fmolb_2025_1554717 crossref_primary_10_3390_ijms21082661 crossref_primary_10_3390_ijms22010465 crossref_primary_10_1016_j_cotox_2020_05_002 crossref_primary_10_4103_egjp_egjp_7_22 crossref_primary_10_17826_cumj_637075 crossref_primary_10_1038_s41556_019_0338_x crossref_primary_10_1016_j_bbapap_2021_140680 crossref_primary_10_1038_s41420_024_01911_w crossref_primary_10_1016_j_bbagen_2022_130269 crossref_primary_10_1021_acs_jafc_3c03602 crossref_primary_10_1007_s12010_022_03814_x crossref_primary_10_1111_gtc_13151 crossref_primary_10_1371_journal_pone_0275342 crossref_primary_10_3389_fcell_2021_684526 crossref_primary_10_1007_s00253_022_11799_0 crossref_primary_10_1016_j_comtox_2021_100179 crossref_primary_10_1016_j_isci_2021_102970 crossref_primary_10_1016_j_jbc_2023_104884 crossref_primary_10_1016_j_tins_2021_06_003 crossref_primary_10_3389_fcvm_2021_732708 crossref_primary_10_1016_j_mce_2019_110630 crossref_primary_10_1016_j_neuro_2025_02_006 crossref_primary_10_1016_j_jbc_2024_108029 crossref_primary_10_1016_j_biocel_2022_106277 crossref_primary_10_1007_s13353_024_00833_8 crossref_primary_10_2147_CCID_S412588 crossref_primary_10_3390_ijms24054914 crossref_primary_10_3389_fphar_2024_1442700 crossref_primary_10_1016_j_drudis_2025_104335 crossref_primary_10_1021_acs_inorgchem_2c01375 crossref_primary_10_3390_ijms22168863 crossref_primary_10_1007_s12192_023_01323_2 crossref_primary_10_31083_j_fbl2906221 crossref_primary_10_3389_fnmol_2022_963083 crossref_primary_10_1007_s00109_020_01904_z crossref_primary_10_1126_science_abf6548 crossref_primary_10_1101_cshperspect_a041400 crossref_primary_10_1186_s12935_022_02540_y crossref_primary_10_3389_fphar_2023_1133863 crossref_primary_10_3390_biology13100774 crossref_primary_10_1016_j_bbamcr_2024_119676 crossref_primary_10_3390_ani11010221 crossref_primary_10_1080_19768354_2021_2020901 crossref_primary_10_3390_ijms21176127 crossref_primary_10_3390_ph16030432 crossref_primary_10_1177_1176934321999640 crossref_primary_10_1007_s12192_023_01335_y crossref_primary_10_1016_j_cyto_2024_156832 crossref_primary_10_1002_cbf_70007 crossref_primary_10_1007_s43032_021_00814_w crossref_primary_10_3389_fphys_2023_1152576 crossref_primary_10_1042_BST20200836 crossref_primary_10_3390_ijms22010004 crossref_primary_10_1016_j_steroids_2023_109238 crossref_primary_10_3389_fcell_2020_00756 crossref_primary_10_3390_biomedicines12112481 crossref_primary_10_5114_aoms_186658 crossref_primary_10_1016_j_molmet_2024_101921 crossref_primary_10_1186_s12929_022_00796_0 crossref_primary_10_3389_fnins_2023_1236815 crossref_primary_10_3389_fimmu_2022_940122 crossref_primary_10_3389_fimmu_2022_823157 crossref_primary_10_3389_fmolb_2023_1155784 crossref_primary_10_1371_journal_pone_0282442 crossref_primary_10_3390_antiox10091492 crossref_primary_10_3390_cells9030750 crossref_primary_10_3390_ijms20225538 crossref_primary_10_2147_OPTH_S254504 crossref_primary_10_1080_10715762_2021_1892090 crossref_primary_10_3390_antiox11112228 crossref_primary_10_1038_s44319_024_00197_4 crossref_primary_10_1172_jci_insight_185548 crossref_primary_10_1093_hmg_ddab078 crossref_primary_10_1002_smll_202406809 crossref_primary_10_1016_j_ceca_2021_102453 crossref_primary_10_3389_fphar_2020_582310 crossref_primary_10_1021_acschemneuro_3c00671 crossref_primary_10_3390_ijms23010106 crossref_primary_10_1083_jcb_202011078 crossref_primary_10_1165_rcmb_2023_0109OC crossref_primary_10_3390_metabo11010052 crossref_primary_10_1038_s41420_024_02200_2 crossref_primary_10_3389_fncel_2023_1344090 crossref_primary_10_3390_ijms22094494 crossref_primary_10_3748_wjg_v26_i28_4036 crossref_primary_10_1002_1878_0261_13607 crossref_primary_10_1016_j_bbamcr_2024_119854 crossref_primary_10_1091_mbc_E24_03_0121 crossref_primary_10_33483_jfpau_1129575 crossref_primary_10_1007_s11033_022_08065_x crossref_primary_10_3389_fmed_2021_758311 crossref_primary_10_1016_j_gep_2020_119130 crossref_primary_10_1016_j_ecoenv_2021_112596 crossref_primary_10_1177_17590914211028364 crossref_primary_10_1016_j_tips_2021_11_011 crossref_primary_10_3389_fpls_2024_1389658 crossref_primary_10_1007_s11033_020_06044_8 crossref_primary_10_1016_j_phyplu_2021_100202 crossref_primary_10_3390_cells12071032 crossref_primary_10_1007_s00436_023_07902_7 crossref_primary_10_1093_pnasnexus_pgae140 crossref_primary_10_3390_biomedicines10020430 crossref_primary_10_3390_biomedicines12102299 crossref_primary_10_1016_j_molmet_2021_101169 crossref_primary_10_3389_fcell_2023_1023327 crossref_primary_10_4014_jmb_2109_09012 crossref_primary_10_1038_s41419_022_04999_z crossref_primary_10_1111_tpj_16612 crossref_primary_10_1038_s41419_022_05444_x crossref_primary_10_3389_fcell_2021_673395 crossref_primary_10_1016_j_ijbiomac_2024_137566 crossref_primary_10_1016_j_freeradbiomed_2024_05_039 crossref_primary_10_1155_2021_5529810 crossref_primary_10_1016_j_crfs_2022_01_006 crossref_primary_10_3390_ijerph191710864 crossref_primary_10_3389_fragi_2022_860404 crossref_primary_10_1080_17435390_2022_2028919 crossref_primary_10_1021_acscentsci_4c01506 crossref_primary_10_1210_endrev_bnab006 crossref_primary_10_1016_j_scitotenv_2023_166167 crossref_primary_10_1177_09603271241307859 crossref_primary_10_1016_j_bja_2024_01_007 crossref_primary_10_14814_phy2_14607 crossref_primary_10_1002_jat_4519 crossref_primary_10_3389_fimmu_2024_1427859 crossref_primary_10_3390_biom12121882 crossref_primary_10_1016_j_tranon_2023_101792 crossref_primary_10_1128_mbio_02415_22 crossref_primary_10_7554_eLife_83884 crossref_primary_10_3390_cells10082031 crossref_primary_10_4049_jimmunol_1901131 crossref_primary_10_1038_s41565_023_01393_4 crossref_primary_10_18621_eurj_1049381 crossref_primary_10_2174_1568026622666220831114838 crossref_primary_10_3389_fonc_2024_1445222 crossref_primary_10_1016_j_acthis_2022_151951 crossref_primary_10_1152_ajpcell_00445_2022 crossref_primary_10_4103_NRR_NRR_D_23_01403 crossref_primary_10_1242_jcs_218107 crossref_primary_10_1016_j_jbc_2022_102836 crossref_primary_10_1128_mbio_03068_22 crossref_primary_10_1134_S0026893323060067 crossref_primary_10_1038_s41598_024_60474_z crossref_primary_10_1038_s41419_022_05153_5 crossref_primary_10_1021_acsbiomaterials_4c00549 crossref_primary_10_7554_eLife_82568 crossref_primary_10_1016_j_lfs_2024_122892 crossref_primary_10_3390_oxygen2040030 crossref_primary_10_3389_fcell_2022_772230 crossref_primary_10_1186_s13578_021_00538_z crossref_primary_10_3390_ijms24032017 crossref_primary_10_3390_cells12222633 crossref_primary_10_1080_10428194_2024_2349950 crossref_primary_10_1080_10641963_2021_1984501 crossref_primary_10_1080_15548627_2021_1917129 crossref_primary_10_3390_ijms20225614 crossref_primary_10_1016_j_mocell_2024_100158 crossref_primary_10_1177_20530196211001517 crossref_primary_10_3349_ymj_2022_0354 crossref_primary_10_1016_j_biochi_2022_04_004 crossref_primary_10_3390_ijms23168896 crossref_primary_10_1007_s11064_023_03960_6 crossref_primary_10_1146_annurev_animal_111523_102249 crossref_primary_10_3390_ijms21114171 crossref_primary_10_1002_mc_23453 crossref_primary_10_1016_j_bbagen_2019_129422 crossref_primary_10_3389_fimmu_2020_629777 crossref_primary_10_33483_jfpau_1487169 crossref_primary_10_1016_j_bbadis_2021_166120 crossref_primary_10_3390_pharmaceutics15102420 crossref_primary_10_1002_tox_23680 crossref_primary_10_1155_2021_1246491 crossref_primary_10_1371_journal_pntd_0009192 crossref_primary_10_3390_cancers12092470 crossref_primary_10_3390_ani11103004 crossref_primary_10_1016_j_envpol_2024_123565 crossref_primary_10_19113_sdufenbed_1073225 crossref_primary_10_1016_j_nbd_2019_104520 crossref_primary_10_1523_JNEUROSCI_1799_22_2023 crossref_primary_10_3390_biomedicines10051092 crossref_primary_10_1002_jbmr_4501 crossref_primary_10_59368_agingbio_20230001 crossref_primary_10_3389_fmolb_2020_00199 crossref_primary_10_1038_s41594_019_0324_9 crossref_primary_10_1097_CM9_0000000000003186 crossref_primary_10_1142_S2737416523500527 crossref_primary_10_1136_gutjnl_2021_325013 crossref_primary_10_2174_1566523222666220801141450 crossref_primary_10_1007_s00018_023_04815_7 crossref_primary_10_3389_fendo_2023_1090039 crossref_primary_10_3390_ijms21020450 crossref_primary_10_1016_j_jbc_2023_103031 crossref_primary_10_3389_fped_2021_755365 crossref_primary_10_1007_s11033_022_07873_5 crossref_primary_10_3390_ijms241311003 crossref_primary_10_1038_s42003_023_05386_w crossref_primary_10_1007_s10989_024_10637_3 crossref_primary_10_3390_cells13131096 crossref_primary_10_1111_jcmm_18464 crossref_primary_10_1002_jcp_30537 crossref_primary_10_1016_j_pccm_2024_08_007 crossref_primary_10_1073_pnas_2208317119 crossref_primary_10_1016_j_kint_2021_12_031 crossref_primary_10_3390_antiox13121564 crossref_primary_10_3390_biomedicines12030572 crossref_primary_10_3390_microorganisms12112126 crossref_primary_10_3390_antiox10030378 crossref_primary_10_1080_10409238_2020_1856769 crossref_primary_10_3390_ijms24054754 crossref_primary_10_3390_ijms25136901 crossref_primary_10_1016_j_chemosphere_2021_130588 crossref_primary_10_1016_j_virusres_2023_199282 crossref_primary_10_3390_ijms22189722 crossref_primary_10_3390_pharmaceutics15071858 crossref_primary_10_1007_s11011_023_01239_x crossref_primary_10_18632_oncotarget_28334 crossref_primary_10_1016_j_bbadis_2023_166905 crossref_primary_10_1016_j_bcp_2022_114980 crossref_primary_10_3390_antiox10081170 crossref_primary_10_1038_s41585_022_00649_3 crossref_primary_10_1096_fj_202201272R crossref_primary_10_3390_cells10112965 crossref_primary_10_1002_fsn3_2847 crossref_primary_10_1016_j_semcdb_2021_12_009 crossref_primary_10_1038_s41577_022_00682_8 crossref_primary_10_1210_endocr_bqab212 crossref_primary_10_1002_tox_23793 crossref_primary_10_4014_jmb_2110_10019 crossref_primary_10_1515_tjb_2022_0292 crossref_primary_10_1098_rsob_200089 crossref_primary_10_3390_cimb46050261 crossref_primary_10_1007_s13105_024_01008_z crossref_primary_10_20517_cdr_2023_108 crossref_primary_10_3390_ph12040144 crossref_primary_10_1016_j_biochi_2022_01_017 crossref_primary_10_1021_acschemneuro_0c00808 crossref_primary_10_1038_s44318_023_00015_y crossref_primary_10_3390_biomedicines11041126 crossref_primary_10_1165_rcmb_2021_0114OC crossref_primary_10_1016_j_jbc_2022_101930 crossref_primary_10_1016_j_ejphar_2022_174891 crossref_primary_10_1002_cbic_202100641 crossref_primary_10_15252_emmm_202114502 crossref_primary_10_1128_mbio_00703_22 crossref_primary_10_1093_g3journal_jkae017 crossref_primary_10_1093_brain_awad258 crossref_primary_10_3389_fendo_2022_947294 crossref_primary_10_3390_biomedicines9020156 crossref_primary_10_1016_j_prp_2023_154905 crossref_primary_10_3390_cancers15041064 crossref_primary_10_3390_nu14204277 crossref_primary_10_1038_s41467_024_52188_7 crossref_primary_10_3390_cells9092066 crossref_primary_10_2174_1871520622666220823094350 crossref_primary_10_3390_ijms241814066 crossref_primary_10_1016_j_omtm_2021_11_006 crossref_primary_10_1002_advs_202204038 crossref_primary_10_3390_plants12081666 crossref_primary_10_1007_s12035_024_04340_z crossref_primary_10_3390_ijms22115436 crossref_primary_10_1016_j_ejphar_2024_176613 crossref_primary_10_3390_biomedicines11020354 crossref_primary_10_1016_j_cstres_2024_11_001 crossref_primary_10_3390_nano10112177 crossref_primary_10_1080_1120009X_2023_2300224 crossref_primary_10_1111_febs_16337 crossref_primary_10_1007_s12010_024_04859_w crossref_primary_10_1016_j_apsb_2021_07_004 crossref_primary_10_1016_j_ibmb_2020_103368 crossref_primary_10_1016_j_tice_2023_102129 crossref_primary_10_3389_fphar_2022_841068 crossref_primary_10_1186_s12935_025_03694_1 crossref_primary_10_1016_j_ab_2020_113775 crossref_primary_10_1016_j_yfrne_2021_100972 crossref_primary_10_1186_s13287_022_02827_x crossref_primary_10_3390_antiox11071306 crossref_primary_10_1002_cbin_12114 crossref_primary_10_1007_s12079_022_00720_z crossref_primary_10_3389_fimmu_2022_980680 crossref_primary_10_1172_JCI151591 crossref_primary_10_3389_fphys_2021_793171 crossref_primary_10_1016_j_isci_2022_104282 crossref_primary_10_1186_s13071_022_05394_5 crossref_primary_10_1016_j_pharmthera_2023_108413 crossref_primary_10_1271_kagakutoseibutsu_58_404 crossref_primary_10_1016_j_scitotenv_2024_171774 crossref_primary_10_1038_s41385_021_00412_8 crossref_primary_10_1093_glycob_cwab033 crossref_primary_10_1016_j_yfrne_2024_101144 crossref_primary_10_1152_ajplung_00469_2020 crossref_primary_10_33483_jfpau_1232868 crossref_primary_10_1002_med_21921 crossref_primary_10_1186_s12929_022_00850_x crossref_primary_10_1371_journal_pone_0271695 crossref_primary_10_3389_fcimb_2022_1057774 crossref_primary_10_3389_fnins_2019_01444 crossref_primary_10_3390_antiox9101018 crossref_primary_10_1016_j_ejphar_2024_176962 crossref_primary_10_1186_s13046_021_02010_9 crossref_primary_10_1016_j_ijpddr_2021_01_003 crossref_primary_10_1007_s00232_022_00227_z crossref_primary_10_26508_lsa_202402702 crossref_primary_10_3390_antiox12051072 crossref_primary_10_1021_acs_inorgchem_0c01442 crossref_primary_10_1016_j_jaut_2023_103152 crossref_primary_10_1055_s_0042_1755316 crossref_primary_10_1007_s10787_023_01287_w crossref_primary_10_1002_jbt_23636 crossref_primary_10_1016_j_bbalip_2024_159510 crossref_primary_10_1016_j_biopha_2025_117992 crossref_primary_10_1016_j_bbalip_2024_159515 crossref_primary_10_1038_s41598_020_74347_8 crossref_primary_10_3389_fimmu_2021_756548 crossref_primary_10_1016_j_freeradbiomed_2024_01_006 crossref_primary_10_1016_j_ceca_2023_102753 crossref_primary_10_3389_fcell_2022_878395 crossref_primary_10_3390_toxins11060350 crossref_primary_10_1016_j_isci_2024_109405 crossref_primary_10_1038_s41598_023_38375_4 crossref_primary_10_3390_cancers15010030 crossref_primary_10_3390_molecules27061849 crossref_primary_10_4103_RPS_RPS_96_24 crossref_primary_10_3390_ijms24021307 crossref_primary_10_1002_1873_3468_13863 crossref_primary_10_1016_j_cellsig_2022_110577 crossref_primary_10_3390_ijms25094995 crossref_primary_10_1007_s11655_024_3654_3 crossref_primary_10_1016_j_biochi_2023_10_019 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022040055 crossref_primary_10_1021_acsnano_3c01733 crossref_primary_10_3390_pharmaceutics14010113 crossref_primary_10_1161_HYPERTENSIONAHA_122_19175 crossref_primary_10_1007_s12291_024_01221_z crossref_primary_10_1016_j_virol_2022_11_002 crossref_primary_10_1016_j_crphar_2022_100087 crossref_primary_10_1111_jnc_16294 crossref_primary_10_1016_j_cellsig_2023_110745 crossref_primary_10_3390_cells10112812 crossref_primary_10_3390_genes15060658 crossref_primary_10_1002_jcb_30173 |
Cites_doi | 10.1016/0092-8674(93)90648-A 10.1074/jbc.M110.199737 10.1016/S1534-5807(02)00203-4 10.1038/nsmb846 10.1038/16729 10.1016/S0092-8674(00)81360-4 10.1083/jcb.153.5.1011 10.1074/jbc.RA117.001294 10.1038/nature10317 10.1101/cshperspect.a033886 10.1038/ncomms5202 10.1038/nature07641 10.1182/blood-2010-08-303099 10.1073/pnas.1217611110 10.1128/MCB.20.16.5879-5887.2000 10.1038/s41556-018-0141-0 10.1038/emboj.2011.318 10.1371/journal.pbio.1000415 10.1083/jcb.200405153 10.1016/j.cell.2007.10.057 10.1038/emboj.2008.8 10.1006/bbrc.2000.3987 10.1038/emboj.2011.18 10.7554/eLife.30700 10.1091/mbc.e03-11-0851 10.1038/35014014 10.1074/jbc.M004454200 10.1016/j.cell.2017.10.040 10.1016/j.molcel.2017.06.017 10.1038/nchembio.1094 10.1101/gad.12.12.1812 10.1111/febs.14608 10.1038/s41467-017-00029-1 10.1101/gad.839400 10.1016/0092-8674(93)90521-Q 10.1038/nature17041 10.1126/science.287.5453.664 10.1016/j.devcel.2012.11.006 10.1073/pnas.0606480103 10.1016/j.cmet.2017.04.026 10.1073/pnas.0509487102 10.1038/nature07661 10.1042/BJ20050640 10.1016/j.molcel.2017.12.028 10.1126/science.1090031 10.1126/science.1209126 10.1016/j.tibs.2013.08.001 10.1016/j.yexcr.2009.06.009 10.1038/415092a 10.7554/eLife.30257 10.1016/S0092-8674(01)00611-0 10.1016/j.tibs.2007.06.004 10.1074/jbc.M114.562868 10.1038/ncomms4554 10.1126/science.1209038 10.1124/mol.115.100917 10.1073/pnas.1115623109 10.1182/blood-2011-07-366633 10.1016/j.jmb.2015.02.011 10.1126/science.1129631 10.1073/pnas.0400541101 10.1091/mbc.10.11.3787 10.1091/mbc.E17-10-0594 10.1074/jbc.271.30.18181 10.7554/eLife.07426 10.1016/S0092-8674(00)80369-4 10.1016/j.molcel.2014.01.004 10.1091/mbc.e02-11-0708 10.1074/jbc.M200903200 10.1016/j.molcel.2017.06.012 10.1038/nrm2941 10.1016/j.devcel.2018.04.023 10.1101/gad.6.7.1153 10.1016/j.jmb.2007.01.009 10.1101/cshperspect.a033894 10.7554/eLife.03522 10.1186/s12915-017-0474-3 10.1091/mbc.e11-04-0295 10.1083/jcb.200704166 10.18632/oncotarget.3864 10.1016/S0955-0674(02)00358-7 10.1126/science.1083379 10.15252/embj.201489183 10.1021/acschembio.5b00940 10.1002/j.1460-2075.1996.tb00666.x |
ContentType | Journal Article |
Copyright | Copyright © 2019 Adams, Kopp, Larburu, Nowak and Ali. 2019 Adams, Kopp, Larburu, Nowak and Ali |
Copyright_xml | – notice: Copyright © 2019 Adams, Kopp, Larburu, Nowak and Ali. 2019 Adams, Kopp, Larburu, Nowak and Ali |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmolb.2019.00011 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-889X |
ExternalDocumentID | oai_doaj_org_article_d27d807958cf4c4d93c2aa5d7a0255af PMC6423427 30931312 10_3389_fmolb_2019_00011 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 20752 – fundername: Cancer Research UK grantid: C33269/A20752; C33269/A23215 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-931598ff8e90c8084139b54279c0ef1e62af092b4ad246b140e53d6a50f72e563 |
IEDL.DBID | M48 |
ISSN | 2296-889X |
IngestDate | Wed Aug 27 01:31:39 EDT 2025 Thu Aug 21 18:42:37 EDT 2025 Fri Jul 11 16:25:31 EDT 2025 Sat May 31 02:12:12 EDT 2025 Tue Jul 01 03:27:57 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BiP ER stress Hsp70 IRE1 inositol-requiring enzyme 1 crystal structures unfolded protein response (UPR) |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-931598ff8e90c8084139b54279c0ef1e62af092b4ad246b140e53d6a50f72e563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Sebastian Schuck, Universität Heidelberg, Germany; Robert Ernst, Saarland University, Germany This article was submitted to Protein Folding, Misfolding and Degradation, a section of the journal Frontiers in Molecular Biosciences Edited by: Matthias Peter Mayer, Universität Heidelberg, Germany |
OpenAccessLink | https://doaj.org/article/d27d807958cf4c4d93c2aa5d7a0255af |
PMID | 30931312 |
PQID | 2201717479 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d27d807958cf4c4d93c2aa5d7a0255af pubmedcentral_primary_oai_pubmedcentral_nih_gov_6423427 proquest_miscellaneous_2201717479 pubmed_primary_30931312 crossref_primary_10_3389_fmolb_2019_00011 crossref_citationtrail_10_3389_fmolb_2019_00011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-12 |
PublicationDateYYYYMMDD | 2019-03-12 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in molecular biosciences |
PublicationTitleAlternate | Front Mol Biosci |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Hartl (B25) 2011; 475 Urano (B73) 2000; 287 Liu (B42) 2003; 300 Papandreou (B55) 2011; 117 D'Silva (B18) 2004; 11 Halbleib (B22) 2017; 67 Wang (B79) 2012; 12 Abravaya (B1) 1992; 6 Karagoz (B33) 2019 Sundaram (B68) 2018; 29 Preissler (B60) 2018 Lee (B40) 2008; 132 Volkmann (B76) 2011; 286 Volmer (B77) 2013; 110 Walter (B78) 2011; 334 Oikawa (B51) 2005; 391 Amin-Wetzel (B4) 2017; 171 Hollien (B29) 2006; 313 Sanches (B63) 2014; 5 Behnke (B6) 2015; 427 Joshi (B30) 2015; 6 Pincus (B57) 2010; 8 Cox (B14) 1996; 87 Tam (B69) 2018; 46 Oikawa (B50) 2009; 315 Papa (B54) 2003; 302 Aragón (B5) 2008; 457 Shamu (B65) 1996; 15 Zhou (B84) 2006; 103 Mayer (B44) 2013; 38 Vattem (B75) 2004; 101 Feldman (B20) 2016; 11 Morita (B47) 2017; 25 Tirasophon (B71) 1998; 12 Ma (B43) 2002; 277 Harding (B24) 1999; 397 Ali (B2) 2011; 30 Gardner (B21) 2011; 333 Wang (B81) 2018; 293 Korennykh (B38) 2008; 457 Pike (B56) 2008; 27 Carrara (B9); 34 Credle (B16) 2005; 102 Castillo (B11) 2011; 30 Hetz (B28) 2017; 69 Yoshida (B83) 2001; 107 Carrara (B10) Cross (B17) 2012; 109 Mimura (B45) 2012; 119 He (B27) 2012; 23 Eletto (B19) 2014; 53 Pinkaew (B58) 2017; 8 Hampton (B23) 2002; 14 Kimata (B34) 2004; 167 Almanza (B3) 2018; 286 Krimmer (B39) 2000; 20 Haze (B26) 1999; 10 Kimata (B35) 2007; 179 Sepulveda (B64) 2018; 69 Cox (B13) 1993; 73 Zhu (B85) 2014; 289 Nguyen (B48) 2004; 15 Prischi (B61) 2014; 5 Promlek (B62) 2011; 22 Urra (B74) 2018; 20 Mori (B46) 1993; 74 Todd-Corlett (B72) 2007; 367 Calfon (B8) 2002; 415 Concha (B12) 2015; 88 Welihinda (B82) 1996; 271 Wang (B80) 2016; 529 Karagöz (B32) 2017; 6 Oliver (B53) 2007; 32 Craig (B15) 2018; 16 Kopp (B37) 2018; 7 Shen (B66) 2002; 3 Okamura (B52) 2000; 279 Kampinga (B31) 2010; 11 Tirasophon (B70) 2000; 14 Liu (B41) 2000; 275 Kimata (B36) 2003; 14 Sidrauski (B67) 1997; 90 Plumb (B59) 2015; 4 Bertolotti (B7) 2000; 2 Novoa (B49) 2001; 153 |
References_xml | – volume: 73 start-page: 1197 year: 1993 ident: B13 article-title: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase publication-title: Cell doi: 10.1016/0092-8674(93)90648-A – volume: 286 start-page: 12743 year: 2011 ident: B76 article-title: Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.199737 – volume: 3 start-page: 99 year: 2002 ident: B66 article-title: ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of golgi localization signals publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00203-4 – volume: 11 start-page: 1084 year: 2004 ident: B18 article-title: Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb846 – volume: 397 start-page: 271 year: 1999 ident: B24 article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase publication-title: Nature doi: 10.1038/16729 – volume: 87 start-page: 391 year: 1996 ident: B14 article-title: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response publication-title: Cell doi: 10.1016/S0092-8674(00)81360-4 – volume: 153 start-page: 1011 year: 2001 ident: B49 article-title: Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha publication-title: J. Cell Biol. doi: 10.1083/jcb.153.5.1011 – volume: 293 start-page: 4110 year: 2018 ident: B81 article-title: The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001294 – volume: 475 start-page: 324 year: 2011 ident: B25 article-title: Molecular chaperones in protein folding and proteostasis publication-title: Nature doi: 10.1038/nature10317 – year: 2019 ident: B33 article-title: The unfolded protein response: detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a033886 – volume: 5 start-page: 4202 year: 2014 ident: B63 article-title: Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors publication-title: Nat. Commun. doi: 10.1038/ncomms5202 – volume: 457 start-page: 736 year: 2008 ident: B5 article-title: Messenger RNA targeting to endoplasmic reticulum stress signalling sites publication-title: Nature doi: 10.1038/nature07641 – volume: 117 start-page: 1311 year: 2011 ident: B55 article-title: Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma publication-title: Blood doi: 10.1182/blood-2010-08-303099 – volume: 110 start-page: 4628 year: 2013 ident: B77 article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1217611110 – volume: 20 start-page: 5879 year: 2000 ident: B39 article-title: Mitochondrial protein import motor: the ATPase domain of matrix Hsp70 is crucial for binding to Tim44, while the peptide binding domain and the carboxy-terminal segment play a stimulatory role publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.16.5879-5887.2000 – volume: 20 start-page: 942 year: 2018 ident: B74 article-title: IRE1alpha governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0141-0 – volume: 30 start-page: 4465 year: 2011 ident: B11 article-title: BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response publication-title: EMBO J. doi: 10.1038/emboj.2011.318 – volume: 8 start-page: e1000415 year: 2010 ident: B57 article-title: BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000415 – volume: 167 start-page: 445 year: 2004 ident: B34 article-title: A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200405153 – volume: 132 start-page: 89 year: 2008 ident: B40 article-title: Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing publication-title: Cell doi: 10.1016/j.cell.2007.10.057 – volume: 27 start-page: 704 year: 2008 ident: B56 article-title: Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites publication-title: EMBO J. doi: 10.1038/emboj.2008.8 – volume: 279 start-page: 445 year: 2000 ident: B52 article-title: Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3987 – volume: 30 start-page: 894 year: 2011 ident: B2 article-title: Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response publication-title: EMBO J. doi: 10.1038/emboj.2011.18 – volume: 6 start-page: e30700 year: 2017 ident: B32 article-title: An unfolded protein-induced conformational switch activates mammalian IRE1 publication-title: Elife doi: 10.7554/eLife.30700 – volume: 15 start-page: 4248 year: 2004 ident: B48 article-title: Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-11-0851 – volume: 2 start-page: 326 year: 2000 ident: B7 article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response publication-title: Nat. Cell Biol. doi: 10.1038/35014014 – volume: 275 start-page: 24881 year: 2000 ident: B41 article-title: Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004454200 – volume: 171 start-page: 1625 year: 2017 ident: B4 article-title: A J-Protein co-chaperone recruits BiP to monomerize IRE1 and repress the unfolded protein response publication-title: Cell doi: 10.1016/j.cell.2017.10.040 – volume: 69 start-page: 169 year: 2017 ident: B28 article-title: The unfolded protein response and cell fate control publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.017 – volume: 12 start-page: 982 year: 2012 ident: B79 article-title: Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1094 – volume: 12 start-page: 1812 year: 1998 ident: B71 article-title: A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells publication-title: Genes Dev. doi: 10.1101/gad.12.12.1812 – volume: 286 start-page: 241 year: 2018 ident: B3 article-title: Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications publication-title: FEBS J doi: 10.1111/febs.14608 – volume: 8 start-page: 18 year: 2017 ident: B58 article-title: Fortilin binds IRE1alpha and prevents ER stress from signaling apoptotic cell death publication-title: Nat. Commun. doi: 10.1038/s41467-017-00029-1 – volume: 14 start-page: 2725 year: 2000 ident: B70 article-title: The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response publication-title: Genes Dev. doi: 10.1101/gad.839400 – volume: 74 start-page: 743 year: 1993 ident: B46 article-title: A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus publication-title: Cell doi: 10.1016/0092-8674(93)90521-Q – volume: 529 start-page: 326 year: 2016 ident: B80 article-title: Protein misfolding in the endoplasmic reticulum as a conduit to human disease publication-title: Nature doi: 10.1038/nature17041 – volume: 287 start-page: 664 year: 2000 ident: B73 article-title: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 publication-title: Science doi: 10.1126/science.287.5453.664 – volume: 23 start-page: 1141 year: 2012 ident: B27 article-title: Nonmuscle myosin IIB links cytoskeleton to IRE1alpha signaling during ER stress publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.11.006 – volume: 103 start-page: 14343 year: 2006 ident: B84 article-title: The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0606480103 – volume: 25 start-page: 883 year: 2017 ident: B47 article-title: Targeting ABL-IRE1alpha signaling spares ER-stressed pancreatic beta cells to reverse autoimmune diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.04.026 – volume: 102 start-page: 18773 year: 2005 ident: B16 article-title: On the mechanism of sensing unfolded protein in the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0509487102 – volume: 457 start-page: 687 year: 2008 ident: B38 article-title: The unfolded protein response signals through high-order assembly of Ire1 publication-title: Nature doi: 10.1038/nature07661 – volume: 391 start-page: 135 year: 2005 ident: B51 article-title: An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1 publication-title: Biochem. J. doi: 10.1042/BJ20050640 – volume: 69 start-page: 238 year: 2018 ident: B64 article-title: Interactome screening identifies the ER luminal Chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1alpha publication-title: Mol Cell doi: 10.1016/j.molcel.2017.12.028 – volume: 302 start-page: 1533 year: 2003 ident: B54 article-title: Bypassing a kinase activity with an ATP-competitive drug publication-title: Science doi: 10.1126/science.1090031 – volume: 333 start-page: 1891 year: 2011 ident: B21 article-title: Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response publication-title: Science doi: 10.1126/science.1209126 – volume: 38 start-page: 507 year: 2013 ident: B44 article-title: Hsp70 chaperone dynamics and molecular mechanism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.08.001 – volume: 315 start-page: 2496 year: 2009 ident: B50 article-title: Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2009.06.009 – volume: 415 start-page: 92 year: 2002 ident: B8 article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA publication-title: Nature doi: 10.1038/415092a – volume: 7 start-page: e30257 year: 2018 ident: B37 article-title: In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress publication-title: Elife doi: 10.7554/eLife.30257 – volume: 107 start-page: 881 year: 2001 ident: B83 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell doi: 10.1016/S0092-8674(01)00611-0 – volume: 32 start-page: 351 year: 2007 ident: B53 article-title: Activation segment exchange: a common mechanism of kinase autophosphorylation? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2007.06.004 – volume: 289 start-page: 30567 year: 2014 ident: B85 article-title: Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.562868 – volume: 5 start-page: 3554 year: 2014 ident: B61 article-title: Phosphoregulation of Ire1 RNase splicing activity publication-title: Nat. Commun. doi: 10.1038/ncomms4554 – volume: 334 start-page: 1081 year: 2011 ident: B78 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science doi: 10.1126/science.1209038 – volume: 88 start-page: 1011 year: 2015 ident: B12 article-title: Long-range inhibitor-induced conformational regulation of human IRE1alpha endoribonuclease activity publication-title: Mol. Pharmacol. doi: 10.1124/mol.115.100917 – volume: 109 start-page: E869 year: 2012 ident: B17 article-title: The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1115623109 – volume: 119 start-page: 5772 year: 2012 ident: B45 article-title: Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma publication-title: Blood doi: 10.1182/blood-2011-07-366633 – volume: 427 start-page: 1589 year: 2015 ident: B6 article-title: BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.02.011 – volume: 313 start-page: 104 year: 2006 ident: B29 article-title: Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response publication-title: Science doi: 10.1126/science.1129631 – volume: 101 start-page: 11269 year: 2004 ident: B75 article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0400541101 – volume: 10 start-page: 3787 year: 1999 ident: B26 article-title: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.11.3787 – volume: 29 start-page: 1376 year: 2018 ident: B68 article-title: Dynamic changes in complexes of IRE1alpha, PERK, and ATF6alpha during endoplasmic reticulum stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E17-10-0594 – volume: 271 start-page: 18181 year: 1996 ident: B82 article-title: The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.30.18181 – volume: 4 start-page: e07426 year: 2015 ident: B59 article-title: A functional link between the co-translational protein translocation pathway and the UPR publication-title: Elife doi: 10.7554/eLife.07426 – volume: 90 start-page: 1031 year: 1997 ident: B67 article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response publication-title: Cell doi: 10.1016/S0092-8674(00)80369-4 – volume: 53 start-page: 562 year: 2014 ident: B19 article-title: Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.004 – volume: 14 start-page: 2559 year: 2003 ident: B36 article-title: Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-11-0708 – volume: 277 start-page: 18728 year: 2002 ident: B43 article-title: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200903200 – volume: 67 start-page: 673 year: 2017 ident: B22 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Mol Cell doi: 10.1016/j.molcel.2017.06.012 – volume: 11 start-page: 579 year: 2010 ident: B31 article-title: The HSP70 chaperone machinery: J proteins as drivers of functional specificity publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2941 – volume: 46 start-page: 327 year: 2018 ident: B69 article-title: The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms publication-title: Dev Cell doi: 10.1016/j.devcel.2018.04.023 – volume: 6 start-page: 1153 year: 1992 ident: B1 article-title: The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression publication-title: Genes Dev. doi: 10.1101/gad.6.7.1153 – volume: 367 start-page: 770 year: 2007 ident: B72 article-title: Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae. J publication-title: Mol. Biol. doi: 10.1016/j.jmb.2007.01.009 – year: 2018 ident: B60 article-title: Early events in the endoplasmic reticulum unfolded protein response publication-title: Cold Spring Harb. Perspect. Biol doi: 10.1101/cshperspect.a033894 – ident: B10 article-title: Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling publication-title: Elife doi: 10.7554/eLife.03522 – volume: 16 start-page: 11 year: 2018 ident: B15 article-title: Hsp70 at the membrane: driving protein translocation publication-title: BMC Biol. doi: 10.1186/s12915-017-0474-3 – volume: 22 start-page: 3520 year: 2011 ident: B62 article-title: Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0295 – volume: 179 start-page: 75 year: 2007 ident: B35 article-title: Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins publication-title: J. Cell Biol. doi: 10.1083/jcb.200704166 – volume: 6 start-page: 13019 year: 2015 ident: B30 article-title: Molecular mechanisms of human IRE1 activation through dimerization and ligand binding publication-title: Oncotarget doi: 10.18632/oncotarget.3864 – volume: 14 start-page: 476 year: 2002 ident: B23 article-title: ER-associated degradation in protein quality control and cellular regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00358-7 – volume: 300 start-page: 139 year: 2003 ident: B42 article-title: Regulated cycling of mitochondrial Hsp70 at the protein import channel publication-title: Science doi: 10.1126/science.1083379 – volume: 34 start-page: 1589 ident: B9 article-title: Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling publication-title: EMBO J. doi: 10.15252/embj.201489183 – volume: 11 start-page: 2195 year: 2016 ident: B20 article-title: Structural and functional analysis of the allosteric inhibition of IRE1α with ATP-competitive ligands publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00940 – volume: 15 start-page: 3028 year: 1996 ident: B65 article-title: Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00666.x |
SSID | ssj0001503764 |
Score | 2.5724914 |
SecondaryResourceType | review_article |
Snippet | The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 11 |
SubjectTerms | BiP crystal structures ER stress Hsp70 IRE1 inositol-requiring enzyme 1 Molecular Biosciences unfolded protein response (UPR) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37YvInjx0GySTtLJcZVZVmFEZhzYW5POYx0Yu2Ufh_33ViU9w4yIXrx2J3SoqnR9RVV9Rcg7Lb3mToTaG-1rGYOrwa-HOgF0kMr52LfY4Dz_os9W8vO5Ot8b9YU1YYUeuAjuOIg2GNZaZXySXgbbeOGcCq1DNOwS_n3B5-0FU6U_mMHNkSUvCVGYBTWNmx5LuZCfknF-4IcyXf-fMObvpZJ7vuf0Abk_gUZ6Ug77kNyJwyNyt4yRvH1MxmUmgb25jNQNgc63E2_pPGJf7_rqBx0TnS3oMjeG0OX6AuH3cEH7WwoAkK7AyjYhBvoVWRvWA12Uytk4LaUnPk9BGy_pp8WMPyGr09m3j2f1NEih9kqY69o2AFpMSiZa5g0z4Lhsr6RorWcx8aiFS8yKXrogpO4h5oqqCdoplloRlW6ekqNhHOJzQqMwOvDYILG8FMn2IUgHoMKzYADKyYocb8Xa-YllHIddbDqINlARXVZEh4rIiW9ekfe7HT8Lw8Zf1n5ATe3WITd2fgAW000W0_3LYirydqvnDu4SJkjcEMebq04IZA-CAMtW5FnR--5TmDHmDRcVaQ8s4uAsh2-G9ffM1w0hXgPCfvE_Dv-S3ENxYBUcF6_IEdhXfA2w6Lp_k2_AL3FvDBw priority: 102 providerName: Directory of Open Access Journals |
Title | Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30931312 https://www.proquest.com/docview/2201717479 https://pubmed.ncbi.nlm.nih.gov/PMC6423427 https://doaj.org/article/d27d807958cf4c4d93c2aa5d7a0255af |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bq9NAEF7kiOCLeDdeDiv44kN0s9nd7D6IHKWHo1CR1kLfwmYvtVATbc8B---d2aTVShFfk81tLsw3mZ1vCHmhhFOF5T53WrlcBG9ziOs-jwAdhLQuNBU2OI8_qYuZ-DiX89_t0YMAN0dTO5wnNVuvXv38sX0LDv8GM06It6CBbtXgLi2knmTY6Hsd4lKFbjoewH7fM8zAm7DMzLlRudZm3tctj97kIE4lOv9jGPTvrZR_xKbz2-TWACrpWW8Fd8i10N4lN_oxk9t7pJsmktirdaC29XS8m4hLxwH7fpebb7SLdDSh09Q4QqfLBcLzdkGbLQWASGcgl5UPnn5GVodlSyf9ztowLKVnLk1J69b0w2RU3Cez89GX9xf5MGghd5Lry9yUAGp0jDoY5jTTENhMIwWvjGMhFkFxG5nhjbCeC9VAThZk6ZWVLFY8SFU-ICdt14ZHhAaulS9CicTzgkfTeC8sgA7HvAaoJzLyeifW2g0s5DgMY1VDNoKKqJMialREKowXGXm5v-J7z8Dxj7XvUFP7dcidnQ5060U9uGLteeU1q4zULgonvCkdt1b6ymJ-ZWNGnu_0XIOvYQHFtqG72tScI7sQJGAmIw97ve8fhRXloix4RqoDizh4l8Mz7fJr4vOGFLAEYT_-j-c-ITfxa3ETXMGfkhMwn_AMUNFlc5r-Jpwmk_8FjL8Lvg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Molecular+Mechanism+of+ER+Stress+Signaling+by+the+Unfolded+Protein+Response+Signal+Activator+IRE1&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Adams%2C+Christopher+J&rft.au=Kopp%2C+Megan+C&rft.au=Larburu%2C+Natacha&rft.au=Nowak%2C+Piotr+R&rft.date=2019-03-12&rft.issn=2296-889X&rft.eissn=2296-889X&rft.volume=6&rft.spage=11&rft_id=info:doi/10.3389%2Ffmolb.2019.00011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon |