OPA1-Exon4b Binds to mtDNA D-Loop for Transcriptional and Metabolic Modulation, Independent of Mitochondrial Fusion

Optic Atrophy 1 (OPA1) has well-established roles in both mitochondrial fusion and apoptotic crista remodeling and is required for the maintenance and distribution of mitochondrial DNA (mtDNA), which are essential for energy metabolism. However, the relationship between OPA1 and mitochondrial metabo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 8; p. 180
Main Authors Yang, Liang, Tang, Haite, Lin, Xiaobing, Wu, Yi, Zeng, Sheng, Pan, Yongzhang, Li, Yukun, Xiang, Ge, Lin, Yi-Fang, Zhuang, Shi-Mei, Song, Zhiyin, Jiang, Yiguo, Liu, Xingguo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optic Atrophy 1 (OPA1) has well-established roles in both mitochondrial fusion and apoptotic crista remodeling and is required for the maintenance and distribution of mitochondrial DNA (mtDNA), which are essential for energy metabolism. However, the relationship between OPA1 and mitochondrial metabolism and the underlying mechanisms remain unclear. Here, we show that OPA1-Exon4b modulates mitochondrial respiration and rescues inner mitochondrial membrane potential (Δψm), independent of mitochondrial fusion. OPA1-Exon4b is required for the maintenance of normal TFAM distribution and enhances mtDNA transcription by binding the D-loop of mtDNA. Finally, we show that mRNA levels of OPA1 isoforms containing Exon4b are specifically downregulated in hepatocellular carcinoma (HCC), leading to a reduction in Δψm. Thus, our study demonstrates a novel mitochondrial functional self-recovery pathway involving enhanced mtDNA transcription-mediated recovery of mitochondrial respiratory chain proteins. This mitochondrial fusion-independent pathway may contribute to mitochondrial multi-functional switches in tumorigenesis.
AbstractList Optic Atrophy 1 (OPA1) has well-established roles in both mitochondrial fusion and apoptotic crista remodeling and is required for the maintenance and distribution of mitochondrial DNA (mtDNA), which are essential for energy metabolism. However, the relationship between OPA1 and mitochondrial metabolism and the underlying mechanisms remain unclear. Here, we show that OPA1-Exon4b modulates mitochondrial respiration and rescues inner mitochondrial membrane potential (Δψm), independent of mitochondrial fusion. OPA1-Exon4b is required for the maintenance of normal TFAM distribution and enhances mtDNA transcription by binding the D-loop of mtDNA. Finally, we show that mRNA levels of OPA1 isoforms containing Exon4b are specifically downregulated in hepatocellular carcinoma (HCC), leading to a reduction in Δψm. Thus, our study demonstrates a novel mitochondrial functional self-recovery pathway involving enhanced mtDNA transcription-mediated recovery of mitochondrial respiratory chain proteins. This mitochondrial fusion-independent pathway may contribute to mitochondrial multi-functional switches in tumorigenesis.Optic Atrophy 1 (OPA1) has well-established roles in both mitochondrial fusion and apoptotic crista remodeling and is required for the maintenance and distribution of mitochondrial DNA (mtDNA), which are essential for energy metabolism. However, the relationship between OPA1 and mitochondrial metabolism and the underlying mechanisms remain unclear. Here, we show that OPA1-Exon4b modulates mitochondrial respiration and rescues inner mitochondrial membrane potential (Δψm), independent of mitochondrial fusion. OPA1-Exon4b is required for the maintenance of normal TFAM distribution and enhances mtDNA transcription by binding the D-loop of mtDNA. Finally, we show that mRNA levels of OPA1 isoforms containing Exon4b are specifically downregulated in hepatocellular carcinoma (HCC), leading to a reduction in Δψm. Thus, our study demonstrates a novel mitochondrial functional self-recovery pathway involving enhanced mtDNA transcription-mediated recovery of mitochondrial respiratory chain proteins. This mitochondrial fusion-independent pathway may contribute to mitochondrial multi-functional switches in tumorigenesis.
Optic Atrophy 1 (OPA1) has well-established roles in both mitochondrial fusion and apoptotic crista remodeling and is required for the maintenance and distribution of mitochondrial DNA (mtDNA), which are essential for energy metabolism. However, the relationship between OPA1 and mitochondrial metabolism and the underlying mechanisms remain unclear. Here, we show that OPA1-Exon4b modulates mitochondrial respiration and rescues inner mitochondrial membrane potential (Δψm), independent of mitochondrial fusion. OPA1-Exon4b is required for the maintenance of normal TFAM distribution and enhances mtDNA transcription by binding the D-loop of mtDNA. Finally, we show that mRNA levels of OPA1 isoforms containing Exon4b are specifically downregulated in hepatocellular carcinoma (HCC), leading to a reduction in Δψm. Thus, our study demonstrates a novel mitochondrial functional self-recovery pathway involving enhanced mtDNA transcription-mediated recovery of mitochondrial respiratory chain proteins. This mitochondrial fusion-independent pathway may contribute to mitochondrial multi-functional switches in tumorigenesis.
Author Pan, Yongzhang
Zeng, Sheng
Li, Yukun
Jiang, Yiguo
Xiang, Ge
Yang, Liang
Zhuang, Shi-Mei
Tang, Haite
Wu, Yi
Lin, Yi-Fang
Liu, Xingguo
Lin, Xiaobing
Song, Zhiyin
AuthorAffiliation 5 Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan , China
6 State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
1 CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou , China
2 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Guangzhou , China
4 MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Can
AuthorAffiliation_xml – name: 5 Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan , China
– name: 4 MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University , Guangzhou , China
– name: 1 CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou , China
– name: 6 State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
– name: 2 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Guangzhou , China
– name: 3 State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
Author_xml – sequence: 1
  givenname: Liang
  surname: Yang
  fullname: Yang, Liang
– sequence: 2
  givenname: Haite
  surname: Tang
  fullname: Tang, Haite
– sequence: 3
  givenname: Xiaobing
  surname: Lin
  fullname: Lin, Xiaobing
– sequence: 4
  givenname: Yi
  surname: Wu
  fullname: Wu, Yi
– sequence: 5
  givenname: Sheng
  surname: Zeng
  fullname: Zeng, Sheng
– sequence: 6
  givenname: Yongzhang
  surname: Pan
  fullname: Pan, Yongzhang
– sequence: 7
  givenname: Yukun
  surname: Li
  fullname: Li, Yukun
– sequence: 8
  givenname: Ge
  surname: Xiang
  fullname: Xiang, Ge
– sequence: 9
  givenname: Yi-Fang
  surname: Lin
  fullname: Lin, Yi-Fang
– sequence: 10
  givenname: Shi-Mei
  surname: Zhuang
  fullname: Zhuang, Shi-Mei
– sequence: 11
  givenname: Zhiyin
  surname: Song
  fullname: Song, Zhiyin
– sequence: 12
  givenname: Yiguo
  surname: Jiang
  fullname: Jiang, Yiguo
– sequence: 13
  givenname: Xingguo
  surname: Liu
  fullname: Liu, Xingguo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32373606$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhS1URB90zwp5yYIMfiR2skEa-oCRZiiLIrGz_ErrKmMH20Hw7-vMlKpFYmNbvud819Y9x-DAB28BeIPRgtK2-9BrOwwLgghaIIRb9AIcEdKxitH6x8GT8yE4TekOFQ1peNPSV-CQEsopQ-wIpKtvS1xd_A6-VvCT8ybBHOA2n39dwvNqHcII-xDhdZQ-6ejG7IKXA5TewI3NUoXBabgJZhrkXHoPV97Y0ZbFZxh6uHE56NvgTXTFdjmlInoNXvZySPb0YT8B3y8vrs--VOurz6uz5brSDWlz1fY9rjHtMZaWSdQ2WDNZW2WooUqZjvG-qxmqFWq6pjGc1G1ruUJKc0aUpfQErPZcE-SdGKPbyvhHBOnE7iLEGyFjdnqwAhlOOdGGFWrdlyayphZJrglitOUz6-OeNU5qa40u34tyeAZ9XvHuVtyEX4Jj3jHWFMC7B0AMPyebsti6NE9QehumJAjtOkJZh0mRvn3a67HJ36kVAdoLdAwpRds_SjASczbELhtizobYZaNY2D8W7fJuZOW1bvi_8R5isb8O
CitedBy_id crossref_primary_10_3390_biology10040268
crossref_primary_10_1016_j_intimp_2025_114449
crossref_primary_10_1242_jcs_258944
crossref_primary_10_3389_fcell_2020_00853
crossref_primary_10_1016_j_preteyeres_2020_100935
crossref_primary_10_1016_j_cmet_2024_04_012
crossref_primary_10_1016_j_molmed_2023_03_008
crossref_primary_10_1093_hmg_ddac128
crossref_primary_10_1016_j_omtn_2021_08_015
crossref_primary_10_1016_j_mitoco_2022_08_001
crossref_primary_10_7554_eLife_87880
crossref_primary_10_7554_eLife_87880_3
crossref_primary_10_1016_j_cellsig_2024_111580
crossref_primary_10_3390_ijms22115928
crossref_primary_10_1111_apha_13943
crossref_primary_10_1007_s00018_022_04542_5
crossref_primary_10_1038_s41419_024_07165_9
crossref_primary_10_3390_ijms22084173
crossref_primary_10_1016_j_tcb_2024_12_007
crossref_primary_10_1016_j_stemcr_2023_11_004
crossref_primary_10_1111_brv_13168
crossref_primary_10_1002_adfm_202315551
Cites_doi 10.1007/s00018-015-1863-9
10.1016/j.celrep.2017.05.073
10.1083/jcb.200712101
10.1371/journal.pone.0074513
10.18632/oncotarget.21033
10.1016/j.cell.2007.06.026
10.1101/gr.108696.110
10.1152/physrev.00025.2007
10.1093/nar/gkr052
10.1016/j.cell.2006.06.010
10.1371/journal.pone.0003257
10.1038/emboj.2009.255
10.1038/sj.emboj.7601972
10.1016/j.mito.2007.06.004
10.3390/ijms20112770
10.1016/j.cell.2006.06.025
10.1093/brain/awm272
10.1186/1471-2407-13-110
10.1073/pnas.1512131112
10.1038/sj.cdd.4402048
10.1038/emboj.2009.89
10.1083/jcb.200211046
10.1038/labinvest.2012.144
10.1101/gad.1658508
10.1128/MCB.05694-11
10.1016/j.cell.2010.02.026
10.1074/jbc.M708444200
10.1007/s00439-001-0633-y
10.1038/srep07990
10.1196/annals.1338.011
10.1016/j.cub.2006.06.054
10.1002/stem.1389
10.1093/nar/gks266
10.1038/88859
10.1093/brain/awm298
10.1016/j.transproceed.2010.06.016
10.1083/jcb.200704112
10.1242/jcs.01134
10.1038/cdd.2011.13
10.1126/science.1156906
10.1083/jcb.200704110
ContentType Journal Article
Copyright Copyright © 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu.
Copyright © 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu. 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu
Copyright_xml – notice: Copyright © 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu.
– notice: Copyright © 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu. 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fcell.2020.00180
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_0d7372cd69674f4eba43e0a7c2063873
PMC7179665
32373606
10_3389_fcell_2020_00180
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
EMOBN
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-8ff1413f11ae6a0851c6a4ebd3d3bbd967f94604b05955d72488e7b0bc762be33
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:24:44 EDT 2025
Thu Aug 21 18:24:17 EDT 2025
Thu Jul 10 22:50:54 EDT 2025
Mon Jul 21 05:42:49 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 01:37:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optic Atrophy 1 (OPA1)
mitochondrial fusion
mitochondrial DNA
hepatocellular carcinoma
mtDNA D-loop
Language English
License Copyright © 2020 Yang, Tang, Lin, Wu, Zeng, Pan, Li, Xiang, Lin, Zhuang, Song, Jiang and Liu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-8ff1413f11ae6a0851c6a4ebd3d3bbd967f94604b05955d72488e7b0bc762be33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Laura Lackner, Northwestern University, United States
These authors have contributed equally to this work
This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology
Reviewed by: Ian Jame Holt, Biodonostia Health Research Institute (IIS Biodonostia), Spain; Ryan J. Mailloux, McGill University, Canada
OpenAccessLink https://doaj.org/article/0d7372cd69674f4eba43e0a7c2063873
PMID 32373606
PQID 2399236912
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0d7372cd69674f4eba43e0a7c2063873
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7179665
proquest_miscellaneous_2399236912
pubmed_primary_32373606
crossref_primary_10_3389_fcell_2020_00180
crossref_citationtrail_10_3389_fcell_2020_00180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-09
PublicationDateYYYYMMDD 2020-04-09
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cell and developmental biology
PublicationTitleAlternate Front Cell Dev Biol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Legros (B25) 2004; 117
Tondera (B37) 2009; 28
Elachouri (B12) 2011; 21
Frilling (B16) 2010; 42
Tatsuta (B36) 2008; 27
Liu (B27) 2009; 28
Folmes (B14) 2013; 31
Chen (B7) 2010; 141
Farge (B13) 2019; 20
Yang (B39) 2015; 72
Frezza (B15) 2006; 126
He (B19) 2012; 40
Olichon (B29) 2007; 14
Hudson (B21) 2008; 131
Griparic (B18) 2007; 178
Parone (B30) 2008; 3
Ishikawa (B22) 2008; 320
Del Dotto (B10) 2017; 19
Reyes (B32) 2011; 39
Scarpulla (B33) 2008; 88
Gilkerson (B17) 2008; 181
Holt (B20) 2007; 7
Qiao (B31) 2017; 8
Wang (B38) 2013; 8
Yang (B40) 2015; 5
Zhao (B41) 2013; 93
Kukat (B23) 2015; 112
Song (B34) 2007; 178
Chen (B5) 2003; 160
Cui (B9) 2013; 13
Liu (B26) 2011; 18
Chan (B4) 2006; 125
Delettre (B11) 2001; 109
Amati-Bonneau (B1) 2008; 131
Brown (B3) 2011; 31
Lee (B24) 2005; 1042
Suen (B35) 2008; 22
Chen (B6) 2007; 130
Coller (B8) 2001; 28
McBride (B28) 2006; 16
Bogenhagen (B2) 2008; 283
References_xml – volume: 72
  start-page: 2585
  year: 2015
  ident: B39
  article-title: Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-1863-9
– volume: 19
  start-page: 2557
  year: 2017
  ident: B10
  article-title: OPA1 isoforms in the hierarchical organization of mitochondrial functions.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.073
– volume: 181
  start-page: 1117
  year: 2008
  ident: B17
  article-title: Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200712101
– volume: 8
  year: 2013
  ident: B38
  article-title: Genome-wide analysis reveals coating of the mitochondrial genome by TFAM.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074513
– volume: 8
  start-page: 84373
  year: 2017
  ident: B31
  article-title: Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma.
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21033
– volume: 130
  start-page: 548
  year: 2007
  ident: B6
  article-title: Mitochondrial fusion protects against neurodegeneration in the cerebellum.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.026
– volume: 21
  start-page: 12
  year: 2011
  ident: B12
  article-title: OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution.
  publication-title: Genome Res.
  doi: 10.1101/gr.108696.110
– volume: 88
  start-page: 611
  year: 2008
  ident: B33
  article-title: Transcriptional paradigms in mammalian mitochondrial biogenesis and function.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00025.2007
– volume: 39
  start-page: 5098
  year: 2011
  ident: B32
  article-title: Actin and myosin contribute to mammalian mitochondrial DNA maintenance.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr052
– volume: 125
  start-page: 1241
  year: 2006
  ident: B4
  article-title: Mitochondria: dynamic organelles in disease, aging, and development.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.010
– volume: 3
  year: 2008
  ident: B30
  article-title: Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003257
– volume: 28
  start-page: 3074
  year: 2009
  ident: B27
  article-title: Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.255
– volume: 27
  start-page: 306
  year: 2008
  ident: B36
  article-title: Quality control of mitochondria: protection against neurodegeneration and ageing.
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601972
– volume: 7
  start-page: 311
  year: 2007
  ident: B20
  article-title: Mammalian mitochondrial nucleoids: organizing an independently minded genome.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2007.06.004
– volume: 20
  year: 2019
  ident: B13
  article-title: Organization of DNA in mammalian mitochondria.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20112770
– volume: 126
  start-page: 177
  year: 2006
  ident: B15
  article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.025
– volume: 131
  start-page: 329
  year: 2008
  ident: B21
  article-title: Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance.
  publication-title: Brain
  doi: 10.1093/brain/awm272
– volume: 13
  year: 2013
  ident: B9
  article-title: Association of decreased mitochondrial DNA content with the progression of colorectal cancer.
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-13-110
– volume: 112
  start-page: 11288
  year: 2015
  ident: B23
  article-title: Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1512131112
– volume: 14
  start-page: 682
  year: 2007
  ident: B29
  article-title: OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis.
  publication-title: Cell Death. Differ.
  doi: 10.1038/sj.cdd.4402048
– volume: 28
  start-page: 1589
  year: 2009
  ident: B37
  article-title: SLP-2 is required for stress-induced mitochondrial hyperfusion.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.89
– volume: 160
  start-page: 189
  year: 2003
  ident: B5
  article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200211046
– volume: 93
  start-page: 8
  year: 2013
  ident: B41
  article-title: OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma.
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2012.144
– volume: 22
  start-page: 1577
  year: 2008
  ident: B35
  article-title: Mitochondrial dynamics and apoptosis.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1658508
– volume: 31
  start-page: 4994
  year: 2011
  ident: B3
  article-title: Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.05694-11
– volume: 141
  start-page: 280
  year: 2010
  ident: B7
  article-title: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations.
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.026
– volume: 283
  start-page: 3665
  year: 2008
  ident: B2
  article-title: The layered structure of human mitochondrial DNA nucleoids.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M708444200
– volume: 109
  start-page: 584
  year: 2001
  ident: B11
  article-title: Mutation spectrum and splicing variants in the OPA1 gene.
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-001-0633-y
– volume: 5
  year: 2015
  ident: B40
  article-title: Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation.
  publication-title: Sci. Rep.
  doi: 10.1038/srep07990
– volume: 1042
  start-page: 109
  year: 2005
  ident: B24
  article-title: Mitochondrial genome instability and mtDNA depletion in human cancers.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1338.011
– volume: 16
  start-page: R551
  year: 2006
  ident: B28
  article-title: Mitochondria: more than just a powerhouse.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.06.054
– volume: 31
  start-page: 1298
  year: 2013
  ident: B14
  article-title: Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.
  publication-title: Stem Cells
  doi: 10.1002/stem.1389
– volume: 40
  start-page: 6109
  year: 2012
  ident: B19
  article-title: Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks266
– volume: 28
  start-page: 147
  year: 2001
  ident: B8
  article-title: High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection.
  publication-title: Nat. Genet.
  doi: 10.1038/88859
– volume: 131
  start-page: 338
  year: 2008
  ident: B1
  article-title: OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes.
  publication-title: Brain
  doi: 10.1093/brain/awm298
– volume: 42
  start-page: 3843
  year: 2010
  ident: B16
  article-title: Liver transplantation for metastasized extragastrointestinal stromal tumor: a case report and an overview of literature.
  publication-title: Transplant Proc.
  doi: 10.1016/j.transproceed.2010.06.016
– volume: 178
  start-page: 757
  year: 2007
  ident: B18
  article-title: Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200704112
– volume: 117
  start-page: 2653
  year: 2004
  ident: B25
  article-title: Organization and dynamics of human mitochondrial DNA.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01134
– volume: 18
  start-page: 1561
  year: 2011
  ident: B26
  article-title: Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress.
  publication-title: Cell Death. Differ.
  doi: 10.1038/cdd.2011.13
– volume: 320
  start-page: 661
  year: 2008
  ident: B22
  article-title: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis.
  publication-title: Science
  doi: 10.1126/science.1156906
– volume: 178
  start-page: 749
  year: 2007
  ident: B34
  article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200704110
SSID ssj0001257583
Score 2.252904
Snippet Optic Atrophy 1 (OPA1) has well-established roles in both mitochondrial fusion and apoptotic crista remodeling and is required for the maintenance and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 180
SubjectTerms Cell and Developmental Biology
hepatocellular carcinoma
mitochondrial DNA
mitochondrial fusion
mtDNA D-loop
Optic Atrophy 1 (OPA1)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F33hQq9FGp2LcnS6rhpsqSlm_bQQG5CTxpI7ND1QvLvOyN5l91S2kuvtmyJeWi-Tx7PEPJOK2aDBAe0SdtaCB9rrZKv1SzY5IVKpWfk8lSenInP5-35TqsvzAkr5YGL4CbTgI1UfJBaKpFEdFbwOLXKMwy2Ktf5hJi3Q6bK6QrAkBkv3yWBhelJwoNw4IMMU7karAK5E4dyuf4_YczfUyV3Ys_iAbk_gkY6L4t9SO7E7hG5W9pI3j4mq6_f5k19fNN3wtFDINkrOvT0ajg6ndOj-kvfX1OApjSHpc0mAa-zXaDLOIAVXF54uuzD2MnrA_207Y070D7RJXg97JJdQGOlizUesD0hZ4vj7x9P6rGZQu1bNhvqWUoNBKzUNDZKi0DLSwviDDxw5wJIN2khp8IB3mrboBh4dlRu6jxsly5y_pQcdH0XnxOqHAxprGMS0JaVToMa2uRapUDyKfqKTDaiNX6sNI4NLy4NMA5UhsnKMKgMk5VRkffbJ65LlY2_jD1EbW3HYX3sfAGsxoxWY_5lNRV5u9G1AX_CKWwX-_XK4L--jEvdsIo8K7rfTsUZVxwYX0XUnlXsrWX_TnfxI9fsBtYMxLJ98T8W_5LcQ3Hk_CH9ihwMP9fxNUCjwb3JXvALHSYMBA
  priority: 102
  providerName: Directory of Open Access Journals
Title OPA1-Exon4b Binds to mtDNA D-Loop for Transcriptional and Metabolic Modulation, Independent of Mitochondrial Fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/32373606
https://www.proquest.com/docview/2399236912
https://pubmed.ncbi.nlm.nih.gov/PMC7179665
https://doaj.org/article/0d7372cd69674f4eba43e0a7c2063873
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQEBIviG_CYDISL0iENbZjxw8IdWzVQGTwQKW-Wf4ck0qytam0_fecnbRQVCFeEyeOfXe-3-9i3yH0WgqiHQcD1EHqnDHrcymCzUXldLBMhL5mZH3GT6fs86yc_T4ePUzgcie1i_Wkpov5u-urmw9g8O8j4wR_exhijBuoHom7tIoKCPxt8Esimmk9gP0-4gLQJOXlJETynFM26_9b7nzJlp9K6fx3YdC_t1L-4Zsm99G9AVTica8FD9At3zxEd_oykzeP0PLrt3GRn1y3DTP4CEj4Enct_tkdn43xcf6lbS8xQFec3NZ6EYHX6cbh2negJfMLi-vWDZW-3uJPm9q5HW4DrmFVgIlsXFRmPFnFANxjNJ2cfP94mg_FFnJbkqrLqxAKcGihKLTnOgIxyzXzxlFHjXGSiyAZHzEDeKwsnSBg-V6YkbGwnBpP6RO017SNf4awMNCk0IZwQGOaG1kJWgZTCgFSCN5m6HA9tcoOmchjQYy5AkYShaGSMFQUhkrCyNCbzROXfRaOf7Q9itLatIv5s9OFdnGuBnNUIxfL81jHYVwswDA1o36khSURwgmaoVdrWSuwt9iFbny7Wqp4FphQLguSoae97DddUUIFBUaYIbGlFVvfsn2nufiRcnoDqwbiWT7_j3730d042rR9SL5Ae91i5V8CMurMQYooHCS1_wXV2Qy3
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPA1-Exon4b+Binds+to+mtDNA+D-Loop+for+Transcriptional+and+Metabolic+Modulation%2C+Independent+of+Mitochondrial+Fusion&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Yang%2C+Liang&rft.au=Tang%2C+Haite&rft.au=Lin%2C+Xiaobing&rft.au=Wu%2C+Yi&rft.date=2020-04-09&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=8&rft.spage=180&rft_id=info:doi/10.3389%2Ffcell.2020.00180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon