Efficient Control of Population Structure in Model Organism Association Mapping
Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among...
Saved in:
Published in | Genetics (Austin) Vol. 178; no. 3; pp. 1709 - 1723 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Soc America
01.03.2008
Genetics Society of America |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. |
---|---|
AbstractList | Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. [PUBLICATION ABSTRACT] Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. |
Author | Heckerman, David Wade, Claire M Zaitlen, Noah A Kirby, Andrew Eskin, Eleazar Daly, Mark J Kang, Hyun Min |
AuthorAffiliation | Department of Computer Science and Engineering and † Bioinformatics Program, University of California, San Diego, California 92093, ‡ Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, § Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Microsoft Research, Redmond, Washington 98052 and †† Department of Computer Science and Department of Human Genetics, University of California, Los Angeles, California 90095 |
AuthorAffiliation_xml | – name: Department of Computer Science and Engineering and † Bioinformatics Program, University of California, San Diego, California 92093, ‡ Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, § Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Microsoft Research, Redmond, Washington 98052 and †† Department of Computer Science and Department of Human Genetics, University of California, Los Angeles, California 90095 |
Author_xml | – sequence: 1 fullname: Kang, Hyun Min – sequence: 2 fullname: Zaitlen, Noah A – sequence: 3 fullname: Wade, Claire M – sequence: 4 fullname: Kirby, Andrew – sequence: 5 fullname: Heckerman, David – sequence: 6 fullname: Daly, Mark J – sequence: 7 fullname: Eskin, Eleazar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18385116$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaSZpf0GhmC7alSe6kq3HphCG9AEJE2i7FrJG9ijIkivZHfrv69RJSLLoSnD1ncO595ygoxCDRegt4DXUtDrrbLCjM3kNmK-xwIDhBVqBrGhJGIUjtMIYWMk4hWN0kvMNxpjJWrxCxyCoqAHYCm0v2tYZZ8NYbGIYU_RFbIvrOExejy6G4vuYJjNOyRYuFFdxZ32xTZ0OLvfFec7RuIW70sPgQvcavWy1z_bN3XuKfn6--LH5Wl5uv3zbnF-WpiZiLIWGhvOmqSXDraYNrxpoW2a5loRIXAthha4FbTQhmJjamB2REmi9w7wlXNNT9GnxHaamtzszL5C0V0NyvU5_VNROPf0Jbq-6-FsRwgWWbDb4cGeQ4q_J5lH1LhvrvQ42TllxXDFGxC34_hl4E6cU5uUUgQqI5FzO0LvHcR5y3B96BuQCmBRzTrZVxo3_Ljenc14BVrelqvtS5wFXS6mzlj7TPtj_V_VxUe1dtz-4ZFXutfdzQFCHwwG4UFQBx5L-BRtItkQ |
CODEN | GENTAE |
CitedBy_id | crossref_primary_10_3389_fpls_2020_577475 crossref_primary_10_3389_fpsyt_2021_725819 crossref_primary_10_1093_g3journal_jkab017 crossref_primary_10_29220_CSAM_2022_29_1_745 crossref_primary_10_1093_g3journal_jkab258 crossref_primary_10_4049_jimmunol_1401280 crossref_primary_10_3389_fpls_2016_01513 crossref_primary_10_1371_journal_pgen_1004445 crossref_primary_10_1371_journal_pone_0208196 crossref_primary_10_1038_s41593_021_00858_w crossref_primary_10_1186_s12859_014_0421_z crossref_primary_10_3389_fvets_2021_679074 crossref_primary_10_1002_tpg2_20427 crossref_primary_10_1534_genetics_109_107540 crossref_primary_10_1371_journal_pgen_1008805 crossref_primary_10_1073_pnas_2104315118 crossref_primary_10_1038_s41437_017_0023_4 crossref_primary_10_1093_genetics_iyab157 crossref_primary_10_1016_j_ajhg_2014_04_014 crossref_primary_10_1038_s41598_023_48293_0 crossref_primary_10_1111_nph_15034 crossref_primary_10_3389_fpls_2019_00394 crossref_primary_10_3389_fpls_2023_1123631 crossref_primary_10_1093_hmg_ddq510 crossref_primary_10_1186_s12864_015_2298_2 crossref_primary_10_1093_bioinformatics_btt148 crossref_primary_10_1186_s12859_023_05468_w crossref_primary_10_1093_bioinformatics_bts291 crossref_primary_10_1186_gb_2011_12_10_232 crossref_primary_10_1186_s13059_016_0903_6 crossref_primary_10_1111_jbg_12191 crossref_primary_10_1016_j_plaphy_2013_04_014 crossref_primary_10_1101_gr_099234_109 crossref_primary_10_1371_journal_pgen_1005767 crossref_primary_10_1007_s00122_013_2113_x crossref_primary_10_1007_s42161_022_01132_z crossref_primary_10_2135_cropsci2018_03_0189 crossref_primary_10_1038_hdy_2017_27 crossref_primary_10_1371_journal_pgen_1001393 crossref_primary_10_1186_s12864_024_11188_z crossref_primary_10_1038_s41467_018_05444_6 crossref_primary_10_1038_s41437_022_00528_y crossref_primary_10_1104_pp_112_194027 crossref_primary_10_1371_journal_pone_0170941 crossref_primary_10_1093_bioinformatics_btaa1079 crossref_primary_10_1093_g3journal_jkae303 crossref_primary_10_1186_1746_4811_9_29 crossref_primary_10_1016_j_cmet_2012_12_007 crossref_primary_10_1038_ng_2876 crossref_primary_10_3168_jds_2020_18290 crossref_primary_10_3389_fpls_2018_01838 crossref_primary_10_1371_journal_pgen_1006848 crossref_primary_10_1371_journal_pone_0110436 crossref_primary_10_1111_pbi_12249 crossref_primary_10_1007_s00335_017_9694_7 crossref_primary_10_1086_688018 crossref_primary_10_1093_g3journal_jkab269 crossref_primary_10_1038_hdy_2017_13 crossref_primary_10_1007_s12041_018_0973_1 crossref_primary_10_1371_journal_pgen_1004412 crossref_primary_10_1016_j_fcr_2015_11_014 crossref_primary_10_1007_s10722_024_02304_9 crossref_primary_10_1371_journal_pgen_1001383 crossref_primary_10_1007_s00122_020_03621_0 crossref_primary_10_2135_cropsci2012_03_0167 crossref_primary_10_1016_j_ymeth_2018_04_020 crossref_primary_10_1186_s12870_022_03936_8 crossref_primary_10_1093_g3journal_jkac114 crossref_primary_10_1111_nph_15259 crossref_primary_10_1007_s00122_017_2957_6 crossref_primary_10_1111_j_1365_294X_2011_05225_x crossref_primary_10_3390_plants14020193 crossref_primary_10_1007_s00438_024_02178_7 crossref_primary_10_7554_eLife_48220 crossref_primary_10_1016_j_cels_2016_10_016 crossref_primary_10_1007_s00122_022_04110_2 crossref_primary_10_1007_s10681_013_0963_6 crossref_primary_10_1016_j_bone_2015_08_013 crossref_primary_10_1161_JAHA_119_014257 crossref_primary_10_1186_s12864_019_5935_3 crossref_primary_10_1016_j_cj_2020_04_008 crossref_primary_10_1104_pp_113_224014 crossref_primary_10_2135_cropsci2013_01_0051 crossref_primary_10_1016_j_tig_2011_10_006 crossref_primary_10_1534_g3_113_008326 crossref_primary_10_1111_gbb_12142 crossref_primary_10_3389_fgene_2022_898522 crossref_primary_10_1016_j_livsci_2018_12_012 crossref_primary_10_1534_genetics_116_198051 crossref_primary_10_1371_journal_pone_0091850 crossref_primary_10_1093_genetics_iyab115 crossref_primary_10_1093_pcp_pcaa073 crossref_primary_10_1038_s41598_019_54519_x crossref_primary_10_1111_nph_18341 crossref_primary_10_1038_s41437_020_00401_w crossref_primary_10_1371_journal_pone_0193415 crossref_primary_10_1007_s00335_012_9441_z crossref_primary_10_1038_srep36671 crossref_primary_10_1371_journal_pgen_1003150 crossref_primary_10_1371_journal_pgen_1006891 crossref_primary_10_3390_ani11020469 crossref_primary_10_7554_eLife_86169_3 crossref_primary_10_1016_j_ajhg_2014_03_016 crossref_primary_10_1534_g3_119_400194 crossref_primary_10_3389_fpls_2019_01278 crossref_primary_10_1186_s12864_019_5615_3 crossref_primary_10_1002_jbmr_2195 crossref_primary_10_1093_bioinformatics_btn648 crossref_primary_10_1186_s12864_022_09096_1 crossref_primary_10_1534_g3_112_004911 crossref_primary_10_1007_s00122_022_04134_8 crossref_primary_10_1093_bioinformatics_btz759 crossref_primary_10_2217_14622416_9_9_1323 crossref_primary_10_1371_journal_pgen_1001198 crossref_primary_10_1038_s41467_019_10331_9 crossref_primary_10_1371_journal_pgen_1007732 crossref_primary_10_1016_j_cell_2013_06_040 crossref_primary_10_3390_ijms21186518 crossref_primary_10_1158_0008_5472_CAN_09_0782 crossref_primary_10_1371_journal_pgen_1007978 crossref_primary_10_3168_jds_2017_12982 crossref_primary_10_1534_g3_112_002501 crossref_primary_10_1038_nmeth_1681 crossref_primary_10_1371_journal_pbio_1001125 crossref_primary_10_1016_j_cj_2023_10_014 crossref_primary_10_1371_journal_pgen_1002038 crossref_primary_10_1371_journal_ppat_1007226 crossref_primary_10_1158_0008_5472_CAN_11_1418 crossref_primary_10_1534_genetics_114_171447 crossref_primary_10_1007_s10681_022_03021_z crossref_primary_10_1371_journal_pone_0018957 crossref_primary_10_1111_tpj_14414 crossref_primary_10_1016_j_stress_2025_100764 crossref_primary_10_1038_ng_2824 crossref_primary_10_1371_journal_pcbi_1002330 crossref_primary_10_1371_journal_pgen_1005789 crossref_primary_10_1111_tpj_14650 crossref_primary_10_1007_s10681_016_1663_9 crossref_primary_10_1007_s00439_021_02317_9 crossref_primary_10_1038_s41588_024_02044_7 crossref_primary_10_1007_s00213_011_2574_z crossref_primary_10_1145_2817827 crossref_primary_10_1186_s12711_017_0338_x crossref_primary_10_1124_dmd_118_082834 crossref_primary_10_1186_s12864_015_2245_2 crossref_primary_10_3389_fgene_2020_567757 crossref_primary_10_2135_cropsci2013_05_0319 crossref_primary_10_1111_ppl_14404 crossref_primary_10_1038_nrg3335 crossref_primary_10_1111_nph_12611 crossref_primary_10_1017_S1751731119003409 crossref_primary_10_1093_bioinformatics_btn455 crossref_primary_10_1186_1471_2164_15_646 crossref_primary_10_3389_fgene_2023_1292671 crossref_primary_10_3390_e22030329 crossref_primary_10_1007_s00122_019_03517_8 crossref_primary_10_1111_tpj_12681 crossref_primary_10_1111_age_12018 crossref_primary_10_1681_ASN_2018050549 crossref_primary_10_1093_pcp_pcae079 crossref_primary_10_1111_mec_13322 crossref_primary_10_1111_mec_13563 crossref_primary_10_1007_s00122_012_1866_y crossref_primary_10_1534_g3_111_001792 crossref_primary_10_1534_genetics_119_302462 crossref_primary_10_1038_s41598_022_21214_3 crossref_primary_10_1186_s12864_015_1811_y crossref_primary_10_1186_s12864_019_5964_y crossref_primary_10_3168_jds_2022_22694 crossref_primary_10_3389_fpls_2018_01405 crossref_primary_10_3389_fpls_2022_836723 crossref_primary_10_1007_s11032_013_9924_y crossref_primary_10_1007_s00122_019_03528_5 crossref_primary_10_1038_s41598_020_78907_w crossref_primary_10_1186_s12863_017_0553_z crossref_primary_10_1186_s12864_016_2455_2 crossref_primary_10_1038_srep31109 crossref_primary_10_1007_s10681_012_0713_1 crossref_primary_10_15835_nbha49412525 crossref_primary_10_1289_EHP1274 crossref_primary_10_1016_j_hpj_2025_01_004 crossref_primary_10_1111_j_1365_3040_2012_02522_x crossref_primary_10_1080_12538078_2013_807302 crossref_primary_10_1146_annurev_genet_110711_155511 crossref_primary_10_1016_j_molmet_2022_101557 crossref_primary_10_1007_s00122_015_2504_2 crossref_primary_10_1093_aob_mcy221 crossref_primary_10_1534_g3_111_000489 crossref_primary_10_1016_j_celrep_2016_07_085 crossref_primary_10_1093_bioinformatics_btz304 crossref_primary_10_1093_bioinformatics_btz786 crossref_primary_10_1186_s12711_022_00724_8 crossref_primary_10_3835_plantgenome2015_08_0073 crossref_primary_10_1007_s10681_019_2474_6 crossref_primary_10_1097_HCO_0000000000000160 crossref_primary_10_1007_s00438_019_01563_x crossref_primary_10_1371_journal_pone_0107684 crossref_primary_10_1111_pce_12518 crossref_primary_10_1016_j_cell_2013_11_043 crossref_primary_10_1007_s13253_015_0229_y crossref_primary_10_1111_j_1469_8137_2011_03983_x crossref_primary_10_1214_15_EJS1069 crossref_primary_10_1016_j_aquaculture_2025_742225 crossref_primary_10_1138_20090380 crossref_primary_10_1186_s12711_018_0383_0 crossref_primary_10_7554_eLife_86169 crossref_primary_10_1007_s00335_013_9448_0 crossref_primary_10_3389_fpls_2024_1429802 crossref_primary_10_1094_PDIS_03_23_0576_RE crossref_primary_10_1186_1471_2164_15_873 crossref_primary_10_1007_s11032_013_9890_4 crossref_primary_10_1007_s00122_020_03569_1 crossref_primary_10_1161_CIRCGENETICS_113_000732 crossref_primary_10_1371_journal_pgen_1002221 crossref_primary_10_1093_bioinformatics_btac455 crossref_primary_10_3389_fpls_2018_01464 crossref_primary_10_1186_s12711_018_0402_1 crossref_primary_10_1007_s00335_015_9581_z crossref_primary_10_1186_s12870_021_03046_x crossref_primary_10_1371_journal_pgen_1006823 crossref_primary_10_1080_03610918_2019_1646760 crossref_primary_10_1007_s00122_017_2904_6 crossref_primary_10_1126_science_1209244 crossref_primary_10_1186_1753_6561_8_S1_S87 crossref_primary_10_1534_genetics_117_202259 crossref_primary_10_1186_s13059_023_02892_2 crossref_primary_10_1534_g3_117_300222 crossref_primary_10_1007_s00335_014_9523_1 crossref_primary_10_1534_genetics_113_152462 crossref_primary_10_1371_journal_pone_0193499 crossref_primary_10_3389_fpls_2022_1070410 crossref_primary_10_1186_1471_2105_12_265 crossref_primary_10_2135_cropsci2010_02_0064 crossref_primary_10_3389_fpls_2020_00070 crossref_primary_10_1038_nrg3522 crossref_primary_10_1111_age_13151 crossref_primary_10_2217_pgs_10_165 crossref_primary_10_1186_s12859_018_2057_x crossref_primary_10_1007_s00122_019_03439_5 crossref_primary_10_3389_fpsyt_2021_793961 crossref_primary_10_1007_s00335_018_9762_7 crossref_primary_10_1534_g3_119_400369 crossref_primary_10_1371_journal_pone_0231157 crossref_primary_10_3390_biology11111649 crossref_primary_10_3389_fpls_2017_01110 crossref_primary_10_3835_plantgenome2012_02_0001 crossref_primary_10_3389_fpls_2022_1099293 crossref_primary_10_1038_s41437_019_0205_3 crossref_primary_10_3389_fgene_2020_00163 crossref_primary_10_1073_pnas_1202734109 crossref_primary_10_1093_genetics_iyae018 crossref_primary_10_1016_j_jevs_2017_05_008 crossref_primary_10_1093_bioinformatics_bty017 crossref_primary_10_1007_s11032_023_01357_5 crossref_primary_10_1089_cmb_2021_0157 crossref_primary_10_1093_bioinformatics_bty015 crossref_primary_10_1111_nph_20241 crossref_primary_10_1534_g3_117_300248 crossref_primary_10_1111_mec_14838 crossref_primary_10_1534_genetics_119_302286 crossref_primary_10_1007_s00122_018_3111_9 crossref_primary_10_3390_ani12141855 crossref_primary_10_1534_g3_116_029090 crossref_primary_10_1186_s12864_015_2212_y crossref_primary_10_1038_mp_2011_32 crossref_primary_10_1534_genetics_117_300501 crossref_primary_10_1093_bioinformatics_bty253 crossref_primary_10_1111_pce_12961 crossref_primary_10_1038_nrg2896 crossref_primary_10_1186_s13059_016_0895_2 crossref_primary_10_1094_PDIS_11_14_1131_RE crossref_primary_10_3389_fpls_2017_02213 crossref_primary_10_1534_g3_116_032268 crossref_primary_10_1080_01621459_2020_1799809 crossref_primary_10_3168_jds_2021_21079 crossref_primary_10_1038_hdy_2011_73 crossref_primary_10_1038_s41467_021_21592_8 crossref_primary_10_1093_g3journal_jkad246 crossref_primary_10_1002_gepi_22022 crossref_primary_10_1007_s00122_011_1732_3 crossref_primary_10_1093_dnares_dsv036 crossref_primary_10_1534_g3_111_001768 crossref_primary_10_1186_1471_2156_10_81 crossref_primary_10_3835_plantgenome2015_11_0120 crossref_primary_10_1172_JCI73072 crossref_primary_10_1371_journal_pgen_1008492 crossref_primary_10_1016_j_bbrep_2021_101105 crossref_primary_10_1093_bioinformatics_btaa199 crossref_primary_10_1371_journal_pgen_1007162 crossref_primary_10_1098_rstb_2019_0612 crossref_primary_10_3198_jpr2014_12_0083crmp crossref_primary_10_1038_hdy_2017_8 crossref_primary_10_3390_agriculture11040318 crossref_primary_10_1534_genetics_120_303153 crossref_primary_10_1534_genetics_120_303393 crossref_primary_10_1016_j_scienta_2023_112838 crossref_primary_10_1080_24709360_2018_1529346 crossref_primary_10_1007_s13253_015_0225_2 crossref_primary_10_1038_srep06874 crossref_primary_10_1101_gr_111310_110 crossref_primary_10_1152_ajprenal_00690_2011 crossref_primary_10_1016_j_ajhg_2016_04_016 crossref_primary_10_1186_s12864_015_1415_6 crossref_primary_10_3390_ani14192795 crossref_primary_10_3389_fpls_2017_00648 crossref_primary_10_1016_j_neuroimage_2011_03_077 crossref_primary_10_1371_journal_pone_0039929 crossref_primary_10_1038_hdy_2017_4 crossref_primary_10_1093_bioinformatics_btz244 crossref_primary_10_1038_ncomms1467 crossref_primary_10_1093_database_bav076 crossref_primary_10_1007_s00122_019_03356_7 crossref_primary_10_1016_j_jglr_2018_08_006 crossref_primary_10_1534_g3_113_007807 crossref_primary_10_1093_gpbjnl_qzae020 crossref_primary_10_1038_nature12615 crossref_primary_10_1371_journal_pone_0117737 crossref_primary_10_1016_j_ygeno_2020_12_014 crossref_primary_10_1111_jph_12705 crossref_primary_10_1016_j_molp_2022_02_012 crossref_primary_10_1158_1055_9965_EPI_12_0190_T crossref_primary_10_2135_cropsci2011_05_0253 crossref_primary_10_1038_s41598_019_50853_2 crossref_primary_10_1534_genetics_115_177816 crossref_primary_10_1371_journal_pone_0048653 crossref_primary_10_1007_s10499_021_00747_w crossref_primary_10_1007_s00335_012_9411_5 crossref_primary_10_1534_genetics_111_135095 crossref_primary_10_1007_s10681_016_1820_1 crossref_primary_10_1016_j_freeradbiomed_2014_02_027 crossref_primary_10_1186_s13059_021_02416_w crossref_primary_10_1038_hdy_2011_40 crossref_primary_10_1534_genetics_109_102756 crossref_primary_10_1111_asj_13985 crossref_primary_10_15252_msb_202110663 crossref_primary_10_7554_eLife_79238 crossref_primary_10_1534_g3_113_008706 crossref_primary_10_1534_genetics_112_147595 crossref_primary_10_1186_s12864_018_4899_z crossref_primary_10_1038_s42003_023_04603_w crossref_primary_10_1186_s12711_019_0492_4 crossref_primary_10_1371_journal_pone_0116674 crossref_primary_10_1007_s00122_011_1697_2 crossref_primary_10_1214_17_EJS1386 crossref_primary_10_1038_hdy_2011_29 crossref_primary_10_21105_joss_01435 crossref_primary_10_3389_fpls_2017_01954 crossref_primary_10_3389_fpls_2023_1221644 crossref_primary_10_1534_g3_114_012427 crossref_primary_10_1073_pnas_2205305119 crossref_primary_10_1534_genetics_120_303143 crossref_primary_10_1186_s12864_020_6742_6 crossref_primary_10_3389_fpls_2023_1104303 crossref_primary_10_3835_plantgenome2011_07_0020 crossref_primary_10_1038_ng_1050 crossref_primary_10_1186_s12859_019_3300_9 crossref_primary_10_3168_jds_2019_17409 crossref_primary_10_1186_1471_2156_12_66 crossref_primary_10_3390_genes12050736 crossref_primary_10_1007_s12355_020_00852_9 crossref_primary_10_1016_j_ymeth_2009_03_004 crossref_primary_10_3389_fgene_2021_703901 crossref_primary_10_1016_j_cj_2016_06_003 crossref_primary_10_1152_ajplung_00466_2016 crossref_primary_10_3390_ani9060305 crossref_primary_10_1534_genetics_113_157628 crossref_primary_10_1038_hdy_2010_168 crossref_primary_10_3389_fpls_2017_00678 crossref_primary_10_1111_pbr_12237 crossref_primary_10_1371_journal_pntd_0001435 crossref_primary_10_3390_plants11233277 crossref_primary_10_1098_rstb_2020_0512 crossref_primary_10_1007_s10681_022_03103_y crossref_primary_10_1016_j_aquaculture_2025_742232 crossref_primary_10_1093_bioinformatics_bts669 crossref_primary_10_1007_s10722_023_01657_x crossref_primary_10_1038_ng_2376 crossref_primary_10_1002_gepi_22200 crossref_primary_10_1111_mec_12396 crossref_primary_10_1152_ajplung_00118_2014 crossref_primary_10_1093_nar_gkr1061 crossref_primary_10_3390_genes11070767 crossref_primary_10_1371_journal_pgen_1000551 crossref_primary_10_1186_s12864_025_11364_9 crossref_primary_10_1186_1471_2156_14_17 crossref_primary_10_1016_j_molp_2022_01_004 crossref_primary_10_1016_j_ebiom_2016_05_041 crossref_primary_10_1186_1471_2105_15_246 crossref_primary_10_1371_journal_pone_0240029 crossref_primary_10_1093_plphys_kiac533 crossref_primary_10_1073_pnas_1421416112 crossref_primary_10_1002_tpg2_20054 crossref_primary_10_1007_s00122_022_04040_z crossref_primary_10_1007_s00122_020_03628_7 crossref_primary_10_1038_ng_1074 crossref_primary_10_1534_g3_112_004259 crossref_primary_10_1007_s11032_016_0606_4 crossref_primary_10_1111_mec_13474 crossref_primary_10_1523_JNEUROSCI_5561_11_2012 crossref_primary_10_1002_cphg_48 crossref_primary_10_1093_bioinformatics_bts444 crossref_primary_10_1007_s00122_015_2465_5 crossref_primary_10_1073_pnas_1811758115 crossref_primary_10_3389_fpls_2017_01500 crossref_primary_10_1007_s10071_018_01234_1 crossref_primary_10_1093_jxb_erq308 crossref_primary_10_1371_journal_pgen_1010345 crossref_primary_10_1016_j_heliyon_2024_e27048 crossref_primary_10_1152_physiolgenomics_00127_2013 crossref_primary_10_3389_fgene_2020_00447 crossref_primary_10_3389_fgene_2020_00689 crossref_primary_10_3389_fpls_2024_1429976 crossref_primary_10_1093_molbev_msu170 crossref_primary_10_1128_mBio_00538_12 crossref_primary_10_1186_s12870_016_0829_x crossref_primary_10_3389_fmicb_2018_01391 crossref_primary_10_1111_age_12792 crossref_primary_10_1111_j_1365_294X_2012_05678_x crossref_primary_10_3835_plantgenome2011_08_0024 crossref_primary_10_1161_CIRCRESAHA_114_302931 crossref_primary_10_1038_ng_3008 crossref_primary_10_1371_journal_pgen_1003803 crossref_primary_10_1126_sciadv_1400218 crossref_primary_10_3389_fgene_2022_945787 crossref_primary_10_1038_s41437_017_0007_4 crossref_primary_10_1093_bib_bbae290 crossref_primary_10_1096_fj_201700187R crossref_primary_10_1093_molbev_msab208 crossref_primary_10_1007_s11103_022_01265_w crossref_primary_10_1016_j_stemcr_2015_05_008 crossref_primary_10_1007_s00122_017_2974_5 crossref_primary_10_3390_agronomy12112839 crossref_primary_10_1186_gb_2014_15_4_r61 crossref_primary_10_3390_ijms252312758 crossref_primary_10_1007_s00299_024_03172_4 crossref_primary_10_1002_tpg2_20077 crossref_primary_10_1186_s12870_015_0496_3 crossref_primary_10_1371_journal_pgen_1003807 crossref_primary_10_3389_fpls_2021_774478 crossref_primary_10_3390_agronomy14102214 crossref_primary_10_1007_s00122_014_2448_y crossref_primary_10_1038_s42003_020_0990_5 crossref_primary_10_1111_nph_14595 crossref_primary_10_1152_ajplung_00276_2020 crossref_primary_10_1186_s12870_014_0209_3 crossref_primary_10_3168_jds_2018_15298 crossref_primary_10_1002_gepi_21725 crossref_primary_10_1186_s12863_021_00995_y crossref_primary_10_1038_s41467_020_14791_2 crossref_primary_10_1111_1755_0998_12714 crossref_primary_10_1016_j_livsci_2018_01_005 crossref_primary_10_1161_CIRCRESAHA_112_269084 crossref_primary_10_1007_s00122_018_3175_6 crossref_primary_10_1007_s00122_016_2811_2 crossref_primary_10_1002_gepi_21953 crossref_primary_10_1098_rspb_2019_0716 crossref_primary_10_1534_genetics_111_132639 crossref_primary_10_1094_PDIS_11_19_2402_RE crossref_primary_10_1534_genetics_114_168690 crossref_primary_10_1093_gigascience_giz015 crossref_primary_10_1093_nar_gkx204 crossref_primary_10_1016_j_ajhg_2016_02_012 crossref_primary_10_1093_molbev_mst073 crossref_primary_10_1371_journal_pone_0259278 crossref_primary_10_1534_genetics_113_157032 crossref_primary_10_3168_jds_2015_10697 crossref_primary_10_1007_s00122_014_2400_1 crossref_primary_10_7554_eLife_72664 crossref_primary_10_1371_journal_pgen_1007309 crossref_primary_10_1186_s13059_021_02407_x crossref_primary_10_1007_s10681_018_2238_8 crossref_primary_10_1002_tpg2_20051 crossref_primary_10_1016_j_eja_2015_04_007 crossref_primary_10_1002_gepi_21942 crossref_primary_10_1038_npp_2012_49 crossref_primary_10_1186_s13068_020_01807_8 crossref_primary_10_1080_03610918_2017_1307395 crossref_primary_10_1093_jxb_erad204 crossref_primary_10_3389_fgene_2021_745361 crossref_primary_10_1111_tpj_15379 crossref_primary_10_1159_000447634 crossref_primary_10_1007_s10994_019_05848_5 crossref_primary_10_1186_s12284_019_0348_0 crossref_primary_10_1371_journal_pgen_1004022 crossref_primary_10_1007_s00122_013_2056_2 crossref_primary_10_1038_s41588_019_0546_0 crossref_primary_10_1158_1541_7786_MCR_10_0540 crossref_primary_10_1371_journal_pone_0103747 crossref_primary_10_1093_hr_uhab040 crossref_primary_10_1094_PHYTO_03_11_0076 crossref_primary_10_1111_j_1541_0420_2009_01352_x crossref_primary_10_3389_fgene_2021_649196 crossref_primary_10_1016_j_gpb_2021_08_005 crossref_primary_10_1038_srep29951 crossref_primary_10_1111_jbg_12378 crossref_primary_10_3389_fgene_2021_664343 crossref_primary_10_1146_annurev_genom_091212_153419 crossref_primary_10_1016_j_aquaculture_2021_736998 crossref_primary_10_1038_s41437_019_0235_x crossref_primary_10_1534_g3_119_400617 crossref_primary_10_1002_bimj_201800319 crossref_primary_10_1371_journal_pcbi_1005357 crossref_primary_10_1002_gepi_21932 crossref_primary_10_1007_s10681_017_2090_2 crossref_primary_10_1007_s10709_018_0027_x crossref_primary_10_1016_j_ajhg_2013_03_014 crossref_primary_10_3835_plantgenome2016_07_0071 crossref_primary_10_1038_s42003_022_04325_5 crossref_primary_10_1007_s00122_020_03687_w crossref_primary_10_1007_s12042_022_09326_6 crossref_primary_10_1016_j_ajhg_2013_03_010 crossref_primary_10_1093_bioadv_vbae168 crossref_primary_10_3835_plantgenome2016_07_0072 crossref_primary_10_1186_s12870_015_0494_5 crossref_primary_10_3835_plantgenome2016_04_0038 crossref_primary_10_1038_s41586_020_1997_2 crossref_primary_10_1093_bioinformatics_bts022 crossref_primary_10_1111_njb_04078 crossref_primary_10_3835_plantgenome2010_12_0029 crossref_primary_10_1186_1475_2875_9_160 crossref_primary_10_3389_fpls_2015_00813 crossref_primary_10_1016_j_heares_2015_12_006 crossref_primary_10_1089_cmb_2019_0325 crossref_primary_10_1002_gepi_21764 crossref_primary_10_1038_s41437_019_0244_9 crossref_primary_10_1534_genetics_114_164285 crossref_primary_10_1371_journal_pone_0029350 crossref_primary_10_1534_g3_114_013748 crossref_primary_10_1186_gb_2013_14_6_r53 crossref_primary_10_1186_s12284_020_00424_1 crossref_primary_10_1371_journal_pcbi_1005311 crossref_primary_10_3390_genes8060167 crossref_primary_10_1093_hr_uhae135 crossref_primary_10_1186_s12859_017_1622_z crossref_primary_10_1371_journal_pone_0111308 crossref_primary_10_3390_genes11111286 crossref_primary_10_1007_s10681_022_03129_2 crossref_primary_10_3835_plantgenome2010_12_0030 crossref_primary_10_15252_msb_20145123 crossref_primary_10_1080_10408398_2024_2430749 crossref_primary_10_1007_s00122_022_04103_1 crossref_primary_10_2135_cropsci2019_01_0003 crossref_primary_10_1111_tpj_15364 crossref_primary_10_1016_j_jcs_2014_08_007 crossref_primary_10_1371_journal_pone_0199121 crossref_primary_10_1111_tpj_14034 crossref_primary_10_1186_s12284_023_00672_x crossref_primary_10_1016_j_xgen_2021_100003 crossref_primary_10_1093_bioinformatics_btaa610 crossref_primary_10_1016_j_cpb_2020_100145 crossref_primary_10_1111_j_1469_1809_2012_00729_x crossref_primary_10_1093_jxb_erac156 crossref_primary_10_1534_g3_115_020784 crossref_primary_10_1534_genetics_110_117390 crossref_primary_10_3389_fpls_2017_00815 crossref_primary_10_1038_s41467_024_55477_3 crossref_primary_10_1007_s00335_013_9495_6 crossref_primary_10_1371_journal_pgen_1000940 crossref_primary_10_1073_pnas_1210585109 crossref_primary_10_1186_s12864_016_3129_9 crossref_primary_10_1371_journal_pbio_3002847 crossref_primary_10_1029_2024JG008404 crossref_primary_10_1161_CIRCRESAHA_110_224634 crossref_primary_10_1007_s00122_014_2444_2 crossref_primary_10_1016_j_biopsych_2022_08_014 crossref_primary_10_1038_ncomms8432 crossref_primary_10_1002_gepi_21988 crossref_primary_10_1017_thg_2012_15 crossref_primary_10_1371_journal_pcbi_1009923 crossref_primary_10_1186_s12864_021_07834_5 crossref_primary_10_20900_cbgg20220002 crossref_primary_10_1089_forensic_2023_0006 crossref_primary_10_1371_journal_pgen_1009754 crossref_primary_10_3389_fpls_2020_590740 crossref_primary_10_3389_fpls_2018_01912 crossref_primary_10_1534_genetics_114_166249 crossref_primary_10_2135_cropsci2010_12_0732 crossref_primary_10_1186_1471_2164_15_13 crossref_primary_10_1002_tpg2_20005 crossref_primary_10_1038_ng_2314 crossref_primary_10_1016_j_indcrop_2019_111877 crossref_primary_10_1371_journal_pbio_1000451 crossref_primary_10_1038_ng_2310 crossref_primary_10_3389_fcvm_2017_00008 crossref_primary_10_1016_j_ymeth_2010_07_007 crossref_primary_10_1038_s41559_017_0229_0 crossref_primary_10_1186_1471_2156_14_77 crossref_primary_10_1214_17_AOAS1052 crossref_primary_10_3390_plants11192504 crossref_primary_10_1038_hdy_2016_84 crossref_primary_10_1093_jxb_erad239 crossref_primary_10_1007_s10725_019_00550_x crossref_primary_10_1016_j_pbi_2014_11_008 crossref_primary_10_1038_s41467_019_14213_y crossref_primary_10_1093_biostatistics_kxr034 crossref_primary_10_1371_journal_pone_0124401 crossref_primary_10_1094_PHYTO_02_14_0031_R crossref_primary_10_1038_ncomms15603 crossref_primary_10_1038_ng_3636 crossref_primary_10_1038_ncomms15842 crossref_primary_10_1007_s10499_019_00376_4 crossref_primary_10_3389_fpls_2014_00485 crossref_primary_10_1038_nature08800 crossref_primary_10_3389_fgene_2021_642065 crossref_primary_10_1186_s13059_021_02354_7 crossref_primary_10_1534_genetics_117_300673 crossref_primary_10_3389_fgene_2022_750814 crossref_primary_10_1186_s13068_016_0603_1 crossref_primary_10_1007_s00122_013_2210_x crossref_primary_10_1105_tpc_114_129601 crossref_primary_10_1371_journal_pgen_1005650 crossref_primary_10_1038_s41598_021_80996_0 crossref_primary_10_1007_s10681_024_03374_7 crossref_primary_10_1007_s11032_019_1048_6 crossref_primary_10_1270_jsbbs_23067 crossref_primary_10_1104_pp_110_169870 crossref_primary_10_1371_journal_pone_0204952 crossref_primary_10_1534_genetics_112_140277 crossref_primary_10_1093_g3journal_jkab131 crossref_primary_10_1073_pnas_1010179107 crossref_primary_10_3389_fgene_2019_00398 crossref_primary_10_1016_j_nano_2016_05_019 crossref_primary_10_1093_jhered_esv100 crossref_primary_10_3389_fmicb_2023_1192574 crossref_primary_10_1093_bioinformatics_btv448 crossref_primary_10_1534_genetics_116_192823 crossref_primary_10_1101_pdb_top077602 crossref_primary_10_1017_S0021859617000612 crossref_primary_10_1007_s11032_010_9500_7 crossref_primary_10_1111_pce_13357 crossref_primary_10_1534_genetics_114_164814 crossref_primary_10_1002_jsfa_12183 crossref_primary_10_1093_g3journal_jkab122 crossref_primary_10_1534_genetics_109_108522 crossref_primary_10_1186_s12859_022_05030_0 crossref_primary_10_1111_tpj_13262 crossref_primary_10_1007_s00335_012_9409_z crossref_primary_10_1183_23120541_00253_2021 crossref_primary_10_1002_fes3_29 crossref_primary_10_3390_ijms24054915 crossref_primary_10_1016_j_livsci_2019_04_004 crossref_primary_10_1007_s11033_019_05225_4 crossref_primary_10_1371_journal_pone_0089831 crossref_primary_10_1186_s12870_015_0559_5 crossref_primary_10_1603_ME11113 crossref_primary_10_1371_journal_pone_0122797 crossref_primary_10_1093_g3journal_jkac004 crossref_primary_10_1111_pbi_13452 crossref_primary_10_1186_s12864_016_2948_z crossref_primary_10_1534_genetics_112_141143 crossref_primary_10_1007_s00122_021_04014_7 crossref_primary_10_1371_journal_pone_0010903 crossref_primary_10_1038_s41467_020_18329_4 crossref_primary_10_3389_fpls_2019_01140 crossref_primary_10_1111_pbi_12122 crossref_primary_10_1152_physiolgenomics_00054_2016 crossref_primary_10_1007_s00122_018_3110_x crossref_primary_10_1111_ahg_12527 crossref_primary_10_1371_journal_pone_0213407 crossref_primary_10_3389_fpls_2017_02136 crossref_primary_10_3390_agronomy10010144 crossref_primary_10_1016_j_xplc_2024_101196 crossref_primary_10_1534_g3_114_015263 crossref_primary_10_1038_s41467_022_33318_5 crossref_primary_10_1093_bib_bbp050 crossref_primary_10_1186_1471_2156_15_3 crossref_primary_10_1007_s00122_012_1945_0 crossref_primary_10_1093_g3journal_jkaa053 crossref_primary_10_1080_1343943X_2018_1483205 crossref_primary_10_1186_s12864_019_6231_y crossref_primary_10_1152_physiolgenomics_00108_2010 crossref_primary_10_1590_1678_4499_20180180 crossref_primary_10_1111_gbb_12029 crossref_primary_10_1007_s00335_011_9385_8 crossref_primary_10_1007_s00122_013_2254_y crossref_primary_10_1086_669665 crossref_primary_10_1534_genetics_111_132563 crossref_primary_10_3389_fpls_2018_01982 crossref_primary_10_1111_nph_16291 crossref_primary_10_3389_fpls_2018_00650 crossref_primary_10_1111_pbi_12538 crossref_primary_10_3390_genes12091443 crossref_primary_10_1007_s10681_019_2340_6 crossref_primary_10_1016_j_rsci_2020_04_007 crossref_primary_10_1007_s10681_021_02800_4 crossref_primary_10_1038_s41437_021_00456_3 crossref_primary_10_1534_genetics_118_301609 crossref_primary_10_3390_plants13172520 crossref_primary_10_3835_plantgenome2016_07_0064 crossref_primary_10_1007_s11295_016_0975_1 crossref_primary_10_1094_MPMI_09_15_0218_R crossref_primary_10_1111_gbb_12262 crossref_primary_10_1186_gb_2012_13_1_r1 crossref_primary_10_1371_journal_pone_0079866 crossref_primary_10_3835_plantgenome2011_02_0007 crossref_primary_10_1007_s11295_011_0426_y crossref_primary_10_1186_1753_6561_5_S9_S35 crossref_primary_10_1007_s00122_019_03425_x crossref_primary_10_1186_s12859_023_05316_x crossref_primary_10_3389_fgene_2019_01287 crossref_primary_10_1371_journal_pone_0107101 crossref_primary_10_1371_journal_pgen_1003264 crossref_primary_10_3389_fpls_2018_00881 crossref_primary_10_1016_j_plantsci_2023_111748 crossref_primary_10_1073_pnas_2109040118 crossref_primary_10_1007_s11032_012_9737_4 crossref_primary_10_1016_j_ajhg_2020_08_009 crossref_primary_10_1093_bib_bby081 crossref_primary_10_1126_science_1214318 crossref_primary_10_1371_journal_pone_0156744 crossref_primary_10_3390_math12131944 crossref_primary_10_3389_fpls_2018_01728 crossref_primary_10_1186_s13068_024_02489_2 crossref_primary_10_2135_cropsci2014_06_0428 crossref_primary_10_1093_dnares_dsy043 crossref_primary_10_1038_s41437_020_00390_w crossref_primary_10_1134_S1022795421020083 crossref_primary_10_1371_journal_pone_0277041 crossref_primary_10_1002_wics_1617 crossref_primary_10_1186_s12863_021_00970_7 crossref_primary_10_1038_s41598_018_21301_4 crossref_primary_10_1371_journal_pone_0023192 crossref_primary_10_1038_s41598_021_83581_7 crossref_primary_10_1007_s10162_020_00762_3 crossref_primary_10_1186_1471_2164_15_1164 crossref_primary_10_1371_journal_pone_0006610 crossref_primary_10_1534_genetics_114_167056 crossref_primary_10_7554_eLife_89749 crossref_primary_10_1534_g3_115_017533 crossref_primary_10_1094_PHYTO_02_11_0041 crossref_primary_10_1101_gr_155762_113 crossref_primary_10_1038_srep01815 crossref_primary_10_1073_pnas_1705884114 crossref_primary_10_3389_fpls_2018_01759 crossref_primary_10_1038_s41598_017_00638_2 crossref_primary_10_1152_physiolgenomics_00071_2018 crossref_primary_10_1534_genetics_116_189431 crossref_primary_10_1016_j_tig_2020_05_005 crossref_primary_10_1093_g3journal_jkab105 crossref_primary_10_1111_eva_13566 crossref_primary_10_1186_s12864_020_6552_x crossref_primary_10_1371_journal_pgen_1003246 crossref_primary_10_1016_j_ygeno_2014_12_001 crossref_primary_10_1186_s12859_020_3450_9 crossref_primary_10_1073_pnas_1203433109 crossref_primary_10_1093_bioinformatics_btaa345 crossref_primary_10_1111_nph_15171 crossref_primary_10_1371_journal_pgen_1003491 crossref_primary_10_1093_gigascience_giy154 crossref_primary_10_2527_jas_2016_0279 crossref_primary_10_1016_j_ajhg_2018_12_012 crossref_primary_10_1007_s00122_022_04218_5 crossref_primary_10_1016_j_csda_2021_107264 crossref_primary_10_1186_s12863_014_0153_0 crossref_primary_10_1038_s41588_023_01379_x crossref_primary_10_1534_genetics_115_178491 crossref_primary_10_1007_s11032_022_01296_7 crossref_primary_10_3389_fgene_2020_590012 crossref_primary_10_1093_toxsci_kfs238 crossref_primary_10_1002_gepi_22378 crossref_primary_10_1093_bioinformatics_btae719 crossref_primary_10_1007_s10071_020_01400_4 crossref_primary_10_1002_sim_5865 crossref_primary_10_7554_eLife_09178 crossref_primary_10_1093_dnares_dsaa012 crossref_primary_10_1111_pce_12644 crossref_primary_10_1016_j_isci_2022_104803 crossref_primary_10_1016_j_tig_2012_03_001 crossref_primary_10_1534_genetics_114_167916 crossref_primary_10_1007_s00425_015_2434_x crossref_primary_10_1038_ng_546 crossref_primary_10_1186_1471_2164_15_767 crossref_primary_10_1038_ng_548 crossref_primary_10_1002_gepi_22371 crossref_primary_10_1016_j_pbi_2023_102399 crossref_primary_10_1371_journal_pone_0247824 crossref_primary_10_3389_fgene_2021_742752 crossref_primary_10_1214_12_AOAS586 crossref_primary_10_1038_s41598_021_90774_7 crossref_primary_10_1073_pnas_1305883110 crossref_primary_10_1093_bfgp_elu022 crossref_primary_10_7554_eLife_35471 crossref_primary_10_1186_1741_7007_8_96 crossref_primary_10_1007_s00122_018_3103_9 crossref_primary_10_1093_genetics_iyae143 crossref_primary_10_1145_2788502 crossref_primary_10_3389_fpls_2016_00386 crossref_primary_10_1093_dnares_dsu046 crossref_primary_10_1089_cmb_2016_0174 crossref_primary_10_1371_journal_pgen_1010153 crossref_primary_10_1007_s11032_021_01239_8 crossref_primary_10_1016_j_rsci_2022_07_006 crossref_primary_10_3389_fgene_2019_00302 crossref_primary_10_1093_jxb_eraa610 crossref_primary_10_1186_s12284_019_0340_8 crossref_primary_10_1371_journal_pgen_1009165 crossref_primary_10_1016_j_fcr_2016_02_004 crossref_primary_10_1093_bib_bbab306 crossref_primary_10_1016_j_molp_2016_06_016 crossref_primary_10_1038_ncomms13299 crossref_primary_10_1371_journal_ppat_1011801 crossref_primary_10_1093_g3journal_jkae026 crossref_primary_10_1186_s12916_016_0575_9 crossref_primary_10_1111_j_1469_8137_2010_03593_x crossref_primary_10_3389_fpls_2018_01311 crossref_primary_10_1371_journal_pcbi_1000225 crossref_primary_10_1093_bioinformatics_btx242 crossref_primary_10_56093_ijans_v93i10_134890 crossref_primary_10_3389_fpls_2021_650157 crossref_primary_10_1371_journal_pgen_1002589 crossref_primary_10_1073_pnas_1009363108 crossref_primary_10_1016_j_cpb_2024_100401 crossref_primary_10_1038_ng_3190 crossref_primary_10_1089_cmb_2018_0047 crossref_primary_10_1186_s12859_017_1791_9 crossref_primary_10_1016_j_dcn_2025_101542 crossref_primary_10_1111_nph_13627 crossref_primary_10_1038_hdy_2016_115 crossref_primary_10_1186_s12864_020_07019_6 crossref_primary_10_1186_s12864_022_08297_y crossref_primary_10_1007_s11032_016_0453_3 crossref_primary_10_1111_asj_12514 crossref_primary_10_1152_physiolgenomics_00055_2014 crossref_primary_10_1186_1471_2229_11_179 crossref_primary_10_3168_jds_2017_12688 crossref_primary_10_3390_ijms242417194 crossref_primary_10_1007_s10722_020_00976_7 crossref_primary_10_1631_jzus_B1200003 crossref_primary_10_1534_genetics_112_141168 crossref_primary_10_1186_1752_0509_5_43 crossref_primary_10_3389_fpls_2023_1340767 crossref_primary_10_3724_SP_J_1259_2011_00108 crossref_primary_10_1038_s41598_023_49927_z crossref_primary_10_2135_cropsci2012_01_0039 crossref_primary_10_2135_cropsci2011_06_0297 crossref_primary_10_1111_j_1469_8137_2012_04289_x crossref_primary_10_1038_s41467_022_28833_4 crossref_primary_10_1093_g3journal_jkab168 crossref_primary_10_1093_bib_bbw064 crossref_primary_10_3390_plants10010029 crossref_primary_10_1371_journal_pgen_1005849 crossref_primary_10_1007_s11032_013_9858_4 crossref_primary_10_1073_pnas_1105543109 crossref_primary_10_1371_journal_pgen_1000149 crossref_primary_10_1007_s11032_019_0989_0 crossref_primary_10_1016_j_fcr_2016_03_008 crossref_primary_10_3389_fpls_2022_1033120 crossref_primary_10_7554_eLife_82951 crossref_primary_10_1007_s11032_010_9411_7 crossref_primary_10_1111_ahg_12339 crossref_primary_10_1093_gerona_glv308 crossref_primary_10_3389_fpls_2018_01358 crossref_primary_10_1016_j_pbi_2015_02_010 crossref_primary_10_1214_09_STS307 crossref_primary_10_1111_j_1469_1809_2010_00618_x crossref_primary_10_3389_fpls_2021_696423 crossref_primary_10_1016_j_ajhg_2015_03_004 crossref_primary_10_1523_JNEUROSCI_5794_10_2011 crossref_primary_10_1007_s10722_022_01352_3 crossref_primary_10_5713_ajas_17_0178 crossref_primary_10_1038_s41467_022_31208_4 crossref_primary_10_3389_fgene_2019_00334 crossref_primary_10_1007_s11427_024_2578_6 crossref_primary_10_2135_cropsci2011_11_0588 crossref_primary_10_1101_gr_194118_115 crossref_primary_10_1111_mec_13867 crossref_primary_10_1007_s00122_015_2497_x crossref_primary_10_3389_fpls_2018_01589 crossref_primary_10_2135_cropsci2011_11_0592 crossref_primary_10_1016_j_radonc_2012_08_004 crossref_primary_10_1021_acs_jproteome_3c00269 crossref_primary_10_1093_genetics_iyad030 crossref_primary_10_1165_rcmb_2012_0337OC crossref_primary_10_1038_hdy_2012_44 crossref_primary_10_1534_g3_113_008870 crossref_primary_10_1096_fj_202001936RRR crossref_primary_10_1002_gepi_22384 crossref_primary_10_3389_fpls_2023_1196486 crossref_primary_10_1007_s00122_019_03499_7 crossref_primary_10_1534_genetics_112_145284 crossref_primary_10_1186_1756_0500_4_232 crossref_primary_10_1186_s12864_017_3754_y crossref_primary_10_1098_rspb_2020_2041 crossref_primary_10_3389_fpls_2018_01146 crossref_primary_10_1093_nar_gkx954 crossref_primary_10_1126_sciadv_abl5794 crossref_primary_10_29220_CSAM_2022_29_1_065 crossref_primary_10_3389_fpls_2017_00754 crossref_primary_10_1038_nrg3187 crossref_primary_10_1534_g3_114_013433 crossref_primary_10_1371_journal_pgen_1008123 crossref_primary_10_1186_s12920_020_0667_4 crossref_primary_10_1371_journal_pgen_1008126 crossref_primary_10_1038_s41437_020_0336_6 crossref_primary_10_1007_s00018_021_03844_4 crossref_primary_10_1038_hdy_2010_91 crossref_primary_10_1111_mec_12082 crossref_primary_10_1007_s10142_018_0630_z crossref_primary_10_1111_ppl_12068 crossref_primary_10_1126_science_aam9309 crossref_primary_10_1038_s41588_019_0530_8 crossref_primary_10_3389_fgene_2023_1104906 crossref_primary_10_1038_s41588_020_0612_7 crossref_primary_10_1093_jxb_ery379 crossref_primary_10_1007_s12038_016_9661_6 crossref_primary_10_1038_s41467_022_29111_z crossref_primary_10_1186_s13040_021_00247_w crossref_primary_10_1371_journal_pgen_1005094 crossref_primary_10_1371_journal_pcbi_1009659 crossref_primary_10_7554_eLife_00994 crossref_primary_10_1534_g3_116_032516 crossref_primary_10_1534_genetics_108_094201 crossref_primary_10_1038_s41467_024_46191_1 crossref_primary_10_1094_PDIS_09_22_2242_RE crossref_primary_10_1111_pbr_13014 crossref_primary_10_1093_bib_bbw145 crossref_primary_10_3389_fgene_2022_947423 crossref_primary_10_1093_molbev_msx151 crossref_primary_10_3389_fpls_2020_00834 crossref_primary_10_1111_mec_14009 crossref_primary_10_1016_j_tvjl_2011_06_013 crossref_primary_10_1002_gepi_22516 crossref_primary_10_1111_1755_0998_12892 crossref_primary_10_1111_1365_2745_12955 crossref_primary_10_1111_1755_0998_12893 crossref_primary_10_1111_j_1365_3040_2012_02587_x crossref_primary_10_1038_s41598_019_41592_5 crossref_primary_10_1007_s00122_023_04245_w crossref_primary_10_1038_s41467_021_27930_0 crossref_primary_10_1007_s00122_016_2750_y crossref_primary_10_3389_fpls_2023_1229495 crossref_primary_10_3390_genes11111387 crossref_primary_10_1152_physiolgenomics_00035_2016 crossref_primary_10_1007_s12042_024_09370_4 crossref_primary_10_1038_s41598_017_17366_2 crossref_primary_10_1111_nph_14615 crossref_primary_10_3389_fpls_2022_866300 crossref_primary_10_1016_j_molp_2016_12_008 crossref_primary_10_3168_jds_2015_10705 crossref_primary_10_1071_FP22073 crossref_primary_10_1073_pnas_1002425107 crossref_primary_10_3389_fpls_2022_1064059 crossref_primary_10_1093_jxb_erw176 crossref_primary_10_3390_genes14071507 crossref_primary_10_1101_gr_201996_115 crossref_primary_10_1186_s12864_019_6203_2 crossref_primary_10_1534_g3_118_200917 crossref_primary_10_1159_000514143 crossref_primary_10_1007_s00122_021_03955_3 crossref_primary_10_1016_j_ajhg_2015_10_002 crossref_primary_10_1016_j_tig_2010_12_003 crossref_primary_10_1093_nar_gku672 crossref_primary_10_3390_genes11080893 crossref_primary_10_3390_agriculture12101677 crossref_primary_10_1111_mec_13378 crossref_primary_10_1002_gepi_22332 crossref_primary_10_1534_g3_119_400740 crossref_primary_10_1101_cshperspect_a040493 crossref_primary_10_1007_s00122_015_2464_6 crossref_primary_10_1186_s12864_022_09036_z crossref_primary_10_3389_fpls_2022_995609 crossref_primary_10_1371_journal_pone_0021591 crossref_primary_10_1016_j_neurobiolaging_2014_05_024 crossref_primary_10_1016_j_cell_2019_06_021 crossref_primary_10_1093_jxb_erae280 crossref_primary_10_1186_s12284_015_0072_3 crossref_primary_10_1534_g3_114_014563 crossref_primary_10_1080_1828051X_2022_2053366 crossref_primary_10_1093_plphys_kiad511 crossref_primary_10_3835_plantgenome2016_02_0012 crossref_primary_10_1007_s00122_017_3003_4 crossref_primary_10_1007_s10162_014_0443_2 crossref_primary_10_1038_nmicrobiol_2016_41 crossref_primary_10_3389_fpls_2022_880631 crossref_primary_10_1186_s12864_016_3081_8 crossref_primary_10_1371_journal_pone_0094688 crossref_primary_10_1007_s00438_020_01690_w crossref_primary_10_1109_TCBB_2017_2786239 crossref_primary_10_1094_PHYTO_11_15_0305_R crossref_primary_10_1016_j_cell_2012_08_043 crossref_primary_10_1038_ki_2009_457 crossref_primary_10_1094_PHYTO_10_12_0271_R crossref_primary_10_1016_j_exger_2018_01_010 crossref_primary_10_1371_journal_pgen_1009495 crossref_primary_10_1534_genetics_110_115014 crossref_primary_10_3389_fpls_2022_994779 crossref_primary_10_1007_s11540_024_09718_z crossref_primary_10_1007_s13253_010_0046_2 crossref_primary_10_1038_gene_2011_67 crossref_primary_10_1038_gene_2011_68 crossref_primary_10_1093_genetics_iyaf038 crossref_primary_10_1186_s12284_021_00540_6 crossref_primary_10_2135_cropsci2008_07_0420 crossref_primary_10_1534_genetics_115_185314 crossref_primary_10_1007_s00122_019_03473_3 crossref_primary_10_1371_journal_pone_0056179 crossref_primary_10_1186_s12859_023_05519_2 crossref_primary_10_1371_journal_pone_0188997 crossref_primary_10_1534_g3_115_021592 crossref_primary_10_1681_ASN_2012080838 crossref_primary_10_1093_evolut_qpad028 crossref_primary_10_3168_jds_2021_20267 crossref_primary_10_1371_journal_pgen_1008392 crossref_primary_10_1007_s00122_014_2403_y crossref_primary_10_1371_journal_pgen_1009241 crossref_primary_10_7554_eLife_89749_3 crossref_primary_10_1007_s00439_020_02206_7 crossref_primary_10_1007_s00122_017_2962_9 crossref_primary_10_1016_j_tig_2020_01_004 crossref_primary_10_1111_pbr_13225 crossref_primary_10_1371_journal_pone_0075707 crossref_primary_10_1534_g3_116_032532 crossref_primary_10_3835_plantgenome2011_12_0032 crossref_primary_10_1073_pnas_1211205110 crossref_primary_10_1093_femsec_fiae056 crossref_primary_10_1002_csc2_21105 crossref_primary_10_1016_j_livsci_2020_103951 crossref_primary_10_1007_s10681_023_03184_3 crossref_primary_10_2527_jas_2015_0182 crossref_primary_10_1007_s00122_018_3237_9 crossref_primary_10_1002_mgg3_4 crossref_primary_10_3835_plantgenome2017_08_0074 crossref_primary_10_3390_ani9121059 crossref_primary_10_1007_s00122_016_2665_7 crossref_primary_10_1093_nar_gkw893 crossref_primary_10_1371_journal_ppat_1004511 crossref_primary_10_1016_j_ajhg_2017_04_005 crossref_primary_10_1145_2560421 crossref_primary_10_1534_g3_113_007948 crossref_primary_10_1371_journal_pgen_1000419 crossref_primary_10_1161_ATVBAHA_112_253864 crossref_primary_10_1371_journal_pone_0031910 crossref_primary_10_1007_s13562_016_0393_3 crossref_primary_10_1534_g3_116_028407 crossref_primary_10_1534_genetics_110_114819 crossref_primary_10_1016_j_cub_2021_04_046 crossref_primary_10_1093_jxb_erad306 crossref_primary_10_1371_journal_pone_0013920 crossref_primary_10_15252_msb_20135004 crossref_primary_10_1038_srep19444 crossref_primary_10_1104_pp_114_248153 crossref_primary_10_1002_gepi_21849 crossref_primary_10_1186_s12864_017_3527_7 crossref_primary_10_1002_gepi_21848 crossref_primary_10_1093_hmg_ddy093 crossref_primary_10_1093_molbev_msv124 crossref_primary_10_1186_s13104_019_4222_3 crossref_primary_10_1371_journal_pone_0101673 crossref_primary_10_1007_s00122_018_3089_3 crossref_primary_10_1371_journal_pcbi_1007653 crossref_primary_10_1093_bioinformatics_bts348 crossref_primary_10_1105_tpc_112_108068 crossref_primary_10_1111_tpj_14189 crossref_primary_10_3389_fpls_2020_00686 crossref_primary_10_1534_g3_112_003699 crossref_primary_10_1111_rssb_12203 crossref_primary_10_1002_ece3_262 crossref_primary_10_1016_j_cj_2019_09_005 crossref_primary_10_1186_1471_2156_13_82 crossref_primary_10_1002_humu_21042 crossref_primary_10_1126_science_aah3580 crossref_primary_10_1093_icb_icaa112 crossref_primary_10_3390_pathogens9020096 crossref_primary_10_1093_hr_uhad117 crossref_primary_10_1104_pp_114_241521 crossref_primary_10_1534_g3_118_200540 crossref_primary_10_1002_tpg2_20373 crossref_primary_10_1007_s13238_018_0532_9 crossref_primary_10_3389_fimmu_2020_607889 crossref_primary_10_1016_j_gpb_2020_06_006 crossref_primary_10_1071_AN15696 crossref_primary_10_7554_eLife_64329 crossref_primary_10_3835_plantgenome2014_05_0020 crossref_primary_10_1002_gepi_21829 crossref_primary_10_1016_j_tips_2008_07_010 crossref_primary_10_1165_rcmb_2012_0078OC crossref_primary_10_1007_s10681_014_1114_4 crossref_primary_10_1007_s11033_021_07055_9 crossref_primary_10_1007_s10681_011_0563_2 crossref_primary_10_1534_g3_116_035162 crossref_primary_10_1007_s11032_015_0283_8 crossref_primary_10_1093_jhered_esw008 crossref_primary_10_1038_s41437_017_0032_3 crossref_primary_10_1007_s12298_023_01382_w crossref_primary_10_1093_bfgp_elp048 crossref_primary_10_1002_tpg2_20161 crossref_primary_10_1111_tpj_14170 crossref_primary_10_1007_s00122_022_04102_2 crossref_primary_10_1152_physiolgenomics_00051_2012 crossref_primary_10_1186_s12870_020_02804_7 crossref_primary_10_3389_fgene_2019_01067 crossref_primary_10_1093_pcp_pcaa057 crossref_primary_10_3390_genes10120954 crossref_primary_10_1111_nyas_12397 crossref_primary_10_1534_genetics_108_098863 crossref_primary_10_1007_s00468_017_1554_2 crossref_primary_10_1534_genetics_115_179945 crossref_primary_10_1093_bioadv_vbad192 crossref_primary_10_1371_journal_pcbi_1007663 crossref_primary_10_1002_tpg2_20157 crossref_primary_10_1186_1471_2229_12_56 crossref_primary_10_1371_journal_pone_0071377 crossref_primary_10_1111_pbi_14153 crossref_primary_10_1111_pbi_13062 crossref_primary_10_1639_0007_2745_117_4_329 crossref_primary_10_1007_s00122_014_2389_5 crossref_primary_10_1002_gepi_21640 crossref_primary_10_1016_j_cels_2017_10_016 crossref_primary_10_2135_cropsci2014_08_0559 crossref_primary_10_3390_plants12234050 crossref_primary_10_1007_s00335_014_9551_x crossref_primary_10_1007_s00335_018_9746_7 crossref_primary_10_1007_s10681_017_2005_2 crossref_primary_10_1038_onc_2009_396 crossref_primary_10_1111_mec_17576 crossref_primary_10_1371_journal_pone_0155494 crossref_primary_10_1152_physiolgenomics_00041_2012 crossref_primary_10_1016_j_ygeno_2018_12_011 crossref_primary_10_1096_fj_13_247221 crossref_primary_10_3389_fpls_2024_1391452 crossref_primary_10_1111_pbr_12753 crossref_primary_10_1371_journal_pone_0102715 crossref_primary_10_1007_s00122_018_3065_y crossref_primary_10_1186_s12870_023_04306_8 crossref_primary_10_1534_g3_118_200571 crossref_primary_10_1007_s00122_020_03697_8 crossref_primary_10_1007_s11032_013_9883_3 crossref_primary_10_1038_ng_2410 crossref_primary_10_3389_fpls_2022_1089937 crossref_primary_10_1093_molbev_msab144 crossref_primary_10_1093_plphys_kiac250 crossref_primary_10_1016_j_neuroimage_2010_02_068 crossref_primary_10_3389_fpls_2016_00973 crossref_primary_10_1002_gepi_21879 crossref_primary_10_1016_j_cmet_2015_04_025 crossref_primary_10_3390_agronomy12030642 crossref_primary_10_1038_nmeth_2848 crossref_primary_10_1016_j_tplants_2012_01_002 crossref_primary_10_1186_s12864_018_5386_2 crossref_primary_10_1038_s41588_021_00954_4 crossref_primary_10_1111_ppa_12761 crossref_primary_10_1111_nph_12082 crossref_primary_10_1016_j_neuroimage_2014_07_041 crossref_primary_10_1007_s11032_013_0004_0 crossref_primary_10_3389_fpls_2018_00911 crossref_primary_10_1145_3309720 crossref_primary_10_1038_ng_2644 crossref_primary_10_1038_s41598_022_05148_4 crossref_primary_10_1073_pnas_1007431107 crossref_primary_10_1111_nph_15580 crossref_primary_10_1111_mec_13199 crossref_primary_10_1186_1471_2229_12_16 crossref_primary_10_1016_j_cell_2019_09_021 crossref_primary_10_7717_peerj_cs_3 crossref_primary_10_1111_mpp_12745 crossref_primary_10_1194_jlr_R066944 crossref_primary_10_1038_srep41748 crossref_primary_10_1161_STROKEAHA_115_010767 crossref_primary_10_1016_j_cell_2016_10_026 crossref_primary_10_1093_hr_uhae230 crossref_primary_10_1371_journal_pgen_1007699 crossref_primary_10_1002_fes3_529 crossref_primary_10_1038_s41598_023_47555_1 crossref_primary_10_1186_1297_9686_44_32 crossref_primary_10_1089_brain_2011_0064 crossref_primary_10_1002_ece3_6002 crossref_primary_10_1007_s00122_017_2857_9 crossref_primary_10_1007_s00335_010_9249_7 crossref_primary_10_1186_s12284_017_0147_4 crossref_primary_10_1534_genetics_112_138578 crossref_primary_10_1152_physiolgenomics_00159_2011 crossref_primary_10_1007_s00335_016_9655_6 crossref_primary_10_1038_s41593_022_01197_0 crossref_primary_10_1111_nph_17999 crossref_primary_10_1016_j_cels_2024_05_006 crossref_primary_10_1007_s10126_017_9747_7 crossref_primary_10_1007_s11540_019_09437_w crossref_primary_10_1007_s10681_016_1830_z |
Cites_doi | 10.1086/284325 10.1023/A:1021404714631 10.1093/biomet/58.3.545 10.1371/journal.pone.0000591 10.1093/molbev/msh257 10.1007/BF01734359 10.1007/BF02100115 10.1086/302959 10.1093/genetics/155.4.1961 10.1046/j.1365-294X.2001.01288.x 10.1093/oxfordjournals.molbev.a025575 10.1152/physiolgenomics.00018.2002 10.1038/nature06067 10.1038/ng1849 10.1371/journal.pgen.0010060 10.2527/jas1987.6451362x 10.1086/286013 10.1093/genetics/152.4.1753 10.1111/1467-9868.00092 10.1038/ng1497 10.1073/pnas.1530509100 10.1038/ng1702 10.1093/bioinformatics/bth149 10.1371/journal.pgen.0020190 10.1371/journal.pgen.0030051 10.2307/2533274 10.1371/journal.pbio.0030196 10.1534/genetics.106.065359 10.1538/expanim.50.319 10.3168/jds.S0022-0302(95)76654-1 10.1534/genetics.106.066241 10.1007/s00122-005-0189-7 10.1093/comjnl/7.4.308 10.1126/science.155.3760.279 10.1080/01621459.1981.10477653 10.1111/j.0006-341X.1999.00997.x 10.1371/journal.pgen.0030004 10.1111/j.1467-9868.2004.00438.x 10.1523/JNEUROSCI.1374-03.2004 10.1093/genetics/157.1.425 10.1038/nrg2025 10.1038/ng1847 10.1111/j.1365-313X.2005.02591.x 10.1534/genetics.167.1.531 10.1534/genetics.105.054932 10.1371/journal.pbio.0020393 10.1007/s00335-003-2308-6 10.1007/s10142-002-0053-7 10.1534/genetics.104.035709 10.1104/pp.003533 10.2527/1992.7072000x 10.1093/genetics/160.3.1203 |
ContentType | Journal Article |
Copyright | Copyright Genetics Society of America Mar 2008 Copyright © 2008 by the Genetics Society of America |
Copyright_xml | – notice: Copyright Genetics Society of America Mar 2008 – notice: Copyright © 2008 by the Genetics Society of America |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 4U- 7QP 7SS 7TK 7TM 7X2 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. LK8 M0K M0R M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1534/genetics.107.080101 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (UHCL Subscription) Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database Consumer Health Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 1723 |
ExternalDocumentID | PMC2278096 1463111441 18385116 10_1534_genetics_107_080101 www178_3_1709 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: K25 HL080079 – fundername: NCRR NIH HHS grantid: P41 RR08605 – fundername: NCRR NIH HHS grantid: P41 RR008605 – fundername: NCRR NIH HHS grantid: C06 RR017588 – fundername: NHLBI NIH HHS grantid: 1K25HL080079 |
GroupedDBID | - 186 1AW 29H 2KS 2WC 34G 39C 3V. 4 53G 5GY 5RE 5VS 7X2 7X7 85S 88A 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 9M8 AAPBV ABFLS ABPPZ ABPTK ABSGY ABUFD ABUWG ACDCL ACGOD ACNCT ACPRK ADACO ADBBV AENEX AFDAS AFFNX AFKRA AFMIJ AFRAH AGCAB AHMBA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BAWUL BBAFP BBNVY BENPR BES BHPHI BKNYI BKOMP BPHCQ BVXVI C1A CJ0 CS3 D0L DIK DU5 DWQXO DZ E3Z EBS EJD EMB F5P FH7 FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HYE H~9 INIJC K9- KM KQ8 L7B LK8 LOTEE LXI M0K M0L M0R M1P M2O M2P M7P MBDVC MV1 MVM MYA NADUK O0- OHT OK1 OMK OWPYF PADUT PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHF RHI RPM RXW SJN SV3 TAE TAF TGS TH9 TN5 TWZ U5U UHB UKR UNMZH UPT VQA WH7 WOQ X XHC YYQ YZZ Z ZY4 --- --Z -DZ -~X .-4 0R~ 18M 36B 5WD AABZA AACZT AAPXW AARHZ AAUAY AAVAP AAYOK AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPTD ABVGC ABXVV ABXZS ACFRR ACIHN ACIPB ACUTJ ADGKP ADIPN ADQBN ADVEK ADXHL AEAQA AEUYN AFFZL AFGWE AGORE AHMMS AJEEA AJNCP ALIPV ALXQX AOIJS APEBS ATGXG BCRHZ BEYMZ BTFSW CCPQU CITATION EMOBN F8P F9R FD6 FLUFQ FOEOM HMCUK JXSIZ KBUDW KOP KSI KSN NOMLY OBOKY OCZFY OJZSN OPAEJ PHGZM PHGZT ROX TR2 UKHRP W8F XSW YHG YKV YSK ZCA ~KM .55 .GJ A8Z AAUTI ABJNI ACPVT ACVCV ACYGS AGMDO AHGBF AJBYB APJGH CGR CUY CVF EBD ECM EIF NHB NPM PJZUB PPXIY PQGLB WHG X7M XOL YYP ZGI ZXP 4T- 4U- 7QP 7SS 7TK 7TM 7XB 8FD 8FK FR3 K9. M7N P64 PKEHL Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c528t-8a1b77bb5960fa3b74b1ff6e7a92290588e8a583ba2202c5ccd299135d07f27a3 |
IEDL.DBID | 7X7 |
ISSN | 0016-6731 1943-2631 |
IngestDate | Thu Aug 21 18:19:31 EDT 2025 Tue Aug 05 10:12:19 EDT 2025 Fri Jul 25 10:27:01 EDT 2025 Mon Jul 21 05:59:35 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Tue Jul 01 03:32:23 EDT 2025 Tue Nov 10 19:47:46 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-8a1b77bb5960fa3b74b1ff6e7a92290588e8a583ba2202c5ccd299135d07f27a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicating editor: J. B. Walsh Corresponding author: Department of Computer Science and Department of Human Genetics, Mail Code 1596, 3532-J Boelter Hall, University of California, Los Angeles, CA 90095-1596. E-mail: eeskin@cs.ucla.edu |
OpenAccessLink | https://academic.oup.com/genetics/article-pdf/178/3/1709/49410072/genetics1709.pdf |
PMID | 18385116 |
PQID | 214129779 |
PQPubID | 47453 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2278096 proquest_miscellaneous_70466286 proquest_journals_214129779 pubmed_primary_18385116 crossref_citationtrail_10_1534_genetics_107_080101 crossref_primary_10_1534_genetics_107_080101 highwire_smallpub1_www178_3_1709 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20080301 2008-03-01 2008-Mar |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 20080301 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2008 |
Publisher | Genetics Soc America Genetics Society of America |
Publisher_xml | – name: Genetics Soc America – name: Genetics Society of America |
References | (2023030409453427400_) 1995; 51 (2023030409453427400_) 1998; 28 (2023030409453427400_) 1999; 152 (2023030409453427400_) 1989; 21 (2023030409453427400_) 2007; 8 (2023030409453427400_) 2000; 67 (2023030409453427400_) 2007; 2 (2023030409453427400_) 2003; 100 (2023030409453427400_) 2007; 3 (2023030409453427400_) 2004 (2023030409453427400_) 2007; 448 (2023030409453427400_) 1996; 13 (2023030409453427400_) 2005; 44 (2023030409453427400_) 1989; 29 (2023030409453427400_) 1985; 125 (2023030409453427400_) 2000; 155 (2023030409453427400_) 1984 (2023030409453427400_) 2006; 112 (2023030409453427400_) 1997; 59 (2023030409453427400_) 2006; 2 (2023030409453427400_) 2002; 2 (2023030409453427400_) 1971; 58 (2023030409453427400_) 1990 (2023030409453427400_) 1997; 149 (2023030409453427400_) 1988; 83 (2023030409453427400_) 2005; 37 (2023030409453427400_) 2007; 176 (2023030409453427400_) 2001; 10 (2023030409453427400_) 2007; 175 (2023030409453427400_) 1981; 76 (2023030409453427400_) 2004; 66 (2023030409453427400_) 2004; 20 (2023030409453427400_) 2001; 50 (2023030409453427400_) 2005; 3 (2023030409453427400_) 2005; 1 (2023030409453427400_) 1999; 55 (2023030409453427400_) 2005; 6 (2023030409453427400_) 1995; 78 (2023030409453427400_) 2006; 38 (2023030409453427400_) 2002; 10 (2023030409453427400_) 2004; 24 (2023030409453427400_) 2005; 170 (2023030409453427400_) 2004; 167 (2023030409453427400_) 2005; 22 (2023030409453427400_) 2002; 129 (2023030409453427400_) 1992; 70 (2023030409453427400_) 1967; 155 (2023030409453427400_) 1987; 64 (2023030409453427400_) 1965; 7 (2023030409453427400_) 2004; 2 (2023030409453427400_) 1974; 61 (2023030409453427400_) 2004; 15 (2023030409453427400_) 2001; 157 (2023030409453427400_) 2002; 160 (2023030409453427400_) 1981; 17 (2023030409453427400_) 2007; 315 |
References_xml | – volume: 125 start-page: 1 year: 1985 ident: 2023030409453427400_ publication-title: Am. Nat. doi: 10.1086/284325 – volume: 28 start-page: 29 year: 1998 ident: 2023030409453427400_ publication-title: Behav. Genet. doi: 10.1023/A:1021404714631 – volume: 58 start-page: 545 year: 1971 ident: 2023030409453427400_ publication-title: Biometrika doi: 10.1093/biomet/58.3.545 – volume: 2 start-page: e591 year: 2007 ident: 2023030409453427400_ publication-title: PLoS One doi: 10.1371/journal.pone.0000591 – volume: 22 start-page: 40 year: 2005 ident: 2023030409453427400_ publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh257 – volume: 17 start-page: 368 year: 1981 ident: 2023030409453427400_ publication-title: J. Mol. Evol. doi: 10.1007/BF01734359 – volume: 29 start-page: 170 year: 1989 ident: 2023030409453427400_ publication-title: J. Mol. Evol. doi: 10.1007/BF02100115 – volume: 67 start-page: 170 year: 2000 ident: 2023030409453427400_ publication-title: Am. J. Hum. Genet. doi: 10.1086/302959 – volume: 315 start-page: 1583 year: 2007 ident: 2023030409453427400_ publication-title: Science – volume: 155 start-page: 1961 year: 2000 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1093/genetics/155.4.1961 – volume: 10 start-page: 1539 year: 2001 ident: 2023030409453427400_ publication-title: Mol. Ecol. doi: 10.1046/j.1365-294X.2001.01288.x – volume: 13 start-page: 93 year: 1996 ident: 2023030409453427400_ publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025575 – volume: 10 start-page: 21 year: 2002 ident: 2023030409453427400_ publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00018.2002 – volume: 448 start-page: 1050 year: 2007 ident: 2023030409453427400_ publication-title: Nature doi: 10.1038/nature06067 – volume: 38 start-page: 888 year: 2006 ident: 2023030409453427400_ publication-title: Nat. Genet. doi: 10.1038/ng1849 – volume: 1 start-page: e60 year: 2005 ident: 2023030409453427400_ publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0010060 – volume: 64 start-page: 1362 year: 1987 ident: 2023030409453427400_ publication-title: J. Anim. Sci. doi: 10.2527/jas1987.6451362x – volume: 149 start-page: 646 year: 1997 ident: 2023030409453427400_ publication-title: Am. Nat. doi: 10.1086/286013 – volume: 152 start-page: 1753 year: 1999 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1093/genetics/152.4.1753 – volume: 59 start-page: 701 year: 1997 ident: 2023030409453427400_ publication-title: J. R. Stat. Soc. B doi: 10.1111/1467-9868.00092 – volume: 37 start-page: 225 year: 2005 ident: 2023030409453427400_ publication-title: Nat. Genet. doi: 10.1038/ng1497 – volume: 100 start-page: 9440 year: 2003 ident: 2023030409453427400_ publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1530509100 – volume: 38 start-page: 203 year: 2006 ident: 2023030409453427400_ publication-title: Nat. Genet. doi: 10.1038/ng1702 – volume: 20 start-page: 1842 year: 2004 ident: 2023030409453427400_ publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth149 – volume: 2 start-page: e190 year: 2006 ident: 2023030409453427400_ publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020190 – volume: 3 start-page: e51 year: 2007 ident: 2023030409453427400_ publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030051 – volume: 51 start-page: 1440 year: 1995 ident: 2023030409453427400_ publication-title: Biometrics doi: 10.2307/2533274 – volume: 3 start-page: e196 year: 2005 ident: 2023030409453427400_ publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030196 – volume: 175 start-page: 321 year: 2007 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1534/genetics.106.065359 – volume: 6 start-page: 271 year: 2005 ident: 2023030409453427400_ publication-title: Nat. Rev. Genet. – volume: 50 start-page: 319 year: 2001 ident: 2023030409453427400_ publication-title: Exp. Anim. doi: 10.1538/expanim.50.319 – volume: 78 start-page: 449 year: 1995 ident: 2023030409453427400_ publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(95)76654-1 – volume: 176 start-page: 675 year: 2007 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1534/genetics.106.066241 – volume: 112 start-page: 876 year: 2006 ident: 2023030409453427400_ publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-0189-7 – volume: 7 start-page: 308 year: 1965 ident: 2023030409453427400_ publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 155 start-page: 279 year: 1967 ident: 2023030409453427400_ publication-title: Science doi: 10.1126/science.155.3760.279 – volume: 76 start-page: 341 year: 1981 ident: 2023030409453427400_ publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1981.10477653 – volume: 55 start-page: 997 year: 1999 ident: 2023030409453427400_ publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00997.x – volume: 3 start-page: e4 year: 2007 ident: 2023030409453427400_ publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030004 – volume: 66 start-page: 165 year: 2004 ident: 2023030409453427400_ publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2004.00438.x – volume: 24 start-page: 938 year: 2004 ident: 2023030409453427400_ publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1374-03.2004 – volume: 157 start-page: 425 year: 2001 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1093/genetics/157.1.425 – year: 1984 ident: 2023030409453427400_ – volume: 21 start-page: 318 year: 1989 ident: 2023030409453427400_ publication-title: Genet. Sel. Evol. – volume: 8 start-page: 58 year: 2007 ident: 2023030409453427400_ publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2025 – volume: 38 start-page: 904 year: 2006 ident: 2023030409453427400_ publication-title: Nat. Genet. doi: 10.1038/ng1847 – year: 2004 ident: 2023030409453427400_ – volume: 44 start-page: 1054 year: 2005 ident: 2023030409453427400_ publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02591.x – volume: 167 start-page: 531 year: 2004 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1534/genetics.167.1.531 – volume: 175 start-page: 879 year: 2007 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1534/genetics.105.054932 – volume: 2 start-page: e393 year: 2004 ident: 2023030409453427400_ publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020393 – volume: 15 start-page: 100 year: 2004 ident: 2023030409453427400_ publication-title: Mamm. Genome doi: 10.1007/s00335-003-2308-6 – year: 1990 ident: 2023030409453427400_ – volume: 2 start-page: 98 year: 2002 ident: 2023030409453427400_ publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-002-0053-7 – volume: 170 start-page: 1299 year: 2005 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1534/genetics.104.035709 – volume: 83 start-page: 1014 year: 1988 ident: 2023030409453427400_ publication-title: J. Am. Stat. Assoc. – volume: 129 start-page: 440 year: 2002 ident: 2023030409453427400_ publication-title: Plant Physiol. doi: 10.1104/pp.003533 – volume: 70 start-page: 2000 year: 1992 ident: 2023030409453427400_ publication-title: J. Anim. Sci. doi: 10.2527/1992.7072000x – volume: 61 start-page: 381 year: 1974 ident: 2023030409453427400_ publication-title: Biometrika – volume: 160 start-page: 1203 year: 2002 ident: 2023030409453427400_ publication-title: Genetics doi: 10.1093/genetics/160.3.1203 |
SSID | ssj0006958 |
Score | 2.5151265 |
Snippet | Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1709 |
SubjectTerms | Animals Arabidopsis - genetics Body Weight - genetics Chromosome Mapping - methods Corn Flowers - genetics Genome - genetics Genotype & phenotype Human subjects Inbreeding Investigations Matrix Methods Mice Mice, Inbred Strains Models, Biological Models, Genetic Organ Size - genetics Organisms Phenotype Polymorphism, Single Nucleotide - genetics Population Dynamics Population structure Principal components analysis Quantitative Trait, Heritable Risk factors Saccharin - metabolism Software Studies Zea mays - genetics |
Title | Efficient Control of Population Structure in Model Organism Association Mapping |
URI | http://www.genetics.org/cgi/content/abstract/178/3/1709 https://www.ncbi.nlm.nih.gov/pubmed/18385116 https://www.proquest.com/docview/214129779 https://www.proquest.com/docview/70466286 https://pubmed.ncbi.nlm.nih.gov/PMC2278096 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgExIXxDdlMHLgSFnz1aQnBE9vmpA2JmDSu0VJ24xJb32Dbgf-e-w2LRtCu_TQJFLlnxPbjf0zwFsMdFqFjmsueIy5CkrmVoUmbxruG2184ANP9-FReXCiPq_0KuXm9CmtcjoTh4O62dT0j3xPcIWmyZjqw8XPnJpG0eVq6qBxF7aJuYyU2qzmeKsoK50O4pIy3HkiHdJS7SE4VCPYY_Bq3qPTxFNTmNkwTWTB_3M8_82fvGaQ9h_Cg-RJso8j9I_gTts9hntjb8nfT-DLciCHwLVsMaajs01kx3O_LvZtYI69-tWys45RS7Q1Gwsz-3N2DTR26InC4fQpnOwvvy8O8tQ9Ia-1sJe59TwYE4LGGCV6GYwKCEfZGl8Rx7u2trVeWxm8EIWodV03aJq41E1hojBePoOtbtO1L4AhgtbUVoRI17-yCrg82kixG_orPGYgJtG5OlGLU4eLtaMQA-XtJnnjC-NGeWfwbl50MTJr3D6dTZi4_tyv1wgBd6gu3FgnHTdFlcHOhJVLO7F3s95k8GYexS1E9yK-azdXvTOFKqlCN4PnI65_v8dK8khxxNxAfJ5A5Nw3R7qzHwNJN5UYY3j48tZv2oH7Y_4J5bS9gi0Evn2NTs5l2B1UGZ92wXdh-9Py6PjrH4CK_p8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gxsjF-GZEpA96c2T7Nd1zMIaskEVYNBESbm33PIRkmQUHYvhR_ker5gUYw43r9PSkU_VVd9V01VcAbzHQKRQ6rrHgZRmroGRsVcjjPOc-18YH3vB0T_eSyYH6cqgPF-BPXwtDaZX9nths1Pk8o3_k64IrPJqMST-dnsXUNIouV_sOGi0qdorL3xix1R-3P6N63wmxtbk_nsRdU4E408Kex9bzYEwIGl330stgVMBVJoXxKVGfa2sL67WVwQsxEpnOshx3bC51PjKlMF7id-_BfSXRMqkwfXyVUZKkutv4E8qo5x3JkZZqHcFANYk1BsvmAzppvGtCMxyEPTnx_xzdf_M1rx2AW4_hUee5so0Wak9goaiewoO2l-XlM_i62ZBR4Fw2btPf2bxk34b-YOx7w1R78atgxxWjFmwz1haC1ifsGkjY1BNlxM_ncHAngn0Bi9W8KpaBIWKsyawIJV03yzTg9NKWFCuif8TLCEQvOpd1VObUUWPmKKRBebte3vjAuFbeEbwfJp22TB63v856nbj6xM9mqALuEJ7cWCcdN6M0gpVeV66z_NoNOI1gbRhFk6V7GF8V84vamZFKqCI4gpetXq_WYyV5wDhibmh8eIHIwG-OVMdHDSk4lTRjOPrq1jWtwcPJ_nTX7W7v7azAUpv7Qvl0r2ERQVCsooN1Ht40sGbw467t6C_neDhk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8gRsPF-M2KSA96c32v7XbbPRhDHryACJIoCbfa7m6F5LEPXIjhT_O_c2a_AGO4cd1uN83Mb9qZ7cxvAN5ioFMm6LjGgocQJz6RsUl8ERcFd4XSzvOGp3t3L906SD4fqsMF-NPXwlBaZb8nNht1Mc_pH_lI8ASPJq2zUeiyIvY3pp9Oz2JqIEUXrX03jRYhO-Xlb4ze6o_bG6jqd0JMN79PtuKuwUCcK2HOY-O419p7hW58cNLrxOOK01K7jGjQlTGlccpI74QYi1zleYG7N5eqGOsgtJP43XtwX0ttyMTM5Cq7JM1UdwiklF3PO8IjJZMRAoPqE2sMnPUHdNh415BmOBR7ouL_Ob3_5m5eOwynj-FR58Wy9RZ2T2ChrJ7Cg7av5eUz-LrZEFPgXDZpU-HZPLD9oVcY-9aw1l78Ktlxxagd24y1RaH1CbsGGLbriD7i53M4uBPBvoDFal6Vy8AQPUbnRvhAV88y8zg9mEBxI_pKPEQgetHZvKM1p-4aM0vhDcrb9vLGB9q28o7g_TDptGX1uP111uvE1iduNkMVcItQ5dpYabkeZxGs9Lqy3S5Q2wGzEawNo2i-dCfjqnJ-UVs9TlKqDo7gZavXq_UYSd4wjugbGh9eIGLwmyPV8VFDEE7lzRiavrp1TWvwEC3Iftne21mBpTYNhlLrXsMiYqBcRV_r3L9pUM3gx12b0V9aQzya |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+control+of+population+structure+in+model+organism+association+mapping&rft.jtitle=Genetics+%28Austin%29&rft.au=Kang%2C+Hyun+Min&rft.au=Zaitlen%2C+Noah+A&rft.au=Wade%2C+Claire+M&rft.au=Kirby%2C+Andrew&rft.date=2008-03-01&rft.issn=0016-6731&rft.volume=178&rft.issue=3&rft.spage=1709&rft_id=info:doi/10.1534%2Fgenetics.107.080101&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon |