Efficient Control of Population Structure in Model Organism Association Mapping

Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 178; no. 3; pp. 1709 - 1723
Main Authors Kang, Hyun Min, Zaitlen, Noah A, Wade, Claire M, Kirby, Andrew, Heckerman, David, Daly, Mark J, Eskin, Eleazar
Format Journal Article
LanguageEnglish
Published United States Genetics Soc America 01.03.2008
Genetics Society of America
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.
AbstractList Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available. [PUBLICATION ABSTRACT]
Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.
Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.
Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human diseases. However, genetic association studies in inbred model organisms are confronted by the problem of complex population structure among strains. This induces inflated false positive rates, which cannot be corrected using standard approaches applied in human association studies such as genomic control or structured association. Recent studies demonstrated that mixed models successfully correct for the genetic relatedness in association mapping in maize and Arabidopsis panel data sets. However, the currently available mixed-model methods suffer from computational inefficiency. In this article, we propose a new method, efficient mixed-model association (EMMA), which corrects for population structure and genetic relatedness in model organism association mapping. Our method takes advantage of the specific nature of the optimization problem in applying mixed models for association mapping, which allows us to substantially increase the computational speed and reliability of the results. We applied EMMA to in silico whole-genome association mapping of inbred mouse strains involving hundreds of thousands of SNPs, in addition to Arabidopsis and maize data sets. We also performed extensive simulation studies to estimate the statistical power of EMMA under various SNP effects, varying degrees of population structure, and differing numbers of multiple measurements per strain. Despite the limited power of inbred mouse association mapping due to the limited number of available inbred strains, we are able to identify significantly associated SNPs, which fall into known QTL or genes identified through previous studies while avoiding an inflation of false positives. An R package implementation and webserver of our EMMA method are publicly available.
Author Heckerman, David
Wade, Claire M
Zaitlen, Noah A
Kirby, Andrew
Eskin, Eleazar
Daly, Mark J
Kang, Hyun Min
AuthorAffiliation Department of Computer Science and Engineering and † Bioinformatics Program, University of California, San Diego, California 92093, ‡ Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, § Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Microsoft Research, Redmond, Washington 98052 and †† Department of Computer Science and Department of Human Genetics, University of California, Los Angeles, California 90095
AuthorAffiliation_xml – name: Department of Computer Science and Engineering and † Bioinformatics Program, University of California, San Diego, California 92093, ‡ Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, § Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, Microsoft Research, Redmond, Washington 98052 and †† Department of Computer Science and Department of Human Genetics, University of California, Los Angeles, California 90095
Author_xml – sequence: 1
  fullname: Kang, Hyun Min
– sequence: 2
  fullname: Zaitlen, Noah A
– sequence: 3
  fullname: Wade, Claire M
– sequence: 4
  fullname: Kirby, Andrew
– sequence: 5
  fullname: Heckerman, David
– sequence: 6
  fullname: Daly, Mark J
– sequence: 7
  fullname: Eskin, Eleazar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18385116$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaSZpf0GhmC7alSe6kq3HphCG9AEJE2i7FrJG9ijIkivZHfrv69RJSLLoSnD1ncO595ygoxCDRegt4DXUtDrrbLCjM3kNmK-xwIDhBVqBrGhJGIUjtMIYWMk4hWN0kvMNxpjJWrxCxyCoqAHYCm0v2tYZZ8NYbGIYU_RFbIvrOExejy6G4vuYJjNOyRYuFFdxZ32xTZ0OLvfFec7RuIW70sPgQvcavWy1z_bN3XuKfn6--LH5Wl5uv3zbnF-WpiZiLIWGhvOmqSXDraYNrxpoW2a5loRIXAthha4FbTQhmJjamB2REmi9w7wlXNNT9GnxHaamtzszL5C0V0NyvU5_VNROPf0Jbq-6-FsRwgWWbDb4cGeQ4q_J5lH1LhvrvQ42TllxXDFGxC34_hl4E6cU5uUUgQqI5FzO0LvHcR5y3B96BuQCmBRzTrZVxo3_Ljenc14BVrelqvtS5wFXS6mzlj7TPtj_V_VxUe1dtz-4ZFXutfdzQFCHwwG4UFQBx5L-BRtItkQ
CODEN GENTAE
CitedBy_id crossref_primary_10_3389_fpls_2020_577475
crossref_primary_10_3389_fpsyt_2021_725819
crossref_primary_10_1093_g3journal_jkab017
crossref_primary_10_29220_CSAM_2022_29_1_745
crossref_primary_10_1093_g3journal_jkab258
crossref_primary_10_4049_jimmunol_1401280
crossref_primary_10_3389_fpls_2016_01513
crossref_primary_10_1371_journal_pgen_1004445
crossref_primary_10_1371_journal_pone_0208196
crossref_primary_10_1038_s41593_021_00858_w
crossref_primary_10_1186_s12859_014_0421_z
crossref_primary_10_3389_fvets_2021_679074
crossref_primary_10_1002_tpg2_20427
crossref_primary_10_1534_genetics_109_107540
crossref_primary_10_1371_journal_pgen_1008805
crossref_primary_10_1073_pnas_2104315118
crossref_primary_10_1038_s41437_017_0023_4
crossref_primary_10_1093_genetics_iyab157
crossref_primary_10_1016_j_ajhg_2014_04_014
crossref_primary_10_1038_s41598_023_48293_0
crossref_primary_10_1111_nph_15034
crossref_primary_10_3389_fpls_2019_00394
crossref_primary_10_3389_fpls_2023_1123631
crossref_primary_10_1093_hmg_ddq510
crossref_primary_10_1186_s12864_015_2298_2
crossref_primary_10_1093_bioinformatics_btt148
crossref_primary_10_1186_s12859_023_05468_w
crossref_primary_10_1093_bioinformatics_bts291
crossref_primary_10_1186_gb_2011_12_10_232
crossref_primary_10_1186_s13059_016_0903_6
crossref_primary_10_1111_jbg_12191
crossref_primary_10_1016_j_plaphy_2013_04_014
crossref_primary_10_1101_gr_099234_109
crossref_primary_10_1371_journal_pgen_1005767
crossref_primary_10_1007_s00122_013_2113_x
crossref_primary_10_1007_s42161_022_01132_z
crossref_primary_10_2135_cropsci2018_03_0189
crossref_primary_10_1038_hdy_2017_27
crossref_primary_10_1371_journal_pgen_1001393
crossref_primary_10_1186_s12864_024_11188_z
crossref_primary_10_1038_s41467_018_05444_6
crossref_primary_10_1038_s41437_022_00528_y
crossref_primary_10_1104_pp_112_194027
crossref_primary_10_1371_journal_pone_0170941
crossref_primary_10_1093_bioinformatics_btaa1079
crossref_primary_10_1093_g3journal_jkae303
crossref_primary_10_1186_1746_4811_9_29
crossref_primary_10_1016_j_cmet_2012_12_007
crossref_primary_10_1038_ng_2876
crossref_primary_10_3168_jds_2020_18290
crossref_primary_10_3389_fpls_2018_01838
crossref_primary_10_1371_journal_pgen_1006848
crossref_primary_10_1371_journal_pone_0110436
crossref_primary_10_1111_pbi_12249
crossref_primary_10_1007_s00335_017_9694_7
crossref_primary_10_1086_688018
crossref_primary_10_1093_g3journal_jkab269
crossref_primary_10_1038_hdy_2017_13
crossref_primary_10_1007_s12041_018_0973_1
crossref_primary_10_1371_journal_pgen_1004412
crossref_primary_10_1016_j_fcr_2015_11_014
crossref_primary_10_1007_s10722_024_02304_9
crossref_primary_10_1371_journal_pgen_1001383
crossref_primary_10_1007_s00122_020_03621_0
crossref_primary_10_2135_cropsci2012_03_0167
crossref_primary_10_1016_j_ymeth_2018_04_020
crossref_primary_10_1186_s12870_022_03936_8
crossref_primary_10_1093_g3journal_jkac114
crossref_primary_10_1111_nph_15259
crossref_primary_10_1007_s00122_017_2957_6
crossref_primary_10_1111_j_1365_294X_2011_05225_x
crossref_primary_10_3390_plants14020193
crossref_primary_10_1007_s00438_024_02178_7
crossref_primary_10_7554_eLife_48220
crossref_primary_10_1016_j_cels_2016_10_016
crossref_primary_10_1007_s00122_022_04110_2
crossref_primary_10_1007_s10681_013_0963_6
crossref_primary_10_1016_j_bone_2015_08_013
crossref_primary_10_1161_JAHA_119_014257
crossref_primary_10_1186_s12864_019_5935_3
crossref_primary_10_1016_j_cj_2020_04_008
crossref_primary_10_1104_pp_113_224014
crossref_primary_10_2135_cropsci2013_01_0051
crossref_primary_10_1016_j_tig_2011_10_006
crossref_primary_10_1534_g3_113_008326
crossref_primary_10_1111_gbb_12142
crossref_primary_10_3389_fgene_2022_898522
crossref_primary_10_1016_j_livsci_2018_12_012
crossref_primary_10_1534_genetics_116_198051
crossref_primary_10_1371_journal_pone_0091850
crossref_primary_10_1093_genetics_iyab115
crossref_primary_10_1093_pcp_pcaa073
crossref_primary_10_1038_s41598_019_54519_x
crossref_primary_10_1111_nph_18341
crossref_primary_10_1038_s41437_020_00401_w
crossref_primary_10_1371_journal_pone_0193415
crossref_primary_10_1007_s00335_012_9441_z
crossref_primary_10_1038_srep36671
crossref_primary_10_1371_journal_pgen_1003150
crossref_primary_10_1371_journal_pgen_1006891
crossref_primary_10_3390_ani11020469
crossref_primary_10_7554_eLife_86169_3
crossref_primary_10_1016_j_ajhg_2014_03_016
crossref_primary_10_1534_g3_119_400194
crossref_primary_10_3389_fpls_2019_01278
crossref_primary_10_1186_s12864_019_5615_3
crossref_primary_10_1002_jbmr_2195
crossref_primary_10_1093_bioinformatics_btn648
crossref_primary_10_1186_s12864_022_09096_1
crossref_primary_10_1534_g3_112_004911
crossref_primary_10_1007_s00122_022_04134_8
crossref_primary_10_1093_bioinformatics_btz759
crossref_primary_10_2217_14622416_9_9_1323
crossref_primary_10_1371_journal_pgen_1001198
crossref_primary_10_1038_s41467_019_10331_9
crossref_primary_10_1371_journal_pgen_1007732
crossref_primary_10_1016_j_cell_2013_06_040
crossref_primary_10_3390_ijms21186518
crossref_primary_10_1158_0008_5472_CAN_09_0782
crossref_primary_10_1371_journal_pgen_1007978
crossref_primary_10_3168_jds_2017_12982
crossref_primary_10_1534_g3_112_002501
crossref_primary_10_1038_nmeth_1681
crossref_primary_10_1371_journal_pbio_1001125
crossref_primary_10_1016_j_cj_2023_10_014
crossref_primary_10_1371_journal_pgen_1002038
crossref_primary_10_1371_journal_ppat_1007226
crossref_primary_10_1158_0008_5472_CAN_11_1418
crossref_primary_10_1534_genetics_114_171447
crossref_primary_10_1007_s10681_022_03021_z
crossref_primary_10_1371_journal_pone_0018957
crossref_primary_10_1111_tpj_14414
crossref_primary_10_1016_j_stress_2025_100764
crossref_primary_10_1038_ng_2824
crossref_primary_10_1371_journal_pcbi_1002330
crossref_primary_10_1371_journal_pgen_1005789
crossref_primary_10_1111_tpj_14650
crossref_primary_10_1007_s10681_016_1663_9
crossref_primary_10_1007_s00439_021_02317_9
crossref_primary_10_1038_s41588_024_02044_7
crossref_primary_10_1007_s00213_011_2574_z
crossref_primary_10_1145_2817827
crossref_primary_10_1186_s12711_017_0338_x
crossref_primary_10_1124_dmd_118_082834
crossref_primary_10_1186_s12864_015_2245_2
crossref_primary_10_3389_fgene_2020_567757
crossref_primary_10_2135_cropsci2013_05_0319
crossref_primary_10_1111_ppl_14404
crossref_primary_10_1038_nrg3335
crossref_primary_10_1111_nph_12611
crossref_primary_10_1017_S1751731119003409
crossref_primary_10_1093_bioinformatics_btn455
crossref_primary_10_1186_1471_2164_15_646
crossref_primary_10_3389_fgene_2023_1292671
crossref_primary_10_3390_e22030329
crossref_primary_10_1007_s00122_019_03517_8
crossref_primary_10_1111_tpj_12681
crossref_primary_10_1111_age_12018
crossref_primary_10_1681_ASN_2018050549
crossref_primary_10_1093_pcp_pcae079
crossref_primary_10_1111_mec_13322
crossref_primary_10_1111_mec_13563
crossref_primary_10_1007_s00122_012_1866_y
crossref_primary_10_1534_g3_111_001792
crossref_primary_10_1534_genetics_119_302462
crossref_primary_10_1038_s41598_022_21214_3
crossref_primary_10_1186_s12864_015_1811_y
crossref_primary_10_1186_s12864_019_5964_y
crossref_primary_10_3168_jds_2022_22694
crossref_primary_10_3389_fpls_2018_01405
crossref_primary_10_3389_fpls_2022_836723
crossref_primary_10_1007_s11032_013_9924_y
crossref_primary_10_1007_s00122_019_03528_5
crossref_primary_10_1038_s41598_020_78907_w
crossref_primary_10_1186_s12863_017_0553_z
crossref_primary_10_1186_s12864_016_2455_2
crossref_primary_10_1038_srep31109
crossref_primary_10_1007_s10681_012_0713_1
crossref_primary_10_15835_nbha49412525
crossref_primary_10_1289_EHP1274
crossref_primary_10_1016_j_hpj_2025_01_004
crossref_primary_10_1111_j_1365_3040_2012_02522_x
crossref_primary_10_1080_12538078_2013_807302
crossref_primary_10_1146_annurev_genet_110711_155511
crossref_primary_10_1016_j_molmet_2022_101557
crossref_primary_10_1007_s00122_015_2504_2
crossref_primary_10_1093_aob_mcy221
crossref_primary_10_1534_g3_111_000489
crossref_primary_10_1016_j_celrep_2016_07_085
crossref_primary_10_1093_bioinformatics_btz304
crossref_primary_10_1093_bioinformatics_btz786
crossref_primary_10_1186_s12711_022_00724_8
crossref_primary_10_3835_plantgenome2015_08_0073
crossref_primary_10_1007_s10681_019_2474_6
crossref_primary_10_1097_HCO_0000000000000160
crossref_primary_10_1007_s00438_019_01563_x
crossref_primary_10_1371_journal_pone_0107684
crossref_primary_10_1111_pce_12518
crossref_primary_10_1016_j_cell_2013_11_043
crossref_primary_10_1007_s13253_015_0229_y
crossref_primary_10_1111_j_1469_8137_2011_03983_x
crossref_primary_10_1214_15_EJS1069
crossref_primary_10_1016_j_aquaculture_2025_742225
crossref_primary_10_1138_20090380
crossref_primary_10_1186_s12711_018_0383_0
crossref_primary_10_7554_eLife_86169
crossref_primary_10_1007_s00335_013_9448_0
crossref_primary_10_3389_fpls_2024_1429802
crossref_primary_10_1094_PDIS_03_23_0576_RE
crossref_primary_10_1186_1471_2164_15_873
crossref_primary_10_1007_s11032_013_9890_4
crossref_primary_10_1007_s00122_020_03569_1
crossref_primary_10_1161_CIRCGENETICS_113_000732
crossref_primary_10_1371_journal_pgen_1002221
crossref_primary_10_1093_bioinformatics_btac455
crossref_primary_10_3389_fpls_2018_01464
crossref_primary_10_1186_s12711_018_0402_1
crossref_primary_10_1007_s00335_015_9581_z
crossref_primary_10_1186_s12870_021_03046_x
crossref_primary_10_1371_journal_pgen_1006823
crossref_primary_10_1080_03610918_2019_1646760
crossref_primary_10_1007_s00122_017_2904_6
crossref_primary_10_1126_science_1209244
crossref_primary_10_1186_1753_6561_8_S1_S87
crossref_primary_10_1534_genetics_117_202259
crossref_primary_10_1186_s13059_023_02892_2
crossref_primary_10_1534_g3_117_300222
crossref_primary_10_1007_s00335_014_9523_1
crossref_primary_10_1534_genetics_113_152462
crossref_primary_10_1371_journal_pone_0193499
crossref_primary_10_3389_fpls_2022_1070410
crossref_primary_10_1186_1471_2105_12_265
crossref_primary_10_2135_cropsci2010_02_0064
crossref_primary_10_3389_fpls_2020_00070
crossref_primary_10_1038_nrg3522
crossref_primary_10_1111_age_13151
crossref_primary_10_2217_pgs_10_165
crossref_primary_10_1186_s12859_018_2057_x
crossref_primary_10_1007_s00122_019_03439_5
crossref_primary_10_3389_fpsyt_2021_793961
crossref_primary_10_1007_s00335_018_9762_7
crossref_primary_10_1534_g3_119_400369
crossref_primary_10_1371_journal_pone_0231157
crossref_primary_10_3390_biology11111649
crossref_primary_10_3389_fpls_2017_01110
crossref_primary_10_3835_plantgenome2012_02_0001
crossref_primary_10_3389_fpls_2022_1099293
crossref_primary_10_1038_s41437_019_0205_3
crossref_primary_10_3389_fgene_2020_00163
crossref_primary_10_1073_pnas_1202734109
crossref_primary_10_1093_genetics_iyae018
crossref_primary_10_1016_j_jevs_2017_05_008
crossref_primary_10_1093_bioinformatics_bty017
crossref_primary_10_1007_s11032_023_01357_5
crossref_primary_10_1089_cmb_2021_0157
crossref_primary_10_1093_bioinformatics_bty015
crossref_primary_10_1111_nph_20241
crossref_primary_10_1534_g3_117_300248
crossref_primary_10_1111_mec_14838
crossref_primary_10_1534_genetics_119_302286
crossref_primary_10_1007_s00122_018_3111_9
crossref_primary_10_3390_ani12141855
crossref_primary_10_1534_g3_116_029090
crossref_primary_10_1186_s12864_015_2212_y
crossref_primary_10_1038_mp_2011_32
crossref_primary_10_1534_genetics_117_300501
crossref_primary_10_1093_bioinformatics_bty253
crossref_primary_10_1111_pce_12961
crossref_primary_10_1038_nrg2896
crossref_primary_10_1186_s13059_016_0895_2
crossref_primary_10_1094_PDIS_11_14_1131_RE
crossref_primary_10_3389_fpls_2017_02213
crossref_primary_10_1534_g3_116_032268
crossref_primary_10_1080_01621459_2020_1799809
crossref_primary_10_3168_jds_2021_21079
crossref_primary_10_1038_hdy_2011_73
crossref_primary_10_1038_s41467_021_21592_8
crossref_primary_10_1093_g3journal_jkad246
crossref_primary_10_1002_gepi_22022
crossref_primary_10_1007_s00122_011_1732_3
crossref_primary_10_1093_dnares_dsv036
crossref_primary_10_1534_g3_111_001768
crossref_primary_10_1186_1471_2156_10_81
crossref_primary_10_3835_plantgenome2015_11_0120
crossref_primary_10_1172_JCI73072
crossref_primary_10_1371_journal_pgen_1008492
crossref_primary_10_1016_j_bbrep_2021_101105
crossref_primary_10_1093_bioinformatics_btaa199
crossref_primary_10_1371_journal_pgen_1007162
crossref_primary_10_1098_rstb_2019_0612
crossref_primary_10_3198_jpr2014_12_0083crmp
crossref_primary_10_1038_hdy_2017_8
crossref_primary_10_3390_agriculture11040318
crossref_primary_10_1534_genetics_120_303153
crossref_primary_10_1534_genetics_120_303393
crossref_primary_10_1016_j_scienta_2023_112838
crossref_primary_10_1080_24709360_2018_1529346
crossref_primary_10_1007_s13253_015_0225_2
crossref_primary_10_1038_srep06874
crossref_primary_10_1101_gr_111310_110
crossref_primary_10_1152_ajprenal_00690_2011
crossref_primary_10_1016_j_ajhg_2016_04_016
crossref_primary_10_1186_s12864_015_1415_6
crossref_primary_10_3390_ani14192795
crossref_primary_10_3389_fpls_2017_00648
crossref_primary_10_1016_j_neuroimage_2011_03_077
crossref_primary_10_1371_journal_pone_0039929
crossref_primary_10_1038_hdy_2017_4
crossref_primary_10_1093_bioinformatics_btz244
crossref_primary_10_1038_ncomms1467
crossref_primary_10_1093_database_bav076
crossref_primary_10_1007_s00122_019_03356_7
crossref_primary_10_1016_j_jglr_2018_08_006
crossref_primary_10_1534_g3_113_007807
crossref_primary_10_1093_gpbjnl_qzae020
crossref_primary_10_1038_nature12615
crossref_primary_10_1371_journal_pone_0117737
crossref_primary_10_1016_j_ygeno_2020_12_014
crossref_primary_10_1111_jph_12705
crossref_primary_10_1016_j_molp_2022_02_012
crossref_primary_10_1158_1055_9965_EPI_12_0190_T
crossref_primary_10_2135_cropsci2011_05_0253
crossref_primary_10_1038_s41598_019_50853_2
crossref_primary_10_1534_genetics_115_177816
crossref_primary_10_1371_journal_pone_0048653
crossref_primary_10_1007_s10499_021_00747_w
crossref_primary_10_1007_s00335_012_9411_5
crossref_primary_10_1534_genetics_111_135095
crossref_primary_10_1007_s10681_016_1820_1
crossref_primary_10_1016_j_freeradbiomed_2014_02_027
crossref_primary_10_1186_s13059_021_02416_w
crossref_primary_10_1038_hdy_2011_40
crossref_primary_10_1534_genetics_109_102756
crossref_primary_10_1111_asj_13985
crossref_primary_10_15252_msb_202110663
crossref_primary_10_7554_eLife_79238
crossref_primary_10_1534_g3_113_008706
crossref_primary_10_1534_genetics_112_147595
crossref_primary_10_1186_s12864_018_4899_z
crossref_primary_10_1038_s42003_023_04603_w
crossref_primary_10_1186_s12711_019_0492_4
crossref_primary_10_1371_journal_pone_0116674
crossref_primary_10_1007_s00122_011_1697_2
crossref_primary_10_1214_17_EJS1386
crossref_primary_10_1038_hdy_2011_29
crossref_primary_10_21105_joss_01435
crossref_primary_10_3389_fpls_2017_01954
crossref_primary_10_3389_fpls_2023_1221644
crossref_primary_10_1534_g3_114_012427
crossref_primary_10_1073_pnas_2205305119
crossref_primary_10_1534_genetics_120_303143
crossref_primary_10_1186_s12864_020_6742_6
crossref_primary_10_3389_fpls_2023_1104303
crossref_primary_10_3835_plantgenome2011_07_0020
crossref_primary_10_1038_ng_1050
crossref_primary_10_1186_s12859_019_3300_9
crossref_primary_10_3168_jds_2019_17409
crossref_primary_10_1186_1471_2156_12_66
crossref_primary_10_3390_genes12050736
crossref_primary_10_1007_s12355_020_00852_9
crossref_primary_10_1016_j_ymeth_2009_03_004
crossref_primary_10_3389_fgene_2021_703901
crossref_primary_10_1016_j_cj_2016_06_003
crossref_primary_10_1152_ajplung_00466_2016
crossref_primary_10_3390_ani9060305
crossref_primary_10_1534_genetics_113_157628
crossref_primary_10_1038_hdy_2010_168
crossref_primary_10_3389_fpls_2017_00678
crossref_primary_10_1111_pbr_12237
crossref_primary_10_1371_journal_pntd_0001435
crossref_primary_10_3390_plants11233277
crossref_primary_10_1098_rstb_2020_0512
crossref_primary_10_1007_s10681_022_03103_y
crossref_primary_10_1016_j_aquaculture_2025_742232
crossref_primary_10_1093_bioinformatics_bts669
crossref_primary_10_1007_s10722_023_01657_x
crossref_primary_10_1038_ng_2376
crossref_primary_10_1002_gepi_22200
crossref_primary_10_1111_mec_12396
crossref_primary_10_1152_ajplung_00118_2014
crossref_primary_10_1093_nar_gkr1061
crossref_primary_10_3390_genes11070767
crossref_primary_10_1371_journal_pgen_1000551
crossref_primary_10_1186_s12864_025_11364_9
crossref_primary_10_1186_1471_2156_14_17
crossref_primary_10_1016_j_molp_2022_01_004
crossref_primary_10_1016_j_ebiom_2016_05_041
crossref_primary_10_1186_1471_2105_15_246
crossref_primary_10_1371_journal_pone_0240029
crossref_primary_10_1093_plphys_kiac533
crossref_primary_10_1073_pnas_1421416112
crossref_primary_10_1002_tpg2_20054
crossref_primary_10_1007_s00122_022_04040_z
crossref_primary_10_1007_s00122_020_03628_7
crossref_primary_10_1038_ng_1074
crossref_primary_10_1534_g3_112_004259
crossref_primary_10_1007_s11032_016_0606_4
crossref_primary_10_1111_mec_13474
crossref_primary_10_1523_JNEUROSCI_5561_11_2012
crossref_primary_10_1002_cphg_48
crossref_primary_10_1093_bioinformatics_bts444
crossref_primary_10_1007_s00122_015_2465_5
crossref_primary_10_1073_pnas_1811758115
crossref_primary_10_3389_fpls_2017_01500
crossref_primary_10_1007_s10071_018_01234_1
crossref_primary_10_1093_jxb_erq308
crossref_primary_10_1371_journal_pgen_1010345
crossref_primary_10_1016_j_heliyon_2024_e27048
crossref_primary_10_1152_physiolgenomics_00127_2013
crossref_primary_10_3389_fgene_2020_00447
crossref_primary_10_3389_fgene_2020_00689
crossref_primary_10_3389_fpls_2024_1429976
crossref_primary_10_1093_molbev_msu170
crossref_primary_10_1128_mBio_00538_12
crossref_primary_10_1186_s12870_016_0829_x
crossref_primary_10_3389_fmicb_2018_01391
crossref_primary_10_1111_age_12792
crossref_primary_10_1111_j_1365_294X_2012_05678_x
crossref_primary_10_3835_plantgenome2011_08_0024
crossref_primary_10_1161_CIRCRESAHA_114_302931
crossref_primary_10_1038_ng_3008
crossref_primary_10_1371_journal_pgen_1003803
crossref_primary_10_1126_sciadv_1400218
crossref_primary_10_3389_fgene_2022_945787
crossref_primary_10_1038_s41437_017_0007_4
crossref_primary_10_1093_bib_bbae290
crossref_primary_10_1096_fj_201700187R
crossref_primary_10_1093_molbev_msab208
crossref_primary_10_1007_s11103_022_01265_w
crossref_primary_10_1016_j_stemcr_2015_05_008
crossref_primary_10_1007_s00122_017_2974_5
crossref_primary_10_3390_agronomy12112839
crossref_primary_10_1186_gb_2014_15_4_r61
crossref_primary_10_3390_ijms252312758
crossref_primary_10_1007_s00299_024_03172_4
crossref_primary_10_1002_tpg2_20077
crossref_primary_10_1186_s12870_015_0496_3
crossref_primary_10_1371_journal_pgen_1003807
crossref_primary_10_3389_fpls_2021_774478
crossref_primary_10_3390_agronomy14102214
crossref_primary_10_1007_s00122_014_2448_y
crossref_primary_10_1038_s42003_020_0990_5
crossref_primary_10_1111_nph_14595
crossref_primary_10_1152_ajplung_00276_2020
crossref_primary_10_1186_s12870_014_0209_3
crossref_primary_10_3168_jds_2018_15298
crossref_primary_10_1002_gepi_21725
crossref_primary_10_1186_s12863_021_00995_y
crossref_primary_10_1038_s41467_020_14791_2
crossref_primary_10_1111_1755_0998_12714
crossref_primary_10_1016_j_livsci_2018_01_005
crossref_primary_10_1161_CIRCRESAHA_112_269084
crossref_primary_10_1007_s00122_018_3175_6
crossref_primary_10_1007_s00122_016_2811_2
crossref_primary_10_1002_gepi_21953
crossref_primary_10_1098_rspb_2019_0716
crossref_primary_10_1534_genetics_111_132639
crossref_primary_10_1094_PDIS_11_19_2402_RE
crossref_primary_10_1534_genetics_114_168690
crossref_primary_10_1093_gigascience_giz015
crossref_primary_10_1093_nar_gkx204
crossref_primary_10_1016_j_ajhg_2016_02_012
crossref_primary_10_1093_molbev_mst073
crossref_primary_10_1371_journal_pone_0259278
crossref_primary_10_1534_genetics_113_157032
crossref_primary_10_3168_jds_2015_10697
crossref_primary_10_1007_s00122_014_2400_1
crossref_primary_10_7554_eLife_72664
crossref_primary_10_1371_journal_pgen_1007309
crossref_primary_10_1186_s13059_021_02407_x
crossref_primary_10_1007_s10681_018_2238_8
crossref_primary_10_1002_tpg2_20051
crossref_primary_10_1016_j_eja_2015_04_007
crossref_primary_10_1002_gepi_21942
crossref_primary_10_1038_npp_2012_49
crossref_primary_10_1186_s13068_020_01807_8
crossref_primary_10_1080_03610918_2017_1307395
crossref_primary_10_1093_jxb_erad204
crossref_primary_10_3389_fgene_2021_745361
crossref_primary_10_1111_tpj_15379
crossref_primary_10_1159_000447634
crossref_primary_10_1007_s10994_019_05848_5
crossref_primary_10_1186_s12284_019_0348_0
crossref_primary_10_1371_journal_pgen_1004022
crossref_primary_10_1007_s00122_013_2056_2
crossref_primary_10_1038_s41588_019_0546_0
crossref_primary_10_1158_1541_7786_MCR_10_0540
crossref_primary_10_1371_journal_pone_0103747
crossref_primary_10_1093_hr_uhab040
crossref_primary_10_1094_PHYTO_03_11_0076
crossref_primary_10_1111_j_1541_0420_2009_01352_x
crossref_primary_10_3389_fgene_2021_649196
crossref_primary_10_1016_j_gpb_2021_08_005
crossref_primary_10_1038_srep29951
crossref_primary_10_1111_jbg_12378
crossref_primary_10_3389_fgene_2021_664343
crossref_primary_10_1146_annurev_genom_091212_153419
crossref_primary_10_1016_j_aquaculture_2021_736998
crossref_primary_10_1038_s41437_019_0235_x
crossref_primary_10_1534_g3_119_400617
crossref_primary_10_1002_bimj_201800319
crossref_primary_10_1371_journal_pcbi_1005357
crossref_primary_10_1002_gepi_21932
crossref_primary_10_1007_s10681_017_2090_2
crossref_primary_10_1007_s10709_018_0027_x
crossref_primary_10_1016_j_ajhg_2013_03_014
crossref_primary_10_3835_plantgenome2016_07_0071
crossref_primary_10_1038_s42003_022_04325_5
crossref_primary_10_1007_s00122_020_03687_w
crossref_primary_10_1007_s12042_022_09326_6
crossref_primary_10_1016_j_ajhg_2013_03_010
crossref_primary_10_1093_bioadv_vbae168
crossref_primary_10_3835_plantgenome2016_07_0072
crossref_primary_10_1186_s12870_015_0494_5
crossref_primary_10_3835_plantgenome2016_04_0038
crossref_primary_10_1038_s41586_020_1997_2
crossref_primary_10_1093_bioinformatics_bts022
crossref_primary_10_1111_njb_04078
crossref_primary_10_3835_plantgenome2010_12_0029
crossref_primary_10_1186_1475_2875_9_160
crossref_primary_10_3389_fpls_2015_00813
crossref_primary_10_1016_j_heares_2015_12_006
crossref_primary_10_1089_cmb_2019_0325
crossref_primary_10_1002_gepi_21764
crossref_primary_10_1038_s41437_019_0244_9
crossref_primary_10_1534_genetics_114_164285
crossref_primary_10_1371_journal_pone_0029350
crossref_primary_10_1534_g3_114_013748
crossref_primary_10_1186_gb_2013_14_6_r53
crossref_primary_10_1186_s12284_020_00424_1
crossref_primary_10_1371_journal_pcbi_1005311
crossref_primary_10_3390_genes8060167
crossref_primary_10_1093_hr_uhae135
crossref_primary_10_1186_s12859_017_1622_z
crossref_primary_10_1371_journal_pone_0111308
crossref_primary_10_3390_genes11111286
crossref_primary_10_1007_s10681_022_03129_2
crossref_primary_10_3835_plantgenome2010_12_0030
crossref_primary_10_15252_msb_20145123
crossref_primary_10_1080_10408398_2024_2430749
crossref_primary_10_1007_s00122_022_04103_1
crossref_primary_10_2135_cropsci2019_01_0003
crossref_primary_10_1111_tpj_15364
crossref_primary_10_1016_j_jcs_2014_08_007
crossref_primary_10_1371_journal_pone_0199121
crossref_primary_10_1111_tpj_14034
crossref_primary_10_1186_s12284_023_00672_x
crossref_primary_10_1016_j_xgen_2021_100003
crossref_primary_10_1093_bioinformatics_btaa610
crossref_primary_10_1016_j_cpb_2020_100145
crossref_primary_10_1111_j_1469_1809_2012_00729_x
crossref_primary_10_1093_jxb_erac156
crossref_primary_10_1534_g3_115_020784
crossref_primary_10_1534_genetics_110_117390
crossref_primary_10_3389_fpls_2017_00815
crossref_primary_10_1038_s41467_024_55477_3
crossref_primary_10_1007_s00335_013_9495_6
crossref_primary_10_1371_journal_pgen_1000940
crossref_primary_10_1073_pnas_1210585109
crossref_primary_10_1186_s12864_016_3129_9
crossref_primary_10_1371_journal_pbio_3002847
crossref_primary_10_1029_2024JG008404
crossref_primary_10_1161_CIRCRESAHA_110_224634
crossref_primary_10_1007_s00122_014_2444_2
crossref_primary_10_1016_j_biopsych_2022_08_014
crossref_primary_10_1038_ncomms8432
crossref_primary_10_1002_gepi_21988
crossref_primary_10_1017_thg_2012_15
crossref_primary_10_1371_journal_pcbi_1009923
crossref_primary_10_1186_s12864_021_07834_5
crossref_primary_10_20900_cbgg20220002
crossref_primary_10_1089_forensic_2023_0006
crossref_primary_10_1371_journal_pgen_1009754
crossref_primary_10_3389_fpls_2020_590740
crossref_primary_10_3389_fpls_2018_01912
crossref_primary_10_1534_genetics_114_166249
crossref_primary_10_2135_cropsci2010_12_0732
crossref_primary_10_1186_1471_2164_15_13
crossref_primary_10_1002_tpg2_20005
crossref_primary_10_1038_ng_2314
crossref_primary_10_1016_j_indcrop_2019_111877
crossref_primary_10_1371_journal_pbio_1000451
crossref_primary_10_1038_ng_2310
crossref_primary_10_3389_fcvm_2017_00008
crossref_primary_10_1016_j_ymeth_2010_07_007
crossref_primary_10_1038_s41559_017_0229_0
crossref_primary_10_1186_1471_2156_14_77
crossref_primary_10_1214_17_AOAS1052
crossref_primary_10_3390_plants11192504
crossref_primary_10_1038_hdy_2016_84
crossref_primary_10_1093_jxb_erad239
crossref_primary_10_1007_s10725_019_00550_x
crossref_primary_10_1016_j_pbi_2014_11_008
crossref_primary_10_1038_s41467_019_14213_y
crossref_primary_10_1093_biostatistics_kxr034
crossref_primary_10_1371_journal_pone_0124401
crossref_primary_10_1094_PHYTO_02_14_0031_R
crossref_primary_10_1038_ncomms15603
crossref_primary_10_1038_ng_3636
crossref_primary_10_1038_ncomms15842
crossref_primary_10_1007_s10499_019_00376_4
crossref_primary_10_3389_fpls_2014_00485
crossref_primary_10_1038_nature08800
crossref_primary_10_3389_fgene_2021_642065
crossref_primary_10_1186_s13059_021_02354_7
crossref_primary_10_1534_genetics_117_300673
crossref_primary_10_3389_fgene_2022_750814
crossref_primary_10_1186_s13068_016_0603_1
crossref_primary_10_1007_s00122_013_2210_x
crossref_primary_10_1105_tpc_114_129601
crossref_primary_10_1371_journal_pgen_1005650
crossref_primary_10_1038_s41598_021_80996_0
crossref_primary_10_1007_s10681_024_03374_7
crossref_primary_10_1007_s11032_019_1048_6
crossref_primary_10_1270_jsbbs_23067
crossref_primary_10_1104_pp_110_169870
crossref_primary_10_1371_journal_pone_0204952
crossref_primary_10_1534_genetics_112_140277
crossref_primary_10_1093_g3journal_jkab131
crossref_primary_10_1073_pnas_1010179107
crossref_primary_10_3389_fgene_2019_00398
crossref_primary_10_1016_j_nano_2016_05_019
crossref_primary_10_1093_jhered_esv100
crossref_primary_10_3389_fmicb_2023_1192574
crossref_primary_10_1093_bioinformatics_btv448
crossref_primary_10_1534_genetics_116_192823
crossref_primary_10_1101_pdb_top077602
crossref_primary_10_1017_S0021859617000612
crossref_primary_10_1007_s11032_010_9500_7
crossref_primary_10_1111_pce_13357
crossref_primary_10_1534_genetics_114_164814
crossref_primary_10_1002_jsfa_12183
crossref_primary_10_1093_g3journal_jkab122
crossref_primary_10_1534_genetics_109_108522
crossref_primary_10_1186_s12859_022_05030_0
crossref_primary_10_1111_tpj_13262
crossref_primary_10_1007_s00335_012_9409_z
crossref_primary_10_1183_23120541_00253_2021
crossref_primary_10_1002_fes3_29
crossref_primary_10_3390_ijms24054915
crossref_primary_10_1016_j_livsci_2019_04_004
crossref_primary_10_1007_s11033_019_05225_4
crossref_primary_10_1371_journal_pone_0089831
crossref_primary_10_1186_s12870_015_0559_5
crossref_primary_10_1603_ME11113
crossref_primary_10_1371_journal_pone_0122797
crossref_primary_10_1093_g3journal_jkac004
crossref_primary_10_1111_pbi_13452
crossref_primary_10_1186_s12864_016_2948_z
crossref_primary_10_1534_genetics_112_141143
crossref_primary_10_1007_s00122_021_04014_7
crossref_primary_10_1371_journal_pone_0010903
crossref_primary_10_1038_s41467_020_18329_4
crossref_primary_10_3389_fpls_2019_01140
crossref_primary_10_1111_pbi_12122
crossref_primary_10_1152_physiolgenomics_00054_2016
crossref_primary_10_1007_s00122_018_3110_x
crossref_primary_10_1111_ahg_12527
crossref_primary_10_1371_journal_pone_0213407
crossref_primary_10_3389_fpls_2017_02136
crossref_primary_10_3390_agronomy10010144
crossref_primary_10_1016_j_xplc_2024_101196
crossref_primary_10_1534_g3_114_015263
crossref_primary_10_1038_s41467_022_33318_5
crossref_primary_10_1093_bib_bbp050
crossref_primary_10_1186_1471_2156_15_3
crossref_primary_10_1007_s00122_012_1945_0
crossref_primary_10_1093_g3journal_jkaa053
crossref_primary_10_1080_1343943X_2018_1483205
crossref_primary_10_1186_s12864_019_6231_y
crossref_primary_10_1152_physiolgenomics_00108_2010
crossref_primary_10_1590_1678_4499_20180180
crossref_primary_10_1111_gbb_12029
crossref_primary_10_1007_s00335_011_9385_8
crossref_primary_10_1007_s00122_013_2254_y
crossref_primary_10_1086_669665
crossref_primary_10_1534_genetics_111_132563
crossref_primary_10_3389_fpls_2018_01982
crossref_primary_10_1111_nph_16291
crossref_primary_10_3389_fpls_2018_00650
crossref_primary_10_1111_pbi_12538
crossref_primary_10_3390_genes12091443
crossref_primary_10_1007_s10681_019_2340_6
crossref_primary_10_1016_j_rsci_2020_04_007
crossref_primary_10_1007_s10681_021_02800_4
crossref_primary_10_1038_s41437_021_00456_3
crossref_primary_10_1534_genetics_118_301609
crossref_primary_10_3390_plants13172520
crossref_primary_10_3835_plantgenome2016_07_0064
crossref_primary_10_1007_s11295_016_0975_1
crossref_primary_10_1094_MPMI_09_15_0218_R
crossref_primary_10_1111_gbb_12262
crossref_primary_10_1186_gb_2012_13_1_r1
crossref_primary_10_1371_journal_pone_0079866
crossref_primary_10_3835_plantgenome2011_02_0007
crossref_primary_10_1007_s11295_011_0426_y
crossref_primary_10_1186_1753_6561_5_S9_S35
crossref_primary_10_1007_s00122_019_03425_x
crossref_primary_10_1186_s12859_023_05316_x
crossref_primary_10_3389_fgene_2019_01287
crossref_primary_10_1371_journal_pone_0107101
crossref_primary_10_1371_journal_pgen_1003264
crossref_primary_10_3389_fpls_2018_00881
crossref_primary_10_1016_j_plantsci_2023_111748
crossref_primary_10_1073_pnas_2109040118
crossref_primary_10_1007_s11032_012_9737_4
crossref_primary_10_1016_j_ajhg_2020_08_009
crossref_primary_10_1093_bib_bby081
crossref_primary_10_1126_science_1214318
crossref_primary_10_1371_journal_pone_0156744
crossref_primary_10_3390_math12131944
crossref_primary_10_3389_fpls_2018_01728
crossref_primary_10_1186_s13068_024_02489_2
crossref_primary_10_2135_cropsci2014_06_0428
crossref_primary_10_1093_dnares_dsy043
crossref_primary_10_1038_s41437_020_00390_w
crossref_primary_10_1134_S1022795421020083
crossref_primary_10_1371_journal_pone_0277041
crossref_primary_10_1002_wics_1617
crossref_primary_10_1186_s12863_021_00970_7
crossref_primary_10_1038_s41598_018_21301_4
crossref_primary_10_1371_journal_pone_0023192
crossref_primary_10_1038_s41598_021_83581_7
crossref_primary_10_1007_s10162_020_00762_3
crossref_primary_10_1186_1471_2164_15_1164
crossref_primary_10_1371_journal_pone_0006610
crossref_primary_10_1534_genetics_114_167056
crossref_primary_10_7554_eLife_89749
crossref_primary_10_1534_g3_115_017533
crossref_primary_10_1094_PHYTO_02_11_0041
crossref_primary_10_1101_gr_155762_113
crossref_primary_10_1038_srep01815
crossref_primary_10_1073_pnas_1705884114
crossref_primary_10_3389_fpls_2018_01759
crossref_primary_10_1038_s41598_017_00638_2
crossref_primary_10_1152_physiolgenomics_00071_2018
crossref_primary_10_1534_genetics_116_189431
crossref_primary_10_1016_j_tig_2020_05_005
crossref_primary_10_1093_g3journal_jkab105
crossref_primary_10_1111_eva_13566
crossref_primary_10_1186_s12864_020_6552_x
crossref_primary_10_1371_journal_pgen_1003246
crossref_primary_10_1016_j_ygeno_2014_12_001
crossref_primary_10_1186_s12859_020_3450_9
crossref_primary_10_1073_pnas_1203433109
crossref_primary_10_1093_bioinformatics_btaa345
crossref_primary_10_1111_nph_15171
crossref_primary_10_1371_journal_pgen_1003491
crossref_primary_10_1093_gigascience_giy154
crossref_primary_10_2527_jas_2016_0279
crossref_primary_10_1016_j_ajhg_2018_12_012
crossref_primary_10_1007_s00122_022_04218_5
crossref_primary_10_1016_j_csda_2021_107264
crossref_primary_10_1186_s12863_014_0153_0
crossref_primary_10_1038_s41588_023_01379_x
crossref_primary_10_1534_genetics_115_178491
crossref_primary_10_1007_s11032_022_01296_7
crossref_primary_10_3389_fgene_2020_590012
crossref_primary_10_1093_toxsci_kfs238
crossref_primary_10_1002_gepi_22378
crossref_primary_10_1093_bioinformatics_btae719
crossref_primary_10_1007_s10071_020_01400_4
crossref_primary_10_1002_sim_5865
crossref_primary_10_7554_eLife_09178
crossref_primary_10_1093_dnares_dsaa012
crossref_primary_10_1111_pce_12644
crossref_primary_10_1016_j_isci_2022_104803
crossref_primary_10_1016_j_tig_2012_03_001
crossref_primary_10_1534_genetics_114_167916
crossref_primary_10_1007_s00425_015_2434_x
crossref_primary_10_1038_ng_546
crossref_primary_10_1186_1471_2164_15_767
crossref_primary_10_1038_ng_548
crossref_primary_10_1002_gepi_22371
crossref_primary_10_1016_j_pbi_2023_102399
crossref_primary_10_1371_journal_pone_0247824
crossref_primary_10_3389_fgene_2021_742752
crossref_primary_10_1214_12_AOAS586
crossref_primary_10_1038_s41598_021_90774_7
crossref_primary_10_1073_pnas_1305883110
crossref_primary_10_1093_bfgp_elu022
crossref_primary_10_7554_eLife_35471
crossref_primary_10_1186_1741_7007_8_96
crossref_primary_10_1007_s00122_018_3103_9
crossref_primary_10_1093_genetics_iyae143
crossref_primary_10_1145_2788502
crossref_primary_10_3389_fpls_2016_00386
crossref_primary_10_1093_dnares_dsu046
crossref_primary_10_1089_cmb_2016_0174
crossref_primary_10_1371_journal_pgen_1010153
crossref_primary_10_1007_s11032_021_01239_8
crossref_primary_10_1016_j_rsci_2022_07_006
crossref_primary_10_3389_fgene_2019_00302
crossref_primary_10_1093_jxb_eraa610
crossref_primary_10_1186_s12284_019_0340_8
crossref_primary_10_1371_journal_pgen_1009165
crossref_primary_10_1016_j_fcr_2016_02_004
crossref_primary_10_1093_bib_bbab306
crossref_primary_10_1016_j_molp_2016_06_016
crossref_primary_10_1038_ncomms13299
crossref_primary_10_1371_journal_ppat_1011801
crossref_primary_10_1093_g3journal_jkae026
crossref_primary_10_1186_s12916_016_0575_9
crossref_primary_10_1111_j_1469_8137_2010_03593_x
crossref_primary_10_3389_fpls_2018_01311
crossref_primary_10_1371_journal_pcbi_1000225
crossref_primary_10_1093_bioinformatics_btx242
crossref_primary_10_56093_ijans_v93i10_134890
crossref_primary_10_3389_fpls_2021_650157
crossref_primary_10_1371_journal_pgen_1002589
crossref_primary_10_1073_pnas_1009363108
crossref_primary_10_1016_j_cpb_2024_100401
crossref_primary_10_1038_ng_3190
crossref_primary_10_1089_cmb_2018_0047
crossref_primary_10_1186_s12859_017_1791_9
crossref_primary_10_1016_j_dcn_2025_101542
crossref_primary_10_1111_nph_13627
crossref_primary_10_1038_hdy_2016_115
crossref_primary_10_1186_s12864_020_07019_6
crossref_primary_10_1186_s12864_022_08297_y
crossref_primary_10_1007_s11032_016_0453_3
crossref_primary_10_1111_asj_12514
crossref_primary_10_1152_physiolgenomics_00055_2014
crossref_primary_10_1186_1471_2229_11_179
crossref_primary_10_3168_jds_2017_12688
crossref_primary_10_3390_ijms242417194
crossref_primary_10_1007_s10722_020_00976_7
crossref_primary_10_1631_jzus_B1200003
crossref_primary_10_1534_genetics_112_141168
crossref_primary_10_1186_1752_0509_5_43
crossref_primary_10_3389_fpls_2023_1340767
crossref_primary_10_3724_SP_J_1259_2011_00108
crossref_primary_10_1038_s41598_023_49927_z
crossref_primary_10_2135_cropsci2012_01_0039
crossref_primary_10_2135_cropsci2011_06_0297
crossref_primary_10_1111_j_1469_8137_2012_04289_x
crossref_primary_10_1038_s41467_022_28833_4
crossref_primary_10_1093_g3journal_jkab168
crossref_primary_10_1093_bib_bbw064
crossref_primary_10_3390_plants10010029
crossref_primary_10_1371_journal_pgen_1005849
crossref_primary_10_1007_s11032_013_9858_4
crossref_primary_10_1073_pnas_1105543109
crossref_primary_10_1371_journal_pgen_1000149
crossref_primary_10_1007_s11032_019_0989_0
crossref_primary_10_1016_j_fcr_2016_03_008
crossref_primary_10_3389_fpls_2022_1033120
crossref_primary_10_7554_eLife_82951
crossref_primary_10_1007_s11032_010_9411_7
crossref_primary_10_1111_ahg_12339
crossref_primary_10_1093_gerona_glv308
crossref_primary_10_3389_fpls_2018_01358
crossref_primary_10_1016_j_pbi_2015_02_010
crossref_primary_10_1214_09_STS307
crossref_primary_10_1111_j_1469_1809_2010_00618_x
crossref_primary_10_3389_fpls_2021_696423
crossref_primary_10_1016_j_ajhg_2015_03_004
crossref_primary_10_1523_JNEUROSCI_5794_10_2011
crossref_primary_10_1007_s10722_022_01352_3
crossref_primary_10_5713_ajas_17_0178
crossref_primary_10_1038_s41467_022_31208_4
crossref_primary_10_3389_fgene_2019_00334
crossref_primary_10_1007_s11427_024_2578_6
crossref_primary_10_2135_cropsci2011_11_0588
crossref_primary_10_1101_gr_194118_115
crossref_primary_10_1111_mec_13867
crossref_primary_10_1007_s00122_015_2497_x
crossref_primary_10_3389_fpls_2018_01589
crossref_primary_10_2135_cropsci2011_11_0592
crossref_primary_10_1016_j_radonc_2012_08_004
crossref_primary_10_1021_acs_jproteome_3c00269
crossref_primary_10_1093_genetics_iyad030
crossref_primary_10_1165_rcmb_2012_0337OC
crossref_primary_10_1038_hdy_2012_44
crossref_primary_10_1534_g3_113_008870
crossref_primary_10_1096_fj_202001936RRR
crossref_primary_10_1002_gepi_22384
crossref_primary_10_3389_fpls_2023_1196486
crossref_primary_10_1007_s00122_019_03499_7
crossref_primary_10_1534_genetics_112_145284
crossref_primary_10_1186_1756_0500_4_232
crossref_primary_10_1186_s12864_017_3754_y
crossref_primary_10_1098_rspb_2020_2041
crossref_primary_10_3389_fpls_2018_01146
crossref_primary_10_1093_nar_gkx954
crossref_primary_10_1126_sciadv_abl5794
crossref_primary_10_29220_CSAM_2022_29_1_065
crossref_primary_10_3389_fpls_2017_00754
crossref_primary_10_1038_nrg3187
crossref_primary_10_1534_g3_114_013433
crossref_primary_10_1371_journal_pgen_1008123
crossref_primary_10_1186_s12920_020_0667_4
crossref_primary_10_1371_journal_pgen_1008126
crossref_primary_10_1038_s41437_020_0336_6
crossref_primary_10_1007_s00018_021_03844_4
crossref_primary_10_1038_hdy_2010_91
crossref_primary_10_1111_mec_12082
crossref_primary_10_1007_s10142_018_0630_z
crossref_primary_10_1111_ppl_12068
crossref_primary_10_1126_science_aam9309
crossref_primary_10_1038_s41588_019_0530_8
crossref_primary_10_3389_fgene_2023_1104906
crossref_primary_10_1038_s41588_020_0612_7
crossref_primary_10_1093_jxb_ery379
crossref_primary_10_1007_s12038_016_9661_6
crossref_primary_10_1038_s41467_022_29111_z
crossref_primary_10_1186_s13040_021_00247_w
crossref_primary_10_1371_journal_pgen_1005094
crossref_primary_10_1371_journal_pcbi_1009659
crossref_primary_10_7554_eLife_00994
crossref_primary_10_1534_g3_116_032516
crossref_primary_10_1534_genetics_108_094201
crossref_primary_10_1038_s41467_024_46191_1
crossref_primary_10_1094_PDIS_09_22_2242_RE
crossref_primary_10_1111_pbr_13014
crossref_primary_10_1093_bib_bbw145
crossref_primary_10_3389_fgene_2022_947423
crossref_primary_10_1093_molbev_msx151
crossref_primary_10_3389_fpls_2020_00834
crossref_primary_10_1111_mec_14009
crossref_primary_10_1016_j_tvjl_2011_06_013
crossref_primary_10_1002_gepi_22516
crossref_primary_10_1111_1755_0998_12892
crossref_primary_10_1111_1365_2745_12955
crossref_primary_10_1111_1755_0998_12893
crossref_primary_10_1111_j_1365_3040_2012_02587_x
crossref_primary_10_1038_s41598_019_41592_5
crossref_primary_10_1007_s00122_023_04245_w
crossref_primary_10_1038_s41467_021_27930_0
crossref_primary_10_1007_s00122_016_2750_y
crossref_primary_10_3389_fpls_2023_1229495
crossref_primary_10_3390_genes11111387
crossref_primary_10_1152_physiolgenomics_00035_2016
crossref_primary_10_1007_s12042_024_09370_4
crossref_primary_10_1038_s41598_017_17366_2
crossref_primary_10_1111_nph_14615
crossref_primary_10_3389_fpls_2022_866300
crossref_primary_10_1016_j_molp_2016_12_008
crossref_primary_10_3168_jds_2015_10705
crossref_primary_10_1071_FP22073
crossref_primary_10_1073_pnas_1002425107
crossref_primary_10_3389_fpls_2022_1064059
crossref_primary_10_1093_jxb_erw176
crossref_primary_10_3390_genes14071507
crossref_primary_10_1101_gr_201996_115
crossref_primary_10_1186_s12864_019_6203_2
crossref_primary_10_1534_g3_118_200917
crossref_primary_10_1159_000514143
crossref_primary_10_1007_s00122_021_03955_3
crossref_primary_10_1016_j_ajhg_2015_10_002
crossref_primary_10_1016_j_tig_2010_12_003
crossref_primary_10_1093_nar_gku672
crossref_primary_10_3390_genes11080893
crossref_primary_10_3390_agriculture12101677
crossref_primary_10_1111_mec_13378
crossref_primary_10_1002_gepi_22332
crossref_primary_10_1534_g3_119_400740
crossref_primary_10_1101_cshperspect_a040493
crossref_primary_10_1007_s00122_015_2464_6
crossref_primary_10_1186_s12864_022_09036_z
crossref_primary_10_3389_fpls_2022_995609
crossref_primary_10_1371_journal_pone_0021591
crossref_primary_10_1016_j_neurobiolaging_2014_05_024
crossref_primary_10_1016_j_cell_2019_06_021
crossref_primary_10_1093_jxb_erae280
crossref_primary_10_1186_s12284_015_0072_3
crossref_primary_10_1534_g3_114_014563
crossref_primary_10_1080_1828051X_2022_2053366
crossref_primary_10_1093_plphys_kiad511
crossref_primary_10_3835_plantgenome2016_02_0012
crossref_primary_10_1007_s00122_017_3003_4
crossref_primary_10_1007_s10162_014_0443_2
crossref_primary_10_1038_nmicrobiol_2016_41
crossref_primary_10_3389_fpls_2022_880631
crossref_primary_10_1186_s12864_016_3081_8
crossref_primary_10_1371_journal_pone_0094688
crossref_primary_10_1007_s00438_020_01690_w
crossref_primary_10_1109_TCBB_2017_2786239
crossref_primary_10_1094_PHYTO_11_15_0305_R
crossref_primary_10_1016_j_cell_2012_08_043
crossref_primary_10_1038_ki_2009_457
crossref_primary_10_1094_PHYTO_10_12_0271_R
crossref_primary_10_1016_j_exger_2018_01_010
crossref_primary_10_1371_journal_pgen_1009495
crossref_primary_10_1534_genetics_110_115014
crossref_primary_10_3389_fpls_2022_994779
crossref_primary_10_1007_s11540_024_09718_z
crossref_primary_10_1007_s13253_010_0046_2
crossref_primary_10_1038_gene_2011_67
crossref_primary_10_1038_gene_2011_68
crossref_primary_10_1093_genetics_iyaf038
crossref_primary_10_1186_s12284_021_00540_6
crossref_primary_10_2135_cropsci2008_07_0420
crossref_primary_10_1534_genetics_115_185314
crossref_primary_10_1007_s00122_019_03473_3
crossref_primary_10_1371_journal_pone_0056179
crossref_primary_10_1186_s12859_023_05519_2
crossref_primary_10_1371_journal_pone_0188997
crossref_primary_10_1534_g3_115_021592
crossref_primary_10_1681_ASN_2012080838
crossref_primary_10_1093_evolut_qpad028
crossref_primary_10_3168_jds_2021_20267
crossref_primary_10_1371_journal_pgen_1008392
crossref_primary_10_1007_s00122_014_2403_y
crossref_primary_10_1371_journal_pgen_1009241
crossref_primary_10_7554_eLife_89749_3
crossref_primary_10_1007_s00439_020_02206_7
crossref_primary_10_1007_s00122_017_2962_9
crossref_primary_10_1016_j_tig_2020_01_004
crossref_primary_10_1111_pbr_13225
crossref_primary_10_1371_journal_pone_0075707
crossref_primary_10_1534_g3_116_032532
crossref_primary_10_3835_plantgenome2011_12_0032
crossref_primary_10_1073_pnas_1211205110
crossref_primary_10_1093_femsec_fiae056
crossref_primary_10_1002_csc2_21105
crossref_primary_10_1016_j_livsci_2020_103951
crossref_primary_10_1007_s10681_023_03184_3
crossref_primary_10_2527_jas_2015_0182
crossref_primary_10_1007_s00122_018_3237_9
crossref_primary_10_1002_mgg3_4
crossref_primary_10_3835_plantgenome2017_08_0074
crossref_primary_10_3390_ani9121059
crossref_primary_10_1007_s00122_016_2665_7
crossref_primary_10_1093_nar_gkw893
crossref_primary_10_1371_journal_ppat_1004511
crossref_primary_10_1016_j_ajhg_2017_04_005
crossref_primary_10_1145_2560421
crossref_primary_10_1534_g3_113_007948
crossref_primary_10_1371_journal_pgen_1000419
crossref_primary_10_1161_ATVBAHA_112_253864
crossref_primary_10_1371_journal_pone_0031910
crossref_primary_10_1007_s13562_016_0393_3
crossref_primary_10_1534_g3_116_028407
crossref_primary_10_1534_genetics_110_114819
crossref_primary_10_1016_j_cub_2021_04_046
crossref_primary_10_1093_jxb_erad306
crossref_primary_10_1371_journal_pone_0013920
crossref_primary_10_15252_msb_20135004
crossref_primary_10_1038_srep19444
crossref_primary_10_1104_pp_114_248153
crossref_primary_10_1002_gepi_21849
crossref_primary_10_1186_s12864_017_3527_7
crossref_primary_10_1002_gepi_21848
crossref_primary_10_1093_hmg_ddy093
crossref_primary_10_1093_molbev_msv124
crossref_primary_10_1186_s13104_019_4222_3
crossref_primary_10_1371_journal_pone_0101673
crossref_primary_10_1007_s00122_018_3089_3
crossref_primary_10_1371_journal_pcbi_1007653
crossref_primary_10_1093_bioinformatics_bts348
crossref_primary_10_1105_tpc_112_108068
crossref_primary_10_1111_tpj_14189
crossref_primary_10_3389_fpls_2020_00686
crossref_primary_10_1534_g3_112_003699
crossref_primary_10_1111_rssb_12203
crossref_primary_10_1002_ece3_262
crossref_primary_10_1016_j_cj_2019_09_005
crossref_primary_10_1186_1471_2156_13_82
crossref_primary_10_1002_humu_21042
crossref_primary_10_1126_science_aah3580
crossref_primary_10_1093_icb_icaa112
crossref_primary_10_3390_pathogens9020096
crossref_primary_10_1093_hr_uhad117
crossref_primary_10_1104_pp_114_241521
crossref_primary_10_1534_g3_118_200540
crossref_primary_10_1002_tpg2_20373
crossref_primary_10_1007_s13238_018_0532_9
crossref_primary_10_3389_fimmu_2020_607889
crossref_primary_10_1016_j_gpb_2020_06_006
crossref_primary_10_1071_AN15696
crossref_primary_10_7554_eLife_64329
crossref_primary_10_3835_plantgenome2014_05_0020
crossref_primary_10_1002_gepi_21829
crossref_primary_10_1016_j_tips_2008_07_010
crossref_primary_10_1165_rcmb_2012_0078OC
crossref_primary_10_1007_s10681_014_1114_4
crossref_primary_10_1007_s11033_021_07055_9
crossref_primary_10_1007_s10681_011_0563_2
crossref_primary_10_1534_g3_116_035162
crossref_primary_10_1007_s11032_015_0283_8
crossref_primary_10_1093_jhered_esw008
crossref_primary_10_1038_s41437_017_0032_3
crossref_primary_10_1007_s12298_023_01382_w
crossref_primary_10_1093_bfgp_elp048
crossref_primary_10_1002_tpg2_20161
crossref_primary_10_1111_tpj_14170
crossref_primary_10_1007_s00122_022_04102_2
crossref_primary_10_1152_physiolgenomics_00051_2012
crossref_primary_10_1186_s12870_020_02804_7
crossref_primary_10_3389_fgene_2019_01067
crossref_primary_10_1093_pcp_pcaa057
crossref_primary_10_3390_genes10120954
crossref_primary_10_1111_nyas_12397
crossref_primary_10_1534_genetics_108_098863
crossref_primary_10_1007_s00468_017_1554_2
crossref_primary_10_1534_genetics_115_179945
crossref_primary_10_1093_bioadv_vbad192
crossref_primary_10_1371_journal_pcbi_1007663
crossref_primary_10_1002_tpg2_20157
crossref_primary_10_1186_1471_2229_12_56
crossref_primary_10_1371_journal_pone_0071377
crossref_primary_10_1111_pbi_14153
crossref_primary_10_1111_pbi_13062
crossref_primary_10_1639_0007_2745_117_4_329
crossref_primary_10_1007_s00122_014_2389_5
crossref_primary_10_1002_gepi_21640
crossref_primary_10_1016_j_cels_2017_10_016
crossref_primary_10_2135_cropsci2014_08_0559
crossref_primary_10_3390_plants12234050
crossref_primary_10_1007_s00335_014_9551_x
crossref_primary_10_1007_s00335_018_9746_7
crossref_primary_10_1007_s10681_017_2005_2
crossref_primary_10_1038_onc_2009_396
crossref_primary_10_1111_mec_17576
crossref_primary_10_1371_journal_pone_0155494
crossref_primary_10_1152_physiolgenomics_00041_2012
crossref_primary_10_1016_j_ygeno_2018_12_011
crossref_primary_10_1096_fj_13_247221
crossref_primary_10_3389_fpls_2024_1391452
crossref_primary_10_1111_pbr_12753
crossref_primary_10_1371_journal_pone_0102715
crossref_primary_10_1007_s00122_018_3065_y
crossref_primary_10_1186_s12870_023_04306_8
crossref_primary_10_1534_g3_118_200571
crossref_primary_10_1007_s00122_020_03697_8
crossref_primary_10_1007_s11032_013_9883_3
crossref_primary_10_1038_ng_2410
crossref_primary_10_3389_fpls_2022_1089937
crossref_primary_10_1093_molbev_msab144
crossref_primary_10_1093_plphys_kiac250
crossref_primary_10_1016_j_neuroimage_2010_02_068
crossref_primary_10_3389_fpls_2016_00973
crossref_primary_10_1002_gepi_21879
crossref_primary_10_1016_j_cmet_2015_04_025
crossref_primary_10_3390_agronomy12030642
crossref_primary_10_1038_nmeth_2848
crossref_primary_10_1016_j_tplants_2012_01_002
crossref_primary_10_1186_s12864_018_5386_2
crossref_primary_10_1038_s41588_021_00954_4
crossref_primary_10_1111_ppa_12761
crossref_primary_10_1111_nph_12082
crossref_primary_10_1016_j_neuroimage_2014_07_041
crossref_primary_10_1007_s11032_013_0004_0
crossref_primary_10_3389_fpls_2018_00911
crossref_primary_10_1145_3309720
crossref_primary_10_1038_ng_2644
crossref_primary_10_1038_s41598_022_05148_4
crossref_primary_10_1073_pnas_1007431107
crossref_primary_10_1111_nph_15580
crossref_primary_10_1111_mec_13199
crossref_primary_10_1186_1471_2229_12_16
crossref_primary_10_1016_j_cell_2019_09_021
crossref_primary_10_7717_peerj_cs_3
crossref_primary_10_1111_mpp_12745
crossref_primary_10_1194_jlr_R066944
crossref_primary_10_1038_srep41748
crossref_primary_10_1161_STROKEAHA_115_010767
crossref_primary_10_1016_j_cell_2016_10_026
crossref_primary_10_1093_hr_uhae230
crossref_primary_10_1371_journal_pgen_1007699
crossref_primary_10_1002_fes3_529
crossref_primary_10_1038_s41598_023_47555_1
crossref_primary_10_1186_1297_9686_44_32
crossref_primary_10_1089_brain_2011_0064
crossref_primary_10_1002_ece3_6002
crossref_primary_10_1007_s00122_017_2857_9
crossref_primary_10_1007_s00335_010_9249_7
crossref_primary_10_1186_s12284_017_0147_4
crossref_primary_10_1534_genetics_112_138578
crossref_primary_10_1152_physiolgenomics_00159_2011
crossref_primary_10_1007_s00335_016_9655_6
crossref_primary_10_1038_s41593_022_01197_0
crossref_primary_10_1111_nph_17999
crossref_primary_10_1016_j_cels_2024_05_006
crossref_primary_10_1007_s10126_017_9747_7
crossref_primary_10_1007_s11540_019_09437_w
crossref_primary_10_1007_s10681_016_1830_z
Cites_doi 10.1086/284325
10.1023/A:1021404714631
10.1093/biomet/58.3.545
10.1371/journal.pone.0000591
10.1093/molbev/msh257
10.1007/BF01734359
10.1007/BF02100115
10.1086/302959
10.1093/genetics/155.4.1961
10.1046/j.1365-294X.2001.01288.x
10.1093/oxfordjournals.molbev.a025575
10.1152/physiolgenomics.00018.2002
10.1038/nature06067
10.1038/ng1849
10.1371/journal.pgen.0010060
10.2527/jas1987.6451362x
10.1086/286013
10.1093/genetics/152.4.1753
10.1111/1467-9868.00092
10.1038/ng1497
10.1073/pnas.1530509100
10.1038/ng1702
10.1093/bioinformatics/bth149
10.1371/journal.pgen.0020190
10.1371/journal.pgen.0030051
10.2307/2533274
10.1371/journal.pbio.0030196
10.1534/genetics.106.065359
10.1538/expanim.50.319
10.3168/jds.S0022-0302(95)76654-1
10.1534/genetics.106.066241
10.1007/s00122-005-0189-7
10.1093/comjnl/7.4.308
10.1126/science.155.3760.279
10.1080/01621459.1981.10477653
10.1111/j.0006-341X.1999.00997.x
10.1371/journal.pgen.0030004
10.1111/j.1467-9868.2004.00438.x
10.1523/JNEUROSCI.1374-03.2004
10.1093/genetics/157.1.425
10.1038/nrg2025
10.1038/ng1847
10.1111/j.1365-313X.2005.02591.x
10.1534/genetics.167.1.531
10.1534/genetics.105.054932
10.1371/journal.pbio.0020393
10.1007/s00335-003-2308-6
10.1007/s10142-002-0053-7
10.1534/genetics.104.035709
10.1104/pp.003533
10.2527/1992.7072000x
10.1093/genetics/160.3.1203
ContentType Journal Article
Copyright Copyright Genetics Society of America Mar 2008
Copyright © 2008 by the Genetics Society of America
Copyright_xml – notice: Copyright Genetics Society of America Mar 2008
– notice: Copyright © 2008 by the Genetics Society of America
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
4U-
7QP
7SS
7TK
7TM
7X2
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
LK8
M0K
M0R
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1534/genetics.107.080101
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
University Readers
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (UHCL Subscription)
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Consumer Health Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
EndPage 1723
ExternalDocumentID PMC2278096
1463111441
18385116
10_1534_genetics_107_080101
www178_3_1709
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: K25 HL080079
– fundername: NCRR NIH HHS
  grantid: P41 RR08605
– fundername: NCRR NIH HHS
  grantid: P41 RR008605
– fundername: NCRR NIH HHS
  grantid: C06 RR017588
– fundername: NHLBI NIH HHS
  grantid: 1K25HL080079
GroupedDBID -
186
1AW
29H
2KS
2WC
34G
39C
3V.
4
53G
5GY
5RE
5VS
7X2
7X7
85S
88A
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
9M8
AAPBV
ABFLS
ABPPZ
ABPTK
ABSGY
ABUFD
ABUWG
ACDCL
ACGOD
ACNCT
ACPRK
ADACO
ADBBV
AENEX
AFDAS
AFFNX
AFKRA
AFMIJ
AFRAH
AGCAB
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BAWUL
BBAFP
BBNVY
BENPR
BES
BHPHI
BKNYI
BKOMP
BPHCQ
BVXVI
C1A
CJ0
CS3
D0L
DIK
DU5
DWQXO
DZ
E3Z
EBS
EJD
EMB
F5P
FH7
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HYE
H~9
INIJC
K9-
KM
KQ8
L7B
LK8
LOTEE
LXI
M0K
M0L
M0R
M1P
M2O
M2P
M7P
MBDVC
MV1
MVM
MYA
NADUK
O0-
OHT
OK1
OMK
OWPYF
PADUT
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QN7
QO4
R0Z
RHF
RHI
RPM
RXW
SJN
SV3
TAE
TAF
TGS
TH9
TN5
TWZ
U5U
UHB
UKR
UNMZH
UPT
VQA
WH7
WOQ
X
XHC
YYQ
YZZ
Z
ZY4
---
--Z
-DZ
-~X
.-4
0R~
18M
36B
5WD
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAVAP
AAYOK
AAYXX
ABDFA
ABDNZ
ABEJV
ABGNP
ABMNT
ABNHQ
ABPTD
ABVGC
ABXVV
ABXZS
ACFRR
ACIHN
ACIPB
ACUTJ
ADGKP
ADIPN
ADQBN
ADVEK
ADXHL
AEAQA
AEUYN
AFFZL
AFGWE
AGORE
AHMMS
AJEEA
AJNCP
ALIPV
ALXQX
AOIJS
APEBS
ATGXG
BCRHZ
BEYMZ
BTFSW
CCPQU
CITATION
EMOBN
F8P
F9R
FD6
FLUFQ
FOEOM
HMCUK
JXSIZ
KBUDW
KOP
KSI
KSN
NOMLY
OBOKY
OCZFY
OJZSN
OPAEJ
PHGZM
PHGZT
ROX
TR2
UKHRP
W8F
XSW
YHG
YKV
YSK
ZCA
~KM
.55
.GJ
A8Z
AAUTI
ABJNI
ACPVT
ACVCV
ACYGS
AGMDO
AHGBF
AJBYB
APJGH
CGR
CUY
CVF
EBD
ECM
EIF
NHB
NPM
PJZUB
PPXIY
PQGLB
WHG
X7M
XOL
YYP
ZGI
ZXP
4T-
4U-
7QP
7SS
7TK
7TM
7XB
8FD
8FK
FR3
K9.
M7N
P64
PKEHL
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c528t-8a1b77bb5960fa3b74b1ff6e7a92290588e8a583ba2202c5ccd299135d07f27a3
IEDL.DBID 7X7
ISSN 0016-6731
1943-2631
IngestDate Thu Aug 21 18:19:31 EDT 2025
Tue Aug 05 10:12:19 EDT 2025
Fri Jul 25 10:27:01 EDT 2025
Mon Jul 21 05:59:35 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Tue Jul 01 03:32:23 EDT 2025
Tue Nov 10 19:47:46 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-8a1b77bb5960fa3b74b1ff6e7a92290588e8a583ba2202c5ccd299135d07f27a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicating editor: J. B. Walsh
Corresponding author: Department of Computer Science and Department of Human Genetics, Mail Code 1596, 3532-J Boelter Hall, University of California, Los Angeles, CA 90095-1596. E-mail: eeskin@cs.ucla.edu
OpenAccessLink https://academic.oup.com/genetics/article-pdf/178/3/1709/49410072/genetics1709.pdf
PMID 18385116
PQID 214129779
PQPubID 47453
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2278096
proquest_miscellaneous_70466286
proquest_journals_214129779
pubmed_primary_18385116
crossref_citationtrail_10_1534_genetics_107_080101
crossref_primary_10_1534_genetics_107_080101
highwire_smallpub1_www178_3_1709
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20080301
2008-03-01
2008-Mar
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 20080301
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 2008
Publisher Genetics Soc America
Genetics Society of America
Publisher_xml – name: Genetics Soc America
– name: Genetics Society of America
References (2023030409453427400_) 1995; 51
(2023030409453427400_) 1998; 28
(2023030409453427400_) 1999; 152
(2023030409453427400_) 1989; 21
(2023030409453427400_) 2007; 8
(2023030409453427400_) 2000; 67
(2023030409453427400_) 2007; 2
(2023030409453427400_) 2003; 100
(2023030409453427400_) 2007; 3
(2023030409453427400_) 2004
(2023030409453427400_) 2007; 448
(2023030409453427400_) 1996; 13
(2023030409453427400_) 2005; 44
(2023030409453427400_) 1989; 29
(2023030409453427400_) 1985; 125
(2023030409453427400_) 2000; 155
(2023030409453427400_) 1984
(2023030409453427400_) 2006; 112
(2023030409453427400_) 1997; 59
(2023030409453427400_) 2006; 2
(2023030409453427400_) 2002; 2
(2023030409453427400_) 1971; 58
(2023030409453427400_) 1990
(2023030409453427400_) 1997; 149
(2023030409453427400_) 1988; 83
(2023030409453427400_) 2005; 37
(2023030409453427400_) 2007; 176
(2023030409453427400_) 2001; 10
(2023030409453427400_) 2007; 175
(2023030409453427400_) 1981; 76
(2023030409453427400_) 2004; 66
(2023030409453427400_) 2004; 20
(2023030409453427400_) 2001; 50
(2023030409453427400_) 2005; 3
(2023030409453427400_) 2005; 1
(2023030409453427400_) 1999; 55
(2023030409453427400_) 2005; 6
(2023030409453427400_) 1995; 78
(2023030409453427400_) 2006; 38
(2023030409453427400_) 2002; 10
(2023030409453427400_) 2004; 24
(2023030409453427400_) 2005; 170
(2023030409453427400_) 2004; 167
(2023030409453427400_) 2005; 22
(2023030409453427400_) 2002; 129
(2023030409453427400_) 1992; 70
(2023030409453427400_) 1967; 155
(2023030409453427400_) 1987; 64
(2023030409453427400_) 1965; 7
(2023030409453427400_) 2004; 2
(2023030409453427400_) 1974; 61
(2023030409453427400_) 2004; 15
(2023030409453427400_) 2001; 157
(2023030409453427400_) 2002; 160
(2023030409453427400_) 1981; 17
(2023030409453427400_) 2007; 315
References_xml – volume: 125
  start-page: 1
  year: 1985
  ident: 2023030409453427400_
  publication-title: Am. Nat.
  doi: 10.1086/284325
– volume: 28
  start-page: 29
  year: 1998
  ident: 2023030409453427400_
  publication-title: Behav. Genet.
  doi: 10.1023/A:1021404714631
– volume: 58
  start-page: 545
  year: 1971
  ident: 2023030409453427400_
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.545
– volume: 2
  start-page: e591
  year: 2007
  ident: 2023030409453427400_
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000591
– volume: 22
  start-page: 40
  year: 2005
  ident: 2023030409453427400_
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh257
– volume: 17
  start-page: 368
  year: 1981
  ident: 2023030409453427400_
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF01734359
– volume: 29
  start-page: 170
  year: 1989
  ident: 2023030409453427400_
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF02100115
– volume: 67
  start-page: 170
  year: 2000
  ident: 2023030409453427400_
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/302959
– volume: 315
  start-page: 1583
  year: 2007
  ident: 2023030409453427400_
  publication-title: Science
– volume: 155
  start-page: 1961
  year: 2000
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1093/genetics/155.4.1961
– volume: 10
  start-page: 1539
  year: 2001
  ident: 2023030409453427400_
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294X.2001.01288.x
– volume: 13
  start-page: 93
  year: 1996
  ident: 2023030409453427400_
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a025575
– volume: 10
  start-page: 21
  year: 2002
  ident: 2023030409453427400_
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00018.2002
– volume: 448
  start-page: 1050
  year: 2007
  ident: 2023030409453427400_
  publication-title: Nature
  doi: 10.1038/nature06067
– volume: 38
  start-page: 888
  year: 2006
  ident: 2023030409453427400_
  publication-title: Nat. Genet.
  doi: 10.1038/ng1849
– volume: 1
  start-page: e60
  year: 2005
  ident: 2023030409453427400_
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0010060
– volume: 64
  start-page: 1362
  year: 1987
  ident: 2023030409453427400_
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas1987.6451362x
– volume: 149
  start-page: 646
  year: 1997
  ident: 2023030409453427400_
  publication-title: Am. Nat.
  doi: 10.1086/286013
– volume: 152
  start-page: 1753
  year: 1999
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1093/genetics/152.4.1753
– volume: 59
  start-page: 701
  year: 1997
  ident: 2023030409453427400_
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00092
– volume: 37
  start-page: 225
  year: 2005
  ident: 2023030409453427400_
  publication-title: Nat. Genet.
  doi: 10.1038/ng1497
– volume: 100
  start-page: 9440
  year: 2003
  ident: 2023030409453427400_
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.1530509100
– volume: 38
  start-page: 203
  year: 2006
  ident: 2023030409453427400_
  publication-title: Nat. Genet.
  doi: 10.1038/ng1702
– volume: 20
  start-page: 1842
  year: 2004
  ident: 2023030409453427400_
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth149
– volume: 2
  start-page: e190
  year: 2006
  ident: 2023030409453427400_
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020190
– volume: 3
  start-page: e51
  year: 2007
  ident: 2023030409453427400_
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030051
– volume: 51
  start-page: 1440
  year: 1995
  ident: 2023030409453427400_
  publication-title: Biometrics
  doi: 10.2307/2533274
– volume: 3
  start-page: e196
  year: 2005
  ident: 2023030409453427400_
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030196
– volume: 175
  start-page: 321
  year: 2007
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1534/genetics.106.065359
– volume: 6
  start-page: 271
  year: 2005
  ident: 2023030409453427400_
  publication-title: Nat. Rev. Genet.
– volume: 50
  start-page: 319
  year: 2001
  ident: 2023030409453427400_
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.50.319
– volume: 78
  start-page: 449
  year: 1995
  ident: 2023030409453427400_
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(95)76654-1
– volume: 176
  start-page: 675
  year: 2007
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1534/genetics.106.066241
– volume: 112
  start-page: 876
  year: 2006
  ident: 2023030409453427400_
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-005-0189-7
– volume: 7
  start-page: 308
  year: 1965
  ident: 2023030409453427400_
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 155
  start-page: 279
  year: 1967
  ident: 2023030409453427400_
  publication-title: Science
  doi: 10.1126/science.155.3760.279
– volume: 76
  start-page: 341
  year: 1981
  ident: 2023030409453427400_
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1981.10477653
– volume: 55
  start-page: 997
  year: 1999
  ident: 2023030409453427400_
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00997.x
– volume: 3
  start-page: e4
  year: 2007
  ident: 2023030409453427400_
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030004
– volume: 66
  start-page: 165
  year: 2004
  ident: 2023030409453427400_
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2004.00438.x
– volume: 24
  start-page: 938
  year: 2004
  ident: 2023030409453427400_
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1374-03.2004
– volume: 157
  start-page: 425
  year: 2001
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1093/genetics/157.1.425
– year: 1984
  ident: 2023030409453427400_
– volume: 21
  start-page: 318
  year: 1989
  ident: 2023030409453427400_
  publication-title: Genet. Sel. Evol.
– volume: 8
  start-page: 58
  year: 2007
  ident: 2023030409453427400_
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2025
– volume: 38
  start-page: 904
  year: 2006
  ident: 2023030409453427400_
  publication-title: Nat. Genet.
  doi: 10.1038/ng1847
– year: 2004
  ident: 2023030409453427400_
– volume: 44
  start-page: 1054
  year: 2005
  ident: 2023030409453427400_
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02591.x
– volume: 167
  start-page: 531
  year: 2004
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1534/genetics.167.1.531
– volume: 175
  start-page: 879
  year: 2007
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1534/genetics.105.054932
– volume: 2
  start-page: e393
  year: 2004
  ident: 2023030409453427400_
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020393
– volume: 15
  start-page: 100
  year: 2004
  ident: 2023030409453427400_
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-003-2308-6
– year: 1990
  ident: 2023030409453427400_
– volume: 2
  start-page: 98
  year: 2002
  ident: 2023030409453427400_
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-002-0053-7
– volume: 170
  start-page: 1299
  year: 2005
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1534/genetics.104.035709
– volume: 83
  start-page: 1014
  year: 1988
  ident: 2023030409453427400_
  publication-title: J. Am. Stat. Assoc.
– volume: 129
  start-page: 440
  year: 2002
  ident: 2023030409453427400_
  publication-title: Plant Physiol.
  doi: 10.1104/pp.003533
– volume: 70
  start-page: 2000
  year: 1992
  ident: 2023030409453427400_
  publication-title: J. Anim. Sci.
  doi: 10.2527/1992.7072000x
– volume: 61
  start-page: 381
  year: 1974
  ident: 2023030409453427400_
  publication-title: Biometrika
– volume: 160
  start-page: 1203
  year: 2002
  ident: 2023030409453427400_
  publication-title: Genetics
  doi: 10.1093/genetics/160.3.1203
SSID ssj0006958
Score 2.5151265
Snippet Genomewide association mapping in model organisms such as inbred mouse strains is a promising approach for the identification of risk factors related to human...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1709
SubjectTerms Animals
Arabidopsis - genetics
Body Weight - genetics
Chromosome Mapping - methods
Corn
Flowers - genetics
Genome - genetics
Genotype & phenotype
Human subjects
Inbreeding
Investigations
Matrix
Methods
Mice
Mice, Inbred Strains
Models, Biological
Models, Genetic
Organ Size - genetics
Organisms
Phenotype
Polymorphism, Single Nucleotide - genetics
Population Dynamics
Population structure
Principal components analysis
Quantitative Trait, Heritable
Risk factors
Saccharin - metabolism
Software
Studies
Zea mays - genetics
Title Efficient Control of Population Structure in Model Organism Association Mapping
URI http://www.genetics.org/cgi/content/abstract/178/3/1709
https://www.ncbi.nlm.nih.gov/pubmed/18385116
https://www.proquest.com/docview/214129779
https://www.proquest.com/docview/70466286
https://pubmed.ncbi.nlm.nih.gov/PMC2278096
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgExIXxDdlMHLgSFnz1aQnBE9vmpA2JmDSu0VJ24xJb32Dbgf-e-w2LRtCu_TQJFLlnxPbjf0zwFsMdFqFjmsueIy5CkrmVoUmbxruG2184ANP9-FReXCiPq_0KuXm9CmtcjoTh4O62dT0j3xPcIWmyZjqw8XPnJpG0eVq6qBxF7aJuYyU2qzmeKsoK50O4pIy3HkiHdJS7SE4VCPYY_Bq3qPTxFNTmNkwTWTB_3M8_82fvGaQ9h_Cg-RJso8j9I_gTts9hntjb8nfT-DLciCHwLVsMaajs01kx3O_LvZtYI69-tWys45RS7Q1Gwsz-3N2DTR26InC4fQpnOwvvy8O8tQ9Ia-1sJe59TwYE4LGGCV6GYwKCEfZGl8Rx7u2trVeWxm8EIWodV03aJq41E1hojBePoOtbtO1L4AhgtbUVoRI17-yCrg82kixG_orPGYgJtG5OlGLU4eLtaMQA-XtJnnjC-NGeWfwbl50MTJr3D6dTZi4_tyv1wgBd6gu3FgnHTdFlcHOhJVLO7F3s95k8GYexS1E9yK-azdXvTOFKqlCN4PnI65_v8dK8khxxNxAfJ5A5Nw3R7qzHwNJN5UYY3j48tZv2oH7Y_4J5bS9gi0Evn2NTs5l2B1UGZ92wXdh-9Py6PjrH4CK_p8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gxsjF-GZEpA96c2T7Nd1zMIaskEVYNBESbm33PIRkmQUHYvhR_ker5gUYw43r9PSkU_VVd9V01VcAbzHQKRQ6rrHgZRmroGRsVcjjPOc-18YH3vB0T_eSyYH6cqgPF-BPXwtDaZX9nths1Pk8o3_k64IrPJqMST-dnsXUNIouV_sOGi0qdorL3xix1R-3P6N63wmxtbk_nsRdU4E408Kex9bzYEwIGl330stgVMBVJoXxKVGfa2sL67WVwQsxEpnOshx3bC51PjKlMF7id-_BfSXRMqkwfXyVUZKkutv4E8qo5x3JkZZqHcFANYk1BsvmAzppvGtCMxyEPTnx_xzdf_M1rx2AW4_hUee5so0Wak9goaiewoO2l-XlM_i62ZBR4Fw2btPf2bxk34b-YOx7w1R78atgxxWjFmwz1haC1ifsGkjY1BNlxM_ncHAngn0Bi9W8KpaBIWKsyawIJV03yzTg9NKWFCuif8TLCEQvOpd1VObUUWPmKKRBebte3vjAuFbeEbwfJp22TB63v856nbj6xM9mqALuEJ7cWCcdN6M0gpVeV66z_NoNOI1gbRhFk6V7GF8V84vamZFKqCI4gpetXq_WYyV5wDhibmh8eIHIwG-OVMdHDSk4lTRjOPrq1jWtwcPJ_nTX7W7v7azAUpv7Qvl0r2ERQVCsooN1Ht40sGbw467t6C_neDhk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxUxEJ8gRsPF-M2KSA96c32v7XbbPRhDHryACJIoCbfa7m6F5LEPXIjhT_O_c2a_AGO4cd1uN83Mb9qZ7cxvAN5ioFMm6LjGgocQJz6RsUl8ERcFd4XSzvOGp3t3L906SD4fqsMF-NPXwlBaZb8nNht1Mc_pH_lI8ASPJq2zUeiyIvY3pp9Oz2JqIEUXrX03jRYhO-Xlb4ze6o_bG6jqd0JMN79PtuKuwUCcK2HOY-O419p7hW58cNLrxOOK01K7jGjQlTGlccpI74QYi1zleYG7N5eqGOsgtJP43XtwX0ttyMTM5Cq7JM1UdwiklF3PO8IjJZMRAoPqE2sMnPUHdNh415BmOBR7ouL_Ob3_5m5eOwynj-FR58Wy9RZ2T2ChrJ7Cg7av5eUz-LrZEFPgXDZpU-HZPLD9oVcY-9aw1l78Ktlxxagd24y1RaH1CbsGGLbriD7i53M4uBPBvoDFal6Vy8AQPUbnRvhAV88y8zg9mEBxI_pKPEQgetHZvKM1p-4aM0vhDcrb9vLGB9q28o7g_TDptGX1uP111uvE1iduNkMVcItQ5dpYabkeZxGs9Lqy3S5Q2wGzEawNo2i-dCfjqnJ-UVs9TlKqDo7gZavXq_UYSd4wjugbGh9eIGLwmyPV8VFDEE7lzRiavrp1TWvwEC3Iftne21mBpTYNhlLrXsMiYqBcRV_r3L9pUM3gx12b0V9aQzya
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+control+of+population+structure+in+model+organism+association+mapping&rft.jtitle=Genetics+%28Austin%29&rft.au=Kang%2C+Hyun+Min&rft.au=Zaitlen%2C+Noah+A&rft.au=Wade%2C+Claire+M&rft.au=Kirby%2C+Andrew&rft.date=2008-03-01&rft.issn=0016-6731&rft.volume=178&rft.issue=3&rft.spage=1709&rft_id=info:doi/10.1534%2Fgenetics.107.080101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon