Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies
The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated "assembly f...
Saved in:
Published in | Frontiers in genetics Vol. 10; p. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated "assembly factors" and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently,
has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most
cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of
as a model for motile cilia, we survey the
genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in
. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants-the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of
as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies. |
---|---|
AbstractList | The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated "assembly factors" and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently,
has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most
cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of
as a model for motile cilia, we survey the
genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in
. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants-the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of
as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies. The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies. The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila . Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies. |
Author | Zur Lage, Petra Jarman, Andrew P Newton, Fay G |
AuthorAffiliation | Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom |
AuthorAffiliation_xml | – name: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom |
Author_xml | – sequence: 1 givenname: Petra surname: Zur Lage fullname: Zur Lage, Petra organization: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom – sequence: 2 givenname: Fay G surname: Newton fullname: Newton, Fay G organization: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom – sequence: 3 givenname: Andrew P surname: Jarman fullname: Jarman, Andrew P organization: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30774648$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkk9v3CAQxVGVqknT3HuqOPbiLRhs4x4qRdt_kZJWapJeEcbDmsgLDtir7tfqJyxep1FyYgRvfvM0vNfoyHkHCL2lZMWYqD-YDThY5YTWK0JIzl-gE1qWPBMkp0dP6mN0FuNdkhBeM8b4K3TMSFXxkosT9Pd6CjvYY2_w2AFe296qsMdXfkzVmAqlO-sgHBSfg49-6Gyv8PUAYYuVa5eWEVp8BbpTzkdw0Sf9D5iCdxH_gh2oPuJbB38G0LNyDX2f3ewHmDHaGqvxbxUSxaaGj_g8jW-hx8aHxcjiyw9q7CzEN-ilSUA4ezhP0e3XLzfr79nlz28X6_PLTBe5GLMKOCs5KZqWakFV2TQMWjCE5ZSWdaOqdFWYtIQWOBENK1lJgLcFI6KgnAE7RRcLt_XqTg7BbtNmpFdWHi582EgVRqt7kEXdqqqkjGmdc1PpxtBGJRZtZrjhifVpYQ1Ts4VWgxuD6p9Bn78428mN38nkqsqrKgHePwCCv58gjnJro057VA78FGVOBaOiYkIkKVmkOn1XDGAex1Ai5-TIQ3LknBx5SE5qeffU3mPD_5ywf4ybxck |
CitedBy_id | crossref_primary_10_3390_diagnostics11091550 crossref_primary_10_7554_eLife_74993 crossref_primary_10_15252_embj_2023113616 crossref_primary_10_1016_j_cub_2019_12_071 crossref_primary_10_1016_j_cub_2024_02_010 crossref_primary_10_1242_jcs_261387 crossref_primary_10_1371_journal_pgen_1009655 crossref_primary_10_1016_j_ydbio_2021_11_003 crossref_primary_10_1242_dev_202236 crossref_primary_10_1007_s00018_019_03389_7 crossref_primary_10_3389_fgene_2022_943197 crossref_primary_10_1091_mbc_E19_07_0367 crossref_primary_10_3390_cells10092336 crossref_primary_10_1038_s41598_021_89366_2 crossref_primary_10_3389_fcell_2019_00151 crossref_primary_10_1016_j_cris_2022_100039 crossref_primary_10_1083_jcb_202003084 crossref_primary_10_7717_peerj_12895 crossref_primary_10_1016_j_xfss_2022_02_003 crossref_primary_10_1093_molbev_msab368 crossref_primary_10_7554_eLife_82201 crossref_primary_10_1038_s41598_022_17189_w crossref_primary_10_1073_pnas_1910960116 crossref_primary_10_1242_bio_058812 crossref_primary_10_3389_fgene_2020_00578 crossref_primary_10_1371_journal_pcbi_1011773 crossref_primary_10_3389_fnmol_2023_1263411 crossref_primary_10_1007_s12264_021_00631_w crossref_primary_10_1111_mec_15581 crossref_primary_10_1002_cm_21662 crossref_primary_10_3390_cells11193058 crossref_primary_10_1080_15592294_2023_2192375 crossref_primary_10_1016_j_foodres_2022_111670 crossref_primary_10_1242_jcs_260408 |
Cites_doi | 10.1093/hmg/ddt445 10.1073/pnas.230438397 10.1016/j.ajhg.2013.07.009 10.1002/path.4843 10.1083/jcb.201304076 10.1126/science.1260214 10.1038/ng.727 10.1371/journal.pgen.1006220 10.1016/j.cub.2003.09.025 10.1038/nature07471 10.1002/cm.970290304 10.1101/cshperspect.a018325 10.1128/MCB.24.18.7958-7964.2004 10.1016/j.ajhg.2016.11.019 10.1038/ng.2277 10.1016/j.cell.2012.06.043 10.1016/j.cub.2003.08.034 10.1534/genetics.110.114009 10.1016/j.ajhg.2012.11.003 10.4161/fly.5.4.16159 10.1016/j.ajhg.2013.06.009 10.1074/jbc.M114.616425 10.1016/B978-0-12-809471-6.00010-3 10.1091/mbc.E11-03-0271 10.1016/j.ajhg.2014.08.005 10.1111/j.1600-0854.2007.00646.x 10.7554/eLife.36979 10.1002/cm.21192 10.1038/ncomms6727 10.1016/j.devcel.2012.05.010 10.1002/cm.20533 10.1186/1471-213X-10-34 10.1091/mbc.9.9.2337 10.1186/gb-2007-8-9-r195 10.1136/jmedgenet-2013-101938 10.1038/ncomms14279 10.1371/journal.pgen.1004577 10.1038/ng.726 10.1091/mbc.E12-11-0801 10.1091/mbc.E18-02-0142 10.1093/nar/gks1141 10.1083/jcb.201211048 10.1016/j.ajhg.2015.08.012 10.1016/j.ajhg.2016.06.014 10.1371/journal.pbio.1000568 10.1242/jcs.184598 10.1091/mbc.E06-02-0095 10.1201/b11622 10.1038/srep17085 10.1083/jcb.201312014 10.1186/1471-2105-12-357 10.1371/journal.pone.0072299 10.1016/B978-0-12-809471-6.00007-3 10.1074/jbc.M114.568949 10.1016/j.bbamcr.2013.09.011 10.1101/cshperspect.a028100 10.1038/ng.2533 10.1083/jcb.201709026 10.1091/mbc.5.1.45 10.1016/j.abb.2011.04.003 10.1371/journal.pone.0027822 10.1073/pnas.0737564100 10.1091/mbc.E09 10.1186/gb-2008-9-7-229 10.1101/cshperspect.a028290 10.1093/molbev/msw213 10.1002/humu.22261 10.1016/j.ajhg.2013.11.017 10.1002/humu.23005 10.1016/j.ajhg.2012.11.002 10.1016/B978-0-12-809471-6.00021-8 10.1016/B978-0-12-809471-6.00009-7 |
ContentType | Journal Article |
Copyright | Copyright © 2019 zur Lage, Newton and Jarman. 2019 zur Lage, Newton and Jarman |
Copyright_xml | – notice: Copyright © 2019 zur Lage, Newton and Jarman. 2019 zur Lage, Newton and Jarman |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fgene.2019.00024 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-8021 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_59da76133cc24f7cbf1ba4d51bde40f4 10_3389_fgene_2019_00024 30774648 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council – fundername: Medical Research Council |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK EMOBN GROUPED_DOAJ GX1 HYE IAO IEA IHR IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RNS RPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c528t-7e436405bd1c81a6bb3edef0321169ba7a6b5f648de408b36360e4d53085143e3 |
IEDL.DBID | RPM |
ISSN | 1664-8021 |
IngestDate | Tue Oct 22 15:10:29 EDT 2024 Tue Sep 17 21:24:32 EDT 2024 Fri Oct 25 04:38:00 EDT 2024 Thu Sep 26 17:10:19 EDT 2024 Wed Oct 16 00:51:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | dynein cilium flagellum Drosophila ciliopathy |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-7e436405bd1c81a6bb3edef0321169ba7a6b5f648de408b36360e4d53085143e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Genetic Disorders, a section of the journal Frontiers in Genetics Edited by: Carlo Iomini, Icahn School of Medicine at Mount Sinai, United States Reviewed by: Colin Anfimov Johnson, University of Leeds, United Kingdom; Marek Mlodzik, Icahn School of Medicine at Mount Sinai, United States |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367277/ |
PMID | 30774648 |
PQID | 2183187388 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_59da76133cc24f7cbf1ba4d51bde40f4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6367277 proquest_miscellaneous_2183187388 crossref_primary_10_3389_fgene_2019_00024 pubmed_primary_30774648 |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in genetics |
PublicationTitleAlternate | Front Genet |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Oda (B46); 346 Wallmeier (B63) 2016; 99 King (B32) 2015; 290 Viswanadha (B61) 2014; 71 Ben Khelifa (B4) 2014; 94 Yamamoto (B69) 2013; 201 Fowkes (B14) 1998; 9 Yagi (B67) 2018 Fatima (B12) 2011; 6 Sarpal (B58) 2003; 13 Merveille (B39) 2011; 43 Wirschell (B65) 2013; 45 zur Lage (B72) 2018; 218 Hendrickson (B19) 2013; 1833 Onoufriadis (B52) 2014; 51 Oda (B47); 204 Olcese (B49) 2017; 8 Olbrich (B48) 2015; 97 Kavlie (B30) 2010; 185 Mitchison (B41) 2017; 241 Jeanson (B27) 2016; 37 Robinson (B57) 2013; 41 Oda (B45) 2016; 103 Wickstead (B64) 2007; 8 Hwang (B26) 2018 Neisch (B43) 2018 Porter (B55) 2018 Newton (B44) 2012; 22 Antony (B2) 2013; 34 Hu (B25) 2011; 12 Tanaka (B60) 2004; 18 Bower (B6) 2009; 20 Han (B18) 2003; 13 Viswanadha (B62) 2017; 9 Lewis (B36) 2016; 12 Mitchell (B40) 2017; 9 Senthilan (B59) 2012; 150 Rasmusson (B56) 1994; 5 Cachero (B7) 2011; 9 Fu (B15) 2018; 29 Omran (B50) 2008; 456 Kollmar (B34) 2016; 33 Panizzi (B54) 2012; 44 Wirschell (B66) 2011; 510 Hjeij (B22) 2014; 95 zur Lage (B70) 2010; 10 Hom (B23) 2011; 68 Carvalho (B8) 2000; 97 zur Lage (B71) 2011; 5 Jerber (B28) 2014; 23 Diggle (B9) 2014; 10 Linck (B38) 2014; 289 Gaillard (B16) 2006; 17 Karak (B29) 2015; 5 Hirose (B20) 2012 Knowles (B33) 2013; 92 Bower (B5) 2013; 24 Lin (B37) 2015; 5 Paff (B53) 2017; 100 Horani (B24) 2013; 8 Hjeij (B21) 2013; 93 Becker-Heck (B3) 2011; 43 Onoufriadis (B51) 2013; 92 Dymek (B11) 2011; 22 Amos (B1) 2008; 9 Moore (B42) 2013; 93 Laurençon (B35) 2007; 8 Fok (B13) 1994; 29 King (B31) 2016; 8 Yamaguchi (B68) 2018 Göpfert (B17) 2003; 100 Dong (B10) 2014; 204 |
References_xml | – volume: 23 start-page: 563 year: 2014 ident: B28 article-title: The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt445 contributor: fullname: Jerber – volume: 97 start-page: 13239 year: 2000 ident: B8 article-title: Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.230438397 contributor: fullname: Carvalho – volume: 93 start-page: 346 year: 2013 ident: B42 article-title: Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.07.009 contributor: fullname: Moore – volume: 241 start-page: 294 year: 2017 ident: B41 article-title: Motile and non-motile cilia in human pathology: from function to phenotypes publication-title: J. Pathol. doi: 10.1002/path.4843 contributor: fullname: Mitchison – volume: 204 start-page: 203 year: 2014 ident: B10 article-title: Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm publication-title: J. Cell Biol doi: 10.1083/jcb.201304076 contributor: fullname: Dong – volume: 346 start-page: 857 ident: B46 article-title: A molecular ruler determines the repeat length in eukaryotic cilia and flagella publication-title: Science doi: 10.1126/science.1260214 contributor: fullname: Oda – volume: 43 start-page: 79 year: 2011 ident: B3 article-title: The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation publication-title: Nat. Genet. doi: 10.1038/ng.727 contributor: fullname: Becker-Heck – volume: 12 start-page: e1006220 year: 2016 ident: B36 article-title: Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006220 contributor: fullname: Lewis – volume: 13 start-page: 1687 year: 2003 ident: B58 article-title: Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.09.025 contributor: fullname: Sarpal – volume: 456 start-page: 611 year: 2008 ident: B50 article-title: Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins publication-title: Nature doi: 10.1038/nature07471 contributor: fullname: Omran – volume: 29 start-page: 215 year: 1994 ident: B13 article-title: 22S axonemal dynein is preassembled and functional prior to being transported to and attached on the axonemes publication-title: Cell Motil. Cytoskeleton doi: 10.1002/cm.970290304 contributor: fullname: Fok – volume: 9 start-page: a018325 year: 2017 ident: B62 article-title: Ciliary motility: regulation of axonemal dynein motors publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a018325 contributor: fullname: Viswanadha – volume: 18 start-page: 7958 year: 2004 ident: B60 article-title: Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.18.7958-7964.2004 contributor: fullname: Tanaka – volume: 100 start-page: 160 year: 2017 ident: B53 article-title: Mutations in PIH1D3 Cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.11.019 contributor: fullname: Paff – volume: 44 start-page: 714 year: 2012 ident: B54 article-title: CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms publication-title: Nat. Genet. doi: 10.1038/ng.2277 contributor: fullname: Panizzi – volume: 150 start-page: 1042 year: 2012 ident: B59 article-title: Drosophila auditory organ genes and genetic hearing defects publication-title: Cell doi: 10.1016/j.cell.2012.06.043 contributor: fullname: Senthilan – volume: 13 start-page: 1679 year: 2003 ident: B18 article-title: Intraflagellar transport is required in drosophila to differentiate sensory cilia but not sperm publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.08.034 contributor: fullname: Han – volume: 185 start-page: 177 year: 2010 ident: B30 article-title: Hearing in drosophila requires TilB, a conserved protein associated with ciliary motility publication-title: Genetics doi: 10.1534/genetics.110.114009 contributor: fullname: Kavlie – volume: 92 start-page: 99 year: 2013 ident: B33 article-title: Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.11.003 contributor: fullname: Knowles – volume: 5 start-page: 322 year: 2011 ident: B71 article-title: Linking specification to differentiation: from proneural genes to the regulation of ciliogenesis publication-title: Fly doi: 10.4161/fly.5.4.16159 contributor: fullname: zur Lage – volume: 93 start-page: 357 year: 2013 ident: B21 article-title: ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.06.009 contributor: fullname: Hjeij – volume: 290 start-page: 7388 year: 2015 ident: B32 article-title: The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.616425 contributor: fullname: King – start-page: 299 volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn. year: 2018 ident: B55 article-title: Ciliary and flagellar motility and the nexin-dynein regulatory complex doi: 10.1016/B978-0-12-809471-6.00010-3 contributor: fullname: Porter – volume: 22 start-page: 2520 year: 2011 ident: B11 article-title: The CSC is required for complete radial spoke assembly and wild-type ciliary motility publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-03-0271 contributor: fullname: Dymek – volume: 95 start-page: 257 year: 2014 ident: B22 article-title: CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.08.005 contributor: fullname: Hjeij – volume: 8 start-page: 1708 year: 2007 ident: B64 article-title: Dyneins across eukaryotes: a comparative genomic analysis publication-title: Traffic doi: 10.1111/j.1600-0854.2007.00646.x contributor: fullname: Wickstead – year: 2018 ident: B68 article-title: Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly publication-title: Elife doi: 10.7554/eLife.36979 contributor: fullname: Yamaguchi – volume: 71 start-page: 573 year: 2014 ident: B61 article-title: The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking publication-title: Cytoskeleton doi: 10.1002/cm.21192 contributor: fullname: Viswanadha – volume: 5 start-page: 5727 year: 2015 ident: B37 article-title: Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia publication-title: Nat. Commun. doi: 10.1038/ncomms6727 contributor: fullname: Lin – volume: 22 start-page: 1221 year: 2012 ident: B44 article-title: Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.05.010 contributor: fullname: Newton – volume: 68 start-page: 555 year: 2011 ident: B23 article-title: A unified taxonomy for ciliary dyneins publication-title: Cytoskeleton doi: 10.1002/cm.20533 contributor: fullname: Hom – volume: 10 start-page: 34 year: 2010 ident: B70 article-title: The function and regulation of the bHLH gene, cato, in Drosophila neurogenesis publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-10-34 contributor: fullname: zur Lage – volume: 9 start-page: 2337 year: 1998 ident: B14 article-title: The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits publication-title: Mol. Biol. Cell doi: 10.1091/mbc.9.9.2337 contributor: fullname: Fowkes – volume: 8 start-page: R195 year: 2007 ident: B35 article-title: Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species publication-title: Genome Biol. doi: 10.1186/gb-2007-8-9-r195 contributor: fullname: Laurençon – volume: 51 start-page: 61 year: 2014 ident: B52 article-title: Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2013-101938 contributor: fullname: Onoufriadis – volume: 8 start-page: 14279 year: 2017 ident: B49 article-title: X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3 publication-title: Nat. Commun. doi: 10.1038/ncomms14279 contributor: fullname: Olcese – volume: 10 start-page: e1004577 year: 2014 ident: B9 article-title: HEATR2 plays a conserved role in assembly of the ciliary motile apparatus publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004577 contributor: fullname: Diggle – volume: 43 start-page: 72 year: 2011 ident: B39 article-title: CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs publication-title: Nat. Genet. doi: 10.1038/ng.726 contributor: fullname: Merveille – volume: 24 start-page: 1134 year: 2013 ident: B5 article-title: The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E12-11-0801 contributor: fullname: Bower – volume: 29 start-page: 1003 year: 2018 ident: B15 article-title: The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E18-02-0142 contributor: fullname: Fu – volume: 41 start-page: D744 year: 2013 ident: B57 article-title: FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1141 contributor: fullname: Robinson – volume: 201 start-page: 263 year: 2013 ident: B69 article-title: The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility publication-title: J. Cell Biol. doi: 10.1083/jcb.201211048 contributor: fullname: Yamamoto – volume: 97 start-page: 546 year: 2015 ident: B48 article-title: Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.08.012 contributor: fullname: Olbrich – volume: 99 start-page: 460 year: 2016 ident: B63 article-title: TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.06.014 contributor: fullname: Wallmeier – volume: 9 start-page: e1000568 year: 2011 ident: B7 article-title: The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000568 contributor: fullname: Cachero – volume: 103 start-page: 1547 year: 2016 ident: B45 article-title: Docking complex-independent alignment of outer dynein arms with 24-nm periodicity in vitro publication-title: J. Cell Sci. doi: 10.1242/jcs.184598 contributor: fullname: Oda – volume: 17 start-page: 2626 year: 2006 ident: B16 article-title: Disruption of the A-kinase anchoring domain in flagellar radial spoke protein 3 results in unregulated axonemal cAMP-dependent protein kinase activity and abnormal flagellar motility publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E06-02-0095 contributor: fullname: Gaillard – volume-title: Handbook of Dynein year: 2012 ident: B20 doi: 10.1201/b11622 contributor: fullname: Hirose – volume: 5 start-page: 17085 year: 2015 ident: B29 article-title: Diverse roles of axonemal dyneins in drosophila auditory neuron function and mechanical amplification in hearing publication-title: Sci. Rep. doi: 10.1038/srep17085 contributor: fullname: Karak – volume: 204 start-page: 807 ident: B47 article-title: Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity publication-title: J. Cell Biol. doi: 10.1083/jcb.201312014 contributor: fullname: Oda – volume: 12 start-page: 357 year: 2011 ident: B25 article-title: An integrative approach to ortholog prediction for disease-focused and other functional studies publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-357 contributor: fullname: Hu – volume: 8 start-page: e72299 year: 2013 ident: B24 article-title: CCDC65 mutation causes primary ciliary dyskinesia with normal utrastructure and hyperkinetic cilia publication-title: PLoS ONE doi: 10.1371/journal.pone.0072299 contributor: fullname: Horani – volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn year: 2018 ident: B67 article-title: Genetic approaches to axonemal dynein function in Chlamydomonas and other organisms doi: 10.1016/B978-0-12-809471-6.00007-3 contributor: fullname: Yagi – volume: 289 start-page: 17427 year: 2014 ident: B38 article-title: Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.568949 contributor: fullname: Linck – volume: 1833 start-page: 3265 year: 2013 ident: B19 article-title: The IC138 and IC140 intermediate chains of the I1 axonemal dynein complex bind directly to tubulin publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2013.09.011 contributor: fullname: Hendrickson – volume: 8 start-page: a028100 year: 2016 ident: B31 article-title: Axonemal dynein arms publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a028100 contributor: fullname: King – volume: 45 start-page: 262 year: 2013 ident: B65 article-title: The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans publication-title: Nat. Genet. doi: 10.1038/ng.2533 contributor: fullname: Wirschell – volume: 218 start-page: 2583 year: 2018 ident: B72 article-title: Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP publication-title: J. Cell Biol doi: 10.1083/jcb.201709026 contributor: fullname: zur Lage – volume: 5 start-page: 45 year: 1994 ident: B56 article-title: A family of dynein genes in Drosophila melanogaster publication-title: Mol. Biol. Cell doi: 10.1091/mbc.5.1.45 contributor: fullname: Rasmusson – volume: 510 start-page: 93 year: 2011 ident: B66 article-title: Regulation of ciliary motility: Conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.04.003 contributor: fullname: Wirschell – volume: 6 start-page: e27822 year: 2011 ident: B12 article-title: Drosophila dynein intermediate chain gene, Dic61B, is required for spermatogenesis publication-title: PLoS ONE doi: 10.1371/journal.pone.0027822 contributor: fullname: Fatima – volume: 100 start-page: 5514 year: 2003 ident: B17 article-title: Motion generation by Drosophila mechanosensory neurons publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0737564100 contributor: fullname: Göpfert – volume: 20 start-page: 3055 year: 2009 ident: B6 article-title: IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E09 contributor: fullname: Bower – volume: 9 start-page: 229 year: 2008 ident: B1 article-title: The tektin family of microtubule-stabilizing proteins publication-title: Genome Biol. doi: 10.1186/gb-2008-9-7-229 contributor: fullname: Amos – volume: 9 start-page: a028290 year: 2017 ident: B40 article-title: Evolution of cilia publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a028290 contributor: fullname: Mitchell – volume: 33 start-page: 3249 year: 2016 ident: B34 article-title: Fine-tuning motile cilia and flagella: Evolution of the dynein motor proteins from plants to humans at high resolution publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw213 contributor: fullname: Kollmar – volume: 34 start-page: 462 year: 2013 ident: B2 article-title: Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms publication-title: Hum. Mutat. doi: 10.1002/humu.22261 contributor: fullname: Antony – volume: 94 start-page: 95 year: 2014 ident: B4 article-title: Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.11.017 contributor: fullname: Ben Khelifa – volume: 37 start-page: 776 year: 2016 ident: B27 article-title: Mutations in GAS8, a gene encoding a nexin-dynein regulatory complex subunit, cause primary ciliary dyskinesia with axonemal disorganization publication-title: Hum. Mutat. doi: 10.1002/humu.23005 contributor: fullname: Jeanson – volume: 92 start-page: 88 year: 2013 ident: B51 article-title: Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.11.002 contributor: fullname: Onoufriadis – start-page: 569 volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn year: 2018 ident: B43 article-title: Drosophila cytoplasmic dynein: mutations, tools, and developmental functions doi: 10.1016/B978-0-12-809471-6.00021-8 contributor: fullname: Neisch – start-page: 271 volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn year: 2018 ident: B26 article-title: Control of axonemal inner dynein arms doi: 10.1016/B978-0-12-809471-6.00009-7 contributor: fullname: Hwang |
SSID | ssj0000493334 |
Score | 2.4236052 |
Snippet | The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 24 |
SubjectTerms | ciliopathy cilium Drosophila dynein flagellum Genetics |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9swEBVlodBL6Xe9_UCFXnowa1uyJfe2TbsshfTQbcrehCSPqYuxFztZyN_qL-yMlF2SUuilFxMcBU_0xvZ71vgNY29zZVFXWJnKQmWpdK1MdVXaFBSUqnZeymAptPxSna_k58vycq_VF9WERXvgOHEnZd1YlNpCeF_IVnnX5s7KpsxdAzJroxNoVuyJqZ-R9wohZFyXRBVWn7SIB9li5uRPmRXy4D4U7Pr_xjH_LJXcu_ecPWD3d6SRn8ZgH7I7MDxid2Mbye1j9utiM13Dlo8tRzrHF13f2WnLl-OaCl_xQyiYhCmM-DiFzgVdb_nFFV6WuR2a-BPknnwJ9CbwOKO4HXF8sO4YZv4VrpFQznw1UEcATyMX0PcpqVgeWti3neffUXfHB4Dv-SmnLms9R04cA4lxjaEDMsxP2Ors07fFebrrxZD6stDrVIEUFZI71-Re57ZyTkADbSZQQFa1swp3lW0lNaGinSAbMkCYBFE6KUA8ZUfDOMBzektc6UY2rtKZlOBFXRa48a4ubIWZ0STs3Q0y5ipabhiUKoSiCSgaQtEEFBP2gaC7HUdm2WEHppDZpZD5Vwol7M0N8AZPLloxsQOMm9kQf8y1Elon7FlMhNtD4cVRSfzDCVMHKXIQy-E3Q_cjGHjj5CBtVMf_I_gX7B5NRywkf8mO1tMGXiFPWrvX4ZT4DaNfFco priority: 102 providerName: Directory of Open Access Journals |
Title | Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30774648 https://search.proquest.com/docview/2183187388 https://pubmed.ncbi.nlm.nih.gov/PMC6367277 https://doaj.org/article/59da76133cc24f7cbf1ba4d51bde40f4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2SaC9IL4pH5OReOEhaxM7ccLbKIwJqQgxivoW2c5lBGVJlbST-m_xF3JnN1OLeOIliRwnOfnO8e_s8-8YexMqjX6FloGM1CSQppRBmsQ6AAWxyoyV0lEKzb4kF3P5eREvDlg87IVxQfvWVKdNfX3aVD9dbOXy2o6HOLHx19k0EbR-qMaH7BDPOy76Lw95hRDSL0miA5aNS1QFMWKGRE2JY9Ixu4uWrWRCSX92RiNH2v8vpPl3wOTOCHR-n93bQkd-5kV8wA6gecju-GSSm0fs9-W6u4ENb0uOoI5Pq7rS3YbP2hWFv-KFC5uEztX40Ln8BVWt-eUSf85cN4V_BBEonwHtB257dHFbrO8IPJqef4MbhJU9nzeUF8BSzSnUdUC-LHeJ7MvK8h_offtpwHf8jFOutZojMvaCeLlalwcZ-sdsfv7x-_Qi2GZkCGwcpatAgRQJQjxThDYNdWKMgALKiUA3MsmMVlgUl9iuBchJagSRkYEsYkHATgoQT9hR0zbwjPaKq7SQhUnSiZRgRRZHeLAmi3SC9lGM2NtBM_nSE2_k6LCQQnOn0JwUmjuFjth7Ut1tPaLMdgVtd5VvDSePs0IrBC_C2kiWypoyNBplCw0JW-JLXg-Kz7GL0bqJbqBd9zmhyDBVIk1H7Kk3hNtPDYY0YmrPRPZk2b-DVu1ovLdW_Py_n3zBjqkNfAz5S3a06tbwCiHSypy4qQU8flqEJ657_AHC8hch |
link.rule.ids | 230,314,727,780,784,864,885,2102,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGELAXxNdY-TQSLzxkbWonTngbhanAMiG2or1ZtuNApiypknZS_y3-Qu7sZmoRT7xEUXJOTr5z_Lv4_DtC3oZCQVyheMDHYhRwXfAgiSMVWGEjkWrDuaMUyk7j6Yx_uYgudkjU74VxSftGl4d1dXVYl79cbuX8ygz7PLHht2wSM1w_FMNb5HbERBpuBOmXHvQyxrhflIQQLB0WYAzkxAyRnBJmpT1yF3xb8BjL_mzMR462_19Y8--UyY056PgBub8Gj_TIK_mQ7Nj6Ebnjy0muHpPfZ8v22q5oU1CAdXRSVqVqVzRrFpgACycucdK2TuJj6yoYlJWiZ3P4PFNV574JYFCaWdwR3HQQ5DYg7yg86o5-t9cALDs6q7EygEHJia2qAKNZ6krZF6WhPyD-9j8C39MjitXWKgrY2Cvi9WpcJWTbPSGz40_nk2mwrskQmGicLAJhOYsB5Ok8NEmoYq2ZzW0xYhBIxqlWAi5FBfRrbvko0QzpyCzPI4bQjjPL9slu3dT2AHeLiyTnuY6TEefWsDQaw8HodKxi8JB8QN71lpFzT70hIWRBg0pnUIkGlc6gA_IBTXcjh6TZ7kLT_pRr15FRmisB8IUZM-aFMLoItQLdQo3KFvCQN73hJQwyXDlRtW2WnUQcGSaCJcmAPPWOcPOq3pEGRGy5yJYu23fArx2R99qPn_13y9fk3vQ8O5Enn0-_Pid72B8-o_wF2V20S_sSANNCv3LD4w9ogRiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BEVU3iDfhOUhsWLiJPWOPza6kROWRqqIEdTeal8HItSM7qZTf4gu5dyapEsSKTWQ54_jK99hzbub6HELexEJBXaF4xBMxirgueZRnqYqccKkotOHcSwpNT7OTGf90kV5sWX35pn2jq8Omvjxsqp--t3J-aYabPrHh2XScMVw_FMO5LYc3ya2UAci2CvVfgfgyxnhYmIQyrBiWkBDUxYxRoBJmpgOyD_gWPEPrn605yUv3_4tv_t02uTUPTe6SO2sCSY9CoPfIDdfcJ7eDpeTqAfl9vuyu3Iq2JQVqR8dVXaluRaftAptgYcM3T7rOjzjuvItBVSt6PodHNFWNDYcAD6VTh28Ftz0Uui2M9zIeTU-_uisglz2dNegOYHDk2NV1hBUt9Xb2ZWXod6jBw5-B7-gRRce1mgI_DoGEuFrvhuz6h2Q2-fBtfBKtfRkikyb5IhKOswyInraxyWOVac2cdeWIQTGZFVoJ2JWWcF2t46NcM5Qkc9ymDOkdZ449IntN27gn-Ma4yC23OstHnDvDijSBD6OLRGWAEjsgbzeZkfMgvyGhbMGESp9QiQmVPqED8h5Tdz0OhbP9jrb7IdfwkWlhlQAKw4xJeCmMLmOtILZYY7Al_MjrTeIl3Gi4eqIa1y57iVwyzgXL8wF5HIBwfaoNkAZE7EBkJ5bdbwDbXsx7jeWn_33kK7J_djyRXz6efn5GDvByhKby52Rv0S3dC-BMC_3S3x1_AFREGaM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+the+Ciliary+Motility+Machinery+of+Drosophila+Sperm+and+Ciliated+Mechanosensory+Neurons+Reveals+Unexpected+Cell-Type+Specific+Variations%3A+A+Model+for+Motile+Ciliopathies&rft.jtitle=Frontiers+in+genetics&rft.au=Zur+Lage%2C+Petra&rft.au=Newton%2C+Fay+G&rft.au=Jarman%2C+Andrew+P&rft.date=2019-02-01&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=10&rft.spage=24&rft_id=info:doi/10.3389%2Ffgene.2019.00024&rft_id=info%3Apmid%2F30774648&rft.externalDocID=30774648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |