Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies

The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated "assembly f...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 10; p. 24
Main Authors Zur Lage, Petra, Newton, Fay G, Jarman, Andrew P
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated "assembly factors" and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of as a model for motile cilia, we survey the genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in . Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants-the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
AbstractList The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated "assembly factors" and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of as a model for motile cilia, we survey the genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in . Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants-the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila . Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
Author Zur Lage, Petra
Jarman, Andrew P
Newton, Fay G
AuthorAffiliation Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
AuthorAffiliation_xml – name: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
Author_xml – sequence: 1
  givenname: Petra
  surname: Zur Lage
  fullname: Zur Lage, Petra
  organization: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 2
  givenname: Fay G
  surname: Newton
  fullname: Newton, Fay G
  organization: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 3
  givenname: Andrew P
  surname: Jarman
  fullname: Jarman, Andrew P
  organization: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30774648$$D View this record in MEDLINE/PubMed
BookMark eNpVkk9v3CAQxVGVqknT3HuqOPbiLRhs4x4qRdt_kZJWapJeEcbDmsgLDtir7tfqJyxep1FyYgRvfvM0vNfoyHkHCL2lZMWYqD-YDThY5YTWK0JIzl-gE1qWPBMkp0dP6mN0FuNdkhBeM8b4K3TMSFXxkosT9Pd6CjvYY2_w2AFe296qsMdXfkzVmAqlO-sgHBSfg49-6Gyv8PUAYYuVa5eWEVp8BbpTzkdw0Sf9D5iCdxH_gh2oPuJbB38G0LNyDX2f3ewHmDHaGqvxbxUSxaaGj_g8jW-hx8aHxcjiyw9q7CzEN-ilSUA4ezhP0e3XLzfr79nlz28X6_PLTBe5GLMKOCs5KZqWakFV2TQMWjCE5ZSWdaOqdFWYtIQWOBENK1lJgLcFI6KgnAE7RRcLt_XqTg7BbtNmpFdWHi582EgVRqt7kEXdqqqkjGmdc1PpxtBGJRZtZrjhifVpYQ1Ts4VWgxuD6p9Bn78428mN38nkqsqrKgHePwCCv58gjnJro057VA78FGVOBaOiYkIkKVmkOn1XDGAex1Ai5-TIQ3LknBx5SE5qeffU3mPD_5ywf4ybxck
CitedBy_id crossref_primary_10_3390_diagnostics11091550
crossref_primary_10_7554_eLife_74993
crossref_primary_10_15252_embj_2023113616
crossref_primary_10_1016_j_cub_2019_12_071
crossref_primary_10_1016_j_cub_2024_02_010
crossref_primary_10_1242_jcs_261387
crossref_primary_10_1371_journal_pgen_1009655
crossref_primary_10_1016_j_ydbio_2021_11_003
crossref_primary_10_1242_dev_202236
crossref_primary_10_1007_s00018_019_03389_7
crossref_primary_10_3389_fgene_2022_943197
crossref_primary_10_1091_mbc_E19_07_0367
crossref_primary_10_3390_cells10092336
crossref_primary_10_1038_s41598_021_89366_2
crossref_primary_10_3389_fcell_2019_00151
crossref_primary_10_1016_j_cris_2022_100039
crossref_primary_10_1083_jcb_202003084
crossref_primary_10_7717_peerj_12895
crossref_primary_10_1016_j_xfss_2022_02_003
crossref_primary_10_1093_molbev_msab368
crossref_primary_10_7554_eLife_82201
crossref_primary_10_1038_s41598_022_17189_w
crossref_primary_10_1073_pnas_1910960116
crossref_primary_10_1242_bio_058812
crossref_primary_10_3389_fgene_2020_00578
crossref_primary_10_1371_journal_pcbi_1011773
crossref_primary_10_3389_fnmol_2023_1263411
crossref_primary_10_1007_s12264_021_00631_w
crossref_primary_10_1111_mec_15581
crossref_primary_10_1002_cm_21662
crossref_primary_10_3390_cells11193058
crossref_primary_10_1080_15592294_2023_2192375
crossref_primary_10_1016_j_foodres_2022_111670
crossref_primary_10_1242_jcs_260408
Cites_doi 10.1093/hmg/ddt445
10.1073/pnas.230438397
10.1016/j.ajhg.2013.07.009
10.1002/path.4843
10.1083/jcb.201304076
10.1126/science.1260214
10.1038/ng.727
10.1371/journal.pgen.1006220
10.1016/j.cub.2003.09.025
10.1038/nature07471
10.1002/cm.970290304
10.1101/cshperspect.a018325
10.1128/MCB.24.18.7958-7964.2004
10.1016/j.ajhg.2016.11.019
10.1038/ng.2277
10.1016/j.cell.2012.06.043
10.1016/j.cub.2003.08.034
10.1534/genetics.110.114009
10.1016/j.ajhg.2012.11.003
10.4161/fly.5.4.16159
10.1016/j.ajhg.2013.06.009
10.1074/jbc.M114.616425
10.1016/B978-0-12-809471-6.00010-3
10.1091/mbc.E11-03-0271
10.1016/j.ajhg.2014.08.005
10.1111/j.1600-0854.2007.00646.x
10.7554/eLife.36979
10.1002/cm.21192
10.1038/ncomms6727
10.1016/j.devcel.2012.05.010
10.1002/cm.20533
10.1186/1471-213X-10-34
10.1091/mbc.9.9.2337
10.1186/gb-2007-8-9-r195
10.1136/jmedgenet-2013-101938
10.1038/ncomms14279
10.1371/journal.pgen.1004577
10.1038/ng.726
10.1091/mbc.E12-11-0801
10.1091/mbc.E18-02-0142
10.1093/nar/gks1141
10.1083/jcb.201211048
10.1016/j.ajhg.2015.08.012
10.1016/j.ajhg.2016.06.014
10.1371/journal.pbio.1000568
10.1242/jcs.184598
10.1091/mbc.E06-02-0095
10.1201/b11622
10.1038/srep17085
10.1083/jcb.201312014
10.1186/1471-2105-12-357
10.1371/journal.pone.0072299
10.1016/B978-0-12-809471-6.00007-3
10.1074/jbc.M114.568949
10.1016/j.bbamcr.2013.09.011
10.1101/cshperspect.a028100
10.1038/ng.2533
10.1083/jcb.201709026
10.1091/mbc.5.1.45
10.1016/j.abb.2011.04.003
10.1371/journal.pone.0027822
10.1073/pnas.0737564100
10.1091/mbc.E09
10.1186/gb-2008-9-7-229
10.1101/cshperspect.a028290
10.1093/molbev/msw213
10.1002/humu.22261
10.1016/j.ajhg.2013.11.017
10.1002/humu.23005
10.1016/j.ajhg.2012.11.002
10.1016/B978-0-12-809471-6.00021-8
10.1016/B978-0-12-809471-6.00009-7
ContentType Journal Article
Copyright Copyright © 2019 zur Lage, Newton and Jarman. 2019 zur Lage, Newton and Jarman
Copyright_xml – notice: Copyright © 2019 zur Lage, Newton and Jarman. 2019 zur Lage, Newton and Jarman
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fgene.2019.00024
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
EndPage 24
ExternalDocumentID oai_doaj_org_article_59da76133cc24f7cbf1ba4d51bde40f4
10_3389_fgene_2019_00024
30774648
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Biotechnology and Biological Sciences Research Council
– fundername: Medical Research Council
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RNS
RPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c528t-7e436405bd1c81a6bb3edef0321169ba7a6b5f648de408b36360e4d53085143e3
IEDL.DBID RPM
ISSN 1664-8021
IngestDate Tue Oct 22 15:10:29 EDT 2024
Tue Sep 17 21:24:32 EDT 2024
Fri Oct 25 04:38:00 EDT 2024
Thu Sep 26 17:10:19 EDT 2024
Wed Oct 16 00:51:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords dynein
cilium
flagellum
Drosophila
ciliopathy
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-7e436405bd1c81a6bb3edef0321169ba7a6b5f648de408b36360e4d53085143e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Genetic Disorders, a section of the journal Frontiers in Genetics
Edited by: Carlo Iomini, Icahn School of Medicine at Mount Sinai, United States
Reviewed by: Colin Anfimov Johnson, University of Leeds, United Kingdom; Marek Mlodzik, Icahn School of Medicine at Mount Sinai, United States
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367277/
PMID 30774648
PQID 2183187388
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_59da76133cc24f7cbf1ba4d51bde40f4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6367277
proquest_miscellaneous_2183187388
crossref_primary_10_3389_fgene_2019_00024
pubmed_primary_30774648
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Oda (B46); 346
Wallmeier (B63) 2016; 99
King (B32) 2015; 290
Viswanadha (B61) 2014; 71
Ben Khelifa (B4) 2014; 94
Yamamoto (B69) 2013; 201
Fowkes (B14) 1998; 9
Yagi (B67) 2018
Fatima (B12) 2011; 6
Sarpal (B58) 2003; 13
Merveille (B39) 2011; 43
Wirschell (B65) 2013; 45
zur Lage (B72) 2018; 218
Hendrickson (B19) 2013; 1833
Onoufriadis (B52) 2014; 51
Oda (B47); 204
Olcese (B49) 2017; 8
Olbrich (B48) 2015; 97
Kavlie (B30) 2010; 185
Mitchison (B41) 2017; 241
Jeanson (B27) 2016; 37
Robinson (B57) 2013; 41
Oda (B45) 2016; 103
Wickstead (B64) 2007; 8
Hwang (B26) 2018
Neisch (B43) 2018
Porter (B55) 2018
Newton (B44) 2012; 22
Antony (B2) 2013; 34
Hu (B25) 2011; 12
Tanaka (B60) 2004; 18
Bower (B6) 2009; 20
Han (B18) 2003; 13
Viswanadha (B62) 2017; 9
Lewis (B36) 2016; 12
Mitchell (B40) 2017; 9
Senthilan (B59) 2012; 150
Rasmusson (B56) 1994; 5
Cachero (B7) 2011; 9
Fu (B15) 2018; 29
Omran (B50) 2008; 456
Kollmar (B34) 2016; 33
Panizzi (B54) 2012; 44
Wirschell (B66) 2011; 510
Hjeij (B22) 2014; 95
zur Lage (B70) 2010; 10
Hom (B23) 2011; 68
Carvalho (B8) 2000; 97
zur Lage (B71) 2011; 5
Jerber (B28) 2014; 23
Diggle (B9) 2014; 10
Linck (B38) 2014; 289
Gaillard (B16) 2006; 17
Karak (B29) 2015; 5
Hirose (B20) 2012
Knowles (B33) 2013; 92
Bower (B5) 2013; 24
Lin (B37) 2015; 5
Paff (B53) 2017; 100
Horani (B24) 2013; 8
Hjeij (B21) 2013; 93
Becker-Heck (B3) 2011; 43
Onoufriadis (B51) 2013; 92
Dymek (B11) 2011; 22
Amos (B1) 2008; 9
Moore (B42) 2013; 93
Laurençon (B35) 2007; 8
Fok (B13) 1994; 29
King (B31) 2016; 8
Yamaguchi (B68) 2018
Göpfert (B17) 2003; 100
Dong (B10) 2014; 204
References_xml – volume: 23
  start-page: 563
  year: 2014
  ident: B28
  article-title: The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt445
  contributor:
    fullname: Jerber
– volume: 97
  start-page: 13239
  year: 2000
  ident: B8
  article-title: Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.230438397
  contributor:
    fullname: Carvalho
– volume: 93
  start-page: 346
  year: 2013
  ident: B42
  article-title: Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.07.009
  contributor:
    fullname: Moore
– volume: 241
  start-page: 294
  year: 2017
  ident: B41
  article-title: Motile and non-motile cilia in human pathology: from function to phenotypes
  publication-title: J. Pathol.
  doi: 10.1002/path.4843
  contributor:
    fullname: Mitchison
– volume: 204
  start-page: 203
  year: 2014
  ident: B10
  article-title: Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201304076
  contributor:
    fullname: Dong
– volume: 346
  start-page: 857
  ident: B46
  article-title: A molecular ruler determines the repeat length in eukaryotic cilia and flagella
  publication-title: Science
  doi: 10.1126/science.1260214
  contributor:
    fullname: Oda
– volume: 43
  start-page: 79
  year: 2011
  ident: B3
  article-title: The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.727
  contributor:
    fullname: Becker-Heck
– volume: 12
  start-page: e1006220
  year: 2016
  ident: B36
  article-title: Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006220
  contributor:
    fullname: Lewis
– volume: 13
  start-page: 1687
  year: 2003
  ident: B58
  article-title: Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.09.025
  contributor:
    fullname: Sarpal
– volume: 456
  start-page: 611
  year: 2008
  ident: B50
  article-title: Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins
  publication-title: Nature
  doi: 10.1038/nature07471
  contributor:
    fullname: Omran
– volume: 29
  start-page: 215
  year: 1994
  ident: B13
  article-title: 22S axonemal dynein is preassembled and functional prior to being transported to and attached on the axonemes
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.970290304
  contributor:
    fullname: Fok
– volume: 9
  start-page: a018325
  year: 2017
  ident: B62
  article-title: Ciliary motility: regulation of axonemal dynein motors
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a018325
  contributor:
    fullname: Viswanadha
– volume: 18
  start-page: 7958
  year: 2004
  ident: B60
  article-title: Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.18.7958-7964.2004
  contributor:
    fullname: Tanaka
– volume: 100
  start-page: 160
  year: 2017
  ident: B53
  article-title: Mutations in PIH1D3 Cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.11.019
  contributor:
    fullname: Paff
– volume: 44
  start-page: 714
  year: 2012
  ident: B54
  article-title: CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2277
  contributor:
    fullname: Panizzi
– volume: 150
  start-page: 1042
  year: 2012
  ident: B59
  article-title: Drosophila auditory organ genes and genetic hearing defects
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.043
  contributor:
    fullname: Senthilan
– volume: 13
  start-page: 1679
  year: 2003
  ident: B18
  article-title: Intraflagellar transport is required in drosophila to differentiate sensory cilia but not sperm
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.08.034
  contributor:
    fullname: Han
– volume: 185
  start-page: 177
  year: 2010
  ident: B30
  article-title: Hearing in drosophila requires TilB, a conserved protein associated with ciliary motility
  publication-title: Genetics
  doi: 10.1534/genetics.110.114009
  contributor:
    fullname: Kavlie
– volume: 92
  start-page: 99
  year: 2013
  ident: B33
  article-title: Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2012.11.003
  contributor:
    fullname: Knowles
– volume: 5
  start-page: 322
  year: 2011
  ident: B71
  article-title: Linking specification to differentiation: from proneural genes to the regulation of ciliogenesis
  publication-title: Fly
  doi: 10.4161/fly.5.4.16159
  contributor:
    fullname: zur Lage
– volume: 93
  start-page: 357
  year: 2013
  ident: B21
  article-title: ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.06.009
  contributor:
    fullname: Hjeij
– volume: 290
  start-page: 7388
  year: 2015
  ident: B32
  article-title: The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.616425
  contributor:
    fullname: King
– start-page: 299
  volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn.
  year: 2018
  ident: B55
  article-title: Ciliary and flagellar motility and the nexin-dynein regulatory complex
  doi: 10.1016/B978-0-12-809471-6.00010-3
  contributor:
    fullname: Porter
– volume: 22
  start-page: 2520
  year: 2011
  ident: B11
  article-title: The CSC is required for complete radial spoke assembly and wild-type ciliary motility
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E11-03-0271
  contributor:
    fullname: Dymek
– volume: 95
  start-page: 257
  year: 2014
  ident: B22
  article-title: CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.08.005
  contributor:
    fullname: Hjeij
– volume: 8
  start-page: 1708
  year: 2007
  ident: B64
  article-title: Dyneins across eukaryotes: a comparative genomic analysis
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2007.00646.x
  contributor:
    fullname: Wickstead
– year: 2018
  ident: B68
  article-title: Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly
  publication-title: Elife
  doi: 10.7554/eLife.36979
  contributor:
    fullname: Yamaguchi
– volume: 71
  start-page: 573
  year: 2014
  ident: B61
  article-title: The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking
  publication-title: Cytoskeleton
  doi: 10.1002/cm.21192
  contributor:
    fullname: Viswanadha
– volume: 5
  start-page: 5727
  year: 2015
  ident: B37
  article-title: Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6727
  contributor:
    fullname: Lin
– volume: 22
  start-page: 1221
  year: 2012
  ident: B44
  article-title: Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.05.010
  contributor:
    fullname: Newton
– volume: 68
  start-page: 555
  year: 2011
  ident: B23
  article-title: A unified taxonomy for ciliary dyneins
  publication-title: Cytoskeleton
  doi: 10.1002/cm.20533
  contributor:
    fullname: Hom
– volume: 10
  start-page: 34
  year: 2010
  ident: B70
  article-title: The function and regulation of the bHLH gene, cato, in Drosophila neurogenesis
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-10-34
  contributor:
    fullname: zur Lage
– volume: 9
  start-page: 2337
  year: 1998
  ident: B14
  article-title: The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.9.9.2337
  contributor:
    fullname: Fowkes
– volume: 8
  start-page: R195
  year: 2007
  ident: B35
  article-title: Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-9-r195
  contributor:
    fullname: Laurençon
– volume: 51
  start-page: 61
  year: 2014
  ident: B52
  article-title: Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm
  publication-title: J. Med. Genet.
  doi: 10.1136/jmedgenet-2013-101938
  contributor:
    fullname: Onoufriadis
– volume: 8
  start-page: 14279
  year: 2017
  ident: B49
  article-title: X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14279
  contributor:
    fullname: Olcese
– volume: 10
  start-page: e1004577
  year: 2014
  ident: B9
  article-title: HEATR2 plays a conserved role in assembly of the ciliary motile apparatus
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004577
  contributor:
    fullname: Diggle
– volume: 43
  start-page: 72
  year: 2011
  ident: B39
  article-title: CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs
  publication-title: Nat. Genet.
  doi: 10.1038/ng.726
  contributor:
    fullname: Merveille
– volume: 24
  start-page: 1134
  year: 2013
  ident: B5
  article-title: The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E12-11-0801
  contributor:
    fullname: Bower
– volume: 29
  start-page: 1003
  year: 2018
  ident: B15
  article-title: The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E18-02-0142
  contributor:
    fullname: Fu
– volume: 41
  start-page: D744
  year: 2013
  ident: B57
  article-title: FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1141
  contributor:
    fullname: Robinson
– volume: 201
  start-page: 263
  year: 2013
  ident: B69
  article-title: The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211048
  contributor:
    fullname: Yamamoto
– volume: 97
  start-page: 546
  year: 2015
  ident: B48
  article-title: Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.08.012
  contributor:
    fullname: Olbrich
– volume: 99
  start-page: 460
  year: 2016
  ident: B63
  article-title: TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.06.014
  contributor:
    fullname: Wallmeier
– volume: 9
  start-page: e1000568
  year: 2011
  ident: B7
  article-title: The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000568
  contributor:
    fullname: Cachero
– volume: 103
  start-page: 1547
  year: 2016
  ident: B45
  article-title: Docking complex-independent alignment of outer dynein arms with 24-nm periodicity in vitro
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.184598
  contributor:
    fullname: Oda
– volume: 17
  start-page: 2626
  year: 2006
  ident: B16
  article-title: Disruption of the A-kinase anchoring domain in flagellar radial spoke protein 3 results in unregulated axonemal cAMP-dependent protein kinase activity and abnormal flagellar motility
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E06-02-0095
  contributor:
    fullname: Gaillard
– volume-title: Handbook of Dynein
  year: 2012
  ident: B20
  doi: 10.1201/b11622
  contributor:
    fullname: Hirose
– volume: 5
  start-page: 17085
  year: 2015
  ident: B29
  article-title: Diverse roles of axonemal dyneins in drosophila auditory neuron function and mechanical amplification in hearing
  publication-title: Sci. Rep.
  doi: 10.1038/srep17085
  contributor:
    fullname: Karak
– volume: 204
  start-page: 807
  ident: B47
  article-title: Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201312014
  contributor:
    fullname: Oda
– volume: 12
  start-page: 357
  year: 2011
  ident: B25
  article-title: An integrative approach to ortholog prediction for disease-focused and other functional studies
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-357
  contributor:
    fullname: Hu
– volume: 8
  start-page: e72299
  year: 2013
  ident: B24
  article-title: CCDC65 mutation causes primary ciliary dyskinesia with normal utrastructure and hyperkinetic cilia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0072299
  contributor:
    fullname: Horani
– volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn
  year: 2018
  ident: B67
  article-title: Genetic approaches to axonemal dynein function in Chlamydomonas and other organisms
  doi: 10.1016/B978-0-12-809471-6.00007-3
  contributor:
    fullname: Yagi
– volume: 289
  start-page: 17427
  year: 2014
  ident: B38
  article-title: Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.568949
  contributor:
    fullname: Linck
– volume: 1833
  start-page: 3265
  year: 2013
  ident: B19
  article-title: The IC138 and IC140 intermediate chains of the I1 axonemal dynein complex bind directly to tubulin
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2013.09.011
  contributor:
    fullname: Hendrickson
– volume: 8
  start-page: a028100
  year: 2016
  ident: B31
  article-title: Axonemal dynein arms
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a028100
  contributor:
    fullname: King
– volume: 45
  start-page: 262
  year: 2013
  ident: B65
  article-title: The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2533
  contributor:
    fullname: Wirschell
– volume: 218
  start-page: 2583
  year: 2018
  ident: B72
  article-title: Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201709026
  contributor:
    fullname: zur Lage
– volume: 5
  start-page: 45
  year: 1994
  ident: B56
  article-title: A family of dynein genes in Drosophila melanogaster
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.5.1.45
  contributor:
    fullname: Rasmusson
– volume: 510
  start-page: 93
  year: 2011
  ident: B66
  article-title: Regulation of ciliary motility: Conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.04.003
  contributor:
    fullname: Wirschell
– volume: 6
  start-page: e27822
  year: 2011
  ident: B12
  article-title: Drosophila dynein intermediate chain gene, Dic61B, is required for spermatogenesis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027822
  contributor:
    fullname: Fatima
– volume: 100
  start-page: 5514
  year: 2003
  ident: B17
  article-title: Motion generation by Drosophila mechanosensory neurons
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0737564100
  contributor:
    fullname: Göpfert
– volume: 20
  start-page: 3055
  year: 2009
  ident: B6
  article-title: IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E09
  contributor:
    fullname: Bower
– volume: 9
  start-page: 229
  year: 2008
  ident: B1
  article-title: The tektin family of microtubule-stabilizing proteins
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-7-229
  contributor:
    fullname: Amos
– volume: 9
  start-page: a028290
  year: 2017
  ident: B40
  article-title: Evolution of cilia
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a028290
  contributor:
    fullname: Mitchell
– volume: 33
  start-page: 3249
  year: 2016
  ident: B34
  article-title: Fine-tuning motile cilia and flagella: Evolution of the dynein motor proteins from plants to humans at high resolution
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw213
  contributor:
    fullname: Kollmar
– volume: 34
  start-page: 462
  year: 2013
  ident: B2
  article-title: Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22261
  contributor:
    fullname: Antony
– volume: 94
  start-page: 95
  year: 2014
  ident: B4
  article-title: Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2013.11.017
  contributor:
    fullname: Ben Khelifa
– volume: 37
  start-page: 776
  year: 2016
  ident: B27
  article-title: Mutations in GAS8, a gene encoding a nexin-dynein regulatory complex subunit, cause primary ciliary dyskinesia with axonemal disorganization
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.23005
  contributor:
    fullname: Jeanson
– volume: 92
  start-page: 88
  year: 2013
  ident: B51
  article-title: Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2012.11.002
  contributor:
    fullname: Onoufriadis
– start-page: 569
  volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn
  year: 2018
  ident: B43
  article-title: Drosophila cytoplasmic dynein: mutations, tools, and developmental functions
  doi: 10.1016/B978-0-12-809471-6.00021-8
  contributor:
    fullname: Neisch
– start-page: 271
  volume-title: Dyneins: The Biology of Dynein Motors, 2nd Edn
  year: 2018
  ident: B26
  article-title: Control of axonemal inner dynein arms
  doi: 10.1016/B978-0-12-809471-6.00009-7
  contributor:
    fullname: Hwang
SSID ssj0000493334
Score 2.4236052
Snippet The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 24
SubjectTerms ciliopathy
cilium
Drosophila
dynein
flagellum
Genetics
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9swEBVlodBL6Xe9_UCFXnowa1uyJfe2TbsshfTQbcrehCSPqYuxFztZyN_qL-yMlF2SUuilFxMcBU_0xvZ71vgNY29zZVFXWJnKQmWpdK1MdVXaFBSUqnZeymAptPxSna_k58vycq_VF9WERXvgOHEnZd1YlNpCeF_IVnnX5s7KpsxdAzJroxNoVuyJqZ-R9wohZFyXRBVWn7SIB9li5uRPmRXy4D4U7Pr_xjH_LJXcu_ecPWD3d6SRn8ZgH7I7MDxid2Mbye1j9utiM13Dlo8tRzrHF13f2WnLl-OaCl_xQyiYhCmM-DiFzgVdb_nFFV6WuR2a-BPknnwJ9CbwOKO4HXF8sO4YZv4VrpFQznw1UEcATyMX0PcpqVgeWti3neffUXfHB4Dv-SmnLms9R04cA4lxjaEDMsxP2Ors07fFebrrxZD6stDrVIEUFZI71-Re57ZyTkADbSZQQFa1swp3lW0lNaGinSAbMkCYBFE6KUA8ZUfDOMBzektc6UY2rtKZlOBFXRa48a4ubIWZ0STs3Q0y5ipabhiUKoSiCSgaQtEEFBP2gaC7HUdm2WEHppDZpZD5Vwol7M0N8AZPLloxsQOMm9kQf8y1Elon7FlMhNtD4cVRSfzDCVMHKXIQy-E3Q_cjGHjj5CBtVMf_I_gX7B5NRywkf8mO1tMGXiFPWrvX4ZT4DaNfFco
  priority: 102
  providerName: Directory of Open Access Journals
Title Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies
URI https://www.ncbi.nlm.nih.gov/pubmed/30774648
https://search.proquest.com/docview/2183187388
https://pubmed.ncbi.nlm.nih.gov/PMC6367277
https://doaj.org/article/59da76133cc24f7cbf1ba4d51bde40f4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2SaC9IL4pH5OReOEhaxM7ccLbKIwJqQgxivoW2c5lBGVJlbST-m_xF3JnN1OLeOIliRwnOfnO8e_s8-8YexMqjX6FloGM1CSQppRBmsQ6AAWxyoyV0lEKzb4kF3P5eREvDlg87IVxQfvWVKdNfX3aVD9dbOXy2o6HOLHx19k0EbR-qMaH7BDPOy76Lw95hRDSL0miA5aNS1QFMWKGRE2JY9Ixu4uWrWRCSX92RiNH2v8vpPl3wOTOCHR-n93bQkd-5kV8wA6gecju-GSSm0fs9-W6u4ENb0uOoI5Pq7rS3YbP2hWFv-KFC5uEztX40Ln8BVWt-eUSf85cN4V_BBEonwHtB257dHFbrO8IPJqef4MbhJU9nzeUF8BSzSnUdUC-LHeJ7MvK8h_offtpwHf8jFOutZojMvaCeLlalwcZ-sdsfv7x-_Qi2GZkCGwcpatAgRQJQjxThDYNdWKMgALKiUA3MsmMVlgUl9iuBchJagSRkYEsYkHATgoQT9hR0zbwjPaKq7SQhUnSiZRgRRZHeLAmi3SC9lGM2NtBM_nSE2_k6LCQQnOn0JwUmjuFjth7Ut1tPaLMdgVtd5VvDSePs0IrBC_C2kiWypoyNBplCw0JW-JLXg-Kz7GL0bqJbqBd9zmhyDBVIk1H7Kk3hNtPDYY0YmrPRPZk2b-DVu1ovLdW_Py_n3zBjqkNfAz5S3a06tbwCiHSypy4qQU8flqEJ657_AHC8hch
link.rule.ids 230,314,727,780,784,864,885,2102,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGELAXxNdY-TQSLzxkbWonTngbhanAMiG2or1ZtuNApiypknZS_y3-Qu7sZmoRT7xEUXJOTr5z_Lv4_DtC3oZCQVyheMDHYhRwXfAgiSMVWGEjkWrDuaMUyk7j6Yx_uYgudkjU74VxSftGl4d1dXVYl79cbuX8ygz7PLHht2wSM1w_FMNb5HbERBpuBOmXHvQyxrhflIQQLB0WYAzkxAyRnBJmpT1yF3xb8BjL_mzMR462_19Y8--UyY056PgBub8Gj_TIK_mQ7Nj6Ebnjy0muHpPfZ8v22q5oU1CAdXRSVqVqVzRrFpgACycucdK2TuJj6yoYlJWiZ3P4PFNV574JYFCaWdwR3HQQ5DYg7yg86o5-t9cALDs6q7EygEHJia2qAKNZ6krZF6WhPyD-9j8C39MjitXWKgrY2Cvi9WpcJWTbPSGz40_nk2mwrskQmGicLAJhOYsB5Ok8NEmoYq2ZzW0xYhBIxqlWAi5FBfRrbvko0QzpyCzPI4bQjjPL9slu3dT2AHeLiyTnuY6TEefWsDQaw8HodKxi8JB8QN71lpFzT70hIWRBg0pnUIkGlc6gA_IBTXcjh6TZ7kLT_pRr15FRmisB8IUZM-aFMLoItQLdQo3KFvCQN73hJQwyXDlRtW2WnUQcGSaCJcmAPPWOcPOq3pEGRGy5yJYu23fArx2R99qPn_13y9fk3vQ8O5Enn0-_Pid72B8-o_wF2V20S_sSANNCv3LD4w9ogRiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BEVU3iDfhOUhsWLiJPWOPza6kROWRqqIEdTeal8HItSM7qZTf4gu5dyapEsSKTWQ54_jK99hzbub6HELexEJBXaF4xBMxirgueZRnqYqccKkotOHcSwpNT7OTGf90kV5sWX35pn2jq8Omvjxsqp--t3J-aYabPrHh2XScMVw_FMO5LYc3ya2UAci2CvVfgfgyxnhYmIQyrBiWkBDUxYxRoBJmpgOyD_gWPEPrn605yUv3_4tv_t02uTUPTe6SO2sCSY9CoPfIDdfcJ7eDpeTqAfl9vuyu3Iq2JQVqR8dVXaluRaftAptgYcM3T7rOjzjuvItBVSt6PodHNFWNDYcAD6VTh28Ftz0Uui2M9zIeTU-_uisglz2dNegOYHDk2NV1hBUt9Xb2ZWXod6jBw5-B7-gRRce1mgI_DoGEuFrvhuz6h2Q2-fBtfBKtfRkikyb5IhKOswyInraxyWOVac2cdeWIQTGZFVoJ2JWWcF2t46NcM5Qkc9ymDOkdZ449IntN27gn-Ma4yC23OstHnDvDijSBD6OLRGWAEjsgbzeZkfMgvyGhbMGESp9QiQmVPqED8h5Tdz0OhbP9jrb7IdfwkWlhlQAKw4xJeCmMLmOtILZYY7Al_MjrTeIl3Gi4eqIa1y57iVwyzgXL8wF5HIBwfaoNkAZE7EBkJ5bdbwDbXsx7jeWn_33kK7J_djyRXz6efn5GDvByhKby52Rv0S3dC-BMC_3S3x1_AFREGaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+the+Ciliary+Motility+Machinery+of+Drosophila+Sperm+and+Ciliated+Mechanosensory+Neurons+Reveals+Unexpected+Cell-Type+Specific+Variations%3A+A+Model+for+Motile+Ciliopathies&rft.jtitle=Frontiers+in+genetics&rft.au=Zur+Lage%2C+Petra&rft.au=Newton%2C+Fay+G&rft.au=Jarman%2C+Andrew+P&rft.date=2019-02-01&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=10&rft.spage=24&rft_id=info:doi/10.3389%2Ffgene.2019.00024&rft_id=info%3Apmid%2F30774648&rft.externalDocID=30774648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon