The Role of Ceramides in Insulin Resistance
Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to...
Saved in:
Published in | Frontiers in endocrinology (Lausanne) Vol. 10; p. 577 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
21.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives. |
---|---|
AbstractList | Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives. Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives.Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives. |
Author | Sokolowska, Emilia Blachnio-Zabielska, Agnieszka |
AuthorAffiliation | Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland |
AuthorAffiliation_xml | – name: Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland |
Author_xml | – sequence: 1 givenname: Emilia surname: Sokolowska fullname: Sokolowska, Emilia – sequence: 2 givenname: Agnieszka surname: Blachnio-Zabielska fullname: Blachnio-Zabielska, Agnieszka |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31496996$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEUhUVJSFLH-67KLAvBjl6jx6ZQTJIaAoGQrIVGuuMojKVUGgf67yvbSYkL1eaKq3O-Azqf0VFMERD6QvCcMaUve4g-zSkmeo5xK-UndEaE4DPKND36cD9F01KecT28arU6QaeMcC20Fmfo4uEJmvs0QJP6ZgHZroOH0oTYLGPZDHXeQwlltNHBOTru7VBg-jYn6PH66mHxc3Z7d7Nc_LiduZaqcSbACoKxpUIyRzuLnQbmBHYUFPeEYc8s4ZLRHqTzvm0F6LqUqme4azljE7Tcc32yz-Ylh7XNv02ywewWKa-MzWNwAxingGrFeK87wXWrNCdKMt8pa_uWcl9Z3_esl023Bu8gjtkOB9DDlxiezCq9GiEJxZJWwLc3QE6_NlBGsw7FwTDYCGlTDKVKtjWUkyr9-jHrb8j7b1eB2AtcTqVk6I0Lox1D2kaHwRBsts2aXbNm26zZNVuN-B_jO_u_lj8C0KUO |
CitedBy_id | crossref_primary_10_3390_nu16010172 crossref_primary_10_1177_0271678X221135061 crossref_primary_10_1007_s00125_021_05641_x crossref_primary_10_1016_j_csbj_2020_06_001 crossref_primary_10_1002_edm2_418 crossref_primary_10_3390_metabo13111136 crossref_primary_10_3390_ijms20235901 crossref_primary_10_3390_ijms241713325 crossref_primary_10_1016_j_banm_2022_04_028 crossref_primary_10_3390_ijms21218382 crossref_primary_10_52727_2078_256X_2024_20_4_371_384 crossref_primary_10_1016_j_biopha_2021_112357 crossref_primary_10_1017_S0007114520003177 crossref_primary_10_3390_ani13040607 crossref_primary_10_3390_antiox12040898 crossref_primary_10_1038_s41392_022_01073_0 crossref_primary_10_1186_s12944_022_01706_x crossref_primary_10_3390_nu13082593 crossref_primary_10_1016_j_xcrm_2021_100407 crossref_primary_10_3389_fcvm_2021_785124 crossref_primary_10_1186_s12916_021_02095_1 crossref_primary_10_1007_s13679_021_00434_0 crossref_primary_10_1016_j_metabol_2022_155142 crossref_primary_10_1016_j_tifs_2021_03_010 crossref_primary_10_1073_pnas_1922169117 crossref_primary_10_1093_glycob_cwaa022 crossref_primary_10_7554_eLife_76744 crossref_primary_10_1016_j_advms_2022_06_001 crossref_primary_10_1016_j_prostaglandins_2023_106719 crossref_primary_10_1017_S0007114523002404 crossref_primary_10_3389_fimmu_2021_635704 crossref_primary_10_1007_s00467_024_06623_y crossref_primary_10_1080_10408398_2021_1895057 crossref_primary_10_1016_j_bbi_2023_07_015 crossref_primary_10_3390_biom9120877 crossref_primary_10_3390_ijms242316635 crossref_primary_10_1016_j_bbalip_2020_158857 crossref_primary_10_3390_cells8121573 crossref_primary_10_3390_molecules25081932 crossref_primary_10_3389_fendo_2023_1156757 crossref_primary_10_1038_s41598_020_73384_7 crossref_primary_10_3390_antiox12040782 crossref_primary_10_1038_s41598_020_77914_1 crossref_primary_10_3389_fphys_2022_958837 crossref_primary_10_3389_fcvm_2023_1116861 crossref_primary_10_1016_j_jlr_2021_100118 crossref_primary_10_2174_1573399817666210923125832 crossref_primary_10_3390_ijms24076267 crossref_primary_10_1038_s41598_022_14083_3 crossref_primary_10_3390_genes12111718 crossref_primary_10_1007_s11886_024_02023_8 crossref_primary_10_1371_journal_pone_0298602 crossref_primary_10_24075_brsmu_2019_090 crossref_primary_10_3389_fimmu_2023_1014778 crossref_primary_10_3390_antiox10020293 crossref_primary_10_3390_diseases12090195 crossref_primary_10_3390_ijms23179697 crossref_primary_10_3389_fendo_2023_1193373 crossref_primary_10_1371_journal_pone_0239115 crossref_primary_10_3390_ijms25169113 crossref_primary_10_1186_s12944_020_01346_z crossref_primary_10_3390_ijms252010916 crossref_primary_10_1093_nutrit_nuae205 crossref_primary_10_1186_s12944_022_01634_w crossref_primary_10_3390_ijms23105382 crossref_primary_10_3390_biom11020268 crossref_primary_10_1016_j_isci_2024_110820 crossref_primary_10_14341_omet12839 crossref_primary_10_1111_imr_13403 crossref_primary_10_1055_s_0041_1726613 crossref_primary_10_3389_fimmu_2023_1219598 crossref_primary_10_1016_j_jsps_2024_102016 crossref_primary_10_3390_cimb45100503 crossref_primary_10_3390_nu15010229 crossref_primary_10_1080_01913123_2021_1983099 crossref_primary_10_1155_2023_4223026 crossref_primary_10_3390_ijms241512452 crossref_primary_10_3390_cells12242796 crossref_primary_10_1002_jcsm_12855 crossref_primary_10_1158_1055_9965_EPI_20_1363 crossref_primary_10_31857_S0301179823010046 crossref_primary_10_3390_ijms25147943 crossref_primary_10_1002_jcp_30627 crossref_primary_10_1073_pnas_2112781119 crossref_primary_10_3390_biom10040632 crossref_primary_10_1080_08820538_2023_2205929 crossref_primary_10_1016_j_jff_2023_105805 crossref_primary_10_3390_ani11092501 crossref_primary_10_2337_db23_0690 crossref_primary_10_3390_cells11193001 crossref_primary_10_3390_nu15040921 crossref_primary_10_1016_j_arr_2024_102450 crossref_primary_10_1038_s41574_022_00683_6 crossref_primary_10_1016_j_jdiacomp_2020_107734 crossref_primary_10_1155_2021_7796727 crossref_primary_10_1038_s41598_024_55032_6 crossref_primary_10_3390_nu15153341 crossref_primary_10_3390_biom11020326 crossref_primary_10_14348_molcells_2023_0104 crossref_primary_10_1186_s12906_024_04592_1 crossref_primary_10_1001_jamanetworkopen_2021_20616 crossref_primary_10_3390_ijms24054403 crossref_primary_10_1242_dmm_049995 crossref_primary_10_3389_fendo_2021_684448 crossref_primary_10_3390_metabo11110754 crossref_primary_10_3390_biom13091424 crossref_primary_10_3390_nu16203466 crossref_primary_10_1017_S000711452300106X crossref_primary_10_3390_cimb46070399 crossref_primary_10_3390_ph16121717 crossref_primary_10_3390_nu15143120 crossref_primary_10_3390_diagnostics11112053 crossref_primary_10_1210_clinem_dgae179 crossref_primary_10_1210_clinem_dgae177 crossref_primary_10_3390_cells10020314 crossref_primary_10_1007_s11897_024_00689_3 crossref_primary_10_1186_s12872_023_03623_y crossref_primary_10_1002_jcb_30478 crossref_primary_10_1007_s12035_020_02080_4 crossref_primary_10_1111_jnc_15504 crossref_primary_10_3390_cells9081877 crossref_primary_10_2174_0115733998281910231231051814 crossref_primary_10_3390_ijms21176358 crossref_primary_10_1111_imr_12891 crossref_primary_10_3390_biomedicines11092415 crossref_primary_10_1016_j_celrep_2024_115067 crossref_primary_10_1158_1055_9965_EPI_21_1023 crossref_primary_10_1016_j_celrep_2024_114746 crossref_primary_10_3389_fcvm_2022_1092331 crossref_primary_10_3389_fimmu_2022_945980 crossref_primary_10_3390_nu15204350 crossref_primary_10_1042_EBC20240034 crossref_primary_10_1177_2515690X211006333 crossref_primary_10_1113_JP284324 crossref_primary_10_3390_metabo11070417 crossref_primary_10_3390_metabo13020227 crossref_primary_10_1016_j_jbc_2021_100332 crossref_primary_10_1080_19490976_2021_1993513 crossref_primary_10_1186_s12933_024_02505_7 crossref_primary_10_3390_ijms25010469 crossref_primary_10_1093_jb_mvaa030 crossref_primary_10_1016_j_bbalip_2020_158788 crossref_primary_10_1016_j_addr_2020_06_028 crossref_primary_10_1016_j_trsl_2024_03_009 crossref_primary_10_1038_s41598_020_76497_1 crossref_primary_10_1017_S0952523820000097 crossref_primary_10_1016_j_jnutbio_2024_109714 crossref_primary_10_1038_s41598_020_73912_5 crossref_primary_10_1016_j_bbalip_2023_159348 crossref_primary_10_2147_DDDT_S468147 crossref_primary_10_3390_nu14030709 crossref_primary_10_1186_s12889_022_14319_x crossref_primary_10_3389_fendo_2020_570628 crossref_primary_10_3390_ijms22041788 crossref_primary_10_3389_fphar_2023_1146276 crossref_primary_10_3389_fendo_2020_622692 crossref_primary_10_1016_j_tox_2024_153862 crossref_primary_10_3389_fnut_2023_1071855 crossref_primary_10_3390_cells11020206 crossref_primary_10_1016_j_advnut_2024_100252 crossref_primary_10_15547_bjvm_2390 crossref_primary_10_3390_nu16121877 crossref_primary_10_3390_ijms25074098 crossref_primary_10_3390_nu15173687 crossref_primary_10_1007_s11010_022_04398_0 crossref_primary_10_1017_S0029665120000087 crossref_primary_10_3389_fcell_2021_816301 crossref_primary_10_3390_antiox12020299 crossref_primary_10_1007_s12272_023_01439_0 crossref_primary_10_1038_s41698_024_00500_5 |
Cites_doi | 10.1074/jbc.M707386200 10.1038/s41387-018-0045-x 10.1126/science.271.5249.665 10.1007/s001250050822 10.2337/diabetes.51.7.2005 10.2337/db09-1293 10.1007/978-1-4419-6741-1_1 10.1016/0962-8924(94)90065-5 10.1159/000453174 10.1016/j.bbalip.2015.10.003 10.1016/j.cmet.2014.09.015 10.1038/nm.2277 10.1073/pnas.1133870100 10.1172/JCI30565 10.1016/j.jada.2003.10.041 10.2337/diabetes.50.10.2337 10.1042/bj3190179 10.1016/j.cmet.2012.04.002 10.1074/jbc.274.29.20611 10.1016/j.cmet.2014.08.002 10.1152/ajpendo.2000.279.3.E554 10.1210/jc.80.5.1584 10.1002/(SICI)1097-4547(19990201)55:3<293::AID-JNR4>3.3.CO;2-0 10.1016/B978-0-12-383834-6.00090-2 10.1074/jbc.M406499200 10.1111/j.1742-4658.2006.05523.x 10.1038/nature01137 10.1007/s00125-012-2649-3 10.1152/ajpendo.00584.2012 10.1002/dmrr.2662 10.1128/MCB.01321-14 10.1152/ajpregu.00147.2011 10.1074/jbc.275.12.8657 10.1074/jbc.275.18.13330 10.1210/en.2010-0250 10.1016/j.cmet.2013.03.019 10.1016/S0092-8674(01)00239-2 10.1074/jbc.C300063200 10.2337/db15-0809 10.1016/j.plipres.2015.04.001 10.1016/j.tem.2015.07.006 10.1007/s00125-015-3850-y 10.2337/diabetes.53.1.25 10.1210/jc.86.12.5755 10.2337/db12-1179 10.2337/db10-1221 10.1242/jcs.111.21.3209 10.1007/s00125-011-2065-0 10.1038/21218 10.1042/BJ20040139 10.1089/sur.2006.050 10.1210/en.139.12.4832 10.1007/978-1-4419-6741-1_4 10.1172/JCI88884 10.1016/j.cmet.2015.06.007 10.1002/jcp.22283 10.1016/j.bbrc.2006.08.071 10.1111/j.1749-6632.2002.tb04272.x 10.1515/jpem-2012-0407 10.1016/j.cmet.2016.10.002 10.1007/s00125-007-0781-2 10.1016/j.cmet.2007.01.002 10.1172/JCI25102 10.3389/fendo.2013.00067 10.1172/JCI29069 10.1210/en.2003-0580 10.1074/jbc.272.6.3324 10.2337/diabetes.53.5.1215 10.1016/S1043-6618(03)00050-1 10.1016/S1043-2760(02)00662-8 10.2337/diabetes.51.4.1022 10.1186/1476-511X-12-98 10.1016/j.bbamem.2006.08.009 10.1016/j.cmet.2005.06.006 10.1056/NEJMp068177 10.1042/BJ20101386 10.1038/nri3071 10.1074/jbc.M200958200 10.2337/db08-1228 10.1002/hep.26015 10.1016/S0140-6736(63)91500-9 10.1074/jbc.273.39.25420 10.1128/MCB.23.21.7794-7808.2003 10.1016/j.cmet.2012.03.005 10.1001/jama.2009.726 10.2337/db06-0330 10.1128/MCB.22.23.8204-8214.2002 10.1152/ajpendo.00610.2012 10.2337/diabetes.48.8.1600 10.2337/db07-0111 10.1074/jbc.274.25.17934 10.1074/jbc.274.34.24202 10.1016/j.cellsig.2010.04.006 10.1016/j.febslet.2010.12.022 10.2337/db06-S002 10.1126/science.1061620 10.1146/annurev.nutr.24.012003.132155 10.1016/S1388-1981(02)00332-3 10.1038/oby.2012.126 10.2337/diabetes.47.7.1006 10.1074/jbc.M206747200 10.1007/s11892-015-0670-x 10.1093/hmg/ddr494 10.1007/s00125-002-0873-y 10.1055/s-0029-1238322 10.2337/diabetes.49.11.1761 10.1074/jbc.M212307200 10.1210/er.2007-0025 10.1007/s001250051596 10.1172/JCI16127 10.1210/en.2014-1467 10.1074/jbc.M112.359950 10.1074/jbc.R200009200 10.1074/jbc.M302548200 10.1038/ijo.2012.191 10.3390/ijms19092527 10.1016/S1388-1981(03)00059-3 10.1016/j.cmet.2016.04.011 10.1007/s12603-014-0548-7 10.1007/s00125-008-1014-z |
ContentType | Journal Article |
Copyright | Copyright © 2019 Sokolowska and Blachnio-Zabielska. 2019 Sokolowska and Blachnio-Zabielska |
Copyright_xml | – notice: Copyright © 2019 Sokolowska and Blachnio-Zabielska. 2019 Sokolowska and Blachnio-Zabielska |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fendo.2019.00577 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1664-2392 |
ExternalDocumentID | oai_doaj_org_article_c8e29834f9b64958941873db8aaf524d PMC6712072 31496996 10_3389_fendo_2019_00577 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Uniwersytet Medyczny w Bialymstoku – fundername: Fundacja na rzecz Nauki Polskiej |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M~E OK1 PGMZT RPM IPNFZ M48 NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-6ea6100a2673c2ba0c9e3c60c2e84d130d3a14732fe7cdd556e930d78f30b5433 |
IEDL.DBID | M48 |
ISSN | 1664-2392 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Thu Aug 21 14:21:36 EDT 2025 Sun Aug 24 03:19:08 EDT 2025 Thu Apr 03 07:04:13 EDT 2025 Tue Jul 01 01:25:46 EDT 2025 Thu Apr 24 22:57:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ceramide inflammation diabetes insulin resistance therapy obesity |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-6ea6100a2673c2ba0c9e3c60c2e84d130d3a14732fe7cdd556e930d78f30b5433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Mohamed Abu-Farha, Dasman Diabetes Institute, Kuwait This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology Reviewed by: Asimina Mitrakou-Fanariotou, National and Kapodistrian University of Athens, Greece; Rade Vukovic, The Institute for Health Protection of Mother and Child Serbia, Serbia |
OpenAccessLink | https://doaj.org/article/c8e29834f9b64958941873db8aaf524d |
PMID | 31496996 |
PQID | 2287518741 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c8e29834f9b64958941873db8aaf524d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6712072 proquest_miscellaneous_2287518741 pubmed_primary_31496996 crossref_citationtrail_10_3389_fendo_2019_00577 crossref_primary_10_3389_fendo_2019_00577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-21 |
PublicationDateYYYYMMDD | 2019-08-21 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in endocrinology (Lausanne) |
PublicationTitleAlternate | Front Endocrinol (Lausanne) |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Xu (B118) 2006; 349 Lin (B52) 2000; 275 Watt (B75) 2012; 55 Wellen (B84) 2005; 115 Hajduch (B72) 2001; 44 Takata (B13) 1999; 274 Hanada (B49) 2003; 1632 Chavez (B15) 2003; 278 Holland (B36) 2008; 29 Galadari (B33) 2013; 12 Thompson (B24) 2000; 49 Xia (B97) 2015; 22 Holland (B34) 2007; 5 Keller (B7) 1994; 4 Perseghin (B20) 1999; 48 Goldkorn (B54) 1998; 111 Pickup (B85) 1997; 40 Yu (B116) 2018; 8 Turpin (B108) 2014; 20 Gupta (B2) 2010; 4 Raffel (B6) 2013 Cuschieri (B53) 2007; 8 Adams (B70) 2004; 53 Virkamaki (B22) 2001; 50 Kohlgruber (B90) 2015; 15 Skovbro (B74) 2008; 51 Chavez (B121) 2012; 15 Kolak (B59) 2007; 56 Saltiel (B4) 2001; 104 Lanza (B111) 2013; 304 Shoelson (B42) 2006; 116 Gault (B95) 2010; 688 Andrieu-Abadie (B56) 2002; 1585 Sartipy (B87) 2003; 100 Véret (B107) 2011; 438 Dube (B60) 2011; 54 Schmitz-Peiffer (B17) 2002; 967 Stern (B81) 2016; 23 Sinha (B23) 2002; 51 Kolesnick (B55) 2002; 110 Blachnio-Zabielska (B76) 2010; 42 Nowotny (B38) 2013; 62 Haus (B65) 2009; 58 Powell (B68) 2004; 382 Powell (B63) 2003; 23 Itani (B37) 2002; 51 Rajala (B91) 2003; 144 Amati (B57) 2011; 60 Stiban (B101) 2010; 688 Wang (B47) 1999; 55 Goodpaster (B41) 2001; 86 Blachnio-Zabielska (B80) 2012; 20 Summers (B12) 1999; 274 Schubert (B46) 2000; 275 Straczkowski (B18) 2007; 50 Brozinick (B66) 2013; 37 Morino (B28) 2006; 55 Kelpe (B31) 2003; 278 Kang (B19) 2013; 4 Hammond (B117) 2002; 22 Ussher (B96) 2010; 59 Uysal (B86) 1998; 139 Whiteman (B8) 2002; 13 Bray (B88) 2004; 104 Holland (B83) 2011; 17 Mesicek (B104) 2010; 22 Chawla (B89) 2011; 11 Luberto (B51) 2002; 277 Zabielski (B112) 2014; 306 Blachnio-Zabielska (B1) 2010; 225 Samad (B44) 2006; 55 Raichur (B109) 2014; 20 Long (B78) 1996; 319 de la Maza (B58) 2015; 19 Jornayvaz (B32) 2012; 15 Paumen (B99) 1997; 272 Chaurasia (B21) 2015; 26 Pinel (B39) 2016; 1861 Hirosumi (B94) 2002; 420 Turban (B73) 2011; 585 Chaurasia (B100) 2016; 24 Ruvolo (B45) 2003; 47 Zheng (B98) 2006; 1758 Park (B105) 2013; 57 Ellis (B16) 2000; 279 Jennemann (B106) 2012; 21 Frangioudakis (B102) 2010; 151 Chan (B3) 2009; 301 Wang (B14) 1998; 273 Frayn (B77) 2002; 45 Fulton (B11) 1999; 399 Straczkowski (B71) 2004; 53 Sano (B9) 2003; 278 Merrill (B48) 2002; 277 Neess (B25) 2015; 59 Randle (B29) 1963; 1 Ciapaite (B27) 2006; 273 García-González (B122) 2018; 19 Yuan (B93) 2001; 293 Warshauer (B67) 2015; 31 Laviad (B103) 2008; 283 Hotamisligil (B43) 1996; 271 Chmitz-Peiffer (B50) 1999; 274 Stratford (B35) 2004; 279 Liu (B62) 2007; 117 Lopez (B64) 2013; 26 Hajduch (B10) 1998; 47 Coen (B61) 2015; 64 Thuresson (B115) 2004; 5 Goldfine (B92) 2017; 127 Neschen (B114) 2005; 2 Manukyan (B69) 2015; 156 Kuhajda (B119) 2011; 301 Bergman (B113) 2016; 59 Zhou (B30) 1995; 80 Holland (B82) 2013; 17 Bikman (B40) 2012; 287 Hossain (B120) 2007; 356 Yu (B26) 2002; 277 Blachnio-Zabielska (B110) 2016; 40 Reaven (B5) 2005; 25 Kim (B79) 2015; 35 |
References_xml | – volume: 283 start-page: 5677 year: 2008 ident: B103 article-title: Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate publication-title: J Biol Chem. doi: 10.1074/jbc.M707386200 – volume: 8 start-page: 34 year: 2018 ident: B116 article-title: Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance publication-title: Nutr Diabetes. doi: 10.1038/s41387-018-0045-x – volume: 271 start-page: 665 year: 1996 ident: B43 article-title: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance publication-title: Science. doi: 10.1126/science.271.5249.665 – volume: 40 start-page: 1286 year: 1997 ident: B85 article-title: NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X publication-title: Diabetologia. doi: 10.1007/s001250050822 – volume: 51 start-page: 2005 year: 2002 ident: B37 article-title: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C and IkB-a publication-title: Diabetes. doi: 10.2337/diabetes.51.7.2005 – volume: 59 start-page: 2453 year: 2010 ident: B96 article-title: Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption publication-title: Diabetes. doi: 10.2337/db09-1293 – volume: 688 start-page: 1 year: 2010 ident: B95 article-title: An overview of sphingolipid metabolism: from synthesis to breakdown publication-title: Adv Exp Med Biol. doi: 10.1007/978-1-4419-6741-1_1 – volume: 4 start-page: 115 year: 1994 ident: B7 article-title: Insulin signalling the role of insulin receptor substrate 1 publication-title: Trends Cell Biol. doi: 10.1016/0962-8924(94)90065-5 – volume: 40 start-page: 1207 year: 2016 ident: B110 article-title: The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance publication-title: Cell Physiol Biochem. doi: 10.1159/000453174 – volume: 1861 start-page: 12 year: 2016 ident: B39 article-title: N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbalip.2015.10.003 – volume: 20 start-page: 687 year: 2014 ident: B109 article-title: CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2014.09.015 – volume: 17 start-page: 55 year: 2011 ident: B83 article-title: Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin publication-title: Nat Med. doi: 10.1038/nm.2277 – volume: 100 start-page: 7265 year: 2003 ident: B87 article-title: Monocyte chemoattractant protein 1 in obesity and insulin resistance publication-title: Proc Natl Acad Sci U.S.A doi: 10.1073/pnas.1133870100 – volume: 117 start-page: 1679 year: 2007 ident: B62 article-title: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance publication-title: J Clin Invest. doi: 10.1172/JCI30565 – volume: 104 start-page: 86 year: 2004 ident: B88 article-title: Obesity and the metabolic syndrome: implications for dietetics practitioners publication-title: J Am Diet Assoc. doi: 10.1016/j.jada.2003.10.041 – volume: 50 start-page: 2337 year: 2001 ident: B22 article-title: Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle publication-title: Diabetes. doi: 10.2337/diabetes.50.10.2337 – volume: 319 start-page: 179 year: 1996 ident: B78 article-title: Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes publication-title: Biochem J. doi: 10.1042/bj3190179 – volume: 15 start-page: 585 year: 2012 ident: B121 article-title: A ceramide-centric view of insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.002 – volume: 274 start-page: 20611 year: 1999 ident: B13 article-title: Requirement for Akt (protein kinase B) in insulin-induced activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1) publication-title: J Biol Chem. doi: 10.1074/jbc.274.29.20611 – volume: 20 start-page: 678 year: 2014 ident: B108 article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.08.002 – volume: 279 start-page: E554 year: 2000 ident: B16 article-title: Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle publication-title: Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.2000.279.3.E554 – volume: 80 start-page: 1584 year: 1995 ident: B30 article-title: Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans publication-title: J Clin Endocrinol Metab. doi: 10.1210/jc.80.5.1584 – volume: 55 start-page: 293 year: 1999 ident: B47 article-title: Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/ JNK kinase and cell survival publication-title: J Neurosci Res. doi: 10.1002/(SICI)1097-4547(19990201)55:3<293::AID-JNR4>3.3.CO;2-0 – start-page: 1 volume-title: Emery and Rimoin's Principles and Practice of Medical Genetics. year: 2013 ident: B6 article-title: Diabetes mellitus doi: 10.1016/B978-0-12-383834-6.00090-2 – volume: 279 start-page: 36608 year: 2004 ident: B35 article-title: Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B publication-title: J Biol Chem. doi: 10.1074/jbc.M406499200 – volume: 273 start-page: 5288 year: 2006 ident: B27 article-title: Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects. Implications for a mechanism linking obesity and type 2 diabetes publication-title: FEBS J. doi: 10.1111/j.1742-4658.2006.05523.x – volume: 420 start-page: 333 year: 2002 ident: B94 article-title: A central role for JNK in obesity and insulin resistance publication-title: Nature. doi: 10.1038/nature01137 – volume: 55 start-page: 2741 year: 2012 ident: B75 article-title: Regulation of plasma ceramide levels with fatty acid oversupply: evidence that the liver detects and secretes de novo synthesised ceramide publication-title: Diabetologia. doi: 10.1007/s00125-012-2649-3 – volume: 304 start-page: E1391 year: 2013 ident: B111 article-title: Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet publication-title: Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00584.2012 – volume: 31 start-page: 734 year: 2015 ident: B67 article-title: Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome publication-title: Diabetes Metab Res Rev. doi: 10.1002/dmrr.2662 – volume: 35 start-page: 1686 year: 2015 ident: B79 article-title: Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation publication-title: Mol Cell Biol. doi: 10.1128/MCB.01321-14 – volume: 301 start-page: R116 year: 2011 ident: B119 article-title: Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity publication-title: Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00147.2011 – volume: 275 start-page: 8657 year: 2000 ident: B52 article-title: Role of acidic sphingomyelinase in Fas/CD95-mediated cell death publication-title: J Biol Chem. doi: 10.1074/jbc.275.12.8657 – volume: 275 start-page: 13330 year: 2000 ident: B46 article-title: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473 publication-title: J Biol Chem. doi: 10.1074/jbc.275.18.13330 – volume: 151 start-page: 4187 year: 2010 ident: B102 article-title: Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors publication-title: Endocrinology. doi: 10.1210/en.2010-0250 – volume: 17 start-page: 790 year: 2013 ident: B82 article-title: An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.019 – volume: 104 start-page: 517 year: 2001 ident: B4 article-title: New perspectives into the molecular pathogenesis and treatment of type 2 diabetes publication-title: Cell. doi: 10.1016/S0092-8674(01)00239-2 – volume: 278 start-page: 14599 year: 2003 ident: B9 article-title: Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation publication-title: J Biol Chem. doi: 10.1074/jbc.C300063200 – volume: 64 start-page: 3737 year: 2015 ident: B61 article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning and insulin sensitivity following gastric bypass surgery publication-title: Diabetes. doi: 10.2337/db15-0809 – volume: 59 start-page: 1 year: 2015 ident: B25 article-title: Long-chain acyl-CoA esters in metabolism and signaling: role of acyl-CoA binding proteins publication-title: Prog Lipid Res. doi: 10.1016/j.plipres.2015.04.001 – volume: 26 start-page: 538 year: 2015 ident: B21 article-title: Ceramides – lipotoxic inducers of metabolic disorders publication-title: Trends Endocrinol Metab. doi: 10.1016/j.tem.2015.07.006 – volume: 59 start-page: 785 year: 2016 ident: B113 article-title: Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans publication-title: Diabetologia. doi: 10.1007/s00125-015-3850-y – volume: 53 start-page: 25 year: 2004 ident: B70 article-title: Ceramide content is increased in skeletal muscle from obese insulin-resistant humans publication-title: Diabetes. doi: 10.2337/diabetes.53.1.25 – volume: 5 start-page: 411 year: 2004 ident: B115 article-title: Inhibition of glycerol-3-phosphate acyltransferase as a potential treatment for insulin resistance and type 2 diabetes publication-title: Curr Opin Investig Drugs. – volume: 86 start-page: 5755 year: 2001 ident: B41 article-title: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes publication-title: J Clin Endocrinol Metab. doi: 10.1210/jc.86.12.5755 – volume: 62 start-page: 2240 year: 2013 ident: B38 article-title: Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans publication-title: Diabetes. doi: 10.2337/db12-1179 – volume: 60 start-page: 2588 year: 2011 ident: B57 article-title: Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? publication-title: Diabetes. doi: 10.2337/db10-1221 – volume: 111 start-page: 3209 year: 1998 ident: B54 article-title: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells publication-title: J Cell Sci. doi: 10.1242/jcs.111.21.3209 – volume: 54 start-page: 1147 year: 2011 ident: B60 article-title: Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide publication-title: Diabetologia. doi: 10.1007/s00125-011-2065-0 – volume: 399 start-page: 597 year: 1999 ident: B11 article-title: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt publication-title: Nature. doi: 10.1038/21218 – volume: 382 start-page: 619 year: 2004 ident: B68 article-title: Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells publication-title: Biochem J. doi: 10.1042/BJ20040139 – volume: 8 start-page: 91 year: 2007 ident: B53 article-title: Acid sphingomyelinase is required for lipid Raft TLR4 complex formation publication-title: Surg Infect. doi: 10.1089/sur.2006.050 – volume: 139 start-page: 4832 year: 1998 ident: B86 article-title: Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity publication-title: Endocrinology. doi: 10.1210/en.139.12.4832 – volume: 688 start-page: 60 year: 2010 ident: B101 article-title: Ceramide synthases: roles in cell physiology and signaling publication-title: Adv Exp Med Biol. doi: 10.1007/978-1-4419-6741-1_4 – volume: 127 start-page: 83 year: 2017 ident: B92 article-title: Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk publication-title: J Clin Invest. doi: 10.1172/JCI88884 – volume: 22 start-page: 266 year: 2015 ident: B97 article-title: Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.007 – volume: 225 start-page: 786 year: 2010 ident: B1 article-title: Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle publication-title: J Cell Physiol. doi: 10.1002/jcp.22283 – volume: 349 start-page: 439 year: 2006 ident: B118 article-title: Hepatic knockdown of mitochondrial GPAT1 in ob/ob mice improves metabolic profile publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2006.08.071 – volume: 967 start-page: 146 year: 2002 ident: B17 article-title: Protein kinase C and lipid-induced insulin resistance in skeletal muscle publication-title: Ann N Y Acad Sci. doi: 10.1111/j.1749-6632.2002.tb04272.x – volume: 26 start-page: 995 year: 2013 ident: B64 article-title: Plasma ceramides are elevated in female children and adolescents with type 2 diabetes publication-title: J Pediatr Endocrinol Metab. doi: 10.1515/jpem-2012-0407 – volume: 24 start-page: 820 year: 2016 ident: B100 article-title: Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.10.002 – volume: 50 start-page: 2366 year: 2007 ident: B18 article-title: Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes publication-title: Diabetologia. doi: 10.1007/s00125-007-0781-2 – volume: 5 start-page: 167 year: 2007 ident: B34 article-title: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.01.002 – volume: 115 start-page: 1111 year: 2005 ident: B84 article-title: Inflammation, stress, and diabetes publication-title: J Clin Invest. doi: 10.1172/JCI25102 – volume: 4 start-page: 67 year: 2013 ident: B19 article-title: Sphingolipid metabolism and obesity-induced inflammation publication-title: Front Endocrinol. doi: 10.3389/fendo.2013.00067 – volume: 116 start-page: 1793 year: 2006 ident: B42 article-title: Inflammation and insulin resistance publication-title: J Clin Invest. doi: 10.1172/JCI29069 – volume: 144 start-page: 3765 year: 2003 ident: B91 article-title: Minireview: the adipocyte – at the crossroads of energy homeostasis, inflammation, and atherosclerosis publication-title: Endocrinology. doi: 10.1210/en.2003-0580 – volume: 272 start-page: 3324 year: 1997 ident: B99 article-title: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis publication-title: J Biol Chem. doi: 10.1074/jbc.272.6.3324 – volume: 53 start-page: 1215 year: 2004 ident: B71 article-title: Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle publication-title: Diabetes. doi: 10.2337/diabetes.53.5.1215 – volume: 47 start-page: 383 year: 2003 ident: B45 article-title: Intracellular signal transduction pathways activated by ceramide and its metabolites publication-title: Pharmacol Res. doi: 10.1016/S1043-6618(03)00050-1 – volume: 13 start-page: 444 year: 2002 ident: B8 article-title: Role of Akt/protein kinase B in metabolism publication-title: Trends Endocrinol Metab doi: 10.1016/S1043-2760(02)00662-8 – volume: 51 start-page: 1022 year: 2002 ident: B23 article-title: Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity publication-title: Diabetes. doi: 10.2337/diabetes.51.4.1022 – volume: 12 start-page: 98 year: 2013 ident: B33 article-title: Role of ceramide in diabetes mellitus: evidence and mechanisms publication-title: Lipids Health Dis. doi: 10.1186/1476-511X-12-98 – volume: 1758 start-page: 1864 year: 2006 ident: B98 article-title: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy publication-title: Biochim Biophys Acta. doi: 10.1016/j.bbamem.2006.08.009 – volume: 2 start-page: 55 year: 2005 ident: B114 article-title: Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3- phosphate acyltransferase 1 knockout mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.06.006 – volume: 4 start-page: 204 year: 2010 ident: B2 article-title: Metabolic syndrome: what are the risks for humans? publication-title: Biosci Trends. – volume: 356 start-page: 213 year: 2007 ident: B120 article-title: Obesity and diabetes in the developing world-a growing challenge publication-title: N Engl J Med. doi: 10.1056/NEJMp068177 – volume: 438 start-page: 177 year: 2011 ident: B107 article-title: Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells publication-title: Biochem J. doi: 10.1042/BJ20101386 – volume: 11 start-page: 738 year: 2011 ident: B89 article-title: Macrophage-mediated inflammation in metabolic disease publication-title: Nat Rev Immunol. doi: 10.1038/nri3071 – volume: 277 start-page: 50230 year: 2002 ident: B26 article-title: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle publication-title: J Biol Chem. doi: 10.1074/jbc.M200958200 – volume: 58 start-page: 337 year: 2009 ident: B65 article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance publication-title: Diabetes. doi: 10.2337/db08-1228 – volume: 57 start-page: 525 year: 2013 ident: B105 article-title: Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes publication-title: Hepatology. doi: 10.1002/hep.26015 – volume: 1 start-page: 785 year: 1963 ident: B29 article-title: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus publication-title: Lancet. doi: 10.1016/S0140-6736(63)91500-9 – volume: 273 start-page: 25420 year: 1998 ident: B14 article-title: Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt publication-title: J Biol Chem. doi: 10.1074/jbc.273.39.25420 – volume: 23 start-page: 7794 year: 2003 ident: B63 article-title: Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism publication-title: Mol Cell Biol. doi: 10.1128/MCB.23.21.7794-7808.2003 – volume: 15 start-page: 574 year: 2012 ident: B32 article-title: Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.03.005 – volume: 301 start-page: 2129 year: 2009 ident: B3 article-title: Diabetes in Asia: epidemiology, risk factors, and pathophysiology publication-title: JAMA. doi: 10.1001/jama.2009.726 – volume: 55 start-page: 2579 year: 2006 ident: B44 article-title: Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk publication-title: Diabetes. doi: 10.2337/db06-0330 – volume: 22 start-page: 8204 year: 2002 ident: B117 article-title: Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition publication-title: Mol Cell Biol. doi: 10.1128/MCB.22.23.8204-8214.2002 – volume: 306 start-page: E529 year: 2014 ident: B112 article-title: Impact of insulin deprivation and treatment on sphingolipid distribution in different muscle subcellular compartments of streptozotocin-diabetic C57Bl/6 mice publication-title: Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00610.2012 – volume: 48 start-page: 1600 year: 1999 ident: B20 article-title: Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents publication-title: Diabetes. doi: 10.2337/diabetes.48.8.1600 – volume: 56 start-page: 1960 year: 2007 ident: B59 article-title: Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity publication-title: Diabetes. doi: 10.2337/db07-0111 – volume: 274 start-page: 17934 year: 1999 ident: B12 article-title: The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism publication-title: J Biol Chem. doi: 10.1074/jbc.274.25.17934 – volume: 274 start-page: 24202 year: 1999 ident: B50 article-title: Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate publication-title: J Biol Chem. doi: 10.1074/jbc.274.34.24202 – volume: 22 start-page: 1300 year: 2010 ident: B104 article-title: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells publication-title: Cell Signal. doi: 10.1016/j.cellsig.2010.04.006 – volume: 585 start-page: 269 year: 2011 ident: B73 article-title: Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.12.022 – volume: 55 start-page: S9 year: 2006 ident: B28 article-title: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction publication-title: Diabetes. doi: 10.2337/db06-S002 – volume: 293 start-page: 1673 year: 2001 ident: B93 article-title: Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ publication-title: Science. doi: 10.1126/science.1061620 – volume: 25 start-page: 391 year: 2005 ident: B5 article-title: The insulin resistance syndrome: definition and dietary approaches to treatment publication-title: Annu Rev Nutr. doi: 10.1146/annurev.nutr.24.012003.132155 – volume: 1585 start-page: 126 year: 2002 ident: B56 article-title: Sphingomyelin hydrolysis during apoptosis publication-title: Biochim Biophys Acta. doi: 10.1016/S1388-1981(02)00332-3 – volume: 20 start-page: 2341 year: 2012 ident: B80 article-title: Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance publication-title: Obesity. doi: 10.1038/oby.2012.126 – volume: 47 start-page: 1006 year: 1998 ident: B10 article-title: Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells publication-title: Diabetes. doi: 10.2337/diabetes.47.7.1006 – volume: 277 start-page: 41128 year: 2002 ident: B51 article-title: Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase publication-title: J Biol Chem. doi: 10.1074/jbc.M206747200 – volume: 15 start-page: 92 year: 2015 ident: B90 article-title: Adipose tissue inflammation in the pathogenesis of type 2 diabetes publication-title: Curr Diab Rep. doi: 10.1007/s11892-015-0670-x – volume: 21 start-page: 586 year: 2012 ident: B106 article-title: Loss of ceramide synthase 3 causes lethal skin barrier disruption publication-title: Hum Mol Genet doi: 10.1093/hmg/ddr494 – volume: 45 start-page: 1201 year: 2002 ident: B77 article-title: Adipose tissue as a buffer for daily lipid flux publication-title: Diabetologia. doi: 10.1007/s00125-002-0873-y – volume: 42 start-page: 1 year: 2010 ident: B76 article-title: Effects of Streptozotocin-induced diabetes and elevation on plasma FFA on ceramice metabolizm in rat skeletal muscle publication-title: Horm Metab Res. doi: 10.1055/s-0029-1238322 – volume: 49 start-page: 1761 year: 2000 ident: B24 article-title: Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance publication-title: Diabetes. doi: 10.2337/diabetes.49.11.1761 – volume: 278 start-page: 10297 year: 2003 ident: B15 article-title: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids publication-title: J Biol Chem. doi: 10.1074/jbc.M212307200 – volume: 29 start-page: 381 year: 2008 ident: B36 article-title: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism publication-title: Endocr Rev. doi: 10.1210/er.2007-0025 – volume: 44 start-page: 173 year: 2001 ident: B72 article-title: Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells publication-title: Diabetologia. doi: 10.1007/s001250051596 – volume: 110 start-page: 3 year: 2002 ident: B55 article-title: The therapeutic potential of modulating the ceramide/sphingomyelin pathway publication-title: J Clin Invest. doi: 10.1172/JCI16127 – volume: 156 start-page: 802 year: 2015 ident: B69 article-title: Palmitate-induced impairments of β-cell function are linked with generation of specific ceramide species via acylation of sphingosine publication-title: Endocrinology. doi: 10.1210/en.2014-1467 – volume: 287 start-page: 17426 year: 2012 ident: B40 article-title: Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis publication-title: J Biol Chem. doi: 10.1074/jbc.M112.359950 – volume: 277 start-page: 25843 year: 2002 ident: B48 article-title: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway publication-title: J Biol Chem. doi: 10.1074/jbc.R200009200 – volume: 278 start-page: 30015 year: 2003 ident: B31 article-title: Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis publication-title: J Biol Chem. doi: 10.1074/jbc.M302548200 – volume: 37 start-page: 1064 year: 2013 ident: B66 article-title: Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet publication-title: Int J Obes. doi: 10.1038/ijo.2012.191 – volume: 19 start-page: E2527 year: 2018 ident: B122 article-title: Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development publication-title: Int J Mol Sci. doi: 10.3390/ijms19092527 – volume: 1632 start-page: 16 year: 2003 ident: B49 article-title: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism publication-title: Biochim Biophys Acta. doi: 10.1016/S1388-1981(03)00059-3 – volume: 23 start-page: 770 year: 2016 ident: B81 article-title: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.04.011 – volume: 19 start-page: 389 year: 2015 ident: B58 article-title: Skeletal muscle ceramide species in men with abdominal obesity publication-title: J Nutr Health Aging. doi: 10.1007/s12603-014-0548-7 – volume: 51 start-page: 1253 year: 2008 ident: B74 article-title: Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity publication-title: Diabetologia. doi: 10.1007/s00125-008-1014-z |
SSID | ssj0000401998 |
Score | 2.5660696 |
SecondaryResourceType | review_article |
Snippet | Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 577 |
SubjectTerms | ceramide diabetes Endocrinology inflammation insulin resistance obesity therapy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iQbyI39YvKnjxULZN0iQ9qigq6EEUvIU0meCCdsVd_78zbV12RfTiNU3b8KbNzEsmbxg7dgpMzWOeuarWmYyFzEwl8yyY6IoYOQRB551v79TVo7x5Kp9mSn1RTlgnD9wBN_AGeGWEjFWtMJjHBxVGi1Ab52LJZaDZF33eDJlq52CkDUgkun1JZGHVIEIT6LBfQfqUpdZzfqiV6_8pxvyeKjnjey5X2UofNKan3WDX2AI062zptt8W32CUN5Hej14gHcX0HN7d6zDAOB026XWXap7ew5gCRbTwJnu8vHg4v8r6KgiZL7mZZAochji540oLz2uX-wqEV7nnYGRAFxSEK6QWPIL2IZSlggobtYkir0spxBZbbEYN7LDUUaEgEQ13RFRy4QCx9cEE9PIQK0jY4AsT63uJcKpU8WKRKhCKtkXREoq2RTFhJ9M73jp5jF_6nhHM034kbN02oLltb277l7kTdvRlJIs_Au1uuAZGH2PLkfuVVGGwSNh2Z7TpqwTyQIXMLmF6zpxzY5m_0gyfW7FtpQuea777H4PfY8sEBy1J82KfLU7eP-AAY5pJfdh-vp-Zf_OO priority: 102 providerName: Directory of Open Access Journals |
Title | The Role of Ceramides in Insulin Resistance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31496996 https://www.proquest.com/docview/2287518741 https://pubmed.ncbi.nlm.nih.gov/PMC6712072 https://doaj.org/article/c8e29834f9b64958941873db8aaf524d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4k14VEHiwiE0fsR2DlUFFaUgLYeKlfZmOfG4rLQksLuV6L_vjJMuLFohLjk4TuyMZzLf58cMY6-9BtuIWBa-bkyhIleFrVVZBBs9j1FAkHTeefJFn07V51k1-308ehTgaie1o3xS0-Xi7a-fl0do8IfEONHfHkToAp3j4xR6sjLmJruFfsmQmU5GsJ_-y0gl6pQcl2utCoHIYFi33PmSLT-VwvnvwqB_b6X8wzed3GN3R1CZvxu04D67Ad0DdnsyLps_ZLSvIj_rF5D3MT-Gpf8-D7DK513-adiKnp_BioAkasAjNj358PX4tBizJBRtJey60OARApVeaCNb0fiyrUG2umwFWBXQRQXpuTJSRDBtCFWlocZCY6Msm0pJ-ZjtdX0HT1nuKZGQjFZ4IjKl9ACiboMNiAIg1pCxg2uZuHYMIU6ZLBYOqQRJ0SUpOpKiS1LM2JvNEz-G8Bn_qPuexLypR4GvU0G_PHejHbnWYpesVLFuNHI71CtujQyN9T5WQoWMvboeJIeGQqsfvoP-YuUEcsOKMhDyjD0ZBm3TlESeqJH5ZcxsDedWX7bvdPNvKRi3NlyURjz7j3afszv0tTQjLfgLtrdeXsBLhDTrZj9NBeD144zvJ629AlWX9Oo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Ceramides+in+Insulin+Resistance&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Sokolowska%2C+Emilia&rft.au=Blachnio-Zabielska%2C+Agnieszka&rft.date=2019-08-21&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=10&rft.spage=577&rft_id=info:doi/10.3389%2Ffendo.2019.00577&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon |