The Role of Ceramides in Insulin Resistance

Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in endocrinology (Lausanne) Vol. 10; p. 577
Main Authors Sokolowska, Emilia, Blachnio-Zabielska, Agnieszka
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 21.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives.
AbstractList Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives.
Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives.Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives.
Author Sokolowska, Emilia
Blachnio-Zabielska, Agnieszka
AuthorAffiliation Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland
AuthorAffiliation_xml – name: Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok , Bialystok , Poland
Author_xml – sequence: 1
  givenname: Emilia
  surname: Sokolowska
  fullname: Sokolowska, Emilia
– sequence: 2
  givenname: Agnieszka
  surname: Blachnio-Zabielska
  fullname: Blachnio-Zabielska, Agnieszka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31496996$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtrGzEUhUVJSFLH-67KLAvBjl6jx6ZQTJIaAoGQrIVGuuMojKVUGgf67yvbSYkL1eaKq3O-Azqf0VFMERD6QvCcMaUve4g-zSkmeo5xK-UndEaE4DPKND36cD9F01KecT28arU6QaeMcC20Fmfo4uEJmvs0QJP6ZgHZroOH0oTYLGPZDHXeQwlltNHBOTru7VBg-jYn6PH66mHxc3Z7d7Nc_LiduZaqcSbACoKxpUIyRzuLnQbmBHYUFPeEYc8s4ZLRHqTzvm0F6LqUqme4azljE7Tcc32yz-Ylh7XNv02ywewWKa-MzWNwAxingGrFeK87wXWrNCdKMt8pa_uWcl9Z3_esl023Bu8gjtkOB9DDlxiezCq9GiEJxZJWwLc3QE6_NlBGsw7FwTDYCGlTDKVKtjWUkyr9-jHrb8j7b1eB2AtcTqVk6I0Lox1D2kaHwRBsts2aXbNm26zZNVuN-B_jO_u_lj8C0KUO
CitedBy_id crossref_primary_10_3390_nu16010172
crossref_primary_10_1177_0271678X221135061
crossref_primary_10_1007_s00125_021_05641_x
crossref_primary_10_1016_j_csbj_2020_06_001
crossref_primary_10_1002_edm2_418
crossref_primary_10_3390_metabo13111136
crossref_primary_10_3390_ijms20235901
crossref_primary_10_3390_ijms241713325
crossref_primary_10_1016_j_banm_2022_04_028
crossref_primary_10_3390_ijms21218382
crossref_primary_10_52727_2078_256X_2024_20_4_371_384
crossref_primary_10_1016_j_biopha_2021_112357
crossref_primary_10_1017_S0007114520003177
crossref_primary_10_3390_ani13040607
crossref_primary_10_3390_antiox12040898
crossref_primary_10_1038_s41392_022_01073_0
crossref_primary_10_1186_s12944_022_01706_x
crossref_primary_10_3390_nu13082593
crossref_primary_10_1016_j_xcrm_2021_100407
crossref_primary_10_3389_fcvm_2021_785124
crossref_primary_10_1186_s12916_021_02095_1
crossref_primary_10_1007_s13679_021_00434_0
crossref_primary_10_1016_j_metabol_2022_155142
crossref_primary_10_1016_j_tifs_2021_03_010
crossref_primary_10_1073_pnas_1922169117
crossref_primary_10_1093_glycob_cwaa022
crossref_primary_10_7554_eLife_76744
crossref_primary_10_1016_j_advms_2022_06_001
crossref_primary_10_1016_j_prostaglandins_2023_106719
crossref_primary_10_1017_S0007114523002404
crossref_primary_10_3389_fimmu_2021_635704
crossref_primary_10_1007_s00467_024_06623_y
crossref_primary_10_1080_10408398_2021_1895057
crossref_primary_10_1016_j_bbi_2023_07_015
crossref_primary_10_3390_biom9120877
crossref_primary_10_3390_ijms242316635
crossref_primary_10_1016_j_bbalip_2020_158857
crossref_primary_10_3390_cells8121573
crossref_primary_10_3390_molecules25081932
crossref_primary_10_3389_fendo_2023_1156757
crossref_primary_10_1038_s41598_020_73384_7
crossref_primary_10_3390_antiox12040782
crossref_primary_10_1038_s41598_020_77914_1
crossref_primary_10_3389_fphys_2022_958837
crossref_primary_10_3389_fcvm_2023_1116861
crossref_primary_10_1016_j_jlr_2021_100118
crossref_primary_10_2174_1573399817666210923125832
crossref_primary_10_3390_ijms24076267
crossref_primary_10_1038_s41598_022_14083_3
crossref_primary_10_3390_genes12111718
crossref_primary_10_1007_s11886_024_02023_8
crossref_primary_10_1371_journal_pone_0298602
crossref_primary_10_24075_brsmu_2019_090
crossref_primary_10_3389_fimmu_2023_1014778
crossref_primary_10_3390_antiox10020293
crossref_primary_10_3390_diseases12090195
crossref_primary_10_3390_ijms23179697
crossref_primary_10_3389_fendo_2023_1193373
crossref_primary_10_1371_journal_pone_0239115
crossref_primary_10_3390_ijms25169113
crossref_primary_10_1186_s12944_020_01346_z
crossref_primary_10_3390_ijms252010916
crossref_primary_10_1093_nutrit_nuae205
crossref_primary_10_1186_s12944_022_01634_w
crossref_primary_10_3390_ijms23105382
crossref_primary_10_3390_biom11020268
crossref_primary_10_1016_j_isci_2024_110820
crossref_primary_10_14341_omet12839
crossref_primary_10_1111_imr_13403
crossref_primary_10_1055_s_0041_1726613
crossref_primary_10_3389_fimmu_2023_1219598
crossref_primary_10_1016_j_jsps_2024_102016
crossref_primary_10_3390_cimb45100503
crossref_primary_10_3390_nu15010229
crossref_primary_10_1080_01913123_2021_1983099
crossref_primary_10_1155_2023_4223026
crossref_primary_10_3390_ijms241512452
crossref_primary_10_3390_cells12242796
crossref_primary_10_1002_jcsm_12855
crossref_primary_10_1158_1055_9965_EPI_20_1363
crossref_primary_10_31857_S0301179823010046
crossref_primary_10_3390_ijms25147943
crossref_primary_10_1002_jcp_30627
crossref_primary_10_1073_pnas_2112781119
crossref_primary_10_3390_biom10040632
crossref_primary_10_1080_08820538_2023_2205929
crossref_primary_10_1016_j_jff_2023_105805
crossref_primary_10_3390_ani11092501
crossref_primary_10_2337_db23_0690
crossref_primary_10_3390_cells11193001
crossref_primary_10_3390_nu15040921
crossref_primary_10_1016_j_arr_2024_102450
crossref_primary_10_1038_s41574_022_00683_6
crossref_primary_10_1016_j_jdiacomp_2020_107734
crossref_primary_10_1155_2021_7796727
crossref_primary_10_1038_s41598_024_55032_6
crossref_primary_10_3390_nu15153341
crossref_primary_10_3390_biom11020326
crossref_primary_10_14348_molcells_2023_0104
crossref_primary_10_1186_s12906_024_04592_1
crossref_primary_10_1001_jamanetworkopen_2021_20616
crossref_primary_10_3390_ijms24054403
crossref_primary_10_1242_dmm_049995
crossref_primary_10_3389_fendo_2021_684448
crossref_primary_10_3390_metabo11110754
crossref_primary_10_3390_biom13091424
crossref_primary_10_3390_nu16203466
crossref_primary_10_1017_S000711452300106X
crossref_primary_10_3390_cimb46070399
crossref_primary_10_3390_ph16121717
crossref_primary_10_3390_nu15143120
crossref_primary_10_3390_diagnostics11112053
crossref_primary_10_1210_clinem_dgae179
crossref_primary_10_1210_clinem_dgae177
crossref_primary_10_3390_cells10020314
crossref_primary_10_1007_s11897_024_00689_3
crossref_primary_10_1186_s12872_023_03623_y
crossref_primary_10_1002_jcb_30478
crossref_primary_10_1007_s12035_020_02080_4
crossref_primary_10_1111_jnc_15504
crossref_primary_10_3390_cells9081877
crossref_primary_10_2174_0115733998281910231231051814
crossref_primary_10_3390_ijms21176358
crossref_primary_10_1111_imr_12891
crossref_primary_10_3390_biomedicines11092415
crossref_primary_10_1016_j_celrep_2024_115067
crossref_primary_10_1158_1055_9965_EPI_21_1023
crossref_primary_10_1016_j_celrep_2024_114746
crossref_primary_10_3389_fcvm_2022_1092331
crossref_primary_10_3389_fimmu_2022_945980
crossref_primary_10_3390_nu15204350
crossref_primary_10_1042_EBC20240034
crossref_primary_10_1177_2515690X211006333
crossref_primary_10_1113_JP284324
crossref_primary_10_3390_metabo11070417
crossref_primary_10_3390_metabo13020227
crossref_primary_10_1016_j_jbc_2021_100332
crossref_primary_10_1080_19490976_2021_1993513
crossref_primary_10_1186_s12933_024_02505_7
crossref_primary_10_3390_ijms25010469
crossref_primary_10_1093_jb_mvaa030
crossref_primary_10_1016_j_bbalip_2020_158788
crossref_primary_10_1016_j_addr_2020_06_028
crossref_primary_10_1016_j_trsl_2024_03_009
crossref_primary_10_1038_s41598_020_76497_1
crossref_primary_10_1017_S0952523820000097
crossref_primary_10_1016_j_jnutbio_2024_109714
crossref_primary_10_1038_s41598_020_73912_5
crossref_primary_10_1016_j_bbalip_2023_159348
crossref_primary_10_2147_DDDT_S468147
crossref_primary_10_3390_nu14030709
crossref_primary_10_1186_s12889_022_14319_x
crossref_primary_10_3389_fendo_2020_570628
crossref_primary_10_3390_ijms22041788
crossref_primary_10_3389_fphar_2023_1146276
crossref_primary_10_3389_fendo_2020_622692
crossref_primary_10_1016_j_tox_2024_153862
crossref_primary_10_3389_fnut_2023_1071855
crossref_primary_10_3390_cells11020206
crossref_primary_10_1016_j_advnut_2024_100252
crossref_primary_10_15547_bjvm_2390
crossref_primary_10_3390_nu16121877
crossref_primary_10_3390_ijms25074098
crossref_primary_10_3390_nu15173687
crossref_primary_10_1007_s11010_022_04398_0
crossref_primary_10_1017_S0029665120000087
crossref_primary_10_3389_fcell_2021_816301
crossref_primary_10_3390_antiox12020299
crossref_primary_10_1007_s12272_023_01439_0
crossref_primary_10_1038_s41698_024_00500_5
Cites_doi 10.1074/jbc.M707386200
10.1038/s41387-018-0045-x
10.1126/science.271.5249.665
10.1007/s001250050822
10.2337/diabetes.51.7.2005
10.2337/db09-1293
10.1007/978-1-4419-6741-1_1
10.1016/0962-8924(94)90065-5
10.1159/000453174
10.1016/j.bbalip.2015.10.003
10.1016/j.cmet.2014.09.015
10.1038/nm.2277
10.1073/pnas.1133870100
10.1172/JCI30565
10.1016/j.jada.2003.10.041
10.2337/diabetes.50.10.2337
10.1042/bj3190179
10.1016/j.cmet.2012.04.002
10.1074/jbc.274.29.20611
10.1016/j.cmet.2014.08.002
10.1152/ajpendo.2000.279.3.E554
10.1210/jc.80.5.1584
10.1002/(SICI)1097-4547(19990201)55:3<293::AID-JNR4>3.3.CO;2-0
10.1016/B978-0-12-383834-6.00090-2
10.1074/jbc.M406499200
10.1111/j.1742-4658.2006.05523.x
10.1038/nature01137
10.1007/s00125-012-2649-3
10.1152/ajpendo.00584.2012
10.1002/dmrr.2662
10.1128/MCB.01321-14
10.1152/ajpregu.00147.2011
10.1074/jbc.275.12.8657
10.1074/jbc.275.18.13330
10.1210/en.2010-0250
10.1016/j.cmet.2013.03.019
10.1016/S0092-8674(01)00239-2
10.1074/jbc.C300063200
10.2337/db15-0809
10.1016/j.plipres.2015.04.001
10.1016/j.tem.2015.07.006
10.1007/s00125-015-3850-y
10.2337/diabetes.53.1.25
10.1210/jc.86.12.5755
10.2337/db12-1179
10.2337/db10-1221
10.1242/jcs.111.21.3209
10.1007/s00125-011-2065-0
10.1038/21218
10.1042/BJ20040139
10.1089/sur.2006.050
10.1210/en.139.12.4832
10.1007/978-1-4419-6741-1_4
10.1172/JCI88884
10.1016/j.cmet.2015.06.007
10.1002/jcp.22283
10.1016/j.bbrc.2006.08.071
10.1111/j.1749-6632.2002.tb04272.x
10.1515/jpem-2012-0407
10.1016/j.cmet.2016.10.002
10.1007/s00125-007-0781-2
10.1016/j.cmet.2007.01.002
10.1172/JCI25102
10.3389/fendo.2013.00067
10.1172/JCI29069
10.1210/en.2003-0580
10.1074/jbc.272.6.3324
10.2337/diabetes.53.5.1215
10.1016/S1043-6618(03)00050-1
10.1016/S1043-2760(02)00662-8
10.2337/diabetes.51.4.1022
10.1186/1476-511X-12-98
10.1016/j.bbamem.2006.08.009
10.1016/j.cmet.2005.06.006
10.1056/NEJMp068177
10.1042/BJ20101386
10.1038/nri3071
10.1074/jbc.M200958200
10.2337/db08-1228
10.1002/hep.26015
10.1016/S0140-6736(63)91500-9
10.1074/jbc.273.39.25420
10.1128/MCB.23.21.7794-7808.2003
10.1016/j.cmet.2012.03.005
10.1001/jama.2009.726
10.2337/db06-0330
10.1128/MCB.22.23.8204-8214.2002
10.1152/ajpendo.00610.2012
10.2337/diabetes.48.8.1600
10.2337/db07-0111
10.1074/jbc.274.25.17934
10.1074/jbc.274.34.24202
10.1016/j.cellsig.2010.04.006
10.1016/j.febslet.2010.12.022
10.2337/db06-S002
10.1126/science.1061620
10.1146/annurev.nutr.24.012003.132155
10.1016/S1388-1981(02)00332-3
10.1038/oby.2012.126
10.2337/diabetes.47.7.1006
10.1074/jbc.M206747200
10.1007/s11892-015-0670-x
10.1093/hmg/ddr494
10.1007/s00125-002-0873-y
10.1055/s-0029-1238322
10.2337/diabetes.49.11.1761
10.1074/jbc.M212307200
10.1210/er.2007-0025
10.1007/s001250051596
10.1172/JCI16127
10.1210/en.2014-1467
10.1074/jbc.M112.359950
10.1074/jbc.R200009200
10.1074/jbc.M302548200
10.1038/ijo.2012.191
10.3390/ijms19092527
10.1016/S1388-1981(03)00059-3
10.1016/j.cmet.2016.04.011
10.1007/s12603-014-0548-7
10.1007/s00125-008-1014-z
ContentType Journal Article
Copyright Copyright © 2019 Sokolowska and Blachnio-Zabielska. 2019 Sokolowska and Blachnio-Zabielska
Copyright_xml – notice: Copyright © 2019 Sokolowska and Blachnio-Zabielska. 2019 Sokolowska and Blachnio-Zabielska
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fendo.2019.00577
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2392
ExternalDocumentID oai_doaj_org_article_c8e29834f9b64958941873db8aaf524d
PMC6712072
31496996
10_3389_fendo_2019_00577
Genre Journal Article
Review
GrantInformation_xml – fundername: Uniwersytet Medyczny w Bialymstoku
– fundername: Fundacja na rzecz Nauki Polskiej
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RPM
IPNFZ
M48
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-6ea6100a2673c2ba0c9e3c60c2e84d130d3a14732fe7cdd556e930d78f30b5433
IEDL.DBID M48
ISSN 1664-2392
IngestDate Wed Aug 27 01:27:40 EDT 2025
Thu Aug 21 14:21:36 EDT 2025
Sun Aug 24 03:19:08 EDT 2025
Thu Apr 03 07:04:13 EDT 2025
Tue Jul 01 01:25:46 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ceramide
inflammation
diabetes
insulin resistance
therapy
obesity
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-6ea6100a2673c2ba0c9e3c60c2e84d130d3a14732fe7cdd556e930d78f30b5433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Mohamed Abu-Farha, Dasman Diabetes Institute, Kuwait
This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology
Reviewed by: Asimina Mitrakou-Fanariotou, National and Kapodistrian University of Athens, Greece; Rade Vukovic, The Institute for Health Protection of Mother and Child Serbia, Serbia
OpenAccessLink https://doaj.org/article/c8e29834f9b64958941873db8aaf524d
PMID 31496996
PQID 2287518741
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c8e29834f9b64958941873db8aaf524d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6712072
proquest_miscellaneous_2287518741
pubmed_primary_31496996
crossref_citationtrail_10_3389_fendo_2019_00577
crossref_primary_10_3389_fendo_2019_00577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-21
PublicationDateYYYYMMDD 2019-08-21
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-21
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in endocrinology (Lausanne)
PublicationTitleAlternate Front Endocrinol (Lausanne)
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Xu (B118) 2006; 349
Lin (B52) 2000; 275
Watt (B75) 2012; 55
Wellen (B84) 2005; 115
Hajduch (B72) 2001; 44
Takata (B13) 1999; 274
Hanada (B49) 2003; 1632
Chavez (B15) 2003; 278
Holland (B36) 2008; 29
Galadari (B33) 2013; 12
Thompson (B24) 2000; 49
Xia (B97) 2015; 22
Holland (B34) 2007; 5
Keller (B7) 1994; 4
Perseghin (B20) 1999; 48
Goldkorn (B54) 1998; 111
Pickup (B85) 1997; 40
Yu (B116) 2018; 8
Turpin (B108) 2014; 20
Gupta (B2) 2010; 4
Raffel (B6) 2013
Cuschieri (B53) 2007; 8
Adams (B70) 2004; 53
Virkamaki (B22) 2001; 50
Kohlgruber (B90) 2015; 15
Skovbro (B74) 2008; 51
Chavez (B121) 2012; 15
Kolak (B59) 2007; 56
Saltiel (B4) 2001; 104
Lanza (B111) 2013; 304
Shoelson (B42) 2006; 116
Gault (B95) 2010; 688
Andrieu-Abadie (B56) 2002; 1585
Sartipy (B87) 2003; 100
Véret (B107) 2011; 438
Dube (B60) 2011; 54
Schmitz-Peiffer (B17) 2002; 967
Stern (B81) 2016; 23
Sinha (B23) 2002; 51
Kolesnick (B55) 2002; 110
Blachnio-Zabielska (B76) 2010; 42
Nowotny (B38) 2013; 62
Haus (B65) 2009; 58
Powell (B68) 2004; 382
Powell (B63) 2003; 23
Itani (B37) 2002; 51
Rajala (B91) 2003; 144
Amati (B57) 2011; 60
Stiban (B101) 2010; 688
Wang (B47) 1999; 55
Goodpaster (B41) 2001; 86
Blachnio-Zabielska (B80) 2012; 20
Summers (B12) 1999; 274
Schubert (B46) 2000; 275
Straczkowski (B18) 2007; 50
Brozinick (B66) 2013; 37
Morino (B28) 2006; 55
Kelpe (B31) 2003; 278
Kang (B19) 2013; 4
Hammond (B117) 2002; 22
Ussher (B96) 2010; 59
Uysal (B86) 1998; 139
Whiteman (B8) 2002; 13
Bray (B88) 2004; 104
Holland (B83) 2011; 17
Mesicek (B104) 2010; 22
Chawla (B89) 2011; 11
Luberto (B51) 2002; 277
Zabielski (B112) 2014; 306
Blachnio-Zabielska (B1) 2010; 225
Samad (B44) 2006; 55
Raichur (B109) 2014; 20
Long (B78) 1996; 319
de la Maza (B58) 2015; 19
Jornayvaz (B32) 2012; 15
Paumen (B99) 1997; 272
Chaurasia (B21) 2015; 26
Pinel (B39) 2016; 1861
Hirosumi (B94) 2002; 420
Turban (B73) 2011; 585
Chaurasia (B100) 2016; 24
Ruvolo (B45) 2003; 47
Zheng (B98) 2006; 1758
Park (B105) 2013; 57
Ellis (B16) 2000; 279
Jennemann (B106) 2012; 21
Frangioudakis (B102) 2010; 151
Chan (B3) 2009; 301
Wang (B14) 1998; 273
Frayn (B77) 2002; 45
Fulton (B11) 1999; 399
Straczkowski (B71) 2004; 53
Sano (B9) 2003; 278
Merrill (B48) 2002; 277
Neess (B25) 2015; 59
Randle (B29) 1963; 1
Ciapaite (B27) 2006; 273
García-González (B122) 2018; 19
Yuan (B93) 2001; 293
Warshauer (B67) 2015; 31
Laviad (B103) 2008; 283
Hotamisligil (B43) 1996; 271
Chmitz-Peiffer (B50) 1999; 274
Stratford (B35) 2004; 279
Liu (B62) 2007; 117
Lopez (B64) 2013; 26
Hajduch (B10) 1998; 47
Coen (B61) 2015; 64
Thuresson (B115) 2004; 5
Goldfine (B92) 2017; 127
Neschen (B114) 2005; 2
Manukyan (B69) 2015; 156
Kuhajda (B119) 2011; 301
Bergman (B113) 2016; 59
Zhou (B30) 1995; 80
Holland (B82) 2013; 17
Bikman (B40) 2012; 287
Hossain (B120) 2007; 356
Yu (B26) 2002; 277
Blachnio-Zabielska (B110) 2016; 40
Reaven (B5) 2005; 25
Kim (B79) 2015; 35
References_xml – volume: 283
  start-page: 5677
  year: 2008
  ident: B103
  article-title: Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M707386200
– volume: 8
  start-page: 34
  year: 2018
  ident: B116
  article-title: Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance
  publication-title: Nutr Diabetes.
  doi: 10.1038/s41387-018-0045-x
– volume: 271
  start-page: 665
  year: 1996
  ident: B43
  article-title: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance
  publication-title: Science.
  doi: 10.1126/science.271.5249.665
– volume: 40
  start-page: 1286
  year: 1997
  ident: B85
  article-title: NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X
  publication-title: Diabetologia.
  doi: 10.1007/s001250050822
– volume: 51
  start-page: 2005
  year: 2002
  ident: B37
  article-title: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C and IkB-a
  publication-title: Diabetes.
  doi: 10.2337/diabetes.51.7.2005
– volume: 59
  start-page: 2453
  year: 2010
  ident: B96
  article-title: Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption
  publication-title: Diabetes.
  doi: 10.2337/db09-1293
– volume: 688
  start-page: 1
  year: 2010
  ident: B95
  article-title: An overview of sphingolipid metabolism: from synthesis to breakdown
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/978-1-4419-6741-1_1
– volume: 4
  start-page: 115
  year: 1994
  ident: B7
  article-title: Insulin signalling the role of insulin receptor substrate 1
  publication-title: Trends Cell Biol.
  doi: 10.1016/0962-8924(94)90065-5
– volume: 40
  start-page: 1207
  year: 2016
  ident: B110
  article-title: The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance
  publication-title: Cell Physiol Biochem.
  doi: 10.1159/000453174
– volume: 1861
  start-page: 12
  year: 2016
  ident: B39
  article-title: N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbalip.2015.10.003
– volume: 20
  start-page: 687
  year: 2014
  ident: B109
  article-title: CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.09.015
– volume: 17
  start-page: 55
  year: 2011
  ident: B83
  article-title: Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin
  publication-title: Nat Med.
  doi: 10.1038/nm.2277
– volume: 100
  start-page: 7265
  year: 2003
  ident: B87
  article-title: Monocyte chemoattractant protein 1 in obesity and insulin resistance
  publication-title: Proc Natl Acad Sci U.S.A
  doi: 10.1073/pnas.1133870100
– volume: 117
  start-page: 1679
  year: 2007
  ident: B62
  article-title: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance
  publication-title: J Clin Invest.
  doi: 10.1172/JCI30565
– volume: 104
  start-page: 86
  year: 2004
  ident: B88
  article-title: Obesity and the metabolic syndrome: implications for dietetics practitioners
  publication-title: J Am Diet Assoc.
  doi: 10.1016/j.jada.2003.10.041
– volume: 50
  start-page: 2337
  year: 2001
  ident: B22
  article-title: Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle
  publication-title: Diabetes.
  doi: 10.2337/diabetes.50.10.2337
– volume: 319
  start-page: 179
  year: 1996
  ident: B78
  article-title: Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes
  publication-title: Biochem J.
  doi: 10.1042/bj3190179
– volume: 15
  start-page: 585
  year: 2012
  ident: B121
  article-title: A ceramide-centric view of insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.002
– volume: 274
  start-page: 20611
  year: 1999
  ident: B13
  article-title: Requirement for Akt (protein kinase B) in insulin-induced activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1)
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.274.29.20611
– volume: 20
  start-page: 678
  year: 2014
  ident: B108
  article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.08.002
– volume: 279
  start-page: E554
  year: 2000
  ident: B16
  article-title: Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle
  publication-title: Am J Physiol Endocrinol Metab.
  doi: 10.1152/ajpendo.2000.279.3.E554
– volume: 80
  start-page: 1584
  year: 1995
  ident: B30
  article-title: Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/jc.80.5.1584
– volume: 55
  start-page: 293
  year: 1999
  ident: B47
  article-title: Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/ JNK kinase and cell survival
  publication-title: J Neurosci Res.
  doi: 10.1002/(SICI)1097-4547(19990201)55:3<293::AID-JNR4>3.3.CO;2-0
– start-page: 1
  volume-title: Emery and Rimoin's Principles and Practice of Medical Genetics.
  year: 2013
  ident: B6
  article-title: Diabetes mellitus
  doi: 10.1016/B978-0-12-383834-6.00090-2
– volume: 279
  start-page: 36608
  year: 2004
  ident: B35
  article-title: Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M406499200
– volume: 273
  start-page: 5288
  year: 2006
  ident: B27
  article-title: Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects. Implications for a mechanism linking obesity and type 2 diabetes
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2006.05523.x
– volume: 420
  start-page: 333
  year: 2002
  ident: B94
  article-title: A central role for JNK in obesity and insulin resistance
  publication-title: Nature.
  doi: 10.1038/nature01137
– volume: 55
  start-page: 2741
  year: 2012
  ident: B75
  article-title: Regulation of plasma ceramide levels with fatty acid oversupply: evidence that the liver detects and secretes de novo synthesised ceramide
  publication-title: Diabetologia.
  doi: 10.1007/s00125-012-2649-3
– volume: 304
  start-page: E1391
  year: 2013
  ident: B111
  article-title: Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet
  publication-title: Am J Physiol Endocrinol Metab.
  doi: 10.1152/ajpendo.00584.2012
– volume: 31
  start-page: 734
  year: 2015
  ident: B67
  article-title: Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome
  publication-title: Diabetes Metab Res Rev.
  doi: 10.1002/dmrr.2662
– volume: 35
  start-page: 1686
  year: 2015
  ident: B79
  article-title: Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.01321-14
– volume: 301
  start-page: R116
  year: 2011
  ident: B119
  article-title: Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity
  publication-title: Am J Physiol Regul Integr Comp Physiol.
  doi: 10.1152/ajpregu.00147.2011
– volume: 275
  start-page: 8657
  year: 2000
  ident: B52
  article-title: Role of acidic sphingomyelinase in Fas/CD95-mediated cell death
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.275.12.8657
– volume: 275
  start-page: 13330
  year: 2000
  ident: B46
  article-title: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.275.18.13330
– volume: 151
  start-page: 4187
  year: 2010
  ident: B102
  article-title: Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors
  publication-title: Endocrinology.
  doi: 10.1210/en.2010-0250
– volume: 17
  start-page: 790
  year: 2013
  ident: B82
  article-title: An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.019
– volume: 104
  start-page: 517
  year: 2001
  ident: B4
  article-title: New perspectives into the molecular pathogenesis and treatment of type 2 diabetes
  publication-title: Cell.
  doi: 10.1016/S0092-8674(01)00239-2
– volume: 278
  start-page: 14599
  year: 2003
  ident: B9
  article-title: Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.C300063200
– volume: 64
  start-page: 3737
  year: 2015
  ident: B61
  article-title: Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning and insulin sensitivity following gastric bypass surgery
  publication-title: Diabetes.
  doi: 10.2337/db15-0809
– volume: 59
  start-page: 1
  year: 2015
  ident: B25
  article-title: Long-chain acyl-CoA esters in metabolism and signaling: role of acyl-CoA binding proteins
  publication-title: Prog Lipid Res.
  doi: 10.1016/j.plipres.2015.04.001
– volume: 26
  start-page: 538
  year: 2015
  ident: B21
  article-title: Ceramides – lipotoxic inducers of metabolic disorders
  publication-title: Trends Endocrinol Metab.
  doi: 10.1016/j.tem.2015.07.006
– volume: 59
  start-page: 785
  year: 2016
  ident: B113
  article-title: Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans
  publication-title: Diabetologia.
  doi: 10.1007/s00125-015-3850-y
– volume: 53
  start-page: 25
  year: 2004
  ident: B70
  article-title: Ceramide content is increased in skeletal muscle from obese insulin-resistant humans
  publication-title: Diabetes.
  doi: 10.2337/diabetes.53.1.25
– volume: 5
  start-page: 411
  year: 2004
  ident: B115
  article-title: Inhibition of glycerol-3-phosphate acyltransferase as a potential treatment for insulin resistance and type 2 diabetes
  publication-title: Curr Opin Investig Drugs.
– volume: 86
  start-page: 5755
  year: 2001
  ident: B41
  article-title: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes
  publication-title: J Clin Endocrinol Metab.
  doi: 10.1210/jc.86.12.5755
– volume: 62
  start-page: 2240
  year: 2013
  ident: B38
  article-title: Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans
  publication-title: Diabetes.
  doi: 10.2337/db12-1179
– volume: 60
  start-page: 2588
  year: 2011
  ident: B57
  article-title: Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes?
  publication-title: Diabetes.
  doi: 10.2337/db10-1221
– volume: 111
  start-page: 3209
  year: 1998
  ident: B54
  article-title: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.111.21.3209
– volume: 54
  start-page: 1147
  year: 2011
  ident: B60
  article-title: Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide
  publication-title: Diabetologia.
  doi: 10.1007/s00125-011-2065-0
– volume: 399
  start-page: 597
  year: 1999
  ident: B11
  article-title: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt
  publication-title: Nature.
  doi: 10.1038/21218
– volume: 382
  start-page: 619
  year: 2004
  ident: B68
  article-title: Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells
  publication-title: Biochem J.
  doi: 10.1042/BJ20040139
– volume: 8
  start-page: 91
  year: 2007
  ident: B53
  article-title: Acid sphingomyelinase is required for lipid Raft TLR4 complex formation
  publication-title: Surg Infect.
  doi: 10.1089/sur.2006.050
– volume: 139
  start-page: 4832
  year: 1998
  ident: B86
  article-title: Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity
  publication-title: Endocrinology.
  doi: 10.1210/en.139.12.4832
– volume: 688
  start-page: 60
  year: 2010
  ident: B101
  article-title: Ceramide synthases: roles in cell physiology and signaling
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/978-1-4419-6741-1_4
– volume: 127
  start-page: 83
  year: 2017
  ident: B92
  article-title: Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk
  publication-title: J Clin Invest.
  doi: 10.1172/JCI88884
– volume: 22
  start-page: 266
  year: 2015
  ident: B97
  article-title: Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.06.007
– volume: 225
  start-page: 786
  year: 2010
  ident: B1
  article-title: Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.22283
– volume: 349
  start-page: 439
  year: 2006
  ident: B118
  article-title: Hepatic knockdown of mitochondrial GPAT1 in ob/ob mice improves metabolic profile
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/j.bbrc.2006.08.071
– volume: 967
  start-page: 146
  year: 2002
  ident: B17
  article-title: Protein kinase C and lipid-induced insulin resistance in skeletal muscle
  publication-title: Ann N Y Acad Sci.
  doi: 10.1111/j.1749-6632.2002.tb04272.x
– volume: 26
  start-page: 995
  year: 2013
  ident: B64
  article-title: Plasma ceramides are elevated in female children and adolescents with type 2 diabetes
  publication-title: J Pediatr Endocrinol Metab.
  doi: 10.1515/jpem-2012-0407
– volume: 24
  start-page: 820
  year: 2016
  ident: B100
  article-title: Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.10.002
– volume: 50
  start-page: 2366
  year: 2007
  ident: B18
  article-title: Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes
  publication-title: Diabetologia.
  doi: 10.1007/s00125-007-0781-2
– volume: 5
  start-page: 167
  year: 2007
  ident: B34
  article-title: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.01.002
– volume: 115
  start-page: 1111
  year: 2005
  ident: B84
  article-title: Inflammation, stress, and diabetes
  publication-title: J Clin Invest.
  doi: 10.1172/JCI25102
– volume: 4
  start-page: 67
  year: 2013
  ident: B19
  article-title: Sphingolipid metabolism and obesity-induced inflammation
  publication-title: Front Endocrinol.
  doi: 10.3389/fendo.2013.00067
– volume: 116
  start-page: 1793
  year: 2006
  ident: B42
  article-title: Inflammation and insulin resistance
  publication-title: J Clin Invest.
  doi: 10.1172/JCI29069
– volume: 144
  start-page: 3765
  year: 2003
  ident: B91
  article-title: Minireview: the adipocyte – at the crossroads of energy homeostasis, inflammation, and atherosclerosis
  publication-title: Endocrinology.
  doi: 10.1210/en.2003-0580
– volume: 272
  start-page: 3324
  year: 1997
  ident: B99
  article-title: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.272.6.3324
– volume: 53
  start-page: 1215
  year: 2004
  ident: B71
  article-title: Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle
  publication-title: Diabetes.
  doi: 10.2337/diabetes.53.5.1215
– volume: 47
  start-page: 383
  year: 2003
  ident: B45
  article-title: Intracellular signal transduction pathways activated by ceramide and its metabolites
  publication-title: Pharmacol Res.
  doi: 10.1016/S1043-6618(03)00050-1
– volume: 13
  start-page: 444
  year: 2002
  ident: B8
  article-title: Role of Akt/protein kinase B in metabolism
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/S1043-2760(02)00662-8
– volume: 51
  start-page: 1022
  year: 2002
  ident: B23
  article-title: Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity
  publication-title: Diabetes.
  doi: 10.2337/diabetes.51.4.1022
– volume: 12
  start-page: 98
  year: 2013
  ident: B33
  article-title: Role of ceramide in diabetes mellitus: evidence and mechanisms
  publication-title: Lipids Health Dis.
  doi: 10.1186/1476-511X-12-98
– volume: 1758
  start-page: 1864
  year: 2006
  ident: B98
  article-title: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/j.bbamem.2006.08.009
– volume: 2
  start-page: 55
  year: 2005
  ident: B114
  article-title: Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3- phosphate acyltransferase 1 knockout mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.06.006
– volume: 4
  start-page: 204
  year: 2010
  ident: B2
  article-title: Metabolic syndrome: what are the risks for humans?
  publication-title: Biosci Trends.
– volume: 356
  start-page: 213
  year: 2007
  ident: B120
  article-title: Obesity and diabetes in the developing world-a growing challenge
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMp068177
– volume: 438
  start-page: 177
  year: 2011
  ident: B107
  article-title: Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells
  publication-title: Biochem J.
  doi: 10.1042/BJ20101386
– volume: 11
  start-page: 738
  year: 2011
  ident: B89
  article-title: Macrophage-mediated inflammation in metabolic disease
  publication-title: Nat Rev Immunol.
  doi: 10.1038/nri3071
– volume: 277
  start-page: 50230
  year: 2002
  ident: B26
  article-title: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M200958200
– volume: 58
  start-page: 337
  year: 2009
  ident: B65
  article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance
  publication-title: Diabetes.
  doi: 10.2337/db08-1228
– volume: 57
  start-page: 525
  year: 2013
  ident: B105
  article-title: Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes
  publication-title: Hepatology.
  doi: 10.1002/hep.26015
– volume: 1
  start-page: 785
  year: 1963
  ident: B29
  article-title: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(63)91500-9
– volume: 273
  start-page: 25420
  year: 1998
  ident: B14
  article-title: Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.273.39.25420
– volume: 23
  start-page: 7794
  year: 2003
  ident: B63
  article-title: Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.23.21.7794-7808.2003
– volume: 15
  start-page: 574
  year: 2012
  ident: B32
  article-title: Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.03.005
– volume: 301
  start-page: 2129
  year: 2009
  ident: B3
  article-title: Diabetes in Asia: epidemiology, risk factors, and pathophysiology
  publication-title: JAMA.
  doi: 10.1001/jama.2009.726
– volume: 55
  start-page: 2579
  year: 2006
  ident: B44
  article-title: Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk
  publication-title: Diabetes.
  doi: 10.2337/db06-0330
– volume: 22
  start-page: 8204
  year: 2002
  ident: B117
  article-title: Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.22.23.8204-8214.2002
– volume: 306
  start-page: E529
  year: 2014
  ident: B112
  article-title: Impact of insulin deprivation and treatment on sphingolipid distribution in different muscle subcellular compartments of streptozotocin-diabetic C57Bl/6 mice
  publication-title: Am J Physiol Endocrinol Metab.
  doi: 10.1152/ajpendo.00610.2012
– volume: 48
  start-page: 1600
  year: 1999
  ident: B20
  article-title: Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents
  publication-title: Diabetes.
  doi: 10.2337/diabetes.48.8.1600
– volume: 56
  start-page: 1960
  year: 2007
  ident: B59
  article-title: Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity
  publication-title: Diabetes.
  doi: 10.2337/db07-0111
– volume: 274
  start-page: 17934
  year: 1999
  ident: B12
  article-title: The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.274.25.17934
– volume: 274
  start-page: 24202
  year: 1999
  ident: B50
  article-title: Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.274.34.24202
– volume: 22
  start-page: 1300
  year: 2010
  ident: B104
  article-title: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2010.04.006
– volume: 585
  start-page: 269
  year: 2011
  ident: B73
  article-title: Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.12.022
– volume: 55
  start-page: S9
  year: 2006
  ident: B28
  article-title: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction
  publication-title: Diabetes.
  doi: 10.2337/db06-S002
– volume: 293
  start-page: 1673
  year: 2001
  ident: B93
  article-title: Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ
  publication-title: Science.
  doi: 10.1126/science.1061620
– volume: 25
  start-page: 391
  year: 2005
  ident: B5
  article-title: The insulin resistance syndrome: definition and dietary approaches to treatment
  publication-title: Annu Rev Nutr.
  doi: 10.1146/annurev.nutr.24.012003.132155
– volume: 1585
  start-page: 126
  year: 2002
  ident: B56
  article-title: Sphingomyelin hydrolysis during apoptosis
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/S1388-1981(02)00332-3
– volume: 20
  start-page: 2341
  year: 2012
  ident: B80
  article-title: Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance
  publication-title: Obesity.
  doi: 10.1038/oby.2012.126
– volume: 47
  start-page: 1006
  year: 1998
  ident: B10
  article-title: Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells
  publication-title: Diabetes.
  doi: 10.2337/diabetes.47.7.1006
– volume: 277
  start-page: 41128
  year: 2002
  ident: B51
  article-title: Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M206747200
– volume: 15
  start-page: 92
  year: 2015
  ident: B90
  article-title: Adipose tissue inflammation in the pathogenesis of type 2 diabetes
  publication-title: Curr Diab Rep.
  doi: 10.1007/s11892-015-0670-x
– volume: 21
  start-page: 586
  year: 2012
  ident: B106
  article-title: Loss of ceramide synthase 3 causes lethal skin barrier disruption
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr494
– volume: 45
  start-page: 1201
  year: 2002
  ident: B77
  article-title: Adipose tissue as a buffer for daily lipid flux
  publication-title: Diabetologia.
  doi: 10.1007/s00125-002-0873-y
– volume: 42
  start-page: 1
  year: 2010
  ident: B76
  article-title: Effects of Streptozotocin-induced diabetes and elevation on plasma FFA on ceramice metabolizm in rat skeletal muscle
  publication-title: Horm Metab Res.
  doi: 10.1055/s-0029-1238322
– volume: 49
  start-page: 1761
  year: 2000
  ident: B24
  article-title: Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance
  publication-title: Diabetes.
  doi: 10.2337/diabetes.49.11.1761
– volume: 278
  start-page: 10297
  year: 2003
  ident: B15
  article-title: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M212307200
– volume: 29
  start-page: 381
  year: 2008
  ident: B36
  article-title: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism
  publication-title: Endocr Rev.
  doi: 10.1210/er.2007-0025
– volume: 44
  start-page: 173
  year: 2001
  ident: B72
  article-title: Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells
  publication-title: Diabetologia.
  doi: 10.1007/s001250051596
– volume: 110
  start-page: 3
  year: 2002
  ident: B55
  article-title: The therapeutic potential of modulating the ceramide/sphingomyelin pathway
  publication-title: J Clin Invest.
  doi: 10.1172/JCI16127
– volume: 156
  start-page: 802
  year: 2015
  ident: B69
  article-title: Palmitate-induced impairments of β-cell function are linked with generation of specific ceramide species via acylation of sphingosine
  publication-title: Endocrinology.
  doi: 10.1210/en.2014-1467
– volume: 287
  start-page: 17426
  year: 2012
  ident: B40
  article-title: Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M112.359950
– volume: 277
  start-page: 25843
  year: 2002
  ident: B48
  article-title: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.R200009200
– volume: 278
  start-page: 30015
  year: 2003
  ident: B31
  article-title: Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M302548200
– volume: 37
  start-page: 1064
  year: 2013
  ident: B66
  article-title: Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet
  publication-title: Int J Obes.
  doi: 10.1038/ijo.2012.191
– volume: 19
  start-page: E2527
  year: 2018
  ident: B122
  article-title: Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms19092527
– volume: 1632
  start-page: 16
  year: 2003
  ident: B49
  article-title: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism
  publication-title: Biochim Biophys Acta.
  doi: 10.1016/S1388-1981(03)00059-3
– volume: 23
  start-page: 770
  year: 2016
  ident: B81
  article-title: Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.04.011
– volume: 19
  start-page: 389
  year: 2015
  ident: B58
  article-title: Skeletal muscle ceramide species in men with abdominal obesity
  publication-title: J Nutr Health Aging.
  doi: 10.1007/s12603-014-0548-7
– volume: 51
  start-page: 1253
  year: 2008
  ident: B74
  article-title: Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity
  publication-title: Diabetologia.
  doi: 10.1007/s00125-008-1014-z
SSID ssj0000401998
Score 2.5660696
SecondaryResourceType review_article
Snippet Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 577
SubjectTerms ceramide
diabetes
Endocrinology
inflammation
insulin resistance
obesity
therapy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iQbyI39YvKnjxULZN0iQ9qigq6EEUvIU0meCCdsVd_78zbV12RfTiNU3b8KbNzEsmbxg7dgpMzWOeuarWmYyFzEwl8yyY6IoYOQRB551v79TVo7x5Kp9mSn1RTlgnD9wBN_AGeGWEjFWtMJjHBxVGi1Ab52LJZaDZF33eDJlq52CkDUgkun1JZGHVIEIT6LBfQfqUpdZzfqiV6_8pxvyeKjnjey5X2UofNKan3WDX2AI062zptt8W32CUN5Hej14gHcX0HN7d6zDAOB026XWXap7ew5gCRbTwJnu8vHg4v8r6KgiZL7mZZAochji540oLz2uX-wqEV7nnYGRAFxSEK6QWPIL2IZSlggobtYkir0spxBZbbEYN7LDUUaEgEQ13RFRy4QCx9cEE9PIQK0jY4AsT63uJcKpU8WKRKhCKtkXREoq2RTFhJ9M73jp5jF_6nhHM034kbN02oLltb277l7kTdvRlJIs_Au1uuAZGH2PLkfuVVGGwSNh2Z7TpqwTyQIXMLmF6zpxzY5m_0gyfW7FtpQuea777H4PfY8sEBy1J82KfLU7eP-AAY5pJfdh-vp-Zf_OO
  priority: 102
  providerName: Directory of Open Access Journals
Title The Role of Ceramides in Insulin Resistance
URI https://www.ncbi.nlm.nih.gov/pubmed/31496996
https://www.proquest.com/docview/2287518741
https://pubmed.ncbi.nlm.nih.gov/PMC6712072
https://doaj.org/article/c8e29834f9b64958941873db8aaf524d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4k14VEHiwiE0fsR2DlUFFaUgLYeKlfZmOfG4rLQksLuV6L_vjJMuLFohLjk4TuyMZzLf58cMY6-9BtuIWBa-bkyhIleFrVVZBBs9j1FAkHTeefJFn07V51k1-308ehTgaie1o3xS0-Xi7a-fl0do8IfEONHfHkToAp3j4xR6sjLmJruFfsmQmU5GsJ_-y0gl6pQcl2utCoHIYFi33PmSLT-VwvnvwqB_b6X8wzed3GN3R1CZvxu04D67Ad0DdnsyLps_ZLSvIj_rF5D3MT-Gpf8-D7DK513-adiKnp_BioAkasAjNj358PX4tBizJBRtJey60OARApVeaCNb0fiyrUG2umwFWBXQRQXpuTJSRDBtCFWlocZCY6Msm0pJ-ZjtdX0HT1nuKZGQjFZ4IjKl9ACiboMNiAIg1pCxg2uZuHYMIU6ZLBYOqQRJ0SUpOpKiS1LM2JvNEz-G8Bn_qPuexLypR4GvU0G_PHejHbnWYpesVLFuNHI71CtujQyN9T5WQoWMvboeJIeGQqsfvoP-YuUEcsOKMhDyjD0ZBm3TlESeqJH5ZcxsDedWX7bvdPNvKRi3NlyURjz7j3afszv0tTQjLfgLtrdeXsBLhDTrZj9NBeD144zvJ629AlWX9Oo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Ceramides+in+Insulin+Resistance&rft.jtitle=Frontiers+in+endocrinology+%28Lausanne%29&rft.au=Sokolowska%2C+Emilia&rft.au=Blachnio-Zabielska%2C+Agnieszka&rft.date=2019-08-21&rft.issn=1664-2392&rft.eissn=1664-2392&rft.volume=10&rft.spage=577&rft_id=info:doi/10.3389%2Ffendo.2019.00577&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2392&client=summon