A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation
Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regressi...
Saved in:
Published in | Psychometrika Vol. 87; no. 2; pp. 506 - 532 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (
E-MELS
), the extended mixed-effect location-scale Lasso model (
Lasso E-MELS
), and the extended mixed-effect location-scale tree model (
E-MELS trees
), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models. |
---|---|
AbstractList | Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (
E-MELS
), the extended mixed-effect location-scale Lasso model (
Lasso E-MELS
), and the extended mixed-effect location-scale tree model (
E-MELS trees
), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models. Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that-in addition to a random effect for the mean level-also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals' daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that-in addition to a random effect for the mean level-also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals' daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models. Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models. |
Author | Humberg, Sarah Nestler, Steffen |
Author_xml | – sequence: 1 givenname: Steffen orcidid: 0000-0001-9724-2441 surname: Nestler fullname: Nestler, Steffen email: steffen.nestler@uni-muenster.de organization: University of Münster, Institut für Psychologie – sequence: 2 givenname: Sarah surname: Humberg fullname: Humberg, Sarah organization: University of Münster, Institut für Psychologie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34390456$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1P3DAUtCpQWSh_oIfKUi89EOqPxHEulVaIfkiLKq1or5Zjv-waZW1qJ2y58strNlBaDpz8rDczb549h2jPBw8IvaXklBJSf0yUci4KwmhBmlrWxfYVmlEpSL5KsodmhHBecMr4ATpM6YoQ0lApX6MDXvKGlJWYobs5XuiUAtbeYo2XsIqQkgseX0YAfOF-gy3Ouw7MgC-ChR5v3bDGywwPGzw1Eu5CxMMa8AJuoD_ZlUtIzo66xz91dNobONmNuG_NxyGYECP0esiT3qD9TvcJjh_OI_Tj8_nl2ddi8f3Lt7P5ojAVk0Mh2tpU1kArOs5NR1reSWMIz0WrBbe6sYSXLW9YaYy1AqA1vNbSNkZL0DU_Qp8m3eux3UBW8kPUvbqObqPjrQraqf873q3VKtyohgohqyoLfHgQiOHXCGlQG5cM9L32EMakWCVo2dBalBn6_hn0KozR5_UUEzWTJSsZyah3_zr6a-XxezJATgATQ0oROmXcsHu0bND1ihJ1nwQ1JUHlJKhdEtQ2U9kz6qP6iyQ-kVIG-xXEJ9svsP4AztfIpw |
CitedBy_id | crossref_primary_10_62347_MQQB5184 crossref_primary_10_1007_s11336_022_09850_0 crossref_primary_10_1002_sim_9943 crossref_primary_10_1177_21677026231165677 crossref_primary_10_15626_MP_2023_3796 crossref_primary_10_1016_j_ibusrev_2023_102203 crossref_primary_10_1186_s12909_024_06477_w crossref_primary_10_1186_s13040_025_00437_w crossref_primary_10_1080_00273171_2022_2146638 crossref_primary_10_1007_s10488_023_01303_9 crossref_primary_10_3390_su141610334 |
Cites_doi | 10.1007/978-1-4614-7138-7 10.1111/1467-9868.00176 10.1037/a0014173 10.1017/CBO9780511790928 10.1002/9780470316856 10.1080/00273171.2015.1065398 10.1111/j.1541-0420.2007.00924.x 10.1037/pspp0000093 10.1016/j.jrp.2012.08.010 10.1016/j.jrp.2016.06.015 10.1007/s11222-013-9398-0 10.1037/pspp0000015 10.1111/j.1467-985X.2009.00587.x 10.1037/met0000120 10.1214/12-AOS1028 10.1080/10705511.2018.1558060 10.1080/00273171.2016.1159177 10.1348/000711005X79857 10.1016/j.jrp.2016.06.003 10.1080/10705511.2017.1406803 10.4310/SII.2018.v11.n4.a15 10.2307/228992 10.1037/0022-3514.54.6.1063 10.1016/j.spl.2010.12.003 10.1016/j.csda.2015.02.004 10.1111/j.1360-0443.2008.02435.x 10.1080/10705511.2020.1757455 10.1080/00273171.2012.658328 10.1080/00273171.2018.1446819 10.1037/a0029317 10.1080/00273171.2015.1036965 10.1037/0022-3514.90.3.512 10.1027/1015-5759/a000058 10.1007/s11222-012-9359-z 10.1007/978-0-387-84858-7 10.3102/1076998614546494 10.18637/jss.v052.i12 10.1080/00273171.2018.1461602 10.1111/bmsp.12196 10.1037/a0016973 10.1037/a0017915 10.1111/j.1467-9469.2011.00740.x 10.1027/1614-2241/a000083 10.1198/tast.2010.09058 10.1080/10618600.2013.773239 10.3102/10769986030002109 10.1007/978-1-4614-6849-3 10.4310/SII.2009.v2.n4.a1 10.1080/01621459.1989.10478790 10.1007/s10994-011-5258-3 10.1093/oso/9780198524847.001.0001 10.1198/106186006X133933 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7TK 7WY 7WZ 7X7 7XB 87Z 88B 88E 88G 8AO 8FI 8FJ 8FK 8FL ABUWG AFKRA ALSLI AZQEC BENPR BEZIV CCPQU CJNVE DWQXO FRNLG FYUFA F~G GHDGH GNUQQ K60 K6~ K9. L.- M0C M0P M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEDU PQEST PQQKQ PQUKI PSYQQ Q9U 7X8 5PM |
DOI | 10.1007/s11336-021-09787-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Neurosciences Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Education Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Education Collection ProQuest Central Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM global Education Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Education ProQuest Business Collection (Alumni Edition) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ABI/INFORM Complete Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection Social Science Premium Collection ABI/INFORM Global Education Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Education Journals ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Education Journals (Alumni Edition) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Education CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Law |
EISSN | 1860-0980 |
EndPage | 532 |
ExternalDocumentID | PMC9166855 34390456 10_1007_s11336_021_09787_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Westfälische Wilhelms-Universität Münster (1056) – fundername: ; |
GroupedDBID | --Z -4V -55 -5G -BR -EM -W8 -Y2 -~C -~X .86 .GO .VR 0-V 06D 09C 0R~ 0VY 123 186 199 1N0 1SB 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAHSB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABGDZ ABGFU ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUC ACDLN ACGFS ACHQT ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMHG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU CJNVE COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IRVIT ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM LPU M0C M0P M1P M2M M4Y MA- MVM N2Q N9A NB0 NDZJH NEJ NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P P9L PF- PQBIZ PQBZA PQEDU PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RCA RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBS SBU SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WHG WIP WK6 WK8 XOL YLTOR YYQ Z45 Z81 Z83 Z8U Z92 ZCG ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAYXX ABFSG ABXHF ACSTC ADHKG ADXHL AETEA AEZWR AFHIU AFOHR AGQPQ AGTDA AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION IPYYG PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK AAXMD K9. L.- PJZUB PKEHL PPXIY PQEST PQUKI PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c528t-6b7c5dceb6f33cf0b3f8cc030b3ba63da9d034b3924ccdd6eebc37a8d9ca8ea73 |
IEDL.DBID | U2A |
ISSN | 0033-3123 1860-0980 |
IngestDate | Thu Aug 21 18:21:10 EDT 2025 Tue Aug 05 10:17:00 EDT 2025 Sat Aug 23 13:39:27 EDT 2025 Thu Apr 03 07:04:32 EDT 2025 Tue Jul 01 02:08:24 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Fri Feb 21 02:45:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | lasso regression regression trees mixed-effect models within-person variability longitudinal data |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-6b7c5dceb6f33cf0b3f8cc030b3ba63da9d034b3924ccdd6eebc37a8d9ca8ea73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9724-2441 |
OpenAccessLink | https://link.springer.com/10.1007/s11336-021-09787-w |
PMID | 34390456 |
PQID | 2672842420 |
PQPubID | 47416 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9166855 proquest_miscellaneous_2561491764 proquest_journals_2672842420 pubmed_primary_34390456 crossref_citationtrail_10_1007_s11336_021_09787_w crossref_primary_10_1007_s11336_021_09787_w springer_journals_10_1007_s11336_021_09787_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Psychometrika |
PublicationTitleAbbrev | Psychometrika |
PublicationTitleAlternate | Psychometrika |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Gasimova, Robitzsch, Wilhelm, Hülür (CR12) 2014; 10 Geukes, Nestler, Hutteman, Kuefner, Back (CR15) 2017; 76 Jahng, Wood, Trull (CR32) 2008; 13 Snijders, Bosker (CR55) 2012 Vansteelandt, Verbeke (CR60) 2016; 51 Searle, Casella, McCulloch (CR51) 1992 Scharf, Nestler (CR45) 2019; 26 Groll, Tutz (CR19) 2014; 24 Hyndman, Athanasopoulos (CR31) 2018 Jiang (CR34) 2007 Harlow, Oswald (CR22) 2016; 21 Hedeker, Gibbons (CR25) 2006 McNeish (CR38) 2015; 50 Baird, Le, Lucas (CR3) 2006; 90 Li, Wang, Song, Wanf, Zhou, Zhu (CR37) 2018; 11 Glaesmer, Grande, Braehler, Roth (CR16) 2011; 27 Geukes, Nestler, Hutteman, Dufner, Kuefner, Egloff, Back (CR14) 2017; 76 Goodfellow, Bengio, Courville (CR17) 2016 Schelldorfer, Bühlmann, van de Geer (CR46) 2011; 38 Schelldorfer, Meier, Bühlmann (CR47) 2014; 23 CR5 Afshartous, de Leeuw (CR1) 2005; 30 Nestler (CR39) 2020; 73 Hedeker, Mermelstein, Demirtas (CR27) 2008; 64 CR43 Skrondal, Rabe-Hesketh (CR54) 2009; 172 Verbeke, Molenberghs (CR61) 2009 Hothorn, Hornik, Zeileis (CR30) 2006; 15 Diggle, Heagerty, Liang, Zeger (CR8) 2002 Pan, Huang (CR42) 2014; 24 Booth, Hobert (CR6) 1999; 61 Ram, Gerstorf (CR44) 2009; 24 Tuerlinckx, Rijmen, Verbeke, De Boeck (CR59) 2006; 59 Hajjem, Bellavance, Larocque (CR20) 2011; 81 Wang, Bergeman, Hamaker (CR62) 2012; 17 Fu, Simonoff (CR11) 2015; 88 Schönbrodt, Gerstenberg (CR49) 2012; 46 CR18 Hedeker, Nordgran (CR28) 2013; 52 Hamaker, Asparouhov, Brose, Schmiedek, Muthén (CR21) 2018; 53 Schuurman, Grasman, Hamaker (CR50) 2016; 51 CR58 CR13 Baird, Lucas, Donnellan (CR4) 2017; 69 Hastie, Tibshirani, Friedman (CR23) 2009 CR52 Hedeker, Mermelstein, Berbaum, Campbell (CR26) 2009; 104 Strobel, Malley, Tutz (CR57) 2009; 14 Stegmann, Jacobucci, Serang, Grimm (CR56) 2018; 53 Asparouhov, Hamaker, Muthén (CR2) 2018; 25 Schölkopf, Smola (CR48) 2002 Nestler (CR40) 2021; 28 Frees (CR10) 2004 CR29 Fan, Li (CR9) 2012; 40 Sela, Simonoff (CR53) 2012; 86 Kuhn, Johnson (CR35) 2013 James, Witten, Hastie, Tibshirani (CR33) 2013 Ormerod, Wand (CR41) 2010; 64 Watson, Clark, Tellegen (CR63) 1988; 54 Hedeker, Demirtas, Mermelstein (CR24) 2009; 2 Leckie, French, Charlton, Browne (CR36) 2014; 39 Chi, Reinsel (CR7) 1989; 84 Hyndman (S0033312300007857_CR31) 2018 Hedeker (S0033312300007857_CR25) 2006 S0033312300007857_CR46 S0033312300007857_CR8 S0033312300007857_CR45 S0033312300007857_CR7 Geukes (S0033312300007857_CR15) 2017; 76 S0033312300007857_CR6 S0033312300007857_CR44 S0033312300007857_CR5 S0033312300007857_CR43 S0033312300007857_CR4 S0033312300007857_CR49 S0033312300007857_CR3 S0033312300007857_CR2 S0033312300007857_CR47 S0033312300007857_CR1 Hedeker (S0033312300007857_CR24) 2009; 2 S0033312300007857_CR42 S0033312300007857_CR41 S0033312300007857_CR40 S0033312300007857_CR13 S0033312300007857_CR57 S0033312300007857_CR12 S0033312300007857_CR56 S0033312300007857_CR11 S0033312300007857_CR10 S0033312300007857_CR54 S0033312300007857_CR16 S0033312300007857_CR59 Geukes (S0033312300007857_CR14) 2017; 76 S0033312300007857_CR58 Goodfellow (S0033312300007857_CR17) 2016 Schölkopf (S0033312300007857_CR48) 2002 S0033312300007857_CR53 S0033312300007857_CR52 S0033312300007857_CR51 Jiang (S0033312300007857_CR34) 2007 S0033312300007857_CR50 S0033312300007857_CR19 S0033312300007857_CR18 S0033312300007857_CR23 S0033312300007857_CR22 S0033312300007857_CR21 Snijders (S0033312300007857_CR55) 2012 S0033312300007857_CR28 S0033312300007857_CR27 S0033312300007857_CR26 S0033312300007857_CR60 S0033312300007857_CR20 Verbeke (S0033312300007857_CR61) 2009 S0033312300007857_CR63 S0033312300007857_CR62 S0033312300007857_CR29 S0033312300007857_CR9 S0033312300007857_CR35 S0033312300007857_CR33 S0033312300007857_CR32 S0033312300007857_CR39 S0033312300007857_CR38 S0033312300007857_CR37 S0033312300007857_CR36 S0033312300007857_CR30 |
References_xml | – year: 2013 ident: CR33 publication-title: An introduction to statistical learning doi: 10.1007/978-1-4614-7138-7 – volume: 61 start-page: 265 year: 1999 end-page: 285 ident: CR6 article-title: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00176 – volume: 13 start-page: 354 year: 2008 end-page: 375 ident: CR32 article-title: Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling publication-title: Psychological Methods doi: 10.1037/a0014173 – year: 2004 ident: CR10 publication-title: Longitudinal and panel data doi: 10.1017/CBO9780511790928 – year: 1992 ident: CR51 publication-title: Variance components doi: 10.1002/9780470316856 – volume: 51 start-page: 185 year: 2016 end-page: 206 ident: CR50 article-title: A comparison of inverse-Wishart prior specifications for covariance matrices in multilevel autoregressive models publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2015.1065398 – year: 2002 ident: CR8 publication-title: Analysis of longitudinal data – year: 2009 ident: CR61 publication-title: Linear mixed models for longitudinal data analysis – ident: CR29 – volume: 64 start-page: 627 year: 2008 end-page: 634 ident: CR27 article-title: An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00924.x – ident: CR58 – volume: 76 start-page: 662 year: 2017 end-page: 676 ident: CR14 article-title: Puffed up but shaky selves: State self-esteem level and variability in narcissists publication-title: Journal of Personality and Social Psychology doi: 10.1037/pspp0000093 – volume: 46 start-page: 725 year: 2012 end-page: 742 ident: CR49 article-title: An IRT analysis of motive questionnaires: The unified motive scales publication-title: Journal of Research in Personality doi: 10.1016/j.jrp.2012.08.010 – volume: 69 start-page: 170 year: 2017 end-page: 179 ident: CR4 article-title: The role of response styles in the assessment of intraindividual personality variability publication-title: Journal of Research in Personality doi: 10.1016/j.jrp.2016.06.015 – year: 2018 ident: CR31 publication-title: Forecasting: Principles and practice – volume: 24 start-page: 725 year: 2014 end-page: 738 ident: CR42 article-title: Random effects selection in generalized linear mixed models via shrinkage penalty function Random effects selection in generalized linear mixed models via shrinkage penalty function publication-title: Statistical Computing doi: 10.1007/s11222-013-9398-0 – volume: 15 start-page: 651 year: 2006 end-page: 674 ident: CR30 article-title: Unbiased recursive partitioning: A conditional inference framework publication-title: Journal of Computational and Graphical Statistics doi: 10.1037/pspp0000015 – volume: 172 start-page: 659 year: 2009 end-page: 687 ident: CR54 article-title: Prediction in multilevel generalized linear models publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society) doi: 10.1111/j.1467-985X.2009.00587.x – volume: 21 start-page: 447 year: 2016 end-page: 457 ident: CR22 article-title: Big data in psychology: Introduction to the special issue publication-title: Psychological Methods doi: 10.1037/met0000120 – volume: 40 start-page: 2043 year: 2012 end-page: 2068 ident: CR9 article-title: Variable selection in linear mixed effects models publication-title: Annals of Statistics doi: 10.1214/12-AOS1028 – volume: 26 start-page: 576 year: 2019 end-page: 590 ident: CR45 article-title: Should regularization replace simple structure rotation in exploratory factor analysis? publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705511.2018.1558060 – year: 2012 ident: CR55 publication-title: Multilevel analysis – year: 2016 ident: CR17 publication-title: Deep learning – ident: CR5 – volume: 51 start-page: 446 year: 2016 end-page: 465 ident: CR60 article-title: A mixed model to disentangle variance and serial autocorrelation in affective instability using ecological momentary assessment data publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2016.1159177 – volume: 59 start-page: 225 year: 2006 end-page: 255 ident: CR59 article-title: Statistical inference in generalized linear mixed models: A review publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1348/000711005X79857 – volume: 76 start-page: 662 year: 2017 end-page: 676 ident: CR15 article-title: Trait personality and state variability: Predicting individual differences in within-and cross-context fluctuations in affect, self-evaluations, and behavior in everyday life publication-title: Journal of Research in Personality doi: 10.1016/j.jrp.2016.06.003 – volume: 25 start-page: 359 year: 2018 end-page: 388 ident: CR2 article-title: Dynamic structural equation models dynamic structural equation models publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705511.2017.1406803 – year: 2007 ident: CR34 publication-title: Linear and generalized linear mixed models and their applications – volume: 11 start-page: 721 year: 2018 end-page: 737 ident: CR37 article-title: Doubly regularized estimation and selection in linear mixed-effects models for high-dimensional longitudinal data publication-title: Statistical Interface doi: 10.4310/SII.2018.v11.n4.a15 – volume: 84 start-page: 452 year: 1989 end-page: 459 ident: CR7 article-title: Models for longitudinal data with random effects and AR(1) errors publication-title: Journal of the American Statistical Association doi: 10.2307/228992 – volume: 54 start-page: 1063 year: 1988 end-page: 1070 ident: CR63 article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.54.6.1063 – ident: CR18 – ident: CR43 – volume: 81 start-page: 451 year: 2011 end-page: 459 ident: CR20 article-title: Mixed effects regression trees for clustered data publication-title: Statistics and Probability Letters doi: 10.1016/j.spl.2010.12.003 – volume: 88 start-page: 53 year: 2015 end-page: 74 ident: CR11 article-title: Unbiased regression trees for longitudinal and clustered data publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2015.02.004 – volume: 104 start-page: 297 year: 2009 end-page: 307 ident: CR26 article-title: Modeling mood variation associated with smoking: An application of a heterogeneous mixed-effects model for analysis of ecological momentary assessment (EMA) data publication-title: Addiction doi: 10.1111/j.1360-0443.2008.02435.x – volume: 28 start-page: 28 year: 2021 end-page: 39 ident: CR40 article-title: Modeling intraindividual variability in growth with measurement burst designs publication-title: Structural Equation Modeling doi: 10.1080/10705511.2020.1757455 – volume: 86 start-page: 169 year: 2012 end-page: 207 ident: CR53 article-title: RE-EM trees: A data mining approach for longitudinal and clustered data publication-title: Machine learning doi: 10.1080/00273171.2012.658328 – volume: 53 start-page: 820 year: 2018 end-page: 841 ident: CR21 article-title: At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2018.1446819 – volume: 17 start-page: 567 year: 2012 end-page: 581 ident: CR62 article-title: Investigating inter-individual differences in short-term intra-individual variability publication-title: Psychological Methods doi: 10.1037/a0029317 – volume: 50 start-page: 471 year: 2015 end-page: 483 ident: CR38 article-title: Using LASSO for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2015.1036965 – volume: 90 start-page: 512 year: 2006 end-page: 527 ident: CR3 article-title: On the nature of intraindividual personality variability: Reliability, validity, and associations with well-being publication-title: Journal of Personality and Social Psychology doi: 10.1037/0022-3514.90.3.512 – volume: 27 start-page: 127 year: 2011 end-page: 132 ident: CR16 article-title: The German version of the satisfaction with life scale (SWLS) publication-title: European Journal of Psychological Assessment doi: 10.1027/1015-5759/a000058 – volume: 24 start-page: 137 year: 2014 end-page: 154 ident: CR19 article-title: Variable selection for generalized linear mixed models by L1-penalized estimation publication-title: Statistical Computing doi: 10.1007/s11222-012-9359-z – year: 2009 ident: CR23 publication-title: The elements of statistical learning doi: 10.1007/978-0-387-84858-7 – volume: 39 start-page: 307 year: 2014 end-page: 332 ident: CR36 article-title: Modeling heterogeneous variance-covariance components in two-level models publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/1076998614546494 – volume: 52 start-page: 1 year: 2013 end-page: 38 ident: CR28 article-title: MIXREGLS: A program for mixed-effects location scale analysis publication-title: Journal of Statistical Software doi: 10.18637/jss.v052.i12 – volume: 53 start-page: 559 year: 2018 end-page: 570 ident: CR56 article-title: Recursive partitioning with nonlinear models of change publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2018.1461602 – volume: 73 start-page: 452 year: 2020 end-page: 473 ident: CR39 article-title: Modeling interindividual differences in latent within-person variation: The confirmatory factor level variability model publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1111/bmsp.12196 – year: 2006 ident: CR25 publication-title: Longitudinal data analysis – volume: 14 start-page: 323 year: 2009 end-page: 348 ident: CR57 article-title: An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests publication-title: Psychological Methods doi: 10.1037/a0016973 – year: 2002 ident: CR48 publication-title: Learning with Kernels: Support vector machines, regularization, optimization, and beyond – ident: CR52 – volume: 24 start-page: 778 year: 2009 end-page: 791 ident: CR44 article-title: Timestructured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes publication-title: Psychology and Aging doi: 10.1037/a0017915 – ident: CR13 – volume: 38 start-page: 197 year: 2011 end-page: 214 ident: CR46 article-title: Estimation for high-dimensional linear mixed-effects models using L1-penalization publication-title: Scandinavian Journal of Statistics doi: 10.1111/j.1467-9469.2011.00740.x – volume: 10 start-page: 126 year: 2014 end-page: 137 ident: CR12 article-title: A hierarchical Bayesian model with correlated residuals for investigating stability and change in intensive longitudinal data settings publication-title: Methodology doi: 10.1027/1614-2241/a000083 – volume: 64 start-page: 140 year: 2010 end-page: 153 ident: CR41 article-title: Explaining variational approximations publication-title: The American Statistician doi: 10.1198/tast.2010.09058 – volume: 23 start-page: 460 year: 2014 end-page: 477 ident: CR47 article-title: GLMMLasso: An algorithm for high-dimensional generalized linear mixed-effects models using L1-penalization publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2013.773239 – volume: 30 start-page: 109 year: 2005 end-page: 139 ident: CR1 article-title: Prediction in multilevel models prediction in multilevel models publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/10769986030002109 – year: 2013 ident: CR35 publication-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – volume: 2 start-page: 391 year: 2009 end-page: 401 ident: CR24 article-title: A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data publication-title: Statistics and Its Interface doi: 10.4310/SII.2009.v2.n4.a1 – ident: S0033312300007857_CR22 doi: 10.1037/met0000120 – ident: S0033312300007857_CR51 doi: 10.1002/9780470316856 – ident: S0033312300007857_CR7 doi: 10.1080/01621459.1989.10478790 – ident: S0033312300007857_CR62 doi: 10.1037/a0029317 – volume: 76 start-page: 662 year: 2017 ident: S0033312300007857_CR15 article-title: Trait personality and state variability: Predicting individual differences in within-and cross-context fluctuations in affect, self-evaluations, and behavior in everyday life publication-title: Journal of Research in Personality – ident: S0033312300007857_CR53 doi: 10.1007/s10994-011-5258-3 – ident: S0033312300007857_CR16 doi: 10.1027/1015-5759/a000058 – ident: S0033312300007857_CR46 doi: 10.1111/j.1467-9469.2011.00740.x – volume-title: Longitudinal data analysis year: 2006 ident: S0033312300007857_CR25 – ident: S0033312300007857_CR32 doi: 10.1037/a0014173 – volume-title: Deep learning year: 2016 ident: S0033312300007857_CR17 – ident: S0033312300007857_CR35 doi: 10.1007/978-1-4614-6849-3 – ident: S0033312300007857_CR38 doi: 10.1080/00273171.2015.1036965 – ident: S0033312300007857_CR19 doi: 10.1007/s11222-012-9359-z – ident: S0033312300007857_CR28 doi: 10.18637/jss.v052.i12 – volume: 76 start-page: 662 year: 2017 ident: S0033312300007857_CR14 article-title: Puffed up but shaky selves: State self-esteem level and variability in narcissists publication-title: Journal of Personality and Social Psychology – ident: S0033312300007857_CR29 – volume-title: Linear mixed models for longitudinal data analysis year: 2009 ident: S0033312300007857_CR61 – ident: S0033312300007857_CR4 doi: 10.1016/j.jrp.2016.06.015 – ident: S0033312300007857_CR2 doi: 10.1080/10705511.2017.1406803 – ident: S0033312300007857_CR18 – ident: S0033312300007857_CR63 doi: 10.1037/0022-3514.54.6.1063 – ident: S0033312300007857_CR10 doi: 10.1017/CBO9780511790928 – ident: S0033312300007857_CR36 doi: 10.3102/1076998614546494 – volume-title: Learning with Kernels: Support vector machines, regularization, optimization, and beyond year: 2002 ident: S0033312300007857_CR48 – ident: S0033312300007857_CR41 doi: 10.1198/tast.2010.09058 – ident: S0033312300007857_CR11 doi: 10.1016/j.csda.2015.02.004 – ident: S0033312300007857_CR54 doi: 10.1111/j.1467-985X.2009.00587.x – ident: S0033312300007857_CR52 – ident: S0033312300007857_CR45 doi: 10.1080/10705511.2018.1558060 – ident: S0033312300007857_CR40 doi: 10.1080/10705511.2020.1757455 – ident: S0033312300007857_CR9 doi: 10.1214/12-AOS1028 – ident: S0033312300007857_CR26 doi: 10.1111/j.1360-0443.2008.02435.x – ident: S0033312300007857_CR59 doi: 10.1348/000711005X79857 – ident: S0033312300007857_CR50 doi: 10.1080/00273171.2015.1065398 – ident: S0033312300007857_CR5 – ident: S0033312300007857_CR57 doi: 10.1037/a0016973 – ident: S0033312300007857_CR1 doi: 10.3102/10769986030002109 – ident: S0033312300007857_CR39 doi: 10.1111/bmsp.12196 – ident: S0033312300007857_CR33 doi: 10.1007/978-1-4614-7138-7 – ident: S0033312300007857_CR44 doi: 10.1037/a0017915 – volume-title: Forecasting: Principles and practice year: 2018 ident: S0033312300007857_CR31 – ident: S0033312300007857_CR56 doi: 10.1080/00273171.2018.1461602 – ident: S0033312300007857_CR13 – ident: S0033312300007857_CR42 doi: 10.1007/s11222-013-9398-0 – ident: S0033312300007857_CR47 doi: 10.1080/10618600.2013.773239 – ident: S0033312300007857_CR8 doi: 10.1093/oso/9780198524847.001.0001 – ident: S0033312300007857_CR49 doi: 10.1016/j.jrp.2012.08.010 – ident: S0033312300007857_CR43 – ident: S0033312300007857_CR20 doi: 10.1016/j.spl.2010.12.003 – ident: S0033312300007857_CR60 doi: 10.1080/00273171.2016.1159177 – ident: S0033312300007857_CR37 doi: 10.4310/SII.2018.v11.n4.a15 – ident: S0033312300007857_CR30 doi: 10.1198/106186006X133933 – ident: S0033312300007857_CR21 doi: 10.1080/00273171.2018.1446819 – volume-title: Linear and generalized linear mixed models and their applications year: 2007 ident: S0033312300007857_CR34 – ident: S0033312300007857_CR27 doi: 10.1111/j.1541-0420.2007.00924.x – ident: S0033312300007857_CR23 doi: 10.1007/978-0-387-84858-7 – volume: 2 start-page: 391 year: 2009 ident: S0033312300007857_CR24 article-title: A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data publication-title: Statistics and Its Interface doi: 10.4310/SII.2009.v2.n4.a1 – ident: S0033312300007857_CR12 doi: 10.1027/1614-2241/a000083 – ident: S0033312300007857_CR58 – ident: S0033312300007857_CR6 doi: 10.1111/1467-9868.00176 – volume-title: Multilevel analysis year: 2012 ident: S0033312300007857_CR55 – ident: S0033312300007857_CR3 doi: 10.1037/0022-3514.90.3.512 |
SSID | ssj0009188 |
Score | 2.4032285 |
Snippet | Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 506 |
SubjectTerms | Assessment Behavioral Science and Psychology Forecasting with Intensive Longitudinal Data Humanities Humans Intelligence tests Law Likelihood Functions Maximum Likelihood Statistics Neural networks Parameter estimation Personality Personality traits Prediction models Psychology Psychometrics Resistance (Psychology) Statistical Theory and Methods Statistics for Social Sciences Support vector machines Teaching methods Testing and Evaluation Theory and Methods Variables |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BufSCyjtQkJG4sRa7cfzoCa0QVYUKh1WL9hb5FajUJqW7q5Yrv5wZO5vVUtFbJDtynLHH34xnvgF4J13jXbSSW6nRQHHRcYOwgRvTlJU1CLAz2-c3dXRafZnLee9wW_RhlWudmBR16Dz5yD-USqMmxQNl_PHyF6eqUXS72pfQuA8PiLqMQrr0XG9Idycma2JBOWSl6JNmcuocGmcUfovGNBpSml9vH0y30ObtoMl_bk7TgXS4Bw97JMmmWfSP4F5sH8PuoNB-P4E_U3aM2Lhjtg3Msln8kYNeW3ZyFSP7enYTA8_0xYxqop0z8sqyGXbvLlhuWDBEtQxRIjum8KJRepzFRcrhYt_R0qZlM0pDUNN0tew8VfzIMXZP4fTw88mnI97XXOBelmbJldNe4hydaoTwzdiJxniPmsAJZ5UI9iCMReUQVVXeh6BidF5oa8KBtyZaLZ7BTtu18QUwG6Upg_OIEMoqTKRtcAil5MRLHbUJBUzWP7z2PSE51cU4rzdUyiSkGoVUJyHV1wW8H965zHQcd_beX8ux7rfmot4spALeDs24qeimxLaxW2Ef4kdFQ1ZVBTzPYh-GEwjhCAcXoLcWxNCBCLu3W9qzn4m4G6G4MlIWMFovnc1n_X8WL--exSvYLSklI3mG9mFnebWKrxEoLd2btBv-AqMvETw priority: 102 providerName: ProQuest |
Title | A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation |
URI | https://link.springer.com/article/10.1007/s11336-021-09787-w https://www.ncbi.nlm.nih.gov/pubmed/34390456 https://www.proquest.com/docview/2672842420 https://www.proquest.com/docview/2561491764 https://pubmed.ncbi.nlm.nih.gov/PMC9166855 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6R9tILgvIytNEicSOWEq_30aOJUioIFYoaFE7WvgyVWrtqEgWu_PLOem1HoYDEyZZn7LU9-_hmd-ZbgDdMF0Y7xWLFBDoo2ulYImyIpSySVEkE2IHt85yfzdMPC7ZoksKWbbR7uyRZ99TbZDd0p3zALLq_6PqIeNODfeZ9d6zF8yTbUu2OZOh_qc8cS2iTKvPnZ-wOR_cw5v1Qyd_WS-th6PQRPGzwI8mCwR_DA1ceQm-qNodw0HVmP5_Ar4xMERdXRJWWKDJz30LAa0kubp0jny5_OBsH6mLi90O7In5GlsxQvbomQbAkiGgJIkQy9aFFg_p05pZ1_hb5gl62rzKDuggvytaryvjdPkJ83VOYn04uxmdxs99CbFgiVzHXwjD8Us0LSk0x1LSQxmAvoKlWnFp1Yoc01YioUmOs5c5pQ4WS9sQo6ZSgz2CvrEr3AohyTCZWG0QHSWpHTBVYBOdsZJhwQtoIRu1vz01DRu73xLjKtzTK3lQ5miqvTZVvInjb3XMTqDj-qX3UWjNvmuUyT7jA4RhRyTCC150YG5RfJVGlq9ao47lR0YnlaQTPg_G74ijCN4-BIxA71aJT8GTdu5Ly8ntN2o0wnEvGIhi0FWj7Wn__ipf_p_4KDhKfnlHPEh3B3up27Y4RNK10H3piIfqwn73_-nGCx3eT888zvDrm437dfu4AHH8U7Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7oG9IL4JDDASPNGI1o4d7wGhAps61lWo6tDegr8Ck0Yy1lZlr_xB_I2c4yRVmdjb3iLZiZPc-fw7--53AC-5zo12iseKp-igaKdjibAhljKniZIIsAPb51gMj5JPx_x4A_40uTA-rLKxiZWhtqXxe-RvqEjRkuKC0nt39jP2VaP86WpTQiOoxYG7WKLLNnu7_xHl-4rSvd3ph2FcVxWIDadyHgudGm6N0yJnzOQ9zXJpDOq6ZloJZtWO7bFEI25IjLFWOKcNS5W0O0ZJp1KGz70BmwlDV6YDm-93x58nK5rfvgy2n_msNcrqNJ2QrIfuoA_4RfcdXbc0Xq4vhZfw7eUwzX_OaqslcO823KqxKxkEZbsDG664C1utCb24B78HZIRovCSqsESRifsWwmwLMj13jhye_HI2DoTJxFdhOyV-H5hMsHv5g4SGGUEcTRCXkpEPaOpWlxM3q7LGyBf07b2idqshfNNgMS-NrzESovruw9G1yOMBdIqycI-AKMcltdogJqGJ7XOV4xBC8L7hqUuljaDf_PDM1BTovhLHabYib_ZCylBIWSWkbBnB6_aes0AAcmXv7UaOWW0MZtlKdSN40TbjNPZnM6pw5QL7eEZWdJ1FEsHDIPZ2OIag0SPvCNI1hWg7eIrw9Zbi5HtFFY7gX0jOI-g2qrN6rf9_xeOrv-I53BxOD0fZaH988AS2qE8IqfaltqEzP1-4pwjT5vpZPTcIfL3u6fgX78lS6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIqFeEG9cCiwSnIjV2Ot99IBQRIlaGioUtSg3sy9DpdYuTaLQKz-LX8es13YUKnrrLdJusrHnsd_sznwD8JrpwminWKyYwABFOx1LhA2xlEWaKYkAO7B9HvK94-zThE3W4E9bC-PTKlufWDtqWxl_Rr6dcoGeFDeU_nbRpEV82R2-P_8Z-w5S_qa1bacRVOTAXS4wfJu-299FWb9J0-HHow97cdNhIDYslbOYa2GYNU7zglJT9DUtpDGo95pqxalVO7ZPM40YIjPGWu6cNlQoaXeMkk4Jir97C24LyhJvY2IiloS_iQy7APX1ayltCnZC2R4Ghj71FwN5DOJEvFjdFK8g3asJm__c2tab4fAe3G1QLBkEtbsPa658ABudM718CL8HZIS4vCKqtESRsfseEm5LcnThHPl88svZOFAnE9-P7ZT4E2EyxunVGQkDU4KImiBCJSOf2tSrP47dtK4fI18xyvcq26uX8EOD-awyvttIyO97BMc3Io3HsF5WpXsKRDkmU6sNopM0swlTBS7BOUsME05IG0HSvvDcNGTovifHab6kcfZCylFIeS2kfBHB2-4754EK5NrZW60c88YtTPOlEkfwqhtGg_a3NKp01RzneG5WDKJ5FsGTIPZuOYrw0WPwCMSKQnQTPFn46kh58qMmDccwgEvGIui1qrP8W_9_is3rn-Il3EEjzEf7hwfPYCP1lSH1AdUWrM8u5u454rWZflEbBoFvN22JfwHOzlW5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lasso+and+a+Regression+Tree+Mixed-Effect+Model+with+Random+Effects+for+the+Level%2C+the+Residual+Variance%2C+and+the+Autocorrelation&rft.jtitle=Psychometrika&rft.au=Nestler%2C+Steffen&rft.au=Humberg%2C+Sarah&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=87&rft.issue=2&rft.spage=506&rft.epage=532&rft_id=info:doi/10.1007%2Fs11336-021-09787-w&rft_id=info%3Apmid%2F34390456&rft.externalDocID=PMC9166855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon |