A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation

Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regressi...

Full description

Saved in:
Bibliographic Details
Published inPsychometrika Vol. 87; no. 2; pp. 506 - 532
Main Authors Nestler, Steffen, Humberg, Sarah
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale ( E-MELS ), the extended mixed-effect location-scale Lasso model ( Lasso E-MELS ), and the extended mixed-effect location-scale tree model ( E-MELS trees ), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.
AbstractList Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale ( E-MELS ), the extended mixed-effect location-scale Lasso model ( Lasso E-MELS ), and the extended mixed-effect location-scale tree model ( E-MELS trees ), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.
Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that-in addition to a random effect for the mean level-also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals' daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that-in addition to a random effect for the mean level-also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals' daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.
Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs, and behavior, recent methodological work suggested combinations of the longitudinal mixed-effect model with Lasso regression or with regression trees. The present article adds to this literature by suggesting an extension of these models that—in addition to a random effect for the mean level—also includes a random effect for the within-subject variance and a random effect for the autocorrelation. After introducing the extended mixed-effect location scale (E-MELS), the extended mixed-effect location-scale Lasso model (Lasso E-MELS), and the extended mixed-effect location-scale tree model (E-MELS trees), we show how its parameters can be estimated using a marginal maximum likelihood approach. Using real and simulated example data, we illustrate how to use E-MELS, Lasso E-MELS, and E-MELS trees for building prediction models to forecast individuals’ daily nervousness. The article is accompanied by an R package (called mels) and functions that support users in the application of the suggested models.
Author Humberg, Sarah
Nestler, Steffen
Author_xml – sequence: 1
  givenname: Steffen
  orcidid: 0000-0001-9724-2441
  surname: Nestler
  fullname: Nestler, Steffen
  email: steffen.nestler@uni-muenster.de
  organization: University of Münster, Institut für Psychologie
– sequence: 2
  givenname: Sarah
  surname: Humberg
  fullname: Humberg, Sarah
  organization: University of Münster, Institut für Psychologie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34390456$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1P3DAUtCpQWSh_oIfKUi89EOqPxHEulVaIfkiLKq1or5Zjv-waZW1qJ2y58strNlBaDpz8rDczb549h2jPBw8IvaXklBJSf0yUci4KwmhBmlrWxfYVmlEpSL5KsodmhHBecMr4ATpM6YoQ0lApX6MDXvKGlJWYobs5XuiUAtbeYo2XsIqQkgseX0YAfOF-gy3Ouw7MgC-ChR5v3bDGywwPGzw1Eu5CxMMa8AJuoD_ZlUtIzo66xz91dNobONmNuG_NxyGYECP0esiT3qD9TvcJjh_OI_Tj8_nl2ddi8f3Lt7P5ojAVk0Mh2tpU1kArOs5NR1reSWMIz0WrBbe6sYSXLW9YaYy1AqA1vNbSNkZL0DU_Qp8m3eux3UBW8kPUvbqObqPjrQraqf873q3VKtyohgohqyoLfHgQiOHXCGlQG5cM9L32EMakWCVo2dBalBn6_hn0KozR5_UUEzWTJSsZyah3_zr6a-XxezJATgATQ0oROmXcsHu0bND1ihJ1nwQ1JUHlJKhdEtQ2U9kz6qP6iyQ-kVIG-xXEJ9svsP4AztfIpw
CitedBy_id crossref_primary_10_62347_MQQB5184
crossref_primary_10_1007_s11336_022_09850_0
crossref_primary_10_1002_sim_9943
crossref_primary_10_1177_21677026231165677
crossref_primary_10_15626_MP_2023_3796
crossref_primary_10_1016_j_ibusrev_2023_102203
crossref_primary_10_1186_s12909_024_06477_w
crossref_primary_10_1186_s13040_025_00437_w
crossref_primary_10_1080_00273171_2022_2146638
crossref_primary_10_1007_s10488_023_01303_9
crossref_primary_10_3390_su141610334
Cites_doi 10.1007/978-1-4614-7138-7
10.1111/1467-9868.00176
10.1037/a0014173
10.1017/CBO9780511790928
10.1002/9780470316856
10.1080/00273171.2015.1065398
10.1111/j.1541-0420.2007.00924.x
10.1037/pspp0000093
10.1016/j.jrp.2012.08.010
10.1016/j.jrp.2016.06.015
10.1007/s11222-013-9398-0
10.1037/pspp0000015
10.1111/j.1467-985X.2009.00587.x
10.1037/met0000120
10.1214/12-AOS1028
10.1080/10705511.2018.1558060
10.1080/00273171.2016.1159177
10.1348/000711005X79857
10.1016/j.jrp.2016.06.003
10.1080/10705511.2017.1406803
10.4310/SII.2018.v11.n4.a15
10.2307/228992
10.1037/0022-3514.54.6.1063
10.1016/j.spl.2010.12.003
10.1016/j.csda.2015.02.004
10.1111/j.1360-0443.2008.02435.x
10.1080/10705511.2020.1757455
10.1080/00273171.2012.658328
10.1080/00273171.2018.1446819
10.1037/a0029317
10.1080/00273171.2015.1036965
10.1037/0022-3514.90.3.512
10.1027/1015-5759/a000058
10.1007/s11222-012-9359-z
10.1007/978-0-387-84858-7
10.3102/1076998614546494
10.18637/jss.v052.i12
10.1080/00273171.2018.1461602
10.1111/bmsp.12196
10.1037/a0016973
10.1037/a0017915
10.1111/j.1467-9469.2011.00740.x
10.1027/1614-2241/a000083
10.1198/tast.2010.09058
10.1080/10618600.2013.773239
10.3102/10769986030002109
10.1007/978-1-4614-6849-3
10.4310/SII.2009.v2.n4.a1
10.1080/01621459.1989.10478790
10.1007/s10994-011-5258-3
10.1093/oso/9780198524847.001.0001
10.1198/106186006X133933
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7TK
7WY
7WZ
7X7
7XB
87Z
88B
88E
88G
8AO
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
BEZIV
CCPQU
CJNVE
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
K60
K6~
K9.
L.-
M0C
M0P
M0S
M1P
M2M
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEDU
PQEST
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s11336-021-09787-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Neurosciences Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Education Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Education Collection
ProQuest Central
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM global
Education Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Education
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ABI/INFORM Complete
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Education Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Education Journals (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest One Education
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Law
EISSN 1860-0980
EndPage 532
ExternalDocumentID PMC9166855
34390456
10_1007_s11336_021_09787_w
Genre Journal Article
GrantInformation_xml – fundername: Westfälische Wilhelms-Universität Münster (1056)
– fundername: ;
GroupedDBID --Z
-4V
-55
-5G
-BR
-EM
-W8
-Y2
-~C
-~X
.86
.GO
.VR
0-V
06D
09C
0R~
0VY
123
186
199
1N0
1SB
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAHSB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABGDZ
ABGFU
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUC
ACDLN
ACGFS
ACHQT
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMHG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
CJNVE
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IRVIT
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
LPU
M0C
M0P
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NEJ
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
P9L
PF-
PQBIZ
PQBZA
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RCA
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBS
SBU
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UAP
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WHG
WIP
WK6
WK8
XOL
YLTOR
YYQ
Z45
Z81
Z83
Z8U
Z92
ZCG
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAYXX
ABFSG
ABXHF
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFHIU
AFOHR
AGQPQ
AGTDA
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IPYYG
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
AAXMD
K9.
L.-
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c528t-6b7c5dceb6f33cf0b3f8cc030b3ba63da9d034b3924ccdd6eebc37a8d9ca8ea73
IEDL.DBID U2A
ISSN 0033-3123
1860-0980
IngestDate Thu Aug 21 18:21:10 EDT 2025
Tue Aug 05 10:17:00 EDT 2025
Sat Aug 23 13:39:27 EDT 2025
Thu Apr 03 07:04:32 EDT 2025
Tue Jul 01 02:08:24 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Fri Feb 21 02:45:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords lasso regression
regression trees
mixed-effect models
within-person variability
longitudinal data
Language English
License http://creativecommons.org/licenses/by/4.0
2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-6b7c5dceb6f33cf0b3f8cc030b3ba63da9d034b3924ccdd6eebc37a8d9ca8ea73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9724-2441
OpenAccessLink https://link.springer.com/10.1007/s11336-021-09787-w
PMID 34390456
PQID 2672842420
PQPubID 47416
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9166855
proquest_miscellaneous_2561491764
proquest_journals_2672842420
pubmed_primary_34390456
crossref_citationtrail_10_1007_s11336_021_09787_w
crossref_primary_10_1007_s11336_021_09787_w
springer_journals_10_1007_s11336_021_09787_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Psychometrika
PublicationTitleAbbrev Psychometrika
PublicationTitleAlternate Psychometrika
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gasimova, Robitzsch, Wilhelm, Hülür (CR12) 2014; 10
Geukes, Nestler, Hutteman, Kuefner, Back (CR15) 2017; 76
Jahng, Wood, Trull (CR32) 2008; 13
Snijders, Bosker (CR55) 2012
Vansteelandt, Verbeke (CR60) 2016; 51
Searle, Casella, McCulloch (CR51) 1992
Scharf, Nestler (CR45) 2019; 26
Groll, Tutz (CR19) 2014; 24
Hyndman, Athanasopoulos (CR31) 2018
Jiang (CR34) 2007
Harlow, Oswald (CR22) 2016; 21
Hedeker, Gibbons (CR25) 2006
McNeish (CR38) 2015; 50
Baird, Le, Lucas (CR3) 2006; 90
Li, Wang, Song, Wanf, Zhou, Zhu (CR37) 2018; 11
Glaesmer, Grande, Braehler, Roth (CR16) 2011; 27
Geukes, Nestler, Hutteman, Dufner, Kuefner, Egloff, Back (CR14) 2017; 76
Goodfellow, Bengio, Courville (CR17) 2016
Schelldorfer, Bühlmann, van de Geer (CR46) 2011; 38
Schelldorfer, Meier, Bühlmann (CR47) 2014; 23
CR5
Afshartous, de Leeuw (CR1) 2005; 30
Nestler (CR39) 2020; 73
Hedeker, Mermelstein, Demirtas (CR27) 2008; 64
CR43
Skrondal, Rabe-Hesketh (CR54) 2009; 172
Verbeke, Molenberghs (CR61) 2009
Hothorn, Hornik, Zeileis (CR30) 2006; 15
Diggle, Heagerty, Liang, Zeger (CR8) 2002
Pan, Huang (CR42) 2014; 24
Booth, Hobert (CR6) 1999; 61
Ram, Gerstorf (CR44) 2009; 24
Tuerlinckx, Rijmen, Verbeke, De Boeck (CR59) 2006; 59
Hajjem, Bellavance, Larocque (CR20) 2011; 81
Wang, Bergeman, Hamaker (CR62) 2012; 17
Fu, Simonoff (CR11) 2015; 88
Schönbrodt, Gerstenberg (CR49) 2012; 46
CR18
Hedeker, Nordgran (CR28) 2013; 52
Hamaker, Asparouhov, Brose, Schmiedek, Muthén (CR21) 2018; 53
Schuurman, Grasman, Hamaker (CR50) 2016; 51
CR58
CR13
Baird, Lucas, Donnellan (CR4) 2017; 69
Hastie, Tibshirani, Friedman (CR23) 2009
CR52
Hedeker, Mermelstein, Berbaum, Campbell (CR26) 2009; 104
Strobel, Malley, Tutz (CR57) 2009; 14
Stegmann, Jacobucci, Serang, Grimm (CR56) 2018; 53
Asparouhov, Hamaker, Muthén (CR2) 2018; 25
Schölkopf, Smola (CR48) 2002
Nestler (CR40) 2021; 28
Frees (CR10) 2004
CR29
Fan, Li (CR9) 2012; 40
Sela, Simonoff (CR53) 2012; 86
Kuhn, Johnson (CR35) 2013
James, Witten, Hastie, Tibshirani (CR33) 2013
Ormerod, Wand (CR41) 2010; 64
Watson, Clark, Tellegen (CR63) 1988; 54
Hedeker, Demirtas, Mermelstein (CR24) 2009; 2
Leckie, French, Charlton, Browne (CR36) 2014; 39
Chi, Reinsel (CR7) 1989; 84
Hyndman (S0033312300007857_CR31) 2018
Hedeker (S0033312300007857_CR25) 2006
S0033312300007857_CR46
S0033312300007857_CR8
S0033312300007857_CR45
S0033312300007857_CR7
Geukes (S0033312300007857_CR15) 2017; 76
S0033312300007857_CR6
S0033312300007857_CR44
S0033312300007857_CR5
S0033312300007857_CR43
S0033312300007857_CR4
S0033312300007857_CR49
S0033312300007857_CR3
S0033312300007857_CR2
S0033312300007857_CR47
S0033312300007857_CR1
Hedeker (S0033312300007857_CR24) 2009; 2
S0033312300007857_CR42
S0033312300007857_CR41
S0033312300007857_CR40
S0033312300007857_CR13
S0033312300007857_CR57
S0033312300007857_CR12
S0033312300007857_CR56
S0033312300007857_CR11
S0033312300007857_CR10
S0033312300007857_CR54
S0033312300007857_CR16
S0033312300007857_CR59
Geukes (S0033312300007857_CR14) 2017; 76
S0033312300007857_CR58
Goodfellow (S0033312300007857_CR17) 2016
Schölkopf (S0033312300007857_CR48) 2002
S0033312300007857_CR53
S0033312300007857_CR52
S0033312300007857_CR51
Jiang (S0033312300007857_CR34) 2007
S0033312300007857_CR50
S0033312300007857_CR19
S0033312300007857_CR18
S0033312300007857_CR23
S0033312300007857_CR22
S0033312300007857_CR21
Snijders (S0033312300007857_CR55) 2012
S0033312300007857_CR28
S0033312300007857_CR27
S0033312300007857_CR26
S0033312300007857_CR60
S0033312300007857_CR20
Verbeke (S0033312300007857_CR61) 2009
S0033312300007857_CR63
S0033312300007857_CR62
S0033312300007857_CR29
S0033312300007857_CR9
S0033312300007857_CR35
S0033312300007857_CR33
S0033312300007857_CR32
S0033312300007857_CR39
S0033312300007857_CR38
S0033312300007857_CR37
S0033312300007857_CR36
S0033312300007857_CR30
References_xml – year: 2013
  ident: CR33
  publication-title: An introduction to statistical learning
  doi: 10.1007/978-1-4614-7138-7
– volume: 61
  start-page: 265
  year: 1999
  end-page: 285
  ident: CR6
  article-title: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00176
– volume: 13
  start-page: 354
  year: 2008
  end-page: 375
  ident: CR32
  article-title: Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling
  publication-title: Psychological Methods
  doi: 10.1037/a0014173
– year: 2004
  ident: CR10
  publication-title: Longitudinal and panel data
  doi: 10.1017/CBO9780511790928
– year: 1992
  ident: CR51
  publication-title: Variance components
  doi: 10.1002/9780470316856
– volume: 51
  start-page: 185
  year: 2016
  end-page: 206
  ident: CR50
  article-title: A comparison of inverse-Wishart prior specifications for covariance matrices in multilevel autoregressive models
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2015.1065398
– year: 2002
  ident: CR8
  publication-title: Analysis of longitudinal data
– year: 2009
  ident: CR61
  publication-title: Linear mixed models for longitudinal data analysis
– ident: CR29
– volume: 64
  start-page: 627
  year: 2008
  end-page: 634
  ident: CR27
  article-title: An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00924.x
– ident: CR58
– volume: 76
  start-page: 662
  year: 2017
  end-page: 676
  ident: CR14
  article-title: Puffed up but shaky selves: State self-esteem level and variability in narcissists
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/pspp0000093
– volume: 46
  start-page: 725
  year: 2012
  end-page: 742
  ident: CR49
  article-title: An IRT analysis of motive questionnaires: The unified motive scales
  publication-title: Journal of Research in Personality
  doi: 10.1016/j.jrp.2012.08.010
– volume: 69
  start-page: 170
  year: 2017
  end-page: 179
  ident: CR4
  article-title: The role of response styles in the assessment of intraindividual personality variability
  publication-title: Journal of Research in Personality
  doi: 10.1016/j.jrp.2016.06.015
– year: 2018
  ident: CR31
  publication-title: Forecasting: Principles and practice
– volume: 24
  start-page: 725
  year: 2014
  end-page: 738
  ident: CR42
  article-title: Random effects selection in generalized linear mixed models via shrinkage penalty function Random effects selection in generalized linear mixed models via shrinkage penalty function
  publication-title: Statistical Computing
  doi: 10.1007/s11222-013-9398-0
– volume: 15
  start-page: 651
  year: 2006
  end-page: 674
  ident: CR30
  article-title: Unbiased recursive partitioning: A conditional inference framework
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1037/pspp0000015
– volume: 172
  start-page: 659
  year: 2009
  end-page: 687
  ident: CR54
  article-title: Prediction in multilevel generalized linear models
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
  doi: 10.1111/j.1467-985X.2009.00587.x
– volume: 21
  start-page: 447
  year: 2016
  end-page: 457
  ident: CR22
  article-title: Big data in psychology: Introduction to the special issue
  publication-title: Psychological Methods
  doi: 10.1037/met0000120
– volume: 40
  start-page: 2043
  year: 2012
  end-page: 2068
  ident: CR9
  article-title: Variable selection in linear mixed effects models
  publication-title: Annals of Statistics
  doi: 10.1214/12-AOS1028
– volume: 26
  start-page: 576
  year: 2019
  end-page: 590
  ident: CR45
  article-title: Should regularization replace simple structure rotation in exploratory factor analysis?
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705511.2018.1558060
– year: 2012
  ident: CR55
  publication-title: Multilevel analysis
– year: 2016
  ident: CR17
  publication-title: Deep learning
– ident: CR5
– volume: 51
  start-page: 446
  year: 2016
  end-page: 465
  ident: CR60
  article-title: A mixed model to disentangle variance and serial autocorrelation in affective instability using ecological momentary assessment data
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2016.1159177
– volume: 59
  start-page: 225
  year: 2006
  end-page: 255
  ident: CR59
  article-title: Statistical inference in generalized linear mixed models: A review
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1348/000711005X79857
– volume: 76
  start-page: 662
  year: 2017
  end-page: 676
  ident: CR15
  article-title: Trait personality and state variability: Predicting individual differences in within-and cross-context fluctuations in affect, self-evaluations, and behavior in everyday life
  publication-title: Journal of Research in Personality
  doi: 10.1016/j.jrp.2016.06.003
– volume: 25
  start-page: 359
  year: 2018
  end-page: 388
  ident: CR2
  article-title: Dynamic structural equation models dynamic structural equation models
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705511.2017.1406803
– year: 2007
  ident: CR34
  publication-title: Linear and generalized linear mixed models and their applications
– volume: 11
  start-page: 721
  year: 2018
  end-page: 737
  ident: CR37
  article-title: Doubly regularized estimation and selection in linear mixed-effects models for high-dimensional longitudinal data
  publication-title: Statistical Interface
  doi: 10.4310/SII.2018.v11.n4.a15
– volume: 84
  start-page: 452
  year: 1989
  end-page: 459
  ident: CR7
  article-title: Models for longitudinal data with random effects and AR(1) errors
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/228992
– volume: 54
  start-page: 1063
  year: 1988
  end-page: 1070
  ident: CR63
  article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.54.6.1063
– ident: CR18
– ident: CR43
– volume: 81
  start-page: 451
  year: 2011
  end-page: 459
  ident: CR20
  article-title: Mixed effects regression trees for clustered data
  publication-title: Statistics and Probability Letters
  doi: 10.1016/j.spl.2010.12.003
– volume: 88
  start-page: 53
  year: 2015
  end-page: 74
  ident: CR11
  article-title: Unbiased regression trees for longitudinal and clustered data
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2015.02.004
– volume: 104
  start-page: 297
  year: 2009
  end-page: 307
  ident: CR26
  article-title: Modeling mood variation associated with smoking: An application of a heterogeneous mixed-effects model for analysis of ecological momentary assessment (EMA) data
  publication-title: Addiction
  doi: 10.1111/j.1360-0443.2008.02435.x
– volume: 28
  start-page: 28
  year: 2021
  end-page: 39
  ident: CR40
  article-title: Modeling intraindividual variability in growth with measurement burst designs
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705511.2020.1757455
– volume: 86
  start-page: 169
  year: 2012
  end-page: 207
  ident: CR53
  article-title: RE-EM trees: A data mining approach for longitudinal and clustered data
  publication-title: Machine learning
  doi: 10.1080/00273171.2012.658328
– volume: 53
  start-page: 820
  year: 2018
  end-page: 841
  ident: CR21
  article-title: At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2018.1446819
– volume: 17
  start-page: 567
  year: 2012
  end-page: 581
  ident: CR62
  article-title: Investigating inter-individual differences in short-term intra-individual variability
  publication-title: Psychological Methods
  doi: 10.1037/a0029317
– volume: 50
  start-page: 471
  year: 2015
  end-page: 483
  ident: CR38
  article-title: Using LASSO for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2015.1036965
– volume: 90
  start-page: 512
  year: 2006
  end-page: 527
  ident: CR3
  article-title: On the nature of intraindividual personality variability: Reliability, validity, and associations with well-being
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.90.3.512
– volume: 27
  start-page: 127
  year: 2011
  end-page: 132
  ident: CR16
  article-title: The German version of the satisfaction with life scale (SWLS)
  publication-title: European Journal of Psychological Assessment
  doi: 10.1027/1015-5759/a000058
– volume: 24
  start-page: 137
  year: 2014
  end-page: 154
  ident: CR19
  article-title: Variable selection for generalized linear mixed models by L1-penalized estimation
  publication-title: Statistical Computing
  doi: 10.1007/s11222-012-9359-z
– year: 2009
  ident: CR23
  publication-title: The elements of statistical learning
  doi: 10.1007/978-0-387-84858-7
– volume: 39
  start-page: 307
  year: 2014
  end-page: 332
  ident: CR36
  article-title: Modeling heterogeneous variance-covariance components in two-level models
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/1076998614546494
– volume: 52
  start-page: 1
  year: 2013
  end-page: 38
  ident: CR28
  article-title: MIXREGLS: A program for mixed-effects location scale analysis
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v052.i12
– volume: 53
  start-page: 559
  year: 2018
  end-page: 570
  ident: CR56
  article-title: Recursive partitioning with nonlinear models of change
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2018.1461602
– volume: 73
  start-page: 452
  year: 2020
  end-page: 473
  ident: CR39
  article-title: Modeling interindividual differences in latent within-person variation: The confirmatory factor level variability model
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/bmsp.12196
– year: 2006
  ident: CR25
  publication-title: Longitudinal data analysis
– volume: 14
  start-page: 323
  year: 2009
  end-page: 348
  ident: CR57
  article-title: An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
  publication-title: Psychological Methods
  doi: 10.1037/a0016973
– year: 2002
  ident: CR48
  publication-title: Learning with Kernels: Support vector machines, regularization, optimization, and beyond
– ident: CR52
– volume: 24
  start-page: 778
  year: 2009
  end-page: 791
  ident: CR44
  article-title: Timestructured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes
  publication-title: Psychology and Aging
  doi: 10.1037/a0017915
– ident: CR13
– volume: 38
  start-page: 197
  year: 2011
  end-page: 214
  ident: CR46
  article-title: Estimation for high-dimensional linear mixed-effects models using L1-penalization
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/j.1467-9469.2011.00740.x
– volume: 10
  start-page: 126
  year: 2014
  end-page: 137
  ident: CR12
  article-title: A hierarchical Bayesian model with correlated residuals for investigating stability and change in intensive longitudinal data settings
  publication-title: Methodology
  doi: 10.1027/1614-2241/a000083
– volume: 64
  start-page: 140
  year: 2010
  end-page: 153
  ident: CR41
  article-title: Explaining variational approximations
  publication-title: The American Statistician
  doi: 10.1198/tast.2010.09058
– volume: 23
  start-page: 460
  year: 2014
  end-page: 477
  ident: CR47
  article-title: GLMMLasso: An algorithm for high-dimensional generalized linear mixed-effects models using L1-penalization
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2013.773239
– volume: 30
  start-page: 109
  year: 2005
  end-page: 139
  ident: CR1
  article-title: Prediction in multilevel models prediction in multilevel models
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986030002109
– year: 2013
  ident: CR35
  publication-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– volume: 2
  start-page: 391
  year: 2009
  end-page: 401
  ident: CR24
  article-title: A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2009.v2.n4.a1
– ident: S0033312300007857_CR22
  doi: 10.1037/met0000120
– ident: S0033312300007857_CR51
  doi: 10.1002/9780470316856
– ident: S0033312300007857_CR7
  doi: 10.1080/01621459.1989.10478790
– ident: S0033312300007857_CR62
  doi: 10.1037/a0029317
– volume: 76
  start-page: 662
  year: 2017
  ident: S0033312300007857_CR15
  article-title: Trait personality and state variability: Predicting individual differences in within-and cross-context fluctuations in affect, self-evaluations, and behavior in everyday life
  publication-title: Journal of Research in Personality
– ident: S0033312300007857_CR53
  doi: 10.1007/s10994-011-5258-3
– ident: S0033312300007857_CR16
  doi: 10.1027/1015-5759/a000058
– ident: S0033312300007857_CR46
  doi: 10.1111/j.1467-9469.2011.00740.x
– volume-title: Longitudinal data analysis
  year: 2006
  ident: S0033312300007857_CR25
– ident: S0033312300007857_CR32
  doi: 10.1037/a0014173
– volume-title: Deep learning
  year: 2016
  ident: S0033312300007857_CR17
– ident: S0033312300007857_CR35
  doi: 10.1007/978-1-4614-6849-3
– ident: S0033312300007857_CR38
  doi: 10.1080/00273171.2015.1036965
– ident: S0033312300007857_CR19
  doi: 10.1007/s11222-012-9359-z
– ident: S0033312300007857_CR28
  doi: 10.18637/jss.v052.i12
– volume: 76
  start-page: 662
  year: 2017
  ident: S0033312300007857_CR14
  article-title: Puffed up but shaky selves: State self-esteem level and variability in narcissists
  publication-title: Journal of Personality and Social Psychology
– ident: S0033312300007857_CR29
– volume-title: Linear mixed models for longitudinal data analysis
  year: 2009
  ident: S0033312300007857_CR61
– ident: S0033312300007857_CR4
  doi: 10.1016/j.jrp.2016.06.015
– ident: S0033312300007857_CR2
  doi: 10.1080/10705511.2017.1406803
– ident: S0033312300007857_CR18
– ident: S0033312300007857_CR63
  doi: 10.1037/0022-3514.54.6.1063
– ident: S0033312300007857_CR10
  doi: 10.1017/CBO9780511790928
– ident: S0033312300007857_CR36
  doi: 10.3102/1076998614546494
– volume-title: Learning with Kernels: Support vector machines, regularization, optimization, and beyond
  year: 2002
  ident: S0033312300007857_CR48
– ident: S0033312300007857_CR41
  doi: 10.1198/tast.2010.09058
– ident: S0033312300007857_CR11
  doi: 10.1016/j.csda.2015.02.004
– ident: S0033312300007857_CR54
  doi: 10.1111/j.1467-985X.2009.00587.x
– ident: S0033312300007857_CR52
– ident: S0033312300007857_CR45
  doi: 10.1080/10705511.2018.1558060
– ident: S0033312300007857_CR40
  doi: 10.1080/10705511.2020.1757455
– ident: S0033312300007857_CR9
  doi: 10.1214/12-AOS1028
– ident: S0033312300007857_CR26
  doi: 10.1111/j.1360-0443.2008.02435.x
– ident: S0033312300007857_CR59
  doi: 10.1348/000711005X79857
– ident: S0033312300007857_CR50
  doi: 10.1080/00273171.2015.1065398
– ident: S0033312300007857_CR5
– ident: S0033312300007857_CR57
  doi: 10.1037/a0016973
– ident: S0033312300007857_CR1
  doi: 10.3102/10769986030002109
– ident: S0033312300007857_CR39
  doi: 10.1111/bmsp.12196
– ident: S0033312300007857_CR33
  doi: 10.1007/978-1-4614-7138-7
– ident: S0033312300007857_CR44
  doi: 10.1037/a0017915
– volume-title: Forecasting: Principles and practice
  year: 2018
  ident: S0033312300007857_CR31
– ident: S0033312300007857_CR56
  doi: 10.1080/00273171.2018.1461602
– ident: S0033312300007857_CR13
– ident: S0033312300007857_CR42
  doi: 10.1007/s11222-013-9398-0
– ident: S0033312300007857_CR47
  doi: 10.1080/10618600.2013.773239
– ident: S0033312300007857_CR8
  doi: 10.1093/oso/9780198524847.001.0001
– ident: S0033312300007857_CR49
  doi: 10.1016/j.jrp.2012.08.010
– ident: S0033312300007857_CR43
– ident: S0033312300007857_CR20
  doi: 10.1016/j.spl.2010.12.003
– ident: S0033312300007857_CR60
  doi: 10.1080/00273171.2016.1159177
– ident: S0033312300007857_CR37
  doi: 10.4310/SII.2018.v11.n4.a15
– ident: S0033312300007857_CR30
  doi: 10.1198/106186006X133933
– ident: S0033312300007857_CR21
  doi: 10.1080/00273171.2018.1446819
– volume-title: Linear and generalized linear mixed models and their applications
  year: 2007
  ident: S0033312300007857_CR34
– ident: S0033312300007857_CR27
  doi: 10.1111/j.1541-0420.2007.00924.x
– ident: S0033312300007857_CR23
  doi: 10.1007/978-0-387-84858-7
– volume: 2
  start-page: 391
  year: 2009
  ident: S0033312300007857_CR24
  article-title: A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2009.v2.n4.a1
– ident: S0033312300007857_CR12
  doi: 10.1027/1614-2241/a000083
– ident: S0033312300007857_CR58
– ident: S0033312300007857_CR6
  doi: 10.1111/1467-9868.00176
– volume-title: Multilevel analysis
  year: 2012
  ident: S0033312300007857_CR55
– ident: S0033312300007857_CR3
  doi: 10.1037/0022-3514.90.3.512
SSID ssj0009188
Score 2.4032285
Snippet Research in psychology is experiencing a rapid increase in the availability of intensive longitudinal data. To use such data for predicting feelings, beliefs,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 506
SubjectTerms Assessment
Behavioral Science and Psychology
Forecasting with Intensive Longitudinal Data
Humanities
Humans
Intelligence tests
Law
Likelihood Functions
Maximum Likelihood Statistics
Neural networks
Parameter estimation
Personality
Personality traits
Prediction models
Psychology
Psychometrics
Resistance (Psychology)
Statistical Theory and Methods
Statistics for Social Sciences
Support vector machines
Teaching methods
Testing and Evaluation
Theory and Methods
Variables
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BufSCyjtQkJG4sRa7cfzoCa0QVYUKh1WL9hb5FajUJqW7q5Yrv5wZO5vVUtFbJDtynLHH34xnvgF4J13jXbSSW6nRQHHRcYOwgRvTlJU1CLAz2-c3dXRafZnLee9wW_RhlWudmBR16Dz5yD-USqMmxQNl_PHyF6eqUXS72pfQuA8PiLqMQrr0XG9Idycma2JBOWSl6JNmcuocGmcUfovGNBpSml9vH0y30ObtoMl_bk7TgXS4Bw97JMmmWfSP4F5sH8PuoNB-P4E_U3aM2Lhjtg3Msln8kYNeW3ZyFSP7enYTA8_0xYxqop0z8sqyGXbvLlhuWDBEtQxRIjum8KJRepzFRcrhYt_R0qZlM0pDUNN0tew8VfzIMXZP4fTw88mnI97XXOBelmbJldNe4hydaoTwzdiJxniPmsAJZ5UI9iCMReUQVVXeh6BidF5oa8KBtyZaLZ7BTtu18QUwG6Upg_OIEMoqTKRtcAil5MRLHbUJBUzWP7z2PSE51cU4rzdUyiSkGoVUJyHV1wW8H965zHQcd_beX8ux7rfmot4spALeDs24qeimxLaxW2Ef4kdFQ1ZVBTzPYh-GEwjhCAcXoLcWxNCBCLu3W9qzn4m4G6G4MlIWMFovnc1n_X8WL--exSvYLSklI3mG9mFnebWKrxEoLd2btBv-AqMvETw
  priority: 102
  providerName: ProQuest
Title A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation
URI https://link.springer.com/article/10.1007/s11336-021-09787-w
https://www.ncbi.nlm.nih.gov/pubmed/34390456
https://www.proquest.com/docview/2672842420
https://www.proquest.com/docview/2561491764
https://pubmed.ncbi.nlm.nih.gov/PMC9166855
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6R9tILgvIytNEicSOWEq_30aOJUioIFYoaFE7WvgyVWrtqEgWu_PLOem1HoYDEyZZn7LU9-_hmd-ZbgDdMF0Y7xWLFBDoo2ulYImyIpSySVEkE2IHt85yfzdMPC7ZoksKWbbR7uyRZ99TbZDd0p3zALLq_6PqIeNODfeZ9d6zF8yTbUu2OZOh_qc8cS2iTKvPnZ-wOR_cw5v1Qyd_WS-th6PQRPGzwI8mCwR_DA1ceQm-qNodw0HVmP5_Ar4xMERdXRJWWKDJz30LAa0kubp0jny5_OBsH6mLi90O7In5GlsxQvbomQbAkiGgJIkQy9aFFg_p05pZ1_hb5gl62rzKDuggvytaryvjdPkJ83VOYn04uxmdxs99CbFgiVzHXwjD8Us0LSk0x1LSQxmAvoKlWnFp1Yoc01YioUmOs5c5pQ4WS9sQo6ZSgz2CvrEr3AohyTCZWG0QHSWpHTBVYBOdsZJhwQtoIRu1vz01DRu73xLjKtzTK3lQ5miqvTZVvInjb3XMTqDj-qX3UWjNvmuUyT7jA4RhRyTCC150YG5RfJVGlq9ao47lR0YnlaQTPg_G74ijCN4-BIxA71aJT8GTdu5Ly8ntN2o0wnEvGIhi0FWj7Wn__ipf_p_4KDhKfnlHPEh3B3up27Y4RNK10H3piIfqwn73_-nGCx3eT888zvDrm437dfu4AHH8U7Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7oG9IL4JDDASPNGI1o4d7wGhAps61lWo6tDegr8Ck0Yy1lZlr_xB_I2c4yRVmdjb3iLZiZPc-fw7--53AC-5zo12iseKp-igaKdjibAhljKniZIIsAPb51gMj5JPx_x4A_40uTA-rLKxiZWhtqXxe-RvqEjRkuKC0nt39jP2VaP86WpTQiOoxYG7WKLLNnu7_xHl-4rSvd3ph2FcVxWIDadyHgudGm6N0yJnzOQ9zXJpDOq6ZloJZtWO7bFEI25IjLFWOKcNS5W0O0ZJp1KGz70BmwlDV6YDm-93x58nK5rfvgy2n_msNcrqNJ2QrIfuoA_4RfcdXbc0Xq4vhZfw7eUwzX_OaqslcO823KqxKxkEZbsDG664C1utCb24B78HZIRovCSqsESRifsWwmwLMj13jhye_HI2DoTJxFdhOyV-H5hMsHv5g4SGGUEcTRCXkpEPaOpWlxM3q7LGyBf07b2idqshfNNgMS-NrzESovruw9G1yOMBdIqycI-AKMcltdogJqGJ7XOV4xBC8L7hqUuljaDf_PDM1BTovhLHabYib_ZCylBIWSWkbBnB6_aes0AAcmXv7UaOWW0MZtlKdSN40TbjNPZnM6pw5QL7eEZWdJ1FEsHDIPZ2OIag0SPvCNI1hWg7eIrw9Zbi5HtFFY7gX0jOI-g2qrN6rf9_xeOrv-I53BxOD0fZaH988AS2qE8IqfaltqEzP1-4pwjT5vpZPTcIfL3u6fgX78lS6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIqFeEG9cCiwSnIjV2Ot99IBQRIlaGioUtSg3sy9DpdYuTaLQKz-LX8es13YUKnrrLdJusrHnsd_sznwD8JrpwminWKyYwABFOx1LhA2xlEWaKYkAO7B9HvK94-zThE3W4E9bC-PTKlufWDtqWxl_Rr6dcoGeFDeU_nbRpEV82R2-P_8Z-w5S_qa1bacRVOTAXS4wfJu-299FWb9J0-HHow97cdNhIDYslbOYa2GYNU7zglJT9DUtpDGo95pqxalVO7ZPM40YIjPGWu6cNlQoaXeMkk4Jir97C24LyhJvY2IiloS_iQy7APX1ayltCnZC2R4Ghj71FwN5DOJEvFjdFK8g3asJm__c2tab4fAe3G1QLBkEtbsPa658ABudM718CL8HZIS4vCKqtESRsfseEm5LcnThHPl88svZOFAnE9-P7ZT4E2EyxunVGQkDU4KImiBCJSOf2tSrP47dtK4fI18xyvcq26uX8EOD-awyvttIyO97BMc3Io3HsF5WpXsKRDkmU6sNopM0swlTBS7BOUsME05IG0HSvvDcNGTovifHab6kcfZCylFIeS2kfBHB2-4754EK5NrZW60c88YtTPOlEkfwqhtGg_a3NKp01RzneG5WDKJ5FsGTIPZuOYrw0WPwCMSKQnQTPFn46kh58qMmDccwgEvGIui1qrP8W_9_is3rn-Il3EEjzEf7hwfPYCP1lSH1AdUWrM8u5u454rWZflEbBoFvN22JfwHOzlW5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lasso+and+a+Regression+Tree+Mixed-Effect+Model+with+Random+Effects+for+the+Level%2C+the+Residual+Variance%2C+and+the+Autocorrelation&rft.jtitle=Psychometrika&rft.au=Nestler%2C+Steffen&rft.au=Humberg%2C+Sarah&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=0033-3123&rft.eissn=1860-0980&rft.volume=87&rft.issue=2&rft.spage=506&rft.epage=532&rft_id=info:doi/10.1007%2Fs11336-021-09787-w&rft_id=info%3Apmid%2F34390456&rft.externalDocID=PMC9166855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-3123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-3123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-3123&client=summon