Tunneling Nanotubes and Gap Junctions–Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions

Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in molecular neuroscience Vol. 10; p. 333
Main Authors Ariazi, Jennifer, Benowitz, Andrew, De Biasi, Vern, Den Boer, Monique L., Cherqui, Stephanie, Cui, Haifeng, Douillet, Nathalie, Eugenin, Eliseo A., Favre, David, Goodman, Spencer, Gousset, Karine, Hanein, Dorit, Israel, David I., Kimura, Shunsuke, Kirkpatrick, Robert B., Kuhn, Nastaran, Jeong, Claire, Lou, Emil, Mailliard, Robbie, Maio, Stephen, Okafo, George, Osswald, Matthias, Pasquier, Jennifer, Polak, Roel, Pradel, Gabriele, de Rooij, Bob, Schaeffer, Peter, Skeberdis, Vytenis A., Smith, Ian F., Tanveer, Ahmad, Volkmann, Niels, Wu, Zhenhua, Zurzolo, Chiara
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 17.10.2017
Frontiers Media
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
AbstractList Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communications and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediates a long range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
Author Goodman, Spencer
Den Boer, Monique L.
Eugenin, Eliseo A.
Kuhn, Nastaran
Israel, David I.
Benowitz, Andrew
Favre, David
Okafo, George
Douillet, Nathalie
Ariazi, Jennifer
Hanein, Dorit
de Rooij, Bob
De Biasi, Vern
Pradel, Gabriele
Zurzolo, Chiara
Pasquier, Jennifer
Kimura, Shunsuke
Jeong, Claire
Tanveer, Ahmad
Schaeffer, Peter
Skeberdis, Vytenis A.
Lou, Emil
Polak, Roel
Mailliard, Robbie
Maio, Stephen
Wu, Zhenhua
Cui, Haifeng
Cherqui, Stephanie
Gousset, Karine
Volkmann, Niels
Kirkpatrick, Robert B.
Osswald, Matthias
Smith, Ian F.
AuthorAffiliation 13 GlaxoSmithKline , King of Prussia, PA , United States
16 Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg , Heidelberg , Germany
7 GlaxoSmithKline, Research Triangle Park , NC , United States
21 Department of Neurobiology and Behavior, University of California, Irvine , Irvine, CA , United States
22 Section of Intracellular Trafficking and Neurovirology, National Institute of Health , Bethesda, MD , United States
4 GlaxoSmithKline , Stevenage , United Kingdom
5 Public Health Research Institute (PHRI) , Newark, NJ , United States
9 Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery , La Jolla, CA , United States
3 Division of Genetics, Department of Pediatrics, University of California, San Diego , La Jolla, CA , United States
20 Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas , Lithuania
6 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers
AuthorAffiliation_xml – name: 4 GlaxoSmithKline , Stevenage , United Kingdom
– name: 15 Department of Infectious Diseases and Microbiology, University of Pittsburgh , Pittsburgh, PA , United States
– name: 2 Department of Pediatric Oncology, Erasmus MC – Sophia Children's Hospital , Rotterdam , Netherlands
– name: 12 Division of Cancer Biology, Physical Sciences-Oncology Network, Cancer Tissue Engineering Collaborative Research Program, Program Director, Structural Biology and Molecular Applications Branch, National Cancer Institute , Bethesda, MD , United States
– name: 9 Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery , La Jolla, CA , United States
– name: 11 Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University , Sapporo , Japan
– name: 3 Division of Genetics, Department of Pediatrics, University of California, San Diego , La Jolla, CA , United States
– name: 17 Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
– name: 19 Division of Cellular and Applied Infection Biology, RWTH Aachen University , Aachen , Germany
– name: 5 Public Health Research Institute (PHRI) , Newark, NJ , United States
– name: 21 Department of Neurobiology and Behavior, University of California, Irvine , Irvine, CA , United States
– name: 23 Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute , Paris , France
– name: 13 GlaxoSmithKline , King of Prussia, PA , United States
– name: 1 GlaxoSmithKline , Collegeville, PA , United States
– name: 7 GlaxoSmithKline, Research Triangle Park , NC , United States
– name: 10 GlaxoSmithKline , Waltham, MA , United States
– name: 20 Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas , Lithuania
– name: 14 Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, MN , United States
– name: 6 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey , Newark, NJ , United States
– name: 16 Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg , Heidelberg , Germany
– name: 22 Section of Intracellular Trafficking and Neurovirology, National Institute of Health , Bethesda, MD , United States
– name: 8 Department of Biology, College of Science and Math, California State University , Fresno, CA , United States
– name: 18 Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar Foundation , Ar-Rayyan , Qatar
Author_xml – sequence: 1
  givenname: Jennifer
  surname: Ariazi
  fullname: Ariazi, Jennifer
– sequence: 2
  givenname: Andrew
  surname: Benowitz
  fullname: Benowitz, Andrew
– sequence: 3
  givenname: Vern
  surname: De Biasi
  fullname: De Biasi, Vern
– sequence: 4
  givenname: Monique L.
  surname: Den Boer
  fullname: Den Boer, Monique L.
– sequence: 5
  givenname: Stephanie
  surname: Cherqui
  fullname: Cherqui, Stephanie
– sequence: 6
  givenname: Haifeng
  surname: Cui
  fullname: Cui, Haifeng
– sequence: 7
  givenname: Nathalie
  surname: Douillet
  fullname: Douillet, Nathalie
– sequence: 8
  givenname: Eliseo A.
  surname: Eugenin
  fullname: Eugenin, Eliseo A.
– sequence: 9
  givenname: David
  surname: Favre
  fullname: Favre, David
– sequence: 10
  givenname: Spencer
  surname: Goodman
  fullname: Goodman, Spencer
– sequence: 11
  givenname: Karine
  surname: Gousset
  fullname: Gousset, Karine
– sequence: 12
  givenname: Dorit
  surname: Hanein
  fullname: Hanein, Dorit
– sequence: 13
  givenname: David I.
  surname: Israel
  fullname: Israel, David I.
– sequence: 14
  givenname: Shunsuke
  surname: Kimura
  fullname: Kimura, Shunsuke
– sequence: 15
  givenname: Robert B.
  surname: Kirkpatrick
  fullname: Kirkpatrick, Robert B.
– sequence: 16
  givenname: Nastaran
  surname: Kuhn
  fullname: Kuhn, Nastaran
– sequence: 17
  givenname: Claire
  surname: Jeong
  fullname: Jeong, Claire
– sequence: 18
  givenname: Emil
  surname: Lou
  fullname: Lou, Emil
– sequence: 19
  givenname: Robbie
  surname: Mailliard
  fullname: Mailliard, Robbie
– sequence: 20
  givenname: Stephen
  surname: Maio
  fullname: Maio, Stephen
– sequence: 21
  givenname: George
  surname: Okafo
  fullname: Okafo, George
– sequence: 22
  givenname: Matthias
  surname: Osswald
  fullname: Osswald, Matthias
– sequence: 23
  givenname: Jennifer
  surname: Pasquier
  fullname: Pasquier, Jennifer
– sequence: 24
  givenname: Roel
  surname: Polak
  fullname: Polak, Roel
– sequence: 25
  givenname: Gabriele
  surname: Pradel
  fullname: Pradel, Gabriele
– sequence: 26
  givenname: Bob
  surname: de Rooij
  fullname: de Rooij, Bob
– sequence: 27
  givenname: Peter
  surname: Schaeffer
  fullname: Schaeffer, Peter
– sequence: 28
  givenname: Vytenis A.
  surname: Skeberdis
  fullname: Skeberdis, Vytenis A.
– sequence: 29
  givenname: Ian F.
  surname: Smith
  fullname: Smith, Ian F.
– sequence: 30
  givenname: Ahmad
  surname: Tanveer
  fullname: Tanveer, Ahmad
– sequence: 31
  givenname: Niels
  surname: Volkmann
  fullname: Volkmann, Niels
– sequence: 32
  givenname: Zhenhua
  surname: Wu
  fullname: Wu, Zhenhua
– sequence: 33
  givenname: Chiara
  surname: Zurzolo
  fullname: Zurzolo, Chiara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29089870$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-03935195$$DView record in HAL
BookMark eNp1ks1u1DAUhSNURH9gzwpFYsOiGfwTO_EGqZpCZ9AIpGpYW05yPePKsQc7GYkdb8CCN-RJSDKlakdiZcv-zrm-1-c8OXHeQZK8xmhGaSnea9d6OyMIFzOEKKXPkjPMOckYEuLk0f40OY_xDiFOOKMvklMiUCnKAp0lv9a9c2CN26RflPNdX0FMlWvSG7VLP_eu7ox38c_P3-stmJDeegupcenKu012q9wG0qXrINRgbW9VSOe-bXtnajXq0qYPo_M17MH6XQuuu0wXoGy3vZyKXJsIKsKgco2ZKr1MnmtlI7y6Xy-Sb58-rueLbPX1Zjm_WmU1I2WX8YJpylGVC8ZrpAkmDWEa50ghXEItipzpRiPWMMV0paHhTUVYiXillVIipxfJ8uDbeHUnd8G0KvyQXhk5HfiwkSp0prYgKwIEMZ1TAjrHQguoGlzzqhoGXnLMBq8PB69dX7XQ1EObQdknpk9vnNnKjd9LxhlGGA8G2cFgeyRbXK3kTsUO-iARFZRhwfYj_-6-YPDfe4idbE0cv0A58H2UA1WynBAmBvTtEXrn--CG0UpCkaCUiKIYqDePO3h4w7-cDAA6AHXwMQbQDwhGcoyinKIoxyjKKYqDhB9JatNNsRhmYOz_hX8BIKnnCw
CitedBy_id crossref_primary_10_1186_s13014_019_1416_8
crossref_primary_10_3389_fcell_2022_934684
crossref_primary_10_1007_s12192_018_00958_w
crossref_primary_10_1038_s41539_019_0048_y
crossref_primary_10_1126_science_aar5555
crossref_primary_10_1016_j_ceb_2021_03_003
crossref_primary_10_3390_ijms252212378
crossref_primary_10_1016_j_plasmid_2024_102729
crossref_primary_10_1042_CS20180548
crossref_primary_10_3389_fonc_2020_00090
crossref_primary_10_3389_fnmol_2020_569818
crossref_primary_10_3390_ijms21051872
crossref_primary_10_3389_fcimb_2020_00261
crossref_primary_10_1007_s12274_019_2554_x
crossref_primary_10_3389_fonc_2020_01691
crossref_primary_10_1371_journal_pcbi_1009552
crossref_primary_10_3390_cancers14133203
crossref_primary_10_3390_cells13060495
crossref_primary_10_1007_s12035_022_03042_8
crossref_primary_10_1016_j_bcp_2021_114487
crossref_primary_10_3389_fimmu_2018_02270
crossref_primary_10_1016_j_bbcan_2023_189028
crossref_primary_10_1038_s41593_019_0540_y
crossref_primary_10_1074_jbc_RA118_005659
crossref_primary_10_1109_JMEMS_2020_3015836
crossref_primary_10_3389_fcell_2021_631946
crossref_primary_10_1080_09553002_2022_2078006
crossref_primary_10_1146_annurev_cellbio_100617_062932
crossref_primary_10_1038_s41598_018_27649_x
crossref_primary_10_3390_futurepharmacol5010011
crossref_primary_10_3390_cancers14194958
crossref_primary_10_3390_ijms23147949
crossref_primary_10_1002_cnr2_1181
crossref_primary_10_1002_cnr2_1185
crossref_primary_10_3389_fpsyg_2019_02688
crossref_primary_10_1002_cnr2_1220
crossref_primary_10_1007_s42977_020_00062_0
crossref_primary_10_1038_s41568_022_00475_0
crossref_primary_10_1083_jcb_201807068
crossref_primary_10_1111_jpi_12800
crossref_primary_10_3390_cancers14051207
crossref_primary_10_1128_jvi_00863_24
crossref_primary_10_3390_pharmaceutics14010056
crossref_primary_10_1038_s41419_022_05089_w
crossref_primary_10_3389_fnagi_2024_1517965
crossref_primary_10_1007_s10555_024_10211_9
crossref_primary_10_3390_cancers12071787
crossref_primary_10_1096_fj_202100452RR
crossref_primary_10_1038_s41598_021_88667_w
crossref_primary_10_3390_ijms24076743
crossref_primary_10_3390_medicina54040053
crossref_primary_10_2144_btn_2020_0114
crossref_primary_10_3390_biomedicines10102581
crossref_primary_10_1038_d41586_020_02315_3
crossref_primary_10_1186_s43042_022_00335_4
crossref_primary_10_1016_j_plantsci_2020_110800
crossref_primary_10_3389_fcimb_2019_00113
crossref_primary_10_1002_jcp_27072
crossref_primary_10_3390_brainsci10110858
crossref_primary_10_1080_10717544_2023_2288799
crossref_primary_10_1155_2023_5541050
crossref_primary_10_1073_pnas_2305496120
crossref_primary_10_1016_j_tcb_2019_07_001
crossref_primary_10_3390_cancers12040857
crossref_primary_10_1128_JVI_02120_19
crossref_primary_10_3390_ijms22157971
crossref_primary_10_3390_ijms20225641
crossref_primary_10_3390_cancers13246330
crossref_primary_10_3390_cancers14081989
crossref_primary_10_1016_j_drup_2022_100853
crossref_primary_10_3390_ijms22126514
crossref_primary_10_3390_cancers13102449
crossref_primary_10_4049_jimmunol_2000803
crossref_primary_10_1681_ASN_2020071076
crossref_primary_10_3389_fcell_2022_1071961
crossref_primary_10_1080_17435390_2022_2026515
crossref_primary_10_1038_s41598_019_50971_x
crossref_primary_10_1016_j_bpj_2020_01_025
crossref_primary_10_15252_embj_2020106048
crossref_primary_10_1016_j_mito_2024_101950
crossref_primary_10_15252_embj_2018101230
crossref_primary_10_3390_ijms20051172
crossref_primary_10_1002_stem_3138
crossref_primary_10_1038_s41419_024_06536_6
crossref_primary_10_1242_dev_180794
crossref_primary_10_3389_fonc_2020_559548
crossref_primary_10_1242_jcs_223321
crossref_primary_10_1515_nipt_2022_0015
crossref_primary_10_3390_cancers12020261
crossref_primary_10_1038_s41598_020_74013_z
crossref_primary_10_1038_s41598_019_39898_5
crossref_primary_10_3390_cancers11091370
crossref_primary_10_1016_j_isci_2020_101450
crossref_primary_10_3390_ijms21155400
crossref_primary_10_1016_j_mad_2020_111295
crossref_primary_10_1038_s41392_024_01888_z
crossref_primary_10_1155_2020_7246785
crossref_primary_10_1186_s13578_022_00805_7
crossref_primary_10_3390_cancers14030659
crossref_primary_10_1007_s00418_018_1732_3
crossref_primary_10_1186_s13046_024_03087_8
crossref_primary_10_3390_biomedicines10081930
crossref_primary_10_7554_eLife_83584
crossref_primary_10_1016_j_phrs_2021_105541
crossref_primary_10_1371_journal_pone_0224800
crossref_primary_10_1016_j_jmb_2018_06_024
crossref_primary_10_3390_cancers14163908
crossref_primary_10_3389_fncel_2018_00432
crossref_primary_10_1007_s00417_025_06776_y
crossref_primary_10_1042_BCJ20200990
crossref_primary_10_3390_cancers12102798
crossref_primary_10_1038_s41598_020_75347_4
crossref_primary_10_1021_acsnano_4c07610
crossref_primary_10_1091_mbc_E19_11_0605
crossref_primary_10_1098_rsob_200300
crossref_primary_10_1007_s11302_021_09817_3
crossref_primary_10_1126_scitranslmed_aaz7423
crossref_primary_10_1016_j_trecan_2020_04_012
crossref_primary_10_1016_j_pbiomolbio_2019_08_006
crossref_primary_10_1016_j_bbcan_2020_188380
crossref_primary_10_1038_s41419_019_2045_8
crossref_primary_10_15252_embr_202153732
crossref_primary_10_1002_cpz1_939
crossref_primary_10_14326_abe_14_70
crossref_primary_10_2147_IJN_S487303
crossref_primary_10_1016_j_biochi_2023_08_011
crossref_primary_10_3389_fcell_2021_739024
crossref_primary_10_3390_cells9102256
crossref_primary_10_3390_biom11121875
crossref_primary_10_1007_s00249_019_01388_x
crossref_primary_10_1016_j_jbc_2022_101866
crossref_primary_10_1016_j_jconrel_2023_01_001
crossref_primary_10_1021_acs_jpcb_8b07305
crossref_primary_10_3390_biology12101288
crossref_primary_10_1016_j_arr_2019_01_012
crossref_primary_10_26508_lsa_202301953
crossref_primary_10_1158_2767_9764_CRC_23_0144
crossref_primary_10_3390_ijms22052306
crossref_primary_10_3390_biom12020313
crossref_primary_10_3390_ijms19051270
crossref_primary_10_1051_medsci_2019159
crossref_primary_10_1038_s41388_019_0741_6
crossref_primary_10_1002_stem_3056
crossref_primary_10_3389_fnsys_2022_768201
crossref_primary_10_1186_s12987_018_0114_5
crossref_primary_10_1016_j_nlm_2021_107502
crossref_primary_10_1038_s41598_021_93775_8
crossref_primary_10_3389_fcell_2022_955676
crossref_primary_10_1002_stem_3292
crossref_primary_10_3390_membranes13120910
crossref_primary_10_1042_BCJ20170712
crossref_primary_10_1083_jcb_202211044
crossref_primary_10_1007_s10571_022_01212_9
crossref_primary_10_15252_embj_2020105789
crossref_primary_10_15252_emmm_202012025
crossref_primary_10_1038_s41598_018_29391_w
crossref_primary_10_1016_j_celrep_2019_02_091
crossref_primary_10_1016_j_bbcan_2024_189173
crossref_primary_10_1126_science_abm5658
crossref_primary_10_3390_biom10121654
crossref_primary_10_1038_s41467_018_08178_7
crossref_primary_10_1021_acs_molpharmaceut_0c01248
crossref_primary_10_1016_j_ceb_2018_05_013
crossref_primary_10_1155_2022_3613319
Cites_doi 10.4049/jimmunol.0900861
10.4049/jimmunol.1401718
10.1016/j.cellimm.2008.08.005
10.1167/iovs.15-17107
10.1038/ncb1990
10.18632/aging.100341
10.1186/s40478-016-0386-4
10.3389/fphys.2014.00400
10.1165/rcmb.2013-0529OC
10.1038/ncb2856
10.1146/annurev.cellbio.14.1.137
10.1093/neuonc/nox070
10.1093/cvr/cvr189
10.1016/j.bbamem.2011.09.002
10.1016/j.ydbio.2012.12.013
10.1242/jcs.129239
10.1242/jcs.02507
10.1093/neuonc/now014
10.1136/esmoopen-2016-000133
10.1016/j.exphem.2016.07.006
10.1038/nrm2399
10.1016/j.immuni.2005.08.009
10.1016/j.virol.2005.09.018
10.1038/nature16071
10.4161/cib.4.3.14855
10.1242/jcs.083279
10.1189/jlb.4VMR0915-395R
10.1038/cddis.2016.358
10.1016/j.trsl.2014.05.011
10.1128/JVI.78.15.8002-8014.2004
10.1126/science.1244624
10.4049/jimmunol.173.3.1511
10.1038/ncb1841
10.1002/jcp.20971
10.1016/j.ceb.2008.03.005
10.1186/s13287-016-0354-8
10.1371/journal.pbio.1001298
10.1038/srep11453
10.4049/jimmunol.1300373
10.1016/S0006-8993(02)02621-5
10.1038/srep40360
10.1038/ncb1544
10.1182/blood-2015-03-634238
10.1016/j.mod.2012.11.006
10.1038/ncb2878
10.1016/j.it.2007.08.006
10.1007/s12035-015-9225-z
10.4161/cib.27934
10.1016/j.stemcr.2016.08.009
10.4049/jimmunol.180.9.5779
10.4161/cib.3.3.11242
10.1002/term.2376
10.1111/iep.12109
10.4049/jimmunol.170.3.1320
10.1016/j.ceca.2016.06.004
10.1038/srep39632
10.1242/dev.086223
10.1002/stem.2372
10.1111/j.1462-5822.2006.00750.x
10.1073/pnas.1611184114
10.1080/19336896.2016.1223003
10.1038/ncb1682
10.1016/j.ydbio.2014.07.015
10.1002/embj.201488441
10.1371/journal.pone.0047429
10.1242/jcs.126086
10.1016/j.yexcr.2014.01.014
10.1016/j.febslet.2007.03.071
10.4049/jimmunol.177.12.8476
10.1002/stem.1835
10.18632/oncotarget.9504
10.4049/jimmunol.1401832
10.1186/s13287-016-0326-z
10.15252/embj.201593411
10.1073/pnas.0409099102
10.1242/jcs.114033
10.1016/S0962-8924(99)01653-0
10.1523/JNEUROSCI.3532-16.2017
10.1111/j.1462-5822.2006.00842.x
10.1016/S1525-0016(16)32972-0
10.7554/eLife.18979
10.1126/science.1198949
10.1038/nature03290
10.1038/cr.2010.176
10.1002/0471143030.cb1210s67
10.1038/378636a0
10.1073/pnas.1006785107
10.1126/science.1093133
10.1016/j.bpj.2011.03.007
10.3389/fpls.2013.00504
10.4049/jimmunol.176.1.181
10.4049/jimmunol.178.11.6949
10.1038/srep27085
10.1371/journal.pone.0001808
10.4161/cib.2.3.8165
10.1371/journal.pone.0099196
10.1038/cdd.2010.147
10.1371/journal.pone.0033195
10.3892/mmr.2015.4726
10.1038/nature03951
10.1016/S0092-8674(00)80771-0
10.1186/1479-5876-11-94
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright © 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo. 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: Copyright © 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo. 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo
DBID AAYXX
CITATION
NPM
3V.
7TK
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fnmol.2017.00333
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1662-5099
ExternalDocumentID oai_doaj_org_article_b2e205f432ef419f9ebd1c6bb3338615
PMC5651011
oai_HAL_pasteur_03935195v1
29089870
10_3389_fnmol_2017_00333
Genre Journal Article
Review
GeographicLocations La Jolla California
California
United States--US
Qatar
New Jersey
Germany
GeographicLocations_xml – name: Qatar
– name: La Jolla California
– name: Germany
– name: California
– name: New Jersey
– name: United States--US
GrantInformation_xml – fundername: National Institutes of Health
  grantid: mh096625
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACPRK
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
NPM
RIG
3V.
7TK
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c528t-675f360b4956c0f212d25f140a018ec9745fdf05d5a5fbfed6db25806bfaaa943
IEDL.DBID M48
ISSN 1662-5099
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 14:14:51 EDT 2025
Fri May 09 12:18:13 EDT 2025
Fri Jul 11 03:00:58 EDT 2025
Fri Jul 25 11:59:34 EDT 2025
Wed Feb 19 02:43:10 EST 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 01:45:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords gap junctions
reactivation
cancer
inflammation
Alzheimer
Language English
License Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-675f360b4956c0f212d25f140a018ec9745fdf05d5a5fbfed6db25806bfaaa943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMCID: PMC5651011
Edited by: Guilherme Lucas, University of São Paulo, Brazil
Reviewed by: Felix Scholkmann, University Hospital Zurich, Switzerland; Juan C. Saez, Universidad Catolica de Chile, Chile
ORCID 0000-0001-6048-6602
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnmol.2017.00333
PMID 29089870
PQID 2309332977
PQPubID 2046457
ParticipantIDs doaj_primary_oai_doaj_org_article_b2e205f432ef419f9ebd1c6bb3338615
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651011
hal_primary_oai_HAL_pasteur_03935195v1
proquest_miscellaneous_1958542259
proquest_journals_2309332977
pubmed_primary_29089870
crossref_primary_10_3389_fnmol_2017_00333
crossref_citationtrail_10_3389_fnmol_2017_00333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-17
PublicationDateYYYYMMDD 2017-10-17
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in molecular neuroscience
PublicationTitleAlternate Front Mol Neurosci
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media
– name: Frontiers Media S.A
References Corvalan (B17) 2007; 211
He (B40) 2011; 92
Wang (B88) 2012; 7
Kumar (B52) 2017; 7
Pang (B68) 2009; 183
Gaide Chevronnay (B29) 2016; 157
Eugenin (B26); 2
Abounit (B2) 2015; 67
Delage (B22) 2013; 4
Huang (B42) 2016; 5
Wang (B90) 2010; 107
Bischoff (B13) 2013; 15
Davis (B20) 2008; 9
Desir (B23) 2016; 7
Rustom (B79) 2004; 303
Quinn (B71) 2016; 113
Hsiung (B41) 2005; 437
Kornberg (B49) 1999; 9
Jiang (B44) 2016; 7
Abounit (B1); 35
Martinez (B58) 2002; 943
Sowinski (B84) 2008; 10
Gerdes (B32) 2013; 130
Winkler (B96) 2016; 1
Rojas-Rios (B75) 2012; 10
Rupp (B78) 2011; 21
Favoreel (B28) 2005; 102
Roy (B76) 2011; 332
Al Heialy (B6) 2015; 194
Briscoe (B14) 2013; 15
Reichert (B73) 2016; 44
Zaccard (B99) 2016; 100
Gerdes (B30) 2007; 581
Roy (B77) 2014; 343
Pasquier (B69) 2013; 11
Abounit (B3); 10
Gerdes (B31) 2008; 20
Yasuda (B98) 2011; 3
La Boissiere (B53) 2004; 78
Eugenin (B27); 254
Karlikow (B47) 2016; 6
Astanina (B10) 2015; 5
Chinnery (B16) 2008; 180
Wang (B92) 2011; 18
Weil (B95) 2017; 19
Mendoza-Naranjo (B60) 2007; 178
Antanavičiūtė (B9) 2017
Sinclair (B82) 2016; 7
Onfelt (B65) 2004; 173
Schiller (B80) 2013; 126
Dramsi (B24) 1998; 14
Eugenin (B25) 2003; 170
Thayanithy (B87); 164
Neijssen (B62) 2005; 434
Osswald (B67) 2016; 18
Mailliard (B57) 2013; 191
Jouvenet (B45) 2006; 8
Abounit (B4) 2012; 125
Ohno (B63) 2010; 3
Hartlieb (B38) 2006; 344
Wang (B89) 2012; 1818
Austefjord (B11) 2014; 7
Thayanithy (B86); 323
Zhang (B101) 2011; 4
Wittig (B97) 2012; 7
Gill (B33) 2008; 3
Lock (B56) 2016; 60
Costanzo (B18) 2013; 126
Gousset (B34) 2013; 126
Ramirez-Weber (B72) 1999; 97
Jackson (B43) 2016; 34
Jung (B46) 2017; 37
Osswald (B66) 2015; 528
Ady (B5) 2014; 5
Zhu (B103) 2005; 118
Wehland (B94) 1998; 1
Cudmore (B19) 1995; 378
Sherer (B81) 2007; 9
Bruzauskaite (B15) 2016; 7
Watkins (B93) 2005; 23
Antanaviciute (B8) 2014; 9
Hase (B39) 2009; 11
Han (B36) 2016; 13
Wang (B91) 2016; 53
Onfelt (B64) 2006; 177
Zhang (B102) 2016; 7
Rocca (B74) 2015; 56
Naphade (B61) 2015; 33
Gousset (B35) 2009; 11
Smith (B83) 2011; 100
Polak (B70) 2015; 126
Tardivel (B85) 2016; 4
Bilioni (B12) 2013; 376
Delage (B21) 2016; 6
Kornberg (B50) 2014; 394
Las (B54) 2014; 33
Zaccard (B100) 2015; 194
Handel (B37) 2007; 28
Antanaviciute (B7) 2015; 96
Matsue (B59) 2006; 176
Kolesnikova (B48) 2007; 9
Li (B55) 2014; 51
Kornberg (B51) 2014; 141
References_xml – volume: 183
  start-page: 1083
  year: 2009
  ident: B68
  article-title: Direct antigen presentation and gap junction mediated cross-presentation during apoptosis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900861
– volume: 194
  start-page: 5626
  year: 2015
  ident: B6
  article-title: Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401718
– volume: 254
  start-page: 142
  ident: B27
  article-title: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2008.08.005
– volume: 56
  start-page: 7214
  year: 2015
  ident: B74
  article-title: Treatment of inherited eye defects by systemic hematopoietic stem cell transplantation
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.15-17107
– volume: 11
  start-page: 1427
  year: 2009
  ident: B39
  article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1990
– volume: 3
  start-page: 597
  year: 2011
  ident: B98
  article-title: Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool
  publication-title: Aging
  doi: 10.18632/aging.100341
– volume: 4
  start-page: 117
  year: 2016
  ident: B85
  article-title: Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-016-0386-4
– volume: 5
  start-page: 400
  year: 2014
  ident: B5
  article-title: Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00400
– volume: 51
  start-page: 455
  year: 2014
  ident: B55
  article-title: Mitochondrial transfer of induced pluripotent stem cells-derived MSCs to airway epithelial cells attenuates cigarette smoke-induced damage
  publication-title: Am. J. Respir. Cell Mol. Biol
  doi: 10.1165/rcmb.2013-0529OC
– volume: 15
  start-page: 1269
  year: 2013
  ident: B13
  article-title: Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2856
– volume: 14
  start-page: 137
  year: 1998
  ident: B24
  article-title: Intracellular pathogens and the actin cytoskeleton
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.14.1.137
– volume: 19
  start-page: 1316
  year: 2017
  ident: B95
  article-title: Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/nox070
– volume: 92
  start-page: 39
  year: 2011
  ident: B40
  article-title: Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvr189
– volume: 1818
  start-page: 2082
  year: 2012
  ident: B89
  article-title: Long-distance electrical coupling via tunneling nanotubes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2011.09.002
– volume: 376
  start-page: 198
  year: 2013
  ident: B12
  article-title: Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2012.12.013
– volume: 126
  start-page: 4424
  year: 2013
  ident: B34
  article-title: Myo10 is a key regulator of TNT formation in neuronal cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.129239
– volume: 118
  start-page: 3695
  year: 2005
  ident: B103
  article-title: Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02507
– volume: 18
  start-page: 479
  year: 2016
  ident: B67
  article-title: A malignant cellular network in gliomas: potential clinical implications
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/now014
– volume: 1
  start-page: e000133
  year: 2016
  ident: B96
  article-title: Tumour network in glioma
  publication-title: ESMO Open
  doi: 10.1136/esmoopen-2016-000133
– volume: 44
  start-page: 1092.e2
  year: 2016
  ident: B73
  article-title: Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2016.07.006
– volume: 9
  start-page: 431
  year: 2008
  ident: B20
  article-title: Membrane nanotubes: dynamic long-distance connections between animal cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2399
– volume: 23
  start-page: 309
  year: 2005
  ident: B93
  article-title: Functional connectivity between immune cells mediated by tunneling nanotubules
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.08.009
– volume: 344
  start-page: 64
  year: 2006
  ident: B38
  article-title: Filovirus assembly and budding
  publication-title: Virology
  doi: 10.1016/j.virol.2005.09.018
– volume: 528
  start-page: 93
  year: 2015
  ident: B66
  article-title: Brain tumour cells interconnect to a functional and resistant network
  publication-title: Nature
  doi: 10.1038/nature16071
– volume: 4
  start-page: 324
  year: 2011
  ident: B101
  article-title: Tunneling-nanotube: a new way of cell-cell communication
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.4.3.14855
– volume: 125
  start-page: 1089
  year: 2012
  ident: B4
  article-title: Wiring through tunneling nanotubes–from electrical signals to organelle transfer
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.083279
– volume: 100
  start-page: 81
  year: 2016
  ident: B99
  article-title: Linked in: immunologic membrane nanotube networks
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.4VMR0915-395R
– volume: 7
  start-page: e2467
  year: 2016
  ident: B44
  article-title: Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.358
– volume: 164
  start-page: 359
  ident: B87
  article-title: Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2014.05.011
– volume: 78
  start-page: 8002
  year: 2004
  ident: B53
  article-title: Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16-green fluorescent protein fusion proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.15.8002-8014.2004
– volume: 343
  start-page: 1244624
  year: 2014
  ident: B77
  article-title: Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein
  publication-title: Science
  doi: 10.1126/science.1244624
– volume: 173
  start-page: 1511
  year: 2004
  ident: B65
  article-title: Cutting edge: membrane nanotubes connect immune cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.3.1511
– volume: 11
  start-page: 328
  year: 2009
  ident: B35
  article-title: Prions hijack tunnelling nanotubes for intercellular spread
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1841
– volume: 211
  start-page: 649
  year: 2007
  ident: B17
  article-title: Injury of skeletal muscle and specific cytokines induce the expression of gap junction channels in mouse dendritic cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20971
– volume: 20
  start-page: 470
  year: 2008
  ident: B31
  article-title: Intercellular transfer mediated by tunneling nanotubes
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.005
– volume: 7
  start-page: 91
  year: 2016
  ident: B82
  article-title: Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-016-0354-8
– volume: 10
  start-page: e1001298
  year: 2012
  ident: B75
  article-title: Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001298
– volume: 5
  start-page: 11453
  year: 2015
  ident: B10
  article-title: Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep11453
– volume: 191
  start-page: 2570
  year: 2013
  ident: B57
  article-title: Selective induction of CTL helper rather than killer activity by natural epitope variants promotes dendritic cell-mediated HIV-1 dissemination
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300373
– volume: 943
  start-page: 191
  year: 2002
  ident: B58
  article-title: Identification of second messengers that induce expression of functional gap junctions in microglia cultured from newborn rats
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(02)02621-5
– volume: 7
  start-page: 40360
  year: 2017
  ident: B52
  article-title: Influenza virus exploits tunneling nanotubes for cell-to-cell spread
  publication-title: Sci. Rep.
  doi: 10.1038/srep40360
– volume: 9
  start-page: 310
  year: 2007
  ident: B81
  article-title: Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1544
– volume: 1
  start-page: 11
  year: 1998
  ident: B94
  article-title: The sophisticated survival strategies of the pathogen Listeria monocytogenes
  publication-title: Int. Microbiol.
– volume: 126
  start-page: 2404
  year: 2015
  ident: B70
  article-title: B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment
  publication-title: Blood
  doi: 10.1182/blood-2015-03-634238
– volume: 130
  start-page: 381
  year: 2013
  ident: B32
  article-title: Tunneling nanotubes, an emerging intercellular communication route in development
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2012.11.006
– volume: 15
  start-page: 1265
  year: 2013
  ident: B14
  article-title: Hedgehog threads to spread
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2878
– volume: 28
  start-page: 463
  year: 2007
  ident: B37
  article-title: Gap junction-mediated antigen transport in immune responses
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2007.08.006
– volume: 53
  start-page: 2480
  year: 2016
  ident: B91
  article-title: Rescue of brain function using tunneling nanotubes between neural stem cells and brain microvascular endothelial cells
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9225-z
– volume: 7
  start-page: e27934
  year: 2014
  ident: B11
  article-title: Tunneling nanotubes: diversity in morphology and structure
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.27934
– volume: 7
  start-page: 749
  year: 2016
  ident: B102
  article-title: iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF- α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2016.08.009
– volume: 180
  start-page: 5779
  year: 2008
  ident: B16
  article-title: Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.180.9.5779
– volume: 3
  start-page: 231
  year: 2010
  ident: B63
  article-title: M-Sec: emerging secrets of tunneling nanotube formation
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.3.3.11242
– year: 2017
  ident: B9
  article-title: Femtosecond laser micro-machined polyimide films for cell scaffold applications
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.2376
– volume: 96
  start-page: 42
  year: 2015
  ident: B7
  article-title: Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction
  publication-title: Int. J. Exp. Pathol.
  doi: 10.1111/iep.12109
– volume: 170
  start-page: 1320
  year: 2003
  ident: B25
  article-title: TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.3.1320
– volume: 60
  start-page: 266
  year: 2016
  ident: B56
  article-title: Communication of Ca2+ signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2016.06.004
– volume: 6
  start-page: 39632
  year: 2016
  ident: B21
  article-title: Differential identity of Filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes
  publication-title: Sci. Rep.
  doi: 10.1038/srep39632
– volume: 141
  start-page: 729
  year: 2014
  ident: B51
  article-title: Cytonemes as specialized signaling filopodia
  publication-title: Development
  doi: 10.1242/dev.086223
– volume: 34
  start-page: 2210
  year: 2016
  ident: B43
  article-title: Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS
  publication-title: Stem Cells
  doi: 10.1002/stem.2372
– volume: 8
  start-page: 1803
  year: 2006
  ident: B45
  article-title: African swine fever virus induces filopodia-like projections at the plasma membrane
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2006.00750.x
– volume: 113
  start-page: 14852
  year: 2016
  ident: B71
  article-title: Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1611184114
– volume: 10
  start-page: 344
  ident: B3
  article-title: Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases
  publication-title: Prion
  doi: 10.1080/19336896.2016.1223003
– volume: 10
  start-page: 211
  year: 2008
  ident: B84
  article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1682
– volume: 394
  start-page: 1
  year: 2014
  ident: B50
  article-title: The contrasting roles of primary cilia and cytonemes in Hh signaling
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2014.07.015
– volume: 33
  start-page: 939
  year: 2014
  ident: B54
  article-title: Miro1: new wheels for transferring mitochondria
  publication-title: EMBO J.
  doi: 10.1002/embj.201488441
– volume: 7
  start-page: e47429
  year: 2012
  ident: B88
  article-title: Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047429
– volume: 126
  start-page: 3678
  year: 2013
  ident: B18
  article-title: Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.126086
– volume: 323
  start-page: 178
  ident: B86
  article-title: Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2014.01.014
– volume: 581
  start-page: 2194
  year: 2007
  ident: B30
  article-title: Tunneling nanotubes: a new route for the exchange of components between animal cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.03.071
– volume: 177
  start-page: 8476
  year: 2006
  ident: B64
  article-title: Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.12.8476
– volume: 33
  start-page: 301
  year: 2015
  ident: B61
  article-title: Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes
  publication-title: Stem Cells
  doi: 10.1002/stem.1835
– volume: 7
  start-page: 43150
  year: 2016
  ident: B23
  article-title: Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9504
– volume: 194
  start-page: 1047
  year: 2015
  ident: B100
  article-title: CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401832
– volume: 7
  start-page: 67
  year: 2016
  ident: B15
  article-title: Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-016-0326-z
– volume: 35
  start-page: 2120
  ident: B1
  article-title: Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes
  publication-title: EMBO J.
  doi: 10.15252/embj.201593411
– volume: 102
  start-page: 8990
  year: 2005
  ident: B28
  article-title: Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0409099102
– volume: 126
  start-page: 767
  year: 2013
  ident: B80
  article-title: LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114033
– volume: 9
  start-page: 434
  year: 1999
  ident: B49
  article-title: Pictures in cell biology. cytonemes
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(99)01653-0
– volume: 37
  start-page: 6837
  year: 2017
  ident: B46
  article-title: Tweety-homologue 1 drives brain colonization of gliomas
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3532-16.2017
– volume: 9
  start-page: 939
  year: 2007
  ident: B48
  article-title: Budding of Marburgvirus is associated with filopodia
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2006.00842.x
– volume: 157
  start-page: 1363
  year: 2016
  ident: B29
  article-title: Hematopoietic stem cells transplantation can normalize thyroid function in a cystinosis mouse model
  publication-title: Endocrinology
  doi: 10.1016/S1525-0016(16)32972-0
– volume: 5
  start-page: e18979
  year: 2016
  ident: B42
  article-title: Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes
  publication-title: Elife
  doi: 10.7554/eLife.18979
– volume: 332
  start-page: 354
  year: 2011
  ident: B76
  article-title: Specificity of Drosophila cytonemes for distinct signaling pathways
  publication-title: Science
  doi: 10.1126/science.1198949
– volume: 434
  start-page: 83
  year: 2005
  ident: B62
  article-title: Cross-presentation by intercellular peptide transfer through gap junctions
  publication-title: Nature
  doi: 10.1038/nature03290
– volume: 21
  start-page: 683
  year: 2011
  ident: B78
  article-title: Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut
  publication-title: Cell Res.
  doi: 10.1038/cr.2010.176
– volume: 67
  start-page: 12 10 1
  year: 2015
  ident: B2
  article-title: Identification and characterization of tunneling nanotubes for intercellular trafficking
  publication-title: Curr. Protoc. Cell Biol.
  doi: 10.1002/0471143030.cb1210s67
– volume: 378
  start-page: 636
  year: 1995
  ident: B19
  article-title: Actin-based motility of vaccinia virus
  publication-title: Nature
  doi: 10.1038/378636a0
– volume: 107
  start-page: 17194
  year: 2010
  ident: B90
  article-title: Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1006785107
– volume: 303
  start-page: 1007
  year: 2004
  ident: B79
  article-title: Nanotubular highways for intercellular organelle transport
  publication-title: Science
  doi: 10.1126/science.1093133
– volume: 100
  start-page: L37
  year: 2011
  ident: B83
  article-title: Active generation and propagation of calcium signals within tunneling membrane nanotubes
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.03.007
– volume: 4
  start-page: 504
  year: 2013
  ident: B22
  article-title: Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00504
– volume: 176
  start-page: 181
  year: 2006
  ident: B59
  article-title: Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.1.181
– volume: 178
  start-page: 6949
  year: 2007
  ident: B60
  article-title: Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.11.6949
– volume: 6
  start-page: 27085
  year: 2016
  ident: B47
  article-title: Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep27085
– volume: 3
  start-page: e1808
  year: 2008
  ident: B33
  article-title: A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001808
– volume: 2
  start-page: 243
  ident: B26
  article-title: Tunneling nanotubes (TNT): a potential mechanism for intercellular HIV trafficking
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.2.3.8165
– volume: 9
  start-page: e99196
  year: 2014
  ident: B8
  article-title: Long-distance communication between laryngeal carcinoma cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099196
– volume: 18
  start-page: 732
  year: 2011
  ident: B92
  article-title: Tunneling-nanotube development in astrocytes depends on p53 activation
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2010.147
– volume: 7
  start-page: e33195
  year: 2012
  ident: B97
  article-title: Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033195
– volume: 13
  start-page: 1517
  year: 2016
  ident: B36
  article-title: Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.4726
– volume: 437
  start-page: 560
  year: 2005
  ident: B41
  article-title: Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic
  publication-title: Nature
  doi: 10.1038/nature03951
– volume: 97
  start-page: 599
  year: 1999
  ident: B72
  article-title: Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80771-0
– volume: 11
  start-page: 94
  year: 2013
  ident: B69
  article-title: Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-11-94
SSID ssj0062653
Score 2.5127199
SecondaryResourceType review_article
Snippet Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 333
SubjectTerms Age
Alzheimer
Biology
Cancer
Cell interactions
Cell signaling
Chemokines
Communication
Communications systems
Cytokines
Dendritic cells
Disease
Electrical stimuli
Exosomes
Gap junctions
Growth factors
Infections
inflammation
Laboratories
Life Sciences
Medical research
Nanotubes
Neuroscience
Neurosciences
Neurotransmitters
Oncology
Organelles
Pediatrics
reactivation
Social research
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXBOUVKMhICAmp0Tp-5HFsC2VVtRyqrdSbZSc2rdQmq-6Gc_9BD_xDfgkzdna1AQkuXGM7tjzj-WY8DxPyvpC-8YXN08JKmcpSVqmRBcaICVGDAqvqkJV2-jWfnsvjC3Wx8dQXxoTF8sBx4yaWO86Ul4I7L7PKV842WZ1bK8C4ykN6OQfMWxlTUQaDlq5EdEpCr2ri25sO_QwZ1isUQoxAKNTqB2i5xEjIP9XM36MlN-Dn6DF5NOiNdD-u9wl54Nodsn06eMafkvtZjxErAEQUBGa37K1bUNM29IuZ02MAr8BfP-9-zNAzQM-6a0evWnrStd_SM0wwoOFuEO_xMTCVjhJHaExmpBsRRns0JjDthUk-RTcPjEIPOM70jJwffZ4dTtPhsYW0VrxcpmA4eJEziwZTzTwgWsOVB_PLsKx0NZgdCqjKVKOM8ta78BCVKlluvTGmkuI52Wq71r0k1BfKmLzwNeCALL00gJOqkBWzQCnGfEImq93X9VCJHB_EuNZgkSC9dKCXRnrpQK-EfFyPmMcqHH_pe4AEXffD-tnhA3CVHrhK_4urEvIB2GH0j-n-iZ4bOHr9rQ4JzVmlvmcJ2V1xjB5O_0JzdC8LDqp1Qt6tm-HcIhFN67p-obHIj5IgTauEvIgMtp6OozMWBGlCihHrjdYzbmmvLkNtcNDPQchmr_7HJrwmD3FbEamzYpdsLW979wZUsKV9G07bLy7uMfY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7aovgiWm-jVSKIIHTYzCSZy5O02rqUtsiyhb6FZCZpC3Vm3d0RfPMf-OA_9Jd4Tia7dhT6OpmZhJyTc8l3LoS8yYWrXW6yODdCxKIQZaxFjjFinFdgwMrKZ6Udn2TjU3F4Js_ChdsihFWuZKIX1HVb4R35KEXIjqdgrryffY2xaxSiq6GFxm2yCSK4AOdrc2__5PNkJYvBWpe8ByfBFStHrvnSIt6QYN1CzvlAGfma_aBiLjAi8n9z89-oyWtq6OABuR_sR7rbE_whuWWbLXKn7yj5fYvcPQ5Y-SPyc9phDAuoJgoitF12xi6obmr6Sc_oIagzz3G_f_yaIlZAJ-2VpZcNPWqb83iCKQfU3xbizT6GqtJBKgnt0xvptZijHdqnNO34ST72wA98hZg4zvSYnB7sTz-M49B-Ia5kWixjcCUcz5hBF6piDja4TqUDh0yzpLAVOCIS6MxkLbV0xlnfmkoWLDNOa10K_oRsNG1jnxHqcql1lrsKNIMonNCgOWUuSmZSVjLmIjJa0UFVoTY5tsi4UuCjIOWUp5xCyilPuYi8W38x6-ty3PDuHpJ2_R5W1PYP2vm5CgdUmdSmTDrBU-tEUrrSmjqpMmPgBwWYfRF5C4wx-Md490jNNBzGbq58inNSym9JRLZXvKOCPFiov9wbkdfrYTjJSETd2LZbKCz7IwXI1zIiT3tWW0-XIjwLojUi-YAJB-sZjjSXF75aOFjsIHaT5zcv6wW5hxuGWjnJt8nGct7Zl2BuLc2rcKb-ALYJLcI
  priority: 102
  providerName: ProQuest
Title Tunneling Nanotubes and Gap Junctions–Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions
URI https://www.ncbi.nlm.nih.gov/pubmed/29089870
https://www.proquest.com/docview/2309332977
https://www.proquest.com/docview/1958542259
https://pasteur.hal.science/pasteur-03935195
https://pubmed.ncbi.nlm.nih.gov/PMC5651011
https://doaj.org/article/b2e205f432ef419f9ebd1c6bb3338615
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgkxAviG_CRmUkhIS0sDix8_GA0AbbqmmdUNVKfbPsxN4mlaRrGwR_BP8zd04aFpgQL3lI_BH57vy7832YkDcJt4VNdOwnmnOfpzzzFU8wRiyKclBgRe6y0kbn8XDKT2di9js9ul3A1a2mHd4nNV3O33-__vERBP4DWpyAt_u2_FqhF4FhNcIoiu6SbcClBMV0xDufAmjuriYli2Mwv0AxapyWt47QAylXyx-g5xIjJf9WQ_-MprwBT8cPyYNWr6QHDSM8IndM-ZjcG7We8yfk56TGiBYAKgobarWutVlRVRb0RC3oKYCb4z9_gn4DOq7mhl6V9KwqL_wxph9Qd3KIp_wYtkp7aSW0SXWkN-KP9miT3rTnpvjcOIGgF_rHcZ6nZHp8NPk09NurGPxchOnaB7PCRnGg0ZzKAwt4V4TCgnGmApaaHIwSATQPRCGUsNoad02VSINYW6VUxqNnZKusSvOCUJsIpeLE5oASPLVcAYqKhGeBDoMsCKxH9jdrL_O2TjlelzGXYK8gtaSjlkRqSUctj7zreiyaGh3_aHuI5OzaYXVt96JaXshWWKUOTRgIy6PQWM4ymxldsDzWGgZIQQX0yFtght4Yw4MzuVAgmPVSunRnlolvzCO7G36RG9aWITqfoxAUb4-87j6DVCMRVWmqeiWxBJDgsNdmHnnesFc3XYiuWthmPZL0GK_3P_0v5dWlqxwO2jtswezlf8y7Q-7jqiFMs2SXbK2XtXkF-tdaD8j24dH5l_HAnV_A82TGBk7UfgETYTK2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKx4XBOXRQAEjARJSo83DzuOAUEtbtu3uCq22Um_GTuy2Upss-wD1xj_gwP_gR_FLmHGSpQGpt143iR3tjL-ZyTcPQl7FzOQmVpEbK8ZclrDUlSzGHLEwzMCB5ZmtSusPou4h2z_iR0vkV1MLg2mVDSZaoM7LDL-RdwKk7MIA3JX34y8uTo1CdrUZoVGpxYG--AYh2_Td3jbI93UQ7O6MPnTdeqqAm_EgmbngIZsw8hRGBplnALrzgBuIM6TnJzoD_5rD63s855IbZbSduMQTL1JGSpmyENa9QVYYrAFAsLK1M_g0bLAfogMeVmQohH5pxxTnJfIbPvZJDMOwZfzsjAAwaSeYgfm_e_tvluYls7d7j9yt_VW6WSnYfbKki1Vys5pgebFKbvVrbv4B-TGaY84MmEIKkF3O5kpPqSxy-lGO6T6YT6vhv7__HCE3QYflmaanBe2VxbE7xBIHar9OIpOAqbG0VbpCq3JKeinHaYNWJVQbdpPtimiCp5CDx50eksNrEcwjslyUhV4j1MRcyig2GVgilhgmwVLzmKWeCrzU84xDOo0cRFb3QseRHGcCYiKUnLCSEyg5YSXnkLeLJ8ZVH5Ar7t1C0S7uww7e9odycixqQBAq0IHHDQsDbZifmlSr3M8ipWCBBNxMh7wBxWit0d3sibGEwz-fCFtS7af8q--Q9UZ3RI0_U_H3tDjk5eIyIAcKURa6nE8FthniDPA8dcjjStUW2wVIBwOUOyRuKWHrfdpXitMT250cIgSAef_J1a_1gtzujvo90dsbHDwld_DPQ4_Aj9fJ8mwy18_A1Zup5_X5ouTzdR_pP65-ax0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVFRcEJSXocAiARJSrfix68cBoZY0pG0aVVEq9bbdtXfbSsUOeYB64x9w4N_wc_glzKzt0IDUW6-xvbYzs9_M-JsHIa9jZnITq8iNFWMuS1jqShZjjlgYZuDA8sxWpR0Mot4R2zvmxyvkV1MLg2mVDSZaoM7LDL-RtwOk7MIA3JW2qdMiDjvdD-MvLk6QQqa1GadRqci-vvwG4dv0_W4HZP0mCLo7o489t54w4GY8SGYueMsmjDyFUULmGYDxPOAGYg7p-YnOwNfm8Coez7nkRhltpy_xxIuUkVKmLIR1b5HVGKIir0VWt3cGh8PGDkCkwMOKGIUwMG2b4nOJXIePPRPDMFwyhHZeAJi3M8zG_N_V_Tdj84oJ7N4jd2vflW5VynafrOhindyupllerpO1g5qnf0B-jOaYPwNmkQJ8l7O50lMqi5x-kmO6B6bUavvv7z9HyFPQYXmh6XlB-2Vx6g6x3IHaL5XIKmCaLF0qY6FVaSW9ku-0Satyqk17k05FOsFVyMfjnR6SoxsRzCPSKspCPyHUxFzKKDYZWCWWGCbBavOYpZ4KvNTzjEPajRxEVvdFx_EcFwLiI5ScsJITKDlhJeeQd4srxlVPkGvO3UbRLs7Dbt72h3JyKmpwECrQgccNCwNtmJ-aVKvczyKlYIEEXE6HvAXFWFqjt9UXYwlAMJ8IW17tp_yr75CNRndEjUVT8XfnOOTV4jCgCApRFrqcTwW2HOIMsD11yONK1Ra3C5AaBlh3SLykhEvPs3ykOD-zncohWgDI959e_1gvyRpsZdHfHew_I3fwv0PnwI83SGs2mevn4PXN1It6e1FyctM7-g9iA29S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunneling+Nanotubes+and+Gap+Junctions-Their+Role+in+Long-Range+Intercellular+Communication+during+Development%2C+Health%2C+and+Disease+Conditions&rft.jtitle=Frontiers+in+molecular+neuroscience&rft.au=Ariazi%2C+Jennifer&rft.au=Benowitz%2C+Andrew&rft.au=De+Biasi%2C+Vern&rft.au=Den+Boer%2C+Monique+L&rft.date=2017-10-17&rft.issn=1662-5099&rft.eissn=1662-5099&rft.volume=10&rft.spage=333&rft_id=info:doi/10.3389%2Ffnmol.2017.00333&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5099&client=summon