Tunneling Nanotubes and Gap Junctions–Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions
Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and...
Saved in:
Published in | Frontiers in molecular neuroscience Vol. 10; p. 333 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
17.10.2017
Frontiers Media Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies. |
---|---|
AbstractList | Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies. Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies. Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communications and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediates a long range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies. |
Author | Goodman, Spencer Den Boer, Monique L. Eugenin, Eliseo A. Kuhn, Nastaran Israel, David I. Benowitz, Andrew Favre, David Okafo, George Douillet, Nathalie Ariazi, Jennifer Hanein, Dorit de Rooij, Bob De Biasi, Vern Pradel, Gabriele Zurzolo, Chiara Pasquier, Jennifer Kimura, Shunsuke Jeong, Claire Tanveer, Ahmad Schaeffer, Peter Skeberdis, Vytenis A. Lou, Emil Polak, Roel Mailliard, Robbie Maio, Stephen Wu, Zhenhua Cui, Haifeng Cherqui, Stephanie Gousset, Karine Volkmann, Niels Kirkpatrick, Robert B. Osswald, Matthias Smith, Ian F. |
AuthorAffiliation | 13 GlaxoSmithKline , King of Prussia, PA , United States 16 Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg , Heidelberg , Germany 7 GlaxoSmithKline, Research Triangle Park , NC , United States 21 Department of Neurobiology and Behavior, University of California, Irvine , Irvine, CA , United States 22 Section of Intracellular Trafficking and Neurovirology, National Institute of Health , Bethesda, MD , United States 4 GlaxoSmithKline , Stevenage , United Kingdom 5 Public Health Research Institute (PHRI) , Newark, NJ , United States 9 Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery , La Jolla, CA , United States 3 Division of Genetics, Department of Pediatrics, University of California, San Diego , La Jolla, CA , United States 20 Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas , Lithuania 6 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers |
AuthorAffiliation_xml | – name: 4 GlaxoSmithKline , Stevenage , United Kingdom – name: 15 Department of Infectious Diseases and Microbiology, University of Pittsburgh , Pittsburgh, PA , United States – name: 2 Department of Pediatric Oncology, Erasmus MC – Sophia Children's Hospital , Rotterdam , Netherlands – name: 12 Division of Cancer Biology, Physical Sciences-Oncology Network, Cancer Tissue Engineering Collaborative Research Program, Program Director, Structural Biology and Molecular Applications Branch, National Cancer Institute , Bethesda, MD , United States – name: 9 Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery , La Jolla, CA , United States – name: 11 Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University , Sapporo , Japan – name: 3 Division of Genetics, Department of Pediatrics, University of California, San Diego , La Jolla, CA , United States – name: 17 Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany – name: 19 Division of Cellular and Applied Infection Biology, RWTH Aachen University , Aachen , Germany – name: 5 Public Health Research Institute (PHRI) , Newark, NJ , United States – name: 21 Department of Neurobiology and Behavior, University of California, Irvine , Irvine, CA , United States – name: 23 Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute , Paris , France – name: 13 GlaxoSmithKline , King of Prussia, PA , United States – name: 1 GlaxoSmithKline , Collegeville, PA , United States – name: 7 GlaxoSmithKline, Research Triangle Park , NC , United States – name: 10 GlaxoSmithKline , Waltham, MA , United States – name: 20 Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas , Lithuania – name: 14 Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, MN , United States – name: 6 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey , Newark, NJ , United States – name: 16 Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg , Heidelberg , Germany – name: 22 Section of Intracellular Trafficking and Neurovirology, National Institute of Health , Bethesda, MD , United States – name: 8 Department of Biology, College of Science and Math, California State University , Fresno, CA , United States – name: 18 Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar Foundation , Ar-Rayyan , Qatar |
Author_xml | – sequence: 1 givenname: Jennifer surname: Ariazi fullname: Ariazi, Jennifer – sequence: 2 givenname: Andrew surname: Benowitz fullname: Benowitz, Andrew – sequence: 3 givenname: Vern surname: De Biasi fullname: De Biasi, Vern – sequence: 4 givenname: Monique L. surname: Den Boer fullname: Den Boer, Monique L. – sequence: 5 givenname: Stephanie surname: Cherqui fullname: Cherqui, Stephanie – sequence: 6 givenname: Haifeng surname: Cui fullname: Cui, Haifeng – sequence: 7 givenname: Nathalie surname: Douillet fullname: Douillet, Nathalie – sequence: 8 givenname: Eliseo A. surname: Eugenin fullname: Eugenin, Eliseo A. – sequence: 9 givenname: David surname: Favre fullname: Favre, David – sequence: 10 givenname: Spencer surname: Goodman fullname: Goodman, Spencer – sequence: 11 givenname: Karine surname: Gousset fullname: Gousset, Karine – sequence: 12 givenname: Dorit surname: Hanein fullname: Hanein, Dorit – sequence: 13 givenname: David I. surname: Israel fullname: Israel, David I. – sequence: 14 givenname: Shunsuke surname: Kimura fullname: Kimura, Shunsuke – sequence: 15 givenname: Robert B. surname: Kirkpatrick fullname: Kirkpatrick, Robert B. – sequence: 16 givenname: Nastaran surname: Kuhn fullname: Kuhn, Nastaran – sequence: 17 givenname: Claire surname: Jeong fullname: Jeong, Claire – sequence: 18 givenname: Emil surname: Lou fullname: Lou, Emil – sequence: 19 givenname: Robbie surname: Mailliard fullname: Mailliard, Robbie – sequence: 20 givenname: Stephen surname: Maio fullname: Maio, Stephen – sequence: 21 givenname: George surname: Okafo fullname: Okafo, George – sequence: 22 givenname: Matthias surname: Osswald fullname: Osswald, Matthias – sequence: 23 givenname: Jennifer surname: Pasquier fullname: Pasquier, Jennifer – sequence: 24 givenname: Roel surname: Polak fullname: Polak, Roel – sequence: 25 givenname: Gabriele surname: Pradel fullname: Pradel, Gabriele – sequence: 26 givenname: Bob surname: de Rooij fullname: de Rooij, Bob – sequence: 27 givenname: Peter surname: Schaeffer fullname: Schaeffer, Peter – sequence: 28 givenname: Vytenis A. surname: Skeberdis fullname: Skeberdis, Vytenis A. – sequence: 29 givenname: Ian F. surname: Smith fullname: Smith, Ian F. – sequence: 30 givenname: Ahmad surname: Tanveer fullname: Tanveer, Ahmad – sequence: 31 givenname: Niels surname: Volkmann fullname: Volkmann, Niels – sequence: 32 givenname: Zhenhua surname: Wu fullname: Wu, Zhenhua – sequence: 33 givenname: Chiara surname: Zurzolo fullname: Zurzolo, Chiara |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29089870$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-03935195$$DView record in HAL |
BookMark | eNp1ks1u1DAUhSNURH9gzwpFYsOiGfwTO_EGqZpCZ9AIpGpYW05yPePKsQc7GYkdb8CCN-RJSDKlakdiZcv-zrm-1-c8OXHeQZK8xmhGaSnea9d6OyMIFzOEKKXPkjPMOckYEuLk0f40OY_xDiFOOKMvklMiUCnKAp0lv9a9c2CN26RflPNdX0FMlWvSG7VLP_eu7ox38c_P3-stmJDeegupcenKu012q9wG0qXrINRgbW9VSOe-bXtnajXq0qYPo_M17MH6XQuuu0wXoGy3vZyKXJsIKsKgco2ZKr1MnmtlI7y6Xy-Sb58-rueLbPX1Zjm_WmU1I2WX8YJpylGVC8ZrpAkmDWEa50ghXEItipzpRiPWMMV0paHhTUVYiXillVIipxfJ8uDbeHUnd8G0KvyQXhk5HfiwkSp0prYgKwIEMZ1TAjrHQguoGlzzqhoGXnLMBq8PB69dX7XQ1EObQdknpk9vnNnKjd9LxhlGGA8G2cFgeyRbXK3kTsUO-iARFZRhwfYj_-6-YPDfe4idbE0cv0A58H2UA1WynBAmBvTtEXrn--CG0UpCkaCUiKIYqDePO3h4w7-cDAA6AHXwMQbQDwhGcoyinKIoxyjKKYqDhB9JatNNsRhmYOz_hX8BIKnnCw |
CitedBy_id | crossref_primary_10_1186_s13014_019_1416_8 crossref_primary_10_3389_fcell_2022_934684 crossref_primary_10_1007_s12192_018_00958_w crossref_primary_10_1038_s41539_019_0048_y crossref_primary_10_1126_science_aar5555 crossref_primary_10_1016_j_ceb_2021_03_003 crossref_primary_10_3390_ijms252212378 crossref_primary_10_1016_j_plasmid_2024_102729 crossref_primary_10_1042_CS20180548 crossref_primary_10_3389_fonc_2020_00090 crossref_primary_10_3389_fnmol_2020_569818 crossref_primary_10_3390_ijms21051872 crossref_primary_10_3389_fcimb_2020_00261 crossref_primary_10_1007_s12274_019_2554_x crossref_primary_10_3389_fonc_2020_01691 crossref_primary_10_1371_journal_pcbi_1009552 crossref_primary_10_3390_cancers14133203 crossref_primary_10_3390_cells13060495 crossref_primary_10_1007_s12035_022_03042_8 crossref_primary_10_1016_j_bcp_2021_114487 crossref_primary_10_3389_fimmu_2018_02270 crossref_primary_10_1016_j_bbcan_2023_189028 crossref_primary_10_1038_s41593_019_0540_y crossref_primary_10_1074_jbc_RA118_005659 crossref_primary_10_1109_JMEMS_2020_3015836 crossref_primary_10_3389_fcell_2021_631946 crossref_primary_10_1080_09553002_2022_2078006 crossref_primary_10_1146_annurev_cellbio_100617_062932 crossref_primary_10_1038_s41598_018_27649_x crossref_primary_10_3390_futurepharmacol5010011 crossref_primary_10_3390_cancers14194958 crossref_primary_10_3390_ijms23147949 crossref_primary_10_1002_cnr2_1181 crossref_primary_10_1002_cnr2_1185 crossref_primary_10_3389_fpsyg_2019_02688 crossref_primary_10_1002_cnr2_1220 crossref_primary_10_1007_s42977_020_00062_0 crossref_primary_10_1038_s41568_022_00475_0 crossref_primary_10_1083_jcb_201807068 crossref_primary_10_1111_jpi_12800 crossref_primary_10_3390_cancers14051207 crossref_primary_10_1128_jvi_00863_24 crossref_primary_10_3390_pharmaceutics14010056 crossref_primary_10_1038_s41419_022_05089_w crossref_primary_10_3389_fnagi_2024_1517965 crossref_primary_10_1007_s10555_024_10211_9 crossref_primary_10_3390_cancers12071787 crossref_primary_10_1096_fj_202100452RR crossref_primary_10_1038_s41598_021_88667_w crossref_primary_10_3390_ijms24076743 crossref_primary_10_3390_medicina54040053 crossref_primary_10_2144_btn_2020_0114 crossref_primary_10_3390_biomedicines10102581 crossref_primary_10_1038_d41586_020_02315_3 crossref_primary_10_1186_s43042_022_00335_4 crossref_primary_10_1016_j_plantsci_2020_110800 crossref_primary_10_3389_fcimb_2019_00113 crossref_primary_10_1002_jcp_27072 crossref_primary_10_3390_brainsci10110858 crossref_primary_10_1080_10717544_2023_2288799 crossref_primary_10_1155_2023_5541050 crossref_primary_10_1073_pnas_2305496120 crossref_primary_10_1016_j_tcb_2019_07_001 crossref_primary_10_3390_cancers12040857 crossref_primary_10_1128_JVI_02120_19 crossref_primary_10_3390_ijms22157971 crossref_primary_10_3390_ijms20225641 crossref_primary_10_3390_cancers13246330 crossref_primary_10_3390_cancers14081989 crossref_primary_10_1016_j_drup_2022_100853 crossref_primary_10_3390_ijms22126514 crossref_primary_10_3390_cancers13102449 crossref_primary_10_4049_jimmunol_2000803 crossref_primary_10_1681_ASN_2020071076 crossref_primary_10_3389_fcell_2022_1071961 crossref_primary_10_1080_17435390_2022_2026515 crossref_primary_10_1038_s41598_019_50971_x crossref_primary_10_1016_j_bpj_2020_01_025 crossref_primary_10_15252_embj_2020106048 crossref_primary_10_1016_j_mito_2024_101950 crossref_primary_10_15252_embj_2018101230 crossref_primary_10_3390_ijms20051172 crossref_primary_10_1002_stem_3138 crossref_primary_10_1038_s41419_024_06536_6 crossref_primary_10_1242_dev_180794 crossref_primary_10_3389_fonc_2020_559548 crossref_primary_10_1242_jcs_223321 crossref_primary_10_1515_nipt_2022_0015 crossref_primary_10_3390_cancers12020261 crossref_primary_10_1038_s41598_020_74013_z crossref_primary_10_1038_s41598_019_39898_5 crossref_primary_10_3390_cancers11091370 crossref_primary_10_1016_j_isci_2020_101450 crossref_primary_10_3390_ijms21155400 crossref_primary_10_1016_j_mad_2020_111295 crossref_primary_10_1038_s41392_024_01888_z crossref_primary_10_1155_2020_7246785 crossref_primary_10_1186_s13578_022_00805_7 crossref_primary_10_3390_cancers14030659 crossref_primary_10_1007_s00418_018_1732_3 crossref_primary_10_1186_s13046_024_03087_8 crossref_primary_10_3390_biomedicines10081930 crossref_primary_10_7554_eLife_83584 crossref_primary_10_1016_j_phrs_2021_105541 crossref_primary_10_1371_journal_pone_0224800 crossref_primary_10_1016_j_jmb_2018_06_024 crossref_primary_10_3390_cancers14163908 crossref_primary_10_3389_fncel_2018_00432 crossref_primary_10_1007_s00417_025_06776_y crossref_primary_10_1042_BCJ20200990 crossref_primary_10_3390_cancers12102798 crossref_primary_10_1038_s41598_020_75347_4 crossref_primary_10_1021_acsnano_4c07610 crossref_primary_10_1091_mbc_E19_11_0605 crossref_primary_10_1098_rsob_200300 crossref_primary_10_1007_s11302_021_09817_3 crossref_primary_10_1126_scitranslmed_aaz7423 crossref_primary_10_1016_j_trecan_2020_04_012 crossref_primary_10_1016_j_pbiomolbio_2019_08_006 crossref_primary_10_1016_j_bbcan_2020_188380 crossref_primary_10_1038_s41419_019_2045_8 crossref_primary_10_15252_embr_202153732 crossref_primary_10_1002_cpz1_939 crossref_primary_10_14326_abe_14_70 crossref_primary_10_2147_IJN_S487303 crossref_primary_10_1016_j_biochi_2023_08_011 crossref_primary_10_3389_fcell_2021_739024 crossref_primary_10_3390_cells9102256 crossref_primary_10_3390_biom11121875 crossref_primary_10_1007_s00249_019_01388_x crossref_primary_10_1016_j_jbc_2022_101866 crossref_primary_10_1016_j_jconrel_2023_01_001 crossref_primary_10_1021_acs_jpcb_8b07305 crossref_primary_10_3390_biology12101288 crossref_primary_10_1016_j_arr_2019_01_012 crossref_primary_10_26508_lsa_202301953 crossref_primary_10_1158_2767_9764_CRC_23_0144 crossref_primary_10_3390_ijms22052306 crossref_primary_10_3390_biom12020313 crossref_primary_10_3390_ijms19051270 crossref_primary_10_1051_medsci_2019159 crossref_primary_10_1038_s41388_019_0741_6 crossref_primary_10_1002_stem_3056 crossref_primary_10_3389_fnsys_2022_768201 crossref_primary_10_1186_s12987_018_0114_5 crossref_primary_10_1016_j_nlm_2021_107502 crossref_primary_10_1038_s41598_021_93775_8 crossref_primary_10_3389_fcell_2022_955676 crossref_primary_10_1002_stem_3292 crossref_primary_10_3390_membranes13120910 crossref_primary_10_1042_BCJ20170712 crossref_primary_10_1083_jcb_202211044 crossref_primary_10_1007_s10571_022_01212_9 crossref_primary_10_15252_embj_2020105789 crossref_primary_10_15252_emmm_202012025 crossref_primary_10_1038_s41598_018_29391_w crossref_primary_10_1016_j_celrep_2019_02_091 crossref_primary_10_1016_j_bbcan_2024_189173 crossref_primary_10_1126_science_abm5658 crossref_primary_10_3390_biom10121654 crossref_primary_10_1038_s41467_018_08178_7 crossref_primary_10_1021_acs_molpharmaceut_0c01248 crossref_primary_10_1016_j_ceb_2018_05_013 crossref_primary_10_1155_2022_3613319 |
Cites_doi | 10.4049/jimmunol.0900861 10.4049/jimmunol.1401718 10.1016/j.cellimm.2008.08.005 10.1167/iovs.15-17107 10.1038/ncb1990 10.18632/aging.100341 10.1186/s40478-016-0386-4 10.3389/fphys.2014.00400 10.1165/rcmb.2013-0529OC 10.1038/ncb2856 10.1146/annurev.cellbio.14.1.137 10.1093/neuonc/nox070 10.1093/cvr/cvr189 10.1016/j.bbamem.2011.09.002 10.1016/j.ydbio.2012.12.013 10.1242/jcs.129239 10.1242/jcs.02507 10.1093/neuonc/now014 10.1136/esmoopen-2016-000133 10.1016/j.exphem.2016.07.006 10.1038/nrm2399 10.1016/j.immuni.2005.08.009 10.1016/j.virol.2005.09.018 10.1038/nature16071 10.4161/cib.4.3.14855 10.1242/jcs.083279 10.1189/jlb.4VMR0915-395R 10.1038/cddis.2016.358 10.1016/j.trsl.2014.05.011 10.1128/JVI.78.15.8002-8014.2004 10.1126/science.1244624 10.4049/jimmunol.173.3.1511 10.1038/ncb1841 10.1002/jcp.20971 10.1016/j.ceb.2008.03.005 10.1186/s13287-016-0354-8 10.1371/journal.pbio.1001298 10.1038/srep11453 10.4049/jimmunol.1300373 10.1016/S0006-8993(02)02621-5 10.1038/srep40360 10.1038/ncb1544 10.1182/blood-2015-03-634238 10.1016/j.mod.2012.11.006 10.1038/ncb2878 10.1016/j.it.2007.08.006 10.1007/s12035-015-9225-z 10.4161/cib.27934 10.1016/j.stemcr.2016.08.009 10.4049/jimmunol.180.9.5779 10.4161/cib.3.3.11242 10.1002/term.2376 10.1111/iep.12109 10.4049/jimmunol.170.3.1320 10.1016/j.ceca.2016.06.004 10.1038/srep39632 10.1242/dev.086223 10.1002/stem.2372 10.1111/j.1462-5822.2006.00750.x 10.1073/pnas.1611184114 10.1080/19336896.2016.1223003 10.1038/ncb1682 10.1016/j.ydbio.2014.07.015 10.1002/embj.201488441 10.1371/journal.pone.0047429 10.1242/jcs.126086 10.1016/j.yexcr.2014.01.014 10.1016/j.febslet.2007.03.071 10.4049/jimmunol.177.12.8476 10.1002/stem.1835 10.18632/oncotarget.9504 10.4049/jimmunol.1401832 10.1186/s13287-016-0326-z 10.15252/embj.201593411 10.1073/pnas.0409099102 10.1242/jcs.114033 10.1016/S0962-8924(99)01653-0 10.1523/JNEUROSCI.3532-16.2017 10.1111/j.1462-5822.2006.00842.x 10.1016/S1525-0016(16)32972-0 10.7554/eLife.18979 10.1126/science.1198949 10.1038/nature03290 10.1038/cr.2010.176 10.1002/0471143030.cb1210s67 10.1038/378636a0 10.1073/pnas.1006785107 10.1126/science.1093133 10.1016/j.bpj.2011.03.007 10.3389/fpls.2013.00504 10.4049/jimmunol.176.1.181 10.4049/jimmunol.178.11.6949 10.1038/srep27085 10.1371/journal.pone.0001808 10.4161/cib.2.3.8165 10.1371/journal.pone.0099196 10.1038/cdd.2010.147 10.1371/journal.pone.0033195 10.3892/mmr.2015.4726 10.1038/nature03951 10.1016/S0092-8674(00)80771-0 10.1186/1479-5876-11-94 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution Copyright © 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo. 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: Copyright © 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo. 2017 Ariazi, Benowitz, De Biasi, Den Boer, Cherqui, Cui, Douillet, Eugenin, Favre, Goodman, Gousset, Hanein, Israel, Kimura, Kirkpatrick, Kuhn, Jeong, Lou, Mailliard, Maio, Okafo, Osswald, Pasquier, Polak, Pradel, de Rooij, Schaeffer, Skeberdis, Smith, Tanveer, Volkmann, Wu and Zurzolo |
DBID | AAYXX CITATION NPM 3V. 7TK 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.3389/fnmol.2017.00333 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1662-5099 |
ExternalDocumentID | oai_doaj_org_article_b2e205f432ef419f9ebd1c6bb3338615 PMC5651011 oai_HAL_pasteur_03935195v1 29089870 10_3389_fnmol_2017_00333 |
Genre | Journal Article Review |
GeographicLocations | La Jolla California California United States--US Qatar New Jersey Germany |
GeographicLocations_xml | – name: Qatar – name: La Jolla California – name: Germany – name: California – name: New Jersey – name: United States--US |
GrantInformation_xml | – fundername: National Institutes of Health grantid: mh096625 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACPRK ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ NPM RIG 3V. 7TK 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c528t-675f360b4956c0f212d25f140a018ec9745fdf05d5a5fbfed6db25806bfaaa943 |
IEDL.DBID | M48 |
ISSN | 1662-5099 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 14:14:51 EDT 2025 Fri May 09 12:18:13 EDT 2025 Fri Jul 11 03:00:58 EDT 2025 Fri Jul 25 11:59:34 EDT 2025 Wed Feb 19 02:43:10 EST 2025 Thu Apr 24 23:11:20 EDT 2025 Tue Jul 01 01:45:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | gap junctions reactivation cancer inflammation Alzheimer |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-675f360b4956c0f212d25f140a018ec9745fdf05d5a5fbfed6db25806bfaaa943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 PMCID: PMC5651011 Edited by: Guilherme Lucas, University of São Paulo, Brazil Reviewed by: Felix Scholkmann, University Hospital Zurich, Switzerland; Juan C. Saez, Universidad Catolica de Chile, Chile |
ORCID | 0000-0001-6048-6602 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnmol.2017.00333 |
PMID | 29089870 |
PQID | 2309332977 |
PQPubID | 2046457 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b2e205f432ef419f9ebd1c6bb3338615 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5651011 hal_primary_oai_HAL_pasteur_03935195v1 proquest_miscellaneous_1958542259 proquest_journals_2309332977 pubmed_primary_29089870 crossref_primary_10_3389_fnmol_2017_00333 crossref_citationtrail_10_3389_fnmol_2017_00333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-17 |
PublicationDateYYYYMMDD | 2017-10-17 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in molecular neuroscience |
PublicationTitleAlternate | Front Mol Neurosci |
PublicationYear | 2017 |
Publisher | Frontiers Research Foundation Frontiers Media Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media – name: Frontiers Media S.A |
References | Corvalan (B17) 2007; 211 He (B40) 2011; 92 Wang (B88) 2012; 7 Kumar (B52) 2017; 7 Pang (B68) 2009; 183 Gaide Chevronnay (B29) 2016; 157 Eugenin (B26); 2 Abounit (B2) 2015; 67 Delage (B22) 2013; 4 Huang (B42) 2016; 5 Wang (B90) 2010; 107 Bischoff (B13) 2013; 15 Davis (B20) 2008; 9 Desir (B23) 2016; 7 Rustom (B79) 2004; 303 Quinn (B71) 2016; 113 Hsiung (B41) 2005; 437 Kornberg (B49) 1999; 9 Jiang (B44) 2016; 7 Abounit (B1); 35 Martinez (B58) 2002; 943 Sowinski (B84) 2008; 10 Gerdes (B32) 2013; 130 Winkler (B96) 2016; 1 Rojas-Rios (B75) 2012; 10 Rupp (B78) 2011; 21 Favoreel (B28) 2005; 102 Roy (B76) 2011; 332 Al Heialy (B6) 2015; 194 Briscoe (B14) 2013; 15 Reichert (B73) 2016; 44 Zaccard (B99) 2016; 100 Gerdes (B30) 2007; 581 Roy (B77) 2014; 343 Pasquier (B69) 2013; 11 Abounit (B3); 10 Gerdes (B31) 2008; 20 Yasuda (B98) 2011; 3 La Boissiere (B53) 2004; 78 Eugenin (B27); 254 Karlikow (B47) 2016; 6 Astanina (B10) 2015; 5 Chinnery (B16) 2008; 180 Wang (B92) 2011; 18 Weil (B95) 2017; 19 Mendoza-Naranjo (B60) 2007; 178 Antanavičiūtė (B9) 2017 Sinclair (B82) 2016; 7 Onfelt (B65) 2004; 173 Schiller (B80) 2013; 126 Dramsi (B24) 1998; 14 Eugenin (B25) 2003; 170 Thayanithy (B87); 164 Neijssen (B62) 2005; 434 Osswald (B67) 2016; 18 Mailliard (B57) 2013; 191 Jouvenet (B45) 2006; 8 Abounit (B4) 2012; 125 Ohno (B63) 2010; 3 Hartlieb (B38) 2006; 344 Wang (B89) 2012; 1818 Austefjord (B11) 2014; 7 Thayanithy (B86); 323 Zhang (B101) 2011; 4 Wittig (B97) 2012; 7 Gill (B33) 2008; 3 Lock (B56) 2016; 60 Costanzo (B18) 2013; 126 Gousset (B34) 2013; 126 Ramirez-Weber (B72) 1999; 97 Jackson (B43) 2016; 34 Jung (B46) 2017; 37 Osswald (B66) 2015; 528 Ady (B5) 2014; 5 Zhu (B103) 2005; 118 Wehland (B94) 1998; 1 Cudmore (B19) 1995; 378 Sherer (B81) 2007; 9 Bruzauskaite (B15) 2016; 7 Watkins (B93) 2005; 23 Antanaviciute (B8) 2014; 9 Hase (B39) 2009; 11 Han (B36) 2016; 13 Wang (B91) 2016; 53 Onfelt (B64) 2006; 177 Zhang (B102) 2016; 7 Rocca (B74) 2015; 56 Naphade (B61) 2015; 33 Gousset (B35) 2009; 11 Smith (B83) 2011; 100 Polak (B70) 2015; 126 Tardivel (B85) 2016; 4 Bilioni (B12) 2013; 376 Delage (B21) 2016; 6 Kornberg (B50) 2014; 394 Las (B54) 2014; 33 Zaccard (B100) 2015; 194 Handel (B37) 2007; 28 Antanaviciute (B7) 2015; 96 Matsue (B59) 2006; 176 Kolesnikova (B48) 2007; 9 Li (B55) 2014; 51 Kornberg (B51) 2014; 141 |
References_xml | – volume: 183 start-page: 1083 year: 2009 ident: B68 article-title: Direct antigen presentation and gap junction mediated cross-presentation during apoptosis publication-title: J. Immunol. doi: 10.4049/jimmunol.0900861 – volume: 194 start-page: 5626 year: 2015 ident: B6 article-title: Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival publication-title: J. Immunol. doi: 10.4049/jimmunol.1401718 – volume: 254 start-page: 142 ident: B27 article-title: Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2008.08.005 – volume: 56 start-page: 7214 year: 2015 ident: B74 article-title: Treatment of inherited eye defects by systemic hematopoietic stem cell transplantation publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.15-17107 – volume: 11 start-page: 1427 year: 2009 ident: B39 article-title: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb1990 – volume: 3 start-page: 597 year: 2011 ident: B98 article-title: Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool publication-title: Aging doi: 10.18632/aging.100341 – volume: 4 start-page: 117 year: 2016 ident: B85 article-title: Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-016-0386-4 – volume: 5 start-page: 400 year: 2014 ident: B5 article-title: Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00400 – volume: 51 start-page: 455 year: 2014 ident: B55 article-title: Mitochondrial transfer of induced pluripotent stem cells-derived MSCs to airway epithelial cells attenuates cigarette smoke-induced damage publication-title: Am. J. Respir. Cell Mol. Biol doi: 10.1165/rcmb.2013-0529OC – volume: 15 start-page: 1269 year: 2013 ident: B13 article-title: Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia publication-title: Nat. Cell Biol. doi: 10.1038/ncb2856 – volume: 14 start-page: 137 year: 1998 ident: B24 article-title: Intracellular pathogens and the actin cytoskeleton publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.14.1.137 – volume: 19 start-page: 1316 year: 2017 ident: B95 article-title: Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas publication-title: Neuro-oncology doi: 10.1093/neuonc/nox070 – volume: 92 start-page: 39 year: 2011 ident: B40 article-title: Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvr189 – volume: 1818 start-page: 2082 year: 2012 ident: B89 article-title: Long-distance electrical coupling via tunneling nanotubes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2011.09.002 – volume: 376 start-page: 198 year: 2013 ident: B12 article-title: Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2012.12.013 – volume: 126 start-page: 4424 year: 2013 ident: B34 article-title: Myo10 is a key regulator of TNT formation in neuronal cells publication-title: J. Cell Sci. doi: 10.1242/jcs.129239 – volume: 118 start-page: 3695 year: 2005 ident: B103 article-title: Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes publication-title: J. Cell Sci. doi: 10.1242/jcs.02507 – volume: 18 start-page: 479 year: 2016 ident: B67 article-title: A malignant cellular network in gliomas: potential clinical implications publication-title: Neuro-oncology doi: 10.1093/neuonc/now014 – volume: 1 start-page: e000133 year: 2016 ident: B96 article-title: Tumour network in glioma publication-title: ESMO Open doi: 10.1136/esmoopen-2016-000133 – volume: 44 start-page: 1092.e2 year: 2016 ident: B73 article-title: Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2016.07.006 – volume: 9 start-page: 431 year: 2008 ident: B20 article-title: Membrane nanotubes: dynamic long-distance connections between animal cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2399 – volume: 23 start-page: 309 year: 2005 ident: B93 article-title: Functional connectivity between immune cells mediated by tunneling nanotubules publication-title: Immunity doi: 10.1016/j.immuni.2005.08.009 – volume: 344 start-page: 64 year: 2006 ident: B38 article-title: Filovirus assembly and budding publication-title: Virology doi: 10.1016/j.virol.2005.09.018 – volume: 528 start-page: 93 year: 2015 ident: B66 article-title: Brain tumour cells interconnect to a functional and resistant network publication-title: Nature doi: 10.1038/nature16071 – volume: 4 start-page: 324 year: 2011 ident: B101 article-title: Tunneling-nanotube: a new way of cell-cell communication publication-title: Commun. Integr. Biol. doi: 10.4161/cib.4.3.14855 – volume: 125 start-page: 1089 year: 2012 ident: B4 article-title: Wiring through tunneling nanotubes–from electrical signals to organelle transfer publication-title: J. Cell Sci. doi: 10.1242/jcs.083279 – volume: 100 start-page: 81 year: 2016 ident: B99 article-title: Linked in: immunologic membrane nanotube networks publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4VMR0915-395R – volume: 7 start-page: e2467 year: 2016 ident: B44 article-title: Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.358 – volume: 164 start-page: 359 ident: B87 article-title: Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes publication-title: Transl. Res. doi: 10.1016/j.trsl.2014.05.011 – volume: 78 start-page: 8002 year: 2004 ident: B53 article-title: Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16-green fluorescent protein fusion proteins publication-title: J. Virol. doi: 10.1128/JVI.78.15.8002-8014.2004 – volume: 343 start-page: 1244624 year: 2014 ident: B77 article-title: Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein publication-title: Science doi: 10.1126/science.1244624 – volume: 173 start-page: 1511 year: 2004 ident: B65 article-title: Cutting edge: membrane nanotubes connect immune cells publication-title: J. Immunol. doi: 10.4049/jimmunol.173.3.1511 – volume: 11 start-page: 328 year: 2009 ident: B35 article-title: Prions hijack tunnelling nanotubes for intercellular spread publication-title: Nat. Cell Biol. doi: 10.1038/ncb1841 – volume: 211 start-page: 649 year: 2007 ident: B17 article-title: Injury of skeletal muscle and specific cytokines induce the expression of gap junction channels in mouse dendritic cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20971 – volume: 20 start-page: 470 year: 2008 ident: B31 article-title: Intercellular transfer mediated by tunneling nanotubes publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.03.005 – volume: 7 start-page: 91 year: 2016 ident: B82 article-title: Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-016-0354-8 – volume: 10 start-page: e1001298 year: 2012 ident: B75 article-title: Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001298 – volume: 5 start-page: 11453 year: 2015 ident: B10 article-title: Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells publication-title: Sci. Rep. doi: 10.1038/srep11453 – volume: 191 start-page: 2570 year: 2013 ident: B57 article-title: Selective induction of CTL helper rather than killer activity by natural epitope variants promotes dendritic cell-mediated HIV-1 dissemination publication-title: J. Immunol. doi: 10.4049/jimmunol.1300373 – volume: 943 start-page: 191 year: 2002 ident: B58 article-title: Identification of second messengers that induce expression of functional gap junctions in microglia cultured from newborn rats publication-title: Brain Res. doi: 10.1016/S0006-8993(02)02621-5 – volume: 7 start-page: 40360 year: 2017 ident: B52 article-title: Influenza virus exploits tunneling nanotubes for cell-to-cell spread publication-title: Sci. Rep. doi: 10.1038/srep40360 – volume: 9 start-page: 310 year: 2007 ident: B81 article-title: Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission publication-title: Nat. Cell Biol. doi: 10.1038/ncb1544 – volume: 1 start-page: 11 year: 1998 ident: B94 article-title: The sophisticated survival strategies of the pathogen Listeria monocytogenes publication-title: Int. Microbiol. – volume: 126 start-page: 2404 year: 2015 ident: B70 article-title: B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment publication-title: Blood doi: 10.1182/blood-2015-03-634238 – volume: 130 start-page: 381 year: 2013 ident: B32 article-title: Tunneling nanotubes, an emerging intercellular communication route in development publication-title: Mech. Dev. doi: 10.1016/j.mod.2012.11.006 – volume: 15 start-page: 1265 year: 2013 ident: B14 article-title: Hedgehog threads to spread publication-title: Nat. Cell Biol. doi: 10.1038/ncb2878 – volume: 28 start-page: 463 year: 2007 ident: B37 article-title: Gap junction-mediated antigen transport in immune responses publication-title: Trends Immunol. doi: 10.1016/j.it.2007.08.006 – volume: 53 start-page: 2480 year: 2016 ident: B91 article-title: Rescue of brain function using tunneling nanotubes between neural stem cells and brain microvascular endothelial cells publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9225-z – volume: 7 start-page: e27934 year: 2014 ident: B11 article-title: Tunneling nanotubes: diversity in morphology and structure publication-title: Commun. Integr. Biol. doi: 10.4161/cib.27934 – volume: 7 start-page: 749 year: 2016 ident: B102 article-title: iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF- α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.08.009 – volume: 180 start-page: 5779 year: 2008 ident: B16 article-title: Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea publication-title: J. Immunol. doi: 10.4049/jimmunol.180.9.5779 – volume: 3 start-page: 231 year: 2010 ident: B63 article-title: M-Sec: emerging secrets of tunneling nanotube formation publication-title: Commun. Integr. Biol. doi: 10.4161/cib.3.3.11242 – year: 2017 ident: B9 article-title: Femtosecond laser micro-machined polyimide films for cell scaffold applications publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.2376 – volume: 96 start-page: 42 year: 2015 ident: B7 article-title: Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction publication-title: Int. J. Exp. Pathol. doi: 10.1111/iep.12109 – volume: 170 start-page: 1320 year: 2003 ident: B25 article-title: TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses publication-title: J. Immunol. doi: 10.4049/jimmunol.170.3.1320 – volume: 60 start-page: 266 year: 2016 ident: B56 article-title: Communication of Ca2+ signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions publication-title: Cell Calcium doi: 10.1016/j.ceca.2016.06.004 – volume: 6 start-page: 39632 year: 2016 ident: B21 article-title: Differential identity of Filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes publication-title: Sci. Rep. doi: 10.1038/srep39632 – volume: 141 start-page: 729 year: 2014 ident: B51 article-title: Cytonemes as specialized signaling filopodia publication-title: Development doi: 10.1242/dev.086223 – volume: 34 start-page: 2210 year: 2016 ident: B43 article-title: Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS publication-title: Stem Cells doi: 10.1002/stem.2372 – volume: 8 start-page: 1803 year: 2006 ident: B45 article-title: African swine fever virus induces filopodia-like projections at the plasma membrane publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2006.00750.x – volume: 113 start-page: 14852 year: 2016 ident: B71 article-title: Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1611184114 – volume: 10 start-page: 344 ident: B3 article-title: Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases publication-title: Prion doi: 10.1080/19336896.2016.1223003 – volume: 10 start-page: 211 year: 2008 ident: B84 article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission publication-title: Nat. Cell Biol. doi: 10.1038/ncb1682 – volume: 394 start-page: 1 year: 2014 ident: B50 article-title: The contrasting roles of primary cilia and cytonemes in Hh signaling publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2014.07.015 – volume: 33 start-page: 939 year: 2014 ident: B54 article-title: Miro1: new wheels for transferring mitochondria publication-title: EMBO J. doi: 10.1002/embj.201488441 – volume: 7 start-page: e47429 year: 2012 ident: B88 article-title: Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes publication-title: PLoS ONE doi: 10.1371/journal.pone.0047429 – volume: 126 start-page: 3678 year: 2013 ident: B18 article-title: Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes publication-title: J. Cell Sci. doi: 10.1242/jcs.126086 – volume: 323 start-page: 178 ident: B86 article-title: Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2014.01.014 – volume: 581 start-page: 2194 year: 2007 ident: B30 article-title: Tunneling nanotubes: a new route for the exchange of components between animal cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.03.071 – volume: 177 start-page: 8476 year: 2006 ident: B64 article-title: Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria publication-title: J. Immunol. doi: 10.4049/jimmunol.177.12.8476 – volume: 33 start-page: 301 year: 2015 ident: B61 article-title: Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes publication-title: Stem Cells doi: 10.1002/stem.1835 – volume: 7 start-page: 43150 year: 2016 ident: B23 article-title: Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.9504 – volume: 194 start-page: 1047 year: 2015 ident: B100 article-title: CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1401832 – volume: 7 start-page: 67 year: 2016 ident: B15 article-title: Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-016-0326-z – volume: 35 start-page: 2120 ident: B1 article-title: Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes publication-title: EMBO J. doi: 10.15252/embj.201593411 – volume: 102 start-page: 8990 year: 2005 ident: B28 article-title: Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0409099102 – volume: 126 start-page: 767 year: 2013 ident: B80 article-title: LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation publication-title: J. Cell Sci. doi: 10.1242/jcs.114033 – volume: 9 start-page: 434 year: 1999 ident: B49 article-title: Pictures in cell biology. cytonemes publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(99)01653-0 – volume: 37 start-page: 6837 year: 2017 ident: B46 article-title: Tweety-homologue 1 drives brain colonization of gliomas publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3532-16.2017 – volume: 9 start-page: 939 year: 2007 ident: B48 article-title: Budding of Marburgvirus is associated with filopodia publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2006.00842.x – volume: 157 start-page: 1363 year: 2016 ident: B29 article-title: Hematopoietic stem cells transplantation can normalize thyroid function in a cystinosis mouse model publication-title: Endocrinology doi: 10.1016/S1525-0016(16)32972-0 – volume: 5 start-page: e18979 year: 2016 ident: B42 article-title: Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes publication-title: Elife doi: 10.7554/eLife.18979 – volume: 332 start-page: 354 year: 2011 ident: B76 article-title: Specificity of Drosophila cytonemes for distinct signaling pathways publication-title: Science doi: 10.1126/science.1198949 – volume: 434 start-page: 83 year: 2005 ident: B62 article-title: Cross-presentation by intercellular peptide transfer through gap junctions publication-title: Nature doi: 10.1038/nature03290 – volume: 21 start-page: 683 year: 2011 ident: B78 article-title: Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut publication-title: Cell Res. doi: 10.1038/cr.2010.176 – volume: 67 start-page: 12 10 1 year: 2015 ident: B2 article-title: Identification and characterization of tunneling nanotubes for intercellular trafficking publication-title: Curr. Protoc. Cell Biol. doi: 10.1002/0471143030.cb1210s67 – volume: 378 start-page: 636 year: 1995 ident: B19 article-title: Actin-based motility of vaccinia virus publication-title: Nature doi: 10.1038/378636a0 – volume: 107 start-page: 17194 year: 2010 ident: B90 article-title: Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1006785107 – volume: 303 start-page: 1007 year: 2004 ident: B79 article-title: Nanotubular highways for intercellular organelle transport publication-title: Science doi: 10.1126/science.1093133 – volume: 100 start-page: L37 year: 2011 ident: B83 article-title: Active generation and propagation of calcium signals within tunneling membrane nanotubes publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.03.007 – volume: 4 start-page: 504 year: 2013 ident: B22 article-title: Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00504 – volume: 176 start-page: 181 year: 2006 ident: B59 article-title: Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs publication-title: J. Immunol. doi: 10.4049/jimmunol.176.1.181 – volume: 178 start-page: 6949 year: 2007 ident: B60 article-title: Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.178.11.6949 – volume: 6 start-page: 27085 year: 2016 ident: B47 article-title: Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells publication-title: Sci. Rep. doi: 10.1038/srep27085 – volume: 3 start-page: e1808 year: 2008 ident: B33 article-title: A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread publication-title: PLoS ONE doi: 10.1371/journal.pone.0001808 – volume: 2 start-page: 243 ident: B26 article-title: Tunneling nanotubes (TNT): a potential mechanism for intercellular HIV trafficking publication-title: Commun. Integr. Biol. doi: 10.4161/cib.2.3.8165 – volume: 9 start-page: e99196 year: 2014 ident: B8 article-title: Long-distance communication between laryngeal carcinoma cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0099196 – volume: 18 start-page: 732 year: 2011 ident: B92 article-title: Tunneling-nanotube development in astrocytes depends on p53 activation publication-title: Cell Death Differ. doi: 10.1038/cdd.2010.147 – volume: 7 start-page: e33195 year: 2012 ident: B97 article-title: Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes publication-title: PLoS ONE doi: 10.1371/journal.pone.0033195 – volume: 13 start-page: 1517 year: 2016 ident: B36 article-title: Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4726 – volume: 437 start-page: 560 year: 2005 ident: B41 article-title: Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic publication-title: Nature doi: 10.1038/nature03951 – volume: 97 start-page: 599 year: 1999 ident: B72 article-title: Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs publication-title: Cell doi: 10.1016/S0092-8674(00)80771-0 – volume: 11 start-page: 94 year: 2013 ident: B69 article-title: Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance publication-title: J. Transl. Med. doi: 10.1186/1479-5876-11-94 |
SSID | ssj0062653 |
Score | 2.5127199 |
SecondaryResourceType | review_article |
Snippet | Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 333 |
SubjectTerms | Age Alzheimer Biology Cancer Cell interactions Cell signaling Chemokines Communication Communications systems Cytokines Dendritic cells Disease Electrical stimuli Exosomes Gap junctions Growth factors Infections inflammation Laboratories Life Sciences Medical research Nanotubes Neuroscience Neurosciences Neurotransmitters Oncology Organelles Pediatrics reactivation Social research |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXBOUVKMhICAmp0Tp-5HFsC2VVtRyqrdSbZSc2rdQmq-6Gc_9BD_xDfgkzdna1AQkuXGM7tjzj-WY8DxPyvpC-8YXN08JKmcpSVqmRBcaICVGDAqvqkJV2-jWfnsvjC3Wx8dQXxoTF8sBx4yaWO86Ul4I7L7PKV842WZ1bK8C4ykN6OQfMWxlTUQaDlq5EdEpCr2ri25sO_QwZ1isUQoxAKNTqB2i5xEjIP9XM36MlN-Dn6DF5NOiNdD-u9wl54Nodsn06eMafkvtZjxErAEQUBGa37K1bUNM29IuZ02MAr8BfP-9-zNAzQM-6a0evWnrStd_SM0wwoOFuEO_xMTCVjhJHaExmpBsRRns0JjDthUk-RTcPjEIPOM70jJwffZ4dTtPhsYW0VrxcpmA4eJEziwZTzTwgWsOVB_PLsKx0NZgdCqjKVKOM8ta78BCVKlluvTGmkuI52Wq71r0k1BfKmLzwNeCALL00gJOqkBWzQCnGfEImq93X9VCJHB_EuNZgkSC9dKCXRnrpQK-EfFyPmMcqHH_pe4AEXffD-tnhA3CVHrhK_4urEvIB2GH0j-n-iZ4bOHr9rQ4JzVmlvmcJ2V1xjB5O_0JzdC8LDqp1Qt6tm-HcIhFN67p-obHIj5IgTauEvIgMtp6OozMWBGlCihHrjdYzbmmvLkNtcNDPQchmr_7HJrwmD3FbEamzYpdsLW979wZUsKV9G07bLy7uMfY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7aovgiWm-jVSKIIHTYzCSZy5O02rqUtsiyhb6FZCZpC3Vm3d0RfPMf-OA_9Jd4Tia7dhT6OpmZhJyTc8l3LoS8yYWrXW6yODdCxKIQZaxFjjFinFdgwMrKZ6Udn2TjU3F4Js_ChdsihFWuZKIX1HVb4R35KEXIjqdgrryffY2xaxSiq6GFxm2yCSK4AOdrc2__5PNkJYvBWpe8ByfBFStHrvnSIt6QYN1CzvlAGfma_aBiLjAi8n9z89-oyWtq6OABuR_sR7rbE_whuWWbLXKn7yj5fYvcPQ5Y-SPyc9phDAuoJgoitF12xi6obmr6Sc_oIagzz3G_f_yaIlZAJ-2VpZcNPWqb83iCKQfU3xbizT6GqtJBKgnt0xvptZijHdqnNO34ST72wA98hZg4zvSYnB7sTz-M49B-Ia5kWixjcCUcz5hBF6piDja4TqUDh0yzpLAVOCIS6MxkLbV0xlnfmkoWLDNOa10K_oRsNG1jnxHqcql1lrsKNIMonNCgOWUuSmZSVjLmIjJa0UFVoTY5tsi4UuCjIOWUp5xCyilPuYi8W38x6-ty3PDuHpJ2_R5W1PYP2vm5CgdUmdSmTDrBU-tEUrrSmjqpMmPgBwWYfRF5C4wx-Md490jNNBzGbq58inNSym9JRLZXvKOCPFiov9wbkdfrYTjJSETd2LZbKCz7IwXI1zIiT3tWW0-XIjwLojUi-YAJB-sZjjSXF75aOFjsIHaT5zcv6wW5hxuGWjnJt8nGct7Zl2BuLc2rcKb-ALYJLcI priority: 102 providerName: ProQuest |
Title | Tunneling Nanotubes and Gap Junctions–Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29089870 https://www.proquest.com/docview/2309332977 https://www.proquest.com/docview/1958542259 https://pasteur.hal.science/pasteur-03935195 https://pubmed.ncbi.nlm.nih.gov/PMC5651011 https://doaj.org/article/b2e205f432ef419f9ebd1c6bb3338615 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgkxAviG_CRmUkhIS0sDix8_GA0AbbqmmdUNVKfbPsxN4mlaRrGwR_BP8zd04aFpgQL3lI_BH57vy7832YkDcJt4VNdOwnmnOfpzzzFU8wRiyKclBgRe6y0kbn8XDKT2di9js9ul3A1a2mHd4nNV3O33-__vERBP4DWpyAt_u2_FqhF4FhNcIoiu6SbcClBMV0xDufAmjuriYli2Mwv0AxapyWt47QAylXyx-g5xIjJf9WQ_-MprwBT8cPyYNWr6QHDSM8IndM-ZjcG7We8yfk56TGiBYAKgobarWutVlRVRb0RC3oKYCb4z9_gn4DOq7mhl6V9KwqL_wxph9Qd3KIp_wYtkp7aSW0SXWkN-KP9miT3rTnpvjcOIGgF_rHcZ6nZHp8NPk09NurGPxchOnaB7PCRnGg0ZzKAwt4V4TCgnGmApaaHIwSATQPRCGUsNoad02VSINYW6VUxqNnZKusSvOCUJsIpeLE5oASPLVcAYqKhGeBDoMsCKxH9jdrL_O2TjlelzGXYK8gtaSjlkRqSUctj7zreiyaGh3_aHuI5OzaYXVt96JaXshWWKUOTRgIy6PQWM4ymxldsDzWGgZIQQX0yFtght4Yw4MzuVAgmPVSunRnlolvzCO7G36RG9aWITqfoxAUb4-87j6DVCMRVWmqeiWxBJDgsNdmHnnesFc3XYiuWthmPZL0GK_3P_0v5dWlqxwO2jtswezlf8y7Q-7jqiFMs2SXbK2XtXkF-tdaD8j24dH5l_HAnV_A82TGBk7UfgETYTK2 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKx4XBOXRQAEjARJSo83DzuOAUEtbtu3uCq22Um_GTuy2Upss-wD1xj_gwP_gR_FLmHGSpQGpt143iR3tjL-ZyTcPQl7FzOQmVpEbK8ZclrDUlSzGHLEwzMCB5ZmtSusPou4h2z_iR0vkV1MLg2mVDSZaoM7LDL-RdwKk7MIA3JX34y8uTo1CdrUZoVGpxYG--AYh2_Td3jbI93UQ7O6MPnTdeqqAm_EgmbngIZsw8hRGBplnALrzgBuIM6TnJzoD_5rD63s855IbZbSduMQTL1JGSpmyENa9QVYYrAFAsLK1M_g0bLAfogMeVmQohH5pxxTnJfIbPvZJDMOwZfzsjAAwaSeYgfm_e_tvluYls7d7j9yt_VW6WSnYfbKki1Vys5pgebFKbvVrbv4B-TGaY84MmEIKkF3O5kpPqSxy-lGO6T6YT6vhv7__HCE3QYflmaanBe2VxbE7xBIHar9OIpOAqbG0VbpCq3JKeinHaYNWJVQbdpPtimiCp5CDx50eksNrEcwjslyUhV4j1MRcyig2GVgilhgmwVLzmKWeCrzU84xDOo0cRFb3QseRHGcCYiKUnLCSEyg5YSXnkLeLJ8ZVH5Ar7t1C0S7uww7e9odycixqQBAq0IHHDQsDbZifmlSr3M8ipWCBBNxMh7wBxWit0d3sibGEwz-fCFtS7af8q--Q9UZ3RI0_U_H3tDjk5eIyIAcKURa6nE8FthniDPA8dcjjStUW2wVIBwOUOyRuKWHrfdpXitMT250cIgSAef_J1a_1gtzujvo90dsbHDwld_DPQ4_Aj9fJ8mwy18_A1Zup5_X5ouTzdR_pP65-ax0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVFRcEJSXocAiARJSrfix68cBoZY0pG0aVVEq9bbdtXfbSsUOeYB64x9w4N_wc_glzKzt0IDUW6-xvbYzs9_M-JsHIa9jZnITq8iNFWMuS1jqShZjjlgYZuDA8sxWpR0Mot4R2zvmxyvkV1MLg2mVDSZaoM7LDL-RtwOk7MIA3JW2qdMiDjvdD-MvLk6QQqa1GadRqci-vvwG4dv0_W4HZP0mCLo7o489t54w4GY8SGYueMsmjDyFUULmGYDxPOAGYg7p-YnOwNfm8Coez7nkRhltpy_xxIuUkVKmLIR1b5HVGKIir0VWt3cGh8PGDkCkwMOKGIUwMG2b4nOJXIePPRPDMFwyhHZeAJi3M8zG_N_V_Tdj84oJ7N4jd2vflW5VynafrOhindyupllerpO1g5qnf0B-jOaYPwNmkQJ8l7O50lMqi5x-kmO6B6bUavvv7z9HyFPQYXmh6XlB-2Vx6g6x3IHaL5XIKmCaLF0qY6FVaSW9ku-0Satyqk17k05FOsFVyMfjnR6SoxsRzCPSKspCPyHUxFzKKDYZWCWWGCbBavOYpZ4KvNTzjEPajRxEVvdFx_EcFwLiI5ScsJITKDlhJeeQd4srxlVPkGvO3UbRLs7Dbt72h3JyKmpwECrQgccNCwNtmJ-aVKvczyKlYIEEXE6HvAXFWFqjt9UXYwlAMJ8IW17tp_yr75CNRndEjUVT8XfnOOTV4jCgCApRFrqcTwW2HOIMsD11yONK1Ra3C5AaBlh3SLykhEvPs3ykOD-zncohWgDI959e_1gvyRpsZdHfHew_I3fwv0PnwI83SGs2mevn4PXN1It6e1FyctM7-g9iA29S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunneling+Nanotubes+and+Gap+Junctions-Their+Role+in+Long-Range+Intercellular+Communication+during+Development%2C+Health%2C+and+Disease+Conditions&rft.jtitle=Frontiers+in+molecular+neuroscience&rft.au=Ariazi%2C+Jennifer&rft.au=Benowitz%2C+Andrew&rft.au=De+Biasi%2C+Vern&rft.au=Den+Boer%2C+Monique+L&rft.date=2017-10-17&rft.issn=1662-5099&rft.eissn=1662-5099&rft.volume=10&rft.spage=333&rft_id=info:doi/10.3389%2Ffnmol.2017.00333&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5099&client=summon |