Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI

The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 1277 - 1286
Main Authors Chen, Xiaogang, Liu, Bingchuan, Wang, Yijun, Cui, Hongyan, Dong, Jianwei, Ma, Ruijuan, Li, Ning, Gao, Xiaorong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ±6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs.
AbstractList The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ±6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs.
The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ± 6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs.The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ± 6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs.
Author Li, Ning
Chen, Xiaogang
Ma, Ruijuan
Dong, Jianwei
Gao, Xiaorong
Liu, Bingchuan
Wang, Yijun
Cui, Hongyan
Author_xml – sequence: 1
  givenname: Xiaogang
  orcidid: 0000-0002-5334-1728
  surname: Chen
  fullname: Chen, Xiaogang
  email: chenxg@bme.cams.cn
  organization: Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
– sequence: 2
  givenname: Bingchuan
  orcidid: 0000-0001-5988-6051
  surname: Liu
  fullname: Liu, Bingchuan
  email: lbc14@tsinghua.org.cn
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Yijun
  orcidid: 0000-0002-8161-2150
  surname: Wang
  fullname: Wang, Yijun
  email: wangyj@semi.ac.cn
  organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Hongyan
  orcidid: 0000-0003-3131-6414
  surname: Cui
  fullname: Cui, Hongyan
  email: cuihy@bme.cams.cn
  organization: Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
– sequence: 5
  givenname: Jianwei
  surname: Dong
  fullname: Dong, Jianwei
  email: jwdong.nx@qq.com
  organization: People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
– sequence: 6
  givenname: Ruijuan
  surname: Ma
  fullname: Ma, Ruijuan
  email: hnsymrj@126.com
  organization: People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
– sequence: 7
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  email: ninglitju@163.com
  organization: People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
– sequence: 8
  givenname: Xiaorong
  orcidid: 0000-0003-0499-2740
  surname: Gao
  fullname: Gao, Xiaorong
  email: gxr-dea@tsinghua.edu.cn
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022899$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9v2yAUxdHUaf2zfoFpmiztpS9O4YINPK5R2kaq2ilp-4qwDRmRYzKwH7pPPxKnU9WHPXGEfufAvecUHXW-Mwh9IXhCCJaXj_fLxWwCGOiEAqNclB_QCSkKkWMg-GinKcsZBXyMTmNcY0x4WfBP6JhyDCCkPEHPD9vebdwf162yZVJDO8TsOpjfg-nql2yhu5WJmfUhuxpc2-wwnd261a98oXuzV2_w5fJ59jO_ms4_o49Wt9GcH84z9HQ9e5ze5ncPN_Ppj7u8LkD0eQlNGoRqKiirNRZgS0xlxRgnRJLKCitIJVhTNVjXADYJ2jQEuOSEpZOeofmY23i9VtvgNjq8KK-d2l_4sFI69K5ujUpxtpDCWigLJrAWtWYENJRSigJLnbIuxqxt8Gme2KuNi7VpW90ZP0Q1vipFSRL6_R269kPo0qSJ4rwQPG09Ud8O1FBtTPPve6_bT4AYgTr4GIOxqna97p3v-qBdqwhWu6LVvmi1K1odik5WeGd9Tf-v6etocsaYNwbMgKXF_wXafLBF
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3419013
crossref_primary_10_3390_a16110502
crossref_primary_10_1088_1741_2552_ad0b8f
crossref_primary_10_1109_LRA_2024_3392491
crossref_primary_10_3390_electronics13142770
crossref_primary_10_1038_s41597_024_03023_7
crossref_primary_10_1109_TNSRE_2025_3544308
crossref_primary_10_1016_j_eswa_2023_120815
crossref_primary_10_1088_1741_2552_acf242
crossref_primary_10_1109_JBHI_2024_3514794
crossref_primary_10_1016_j_bspc_2024_106868
crossref_primary_10_1109_TNSRE_2023_3308779
crossref_primary_10_1016_j_ifacsc_2024_100246
crossref_primary_10_1109_TCDS_2024_3392745
crossref_primary_10_1109_TNSRE_2024_3451015
crossref_primary_10_1088_1741_2552_adaa1e
crossref_primary_10_1109_TNSRE_2023_3328917
crossref_primary_10_1016_j_neuroimage_2024_120548
crossref_primary_10_1109_JBHI_2023_3321722
Cites_doi 10.1109/TNSRE.2022.3176615
10.1073/pnas.1508080112
10.1016/j.irbm.2022.04.003
10.1088/1741-2560/9/3/036008
10.1088/1741-2552/ab914e
10.1088/1741-2552/ac284a
10.1109/TNSRE.2020.2968579
10.1007/s11571-019-09523-2
10.1038/s41598-022-12733-0
10.1088/1741-2560/10/2/026014
10.3389/fnhum.2022.908050
10.1109/TBME.2002.803536
10.1016/j.cobme.2017.11.004
10.1163/156856897X00357
10.1038/s41598-019-55166-y
10.1109/TNSRE.2021.3114340
10.1109/TNSRE.2018.2874975
10.1109/TBME.2014.2300164
10.1016/j.bspc.2020.102022
10.3389/fnins.2021.599549
10.1109/TNSRE.2006.875576
10.3390/s140814601
10.3390/brainsci11010043
10.1109/TNSRE.2022.3183087
10.1016/j.tics.2021.04.003
10.1371/journal.pone.0112099
10.1109/TNSRE.2022.3179971
10.1088/1741-2552/ac0bfa
10.1016/S1388-2457(02)00057-3
10.3389/fnbot.2020.00025
10.1109/SMC.2019.8914634
10.3390/electronics8121554
10.1016/j.neucli.2018.10.068
10.1088/1741-2560/12/4/046008
10.1109/TNSRE.2017.2734164
10.1142/S0129065718500181
10.1088/1741-2552/ab2b7d
10.1109/TNSRE.2020.3038209
10.1186/1743-0003-8-39
10.1088/1741-2552/abf397
10.26599/BSA.2022.9050006
10.1109/TNSRE.2011.2121919
10.1088/1741-2552/aaf594
10.1109/TNSRE.2022.3208717
10.1016/j.compbiomed.2020.103729
10.1088/1741-2552/aa550d
10.1109/TBME.2017.2694818
10.1109/EMBC.2019.8856903
10.1038/s41597-022-01372-9
10.1080/2326263X.2014.944469
10.1109/TIFS.2019.2912272
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3243786
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1286
ExternalDocumentID oai_doaj_org_article_1bff598ff265480a8ca412a26998509a
37022899
10_1109_TNSRE_2023_3243786
10042460
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171473; U2241208
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Ningxia
  grantid: 2022CMG02026
  funderid: 10.13039/100016692
– fundername: Tianjin Municipal Science and Technology Plan Project
  grantid: 21JCYBJC01500
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC3602803
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c528t-62d1093a3834ca082f6039b4471191bf8f81b84dbd0ac22fdbd3dd1279714d123
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:25:39 EDT 2025
Fri Jul 11 07:42:47 EDT 2025
Fri Jul 25 02:45:31 EDT 2025
Sun Apr 06 01:21:17 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 00:43:27 EDT 2025
Wed Aug 27 02:18:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-62d1093a3834ca082f6039b4471191bf8f81b84dbd0ac22fdbd3dd1279714d123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3131-6414
0000-0001-5988-6051
0000-0003-0499-2740
0000-0002-5334-1728
0000-0002-8161-2150
OpenAccessLink https://doaj.org/article/1bff598ff265480a8ca412a26998509a
PMID 37022899
PQID 2777587432
PQPubID 85423
PageCount 10
ParticipantIDs proquest_journals_2777587432
proquest_miscellaneous_2797149861
doaj_primary_oai_doaj_org_article_1bff598ff265480a8ca412a26998509a
crossref_citationtrail_10_1109_TNSRE_2023_3243786
crossref_primary_10_1109_TNSRE_2023_3243786
pubmed_primary_37022899
ieee_primary_10042460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Goto (ref37) 2019; 15
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref25
  doi: 10.1109/TNSRE.2022.3176615
– ident: ref15
  doi: 10.1073/pnas.1508080112
– ident: ref43
  doi: 10.1016/j.irbm.2022.04.003
– ident: ref40
  doi: 10.1088/1741-2560/9/3/036008
– ident: ref19
  doi: 10.1088/1741-2552/ab914e
– ident: ref30
  doi: 10.1088/1741-2552/ac284a
– ident: ref35
  doi: 10.1109/TNSRE.2020.2968579
– ident: ref6
  doi: 10.1007/s11571-019-09523-2
– ident: ref48
  doi: 10.1038/s41598-022-12733-0
– ident: ref47
  doi: 10.1088/1741-2560/10/2/026014
– ident: ref12
  doi: 10.3389/fnhum.2022.908050
– ident: ref26
  doi: 10.1109/TBME.2002.803536
– ident: ref3
  doi: 10.1016/j.cobme.2017.11.004
– volume: 15
  start-page: 1521
  issue: 4
  year: 2019
  ident: ref37
  article-title: The effect of stimulus pattern, color combination and flicker frequency on steady-state visual evoked potentials topography
  publication-title: Int. J. Innov. Comput. Inf. Control
– ident: ref45
  doi: 10.1163/156856897X00357
– ident: ref50
  doi: 10.1038/s41598-019-55166-y
– ident: ref28
  doi: 10.1109/TNSRE.2021.3114340
– ident: ref34
  doi: 10.1109/TNSRE.2018.2874975
– ident: ref14
  doi: 10.1109/TBME.2014.2300164
– ident: ref36
  doi: 10.1016/j.bspc.2020.102022
– ident: ref8
  doi: 10.3389/fnins.2021.599549
– ident: ref29
  doi: 10.1109/TNSRE.2006.875576
– ident: ref5
  doi: 10.3390/s140814601
– ident: ref2
  doi: 10.3390/brainsci11010043
– ident: ref49
  doi: 10.1109/TNSRE.2022.3183087
– ident: ref9
  doi: 10.1016/j.tics.2021.04.003
– ident: ref38
  doi: 10.1371/journal.pone.0112099
– ident: ref13
  doi: 10.1109/TNSRE.2022.3179971
– ident: ref20
  doi: 10.1088/1741-2552/ac0bfa
– ident: ref1
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref10
  doi: 10.3389/fnbot.2020.00025
– ident: ref51
  doi: 10.1109/SMC.2019.8914634
– ident: ref44
  doi: 10.3390/electronics8121554
– ident: ref4
  doi: 10.1016/j.neucli.2018.10.068
– ident: ref16
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref33
  doi: 10.1109/TNSRE.2017.2734164
– ident: ref22
  doi: 10.1142/S0129065718500181
– ident: ref42
  doi: 10.1088/1741-2552/ab2b7d
– ident: ref23
  doi: 10.1109/TNSRE.2020.3038209
– ident: ref31
  doi: 10.1186/1743-0003-8-39
– ident: ref46
  doi: 10.1088/1741-2552/abf397
– ident: ref39
  doi: 10.26599/BSA.2022.9050006
– ident: ref32
  doi: 10.1109/TNSRE.2011.2121919
– ident: ref18
  doi: 10.1088/1741-2552/aaf594
– ident: ref27
  doi: 10.1109/TNSRE.2022.3208717
– ident: ref24
  doi: 10.1016/j.compbiomed.2020.103729
– ident: ref41
  doi: 10.1088/1741-2552/aa550d
– ident: ref17
  doi: 10.1109/TBME.2017.2694818
– ident: ref52
  doi: 10.1109/EMBC.2019.8856903
– ident: ref11
  doi: 10.1038/s41597-022-01372-9
– ident: ref21
  doi: 10.1080/2326263X.2014.944469
– ident: ref7
  doi: 10.1109/TIFS.2019.2912272
SSID ssj0017657
Score 2.5243208
Snippet The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1277
SubjectTerms BCI
Calibration
Electrodes
Electroencephalography
Encoding
Frequency modulation
Frequency ranges
High frequencies
high-frequency visual stimulation
Human-computer interface
Information transfer
Interfaces
Signal to noise ratio
SSVEP
Task analysis
Visual evoked potentials
Visual stimuli
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgT7xwHRAYyEjAC0oWO64dP9Kp1UCioLab9hY5vkgTo0Vr88B-PefYaVSQhniKlThxnM-X78Q-3yHkLXO6LoNSOQuyzIWyMA5a26K8ti1bH0wp0cH5y0yenonPF6OL3lk9-sJ47-PmM19gMq7lu7Xt8FfZMYsLdRIs9LtguSVnrWHJQMko6wk9WOSi4uXOQ6bUx8vZYj4pMFB4UaEAHzpO781CUay_j65yO9GME870AZntXjXtM_ledNu2sDd_qTj-d10ekvs99aQfU1t5RO741WPybl9mmC6TxgB9T-d_KHg_IedfYWz5cXkDMx1dQKq76jZ0ep02Yv-ic_RR2FBgwHTcB9qmhuImknwObDam9rIvFueTb_n45NMhOZtOlieneR-TIbcjXm9zyR0KUBkwbIU1wB8A4kq3AuY4sPzaUAfgwbVwrSuN5TxAonKOcaUVE3CsnpKD1XrlnxMKIDFpWBVag962rDa2lVbqyinhRlJkhO0wamxfXYybcdVEw6XUTcS1QVybHteMfBju-ZnkOv6Ze4zQDzlRajueAKSavuc2UKkw0nUIXKI2nqmtEYwbLsFQBbZlMnKI6O4Vl4DNyNGuJTX9uLBpuFJgoAFr4xl5M1yGHo3LNGbl1x3mwW-la8ky8iy1wOHhlUK9Iq1f3FLoS3IPK5j-ER2Rg-11518Ba9q2r2Nv-Q2wTg83
  priority: 102
  providerName: IEEE
Title Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI
URI https://ieeexplore.ieee.org/document/10042460
https://www.ncbi.nlm.nih.gov/pubmed/37022899
https://www.proquest.com/docview/2777587432
https://www.proquest.com/docview/2797149861
https://doaj.org/article/1bff598ff265480a8ca412a26998509a
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELbQ3hGwDQLbZKTBC_JmO64dP9Kp1UBioLab9mbZTiwhjQ6t7QP8eu4ctwoPwAtPsZJL4tydfXex7ztCTkVrG56MYSJpzpSJMA_GGBBeO_LQJc81Jjh_utKX1-rj7eh2UOoL94T18MA9485FSGlkm5QkVjjnvoleCemlhjgBjF12jcDmbYOpsn5gdMb4hOGsmKol36bLcHu-uJrPJmdYNfysRjQ-zKIemKSM3F9KrfzZ68zWZ_qEPC5uI33fd_cpedQtn5E3Q4hguujxAehbOvsNfXuf3HyGeeHb159gpegcWpu7zYpOH_pN1D_oDPMLVhS8VzouRbKpp7gBhM3AE82tAfl8fjP5wsYXHw7I9XSyuLhkpZ4CiyPZrJmWLYJHeQhKVfRg-0E8tQ0K7BNEbSE1CXzYRrWh5T5KmaBRt62Qxhqh4Fgfkr3l_bJ7QSjwVGgv6hQ8ZsqKxsego7Z1a1Q70qoiYstSF8vnYs2LO5eDDm5dFoNDMbgihoq8293zvYfa-Cv1GCW1o0SY7HwClMcV5XH_Up6KHKCcB6_DlWDNK3K0FbwrY3rlpDEQXIHHJSvyencZRiMusfhld79BGuSVbbSoyPNeYXYPrw1iDVn78n_0_BX-YOCc5Q2JR2Rv_bDpjsE9WoeTPBJOcibjLyTnBcE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFLbQOMAFGAwIjGEk4IKSxY5jx0c6tepgK6jtpt0sx4klxGjR2hy2X7_3nDQqSEOcYqVuHfez_b4X-32PkPes0kXqlYqZl2kslIN10LkS5bVdWtbephIDnE8ncnwmvlzkF12weoiFqes6HD6rEyyGvfxq6Rp8VXbIwkadBA_9Phj-nLXhWv2mgZJB2BPmsIhFxtNNjEyqD-eT2XSYYKrwJEMJPgyd3rJDQa6_y69yN9UMJmf0mEw2D9ueNPmZNOsycTd_6Tj-d2-ekEcd-aSf29GyS-7Vi6fkw7bQMJ23KgP0I53-oeH9jJx_g9Xl148bsHV0BqXmslnR0VV7FPuaTjFKYUWBA9NBl2qbWorHSOIp8NlQ2qo-m50Pv8eDo-M9cjYazo_GcZeVIXY5L9ax5BVKUFlwbYWzwCAA5EyXAqwc-H6lLzww4UJUZZVax7mHQlZVjCutmIBr9pzsLJaL-iWhABKTlmW-tBhvywrrSumkziolqlyKiLANRsZ13cXMGZcmuC6pNgFXg7iaDteIfOq_87sV7Phn7QFC39dEse1wA5Ay3dw10Cmf68J7LlEdzxbOCsYtl-CqAt-yEdlDdLeaa4GNyP5mJJluZVgZrhS4aMDbeETe9R_DnMaNGruolw3Wwf9KF5JF5EU7AvsfzxQqFmn96o5G35IH4_npiTk5nnx9TR5iZ9s3RvtkZ33V1G-AQ63LgzBzbgH3VhKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Stimulus+Frequency+Ranges+for+Building+a+High-Rate+High+Frequency+SSVEP-BCI&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Xiaogang&rft.au=Liu%2C+Bingchuan&rft.au=Wang%2C+Yijun&rft.au=Cui%2C+Hongyan&rft.date=2023-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=PP&rft_id=info:doi/10.1109%2FTNSRE.2023.3243786&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon