Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI
The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the e...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 1277 - 1286 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ±6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs. |
---|---|
AbstractList | The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ±6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs. The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ± 6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs.The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of high communication speed and smaller calibration time. The visual stimuli in the low- and medium-frequency ranges are adopted in most of the existing studies for eliciting SSVEPs. However, there is a need to further improve the comfort of these systems. The high-frequency visual stimuli have been used to build BCI systems and are generally considered to significantly improve the visual comfort, but their performance is relatively low. The distinguishability of 16-class SSVEPs encoded by the three frequency ranges, i.e., 31-34.75 Hz with an interval of 0.25 Hz, 31-38.5 Hz with an interval of 0.5 Hz, 31-46 Hz with an interval of 1 Hz, is explored in this study. We compare classification accuracy and information transfer rate (ITR) of the corresponding BCI system. According to the optimized frequency range, this study builds an online 16-target high frequency SSVEP-BCI and verifies the feasibility of the proposed system based on 21 healthy subjects. The BCI based on visual stimuli with the narrowest frequency range, i.e., 31-34.5 Hz, have the highest ITR. Therefore, the narrowest frequency range is adopted to build an online BCI system. An averaged ITR obtained from the online experiment is 153.79 ± 6.39 bits/min. These findings contribute to the development of more efficient and comfortable SSVEP-based BCIs. |
Author | Li, Ning Chen, Xiaogang Ma, Ruijuan Dong, Jianwei Gao, Xiaorong Liu, Bingchuan Wang, Yijun Cui, Hongyan |
Author_xml | – sequence: 1 givenname: Xiaogang orcidid: 0000-0002-5334-1728 surname: Chen fullname: Chen, Xiaogang email: chenxg@bme.cams.cn organization: Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China – sequence: 2 givenname: Bingchuan orcidid: 0000-0001-5988-6051 surname: Liu fullname: Liu, Bingchuan email: lbc14@tsinghua.org.cn organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China – sequence: 3 givenname: Yijun orcidid: 0000-0002-8161-2150 surname: Wang fullname: Wang, Yijun email: wangyj@semi.ac.cn organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Hongyan orcidid: 0000-0003-3131-6414 surname: Cui fullname: Cui, Hongyan email: cuihy@bme.cams.cn organization: Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China – sequence: 5 givenname: Jianwei surname: Dong fullname: Dong, Jianwei email: jwdong.nx@qq.com organization: People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China – sequence: 6 givenname: Ruijuan surname: Ma fullname: Ma, Ruijuan email: hnsymrj@126.com organization: People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China – sequence: 7 givenname: Ning surname: Li fullname: Li, Ning email: ninglitju@163.com organization: People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China – sequence: 8 givenname: Xiaorong orcidid: 0000-0003-0499-2740 surname: Gao fullname: Gao, Xiaorong email: gxr-dea@tsinghua.edu.cn organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37022899$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9v2yAUxdHUaf2zfoFpmiztpS9O4YINPK5R2kaq2ilp-4qwDRmRYzKwH7pPPxKnU9WHPXGEfufAvecUHXW-Mwh9IXhCCJaXj_fLxWwCGOiEAqNclB_QCSkKkWMg-GinKcsZBXyMTmNcY0x4WfBP6JhyDCCkPEHPD9vebdwf162yZVJDO8TsOpjfg-nql2yhu5WJmfUhuxpc2-wwnd261a98oXuzV2_w5fJ59jO_ms4_o49Wt9GcH84z9HQ9e5ze5ncPN_Ppj7u8LkD0eQlNGoRqKiirNRZgS0xlxRgnRJLKCitIJVhTNVjXADYJ2jQEuOSEpZOeofmY23i9VtvgNjq8KK-d2l_4sFI69K5ujUpxtpDCWigLJrAWtWYENJRSigJLnbIuxqxt8Gme2KuNi7VpW90ZP0Q1vipFSRL6_R269kPo0qSJ4rwQPG09Ud8O1FBtTPPve6_bT4AYgTr4GIOxqna97p3v-qBdqwhWu6LVvmi1K1odik5WeGd9Tf-v6etocsaYNwbMgKXF_wXafLBF |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2024_3419013 crossref_primary_10_3390_a16110502 crossref_primary_10_1088_1741_2552_ad0b8f crossref_primary_10_1109_LRA_2024_3392491 crossref_primary_10_3390_electronics13142770 crossref_primary_10_1038_s41597_024_03023_7 crossref_primary_10_1109_TNSRE_2025_3544308 crossref_primary_10_1016_j_eswa_2023_120815 crossref_primary_10_1088_1741_2552_acf242 crossref_primary_10_1109_JBHI_2024_3514794 crossref_primary_10_1016_j_bspc_2024_106868 crossref_primary_10_1109_TNSRE_2023_3308779 crossref_primary_10_1016_j_ifacsc_2024_100246 crossref_primary_10_1109_TCDS_2024_3392745 crossref_primary_10_1109_TNSRE_2024_3451015 crossref_primary_10_1088_1741_2552_adaa1e crossref_primary_10_1109_TNSRE_2023_3328917 crossref_primary_10_1016_j_neuroimage_2024_120548 crossref_primary_10_1109_JBHI_2023_3321722 |
Cites_doi | 10.1109/TNSRE.2022.3176615 10.1073/pnas.1508080112 10.1016/j.irbm.2022.04.003 10.1088/1741-2560/9/3/036008 10.1088/1741-2552/ab914e 10.1088/1741-2552/ac284a 10.1109/TNSRE.2020.2968579 10.1007/s11571-019-09523-2 10.1038/s41598-022-12733-0 10.1088/1741-2560/10/2/026014 10.3389/fnhum.2022.908050 10.1109/TBME.2002.803536 10.1016/j.cobme.2017.11.004 10.1163/156856897X00357 10.1038/s41598-019-55166-y 10.1109/TNSRE.2021.3114340 10.1109/TNSRE.2018.2874975 10.1109/TBME.2014.2300164 10.1016/j.bspc.2020.102022 10.3389/fnins.2021.599549 10.1109/TNSRE.2006.875576 10.3390/s140814601 10.3390/brainsci11010043 10.1109/TNSRE.2022.3183087 10.1016/j.tics.2021.04.003 10.1371/journal.pone.0112099 10.1109/TNSRE.2022.3179971 10.1088/1741-2552/ac0bfa 10.1016/S1388-2457(02)00057-3 10.3389/fnbot.2020.00025 10.1109/SMC.2019.8914634 10.3390/electronics8121554 10.1016/j.neucli.2018.10.068 10.1088/1741-2560/12/4/046008 10.1109/TNSRE.2017.2734164 10.1142/S0129065718500181 10.1088/1741-2552/ab2b7d 10.1109/TNSRE.2020.3038209 10.1186/1743-0003-8-39 10.1088/1741-2552/abf397 10.26599/BSA.2022.9050006 10.1109/TNSRE.2011.2121919 10.1088/1741-2552/aaf594 10.1109/TNSRE.2022.3208717 10.1016/j.compbiomed.2020.103729 10.1088/1741-2552/aa550d 10.1109/TBME.2017.2694818 10.1109/EMBC.2019.8856903 10.1038/s41597-022-01372-9 10.1080/2326263X.2014.944469 10.1109/TIFS.2019.2912272 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2023.3243786 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1286 |
ExternalDocumentID | oai_doaj_org_article_1bff598ff265480a8ca412a26998509a 37022899 10_1109_TNSRE_2023_3243786 10042460 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171473; U2241208 funderid: 10.13039/501100001809 – fundername: Key Research and Development Program of Ningxia grantid: 2022CMG02026 funderid: 10.13039/100016692 – fundername: Tianjin Municipal Science and Technology Plan Project grantid: 21JCYBJC01500 – fundername: National Key Research and Development Program of China grantid: 2022YFC3602803 funderid: 10.13039/501100012166 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c528t-62d1093a3834ca082f6039b4471191bf8f81b84dbd0ac22fdbd3dd1279714d123 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:25:39 EDT 2025 Fri Jul 11 07:42:47 EDT 2025 Fri Jul 25 02:45:31 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 00:43:27 EDT 2025 Wed Aug 27 02:18:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-62d1093a3834ca082f6039b4471191bf8f81b84dbd0ac22fdbd3dd1279714d123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3131-6414 0000-0001-5988-6051 0000-0003-0499-2740 0000-0002-5334-1728 0000-0002-8161-2150 |
OpenAccessLink | https://doaj.org/article/1bff598ff265480a8ca412a26998509a |
PMID | 37022899 |
PQID | 2777587432 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2777587432 proquest_miscellaneous_2797149861 doaj_primary_oai_doaj_org_article_1bff598ff265480a8ca412a26998509a crossref_citationtrail_10_1109_TNSRE_2023_3243786 crossref_primary_10_1109_TNSRE_2023_3243786 pubmed_primary_37022899 ieee_primary_10042460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 Goto (ref37) 2019; 15 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref25 doi: 10.1109/TNSRE.2022.3176615 – ident: ref15 doi: 10.1073/pnas.1508080112 – ident: ref43 doi: 10.1016/j.irbm.2022.04.003 – ident: ref40 doi: 10.1088/1741-2560/9/3/036008 – ident: ref19 doi: 10.1088/1741-2552/ab914e – ident: ref30 doi: 10.1088/1741-2552/ac284a – ident: ref35 doi: 10.1109/TNSRE.2020.2968579 – ident: ref6 doi: 10.1007/s11571-019-09523-2 – ident: ref48 doi: 10.1038/s41598-022-12733-0 – ident: ref47 doi: 10.1088/1741-2560/10/2/026014 – ident: ref12 doi: 10.3389/fnhum.2022.908050 – ident: ref26 doi: 10.1109/TBME.2002.803536 – ident: ref3 doi: 10.1016/j.cobme.2017.11.004 – volume: 15 start-page: 1521 issue: 4 year: 2019 ident: ref37 article-title: The effect of stimulus pattern, color combination and flicker frequency on steady-state visual evoked potentials topography publication-title: Int. J. Innov. Comput. Inf. Control – ident: ref45 doi: 10.1163/156856897X00357 – ident: ref50 doi: 10.1038/s41598-019-55166-y – ident: ref28 doi: 10.1109/TNSRE.2021.3114340 – ident: ref34 doi: 10.1109/TNSRE.2018.2874975 – ident: ref14 doi: 10.1109/TBME.2014.2300164 – ident: ref36 doi: 10.1016/j.bspc.2020.102022 – ident: ref8 doi: 10.3389/fnins.2021.599549 – ident: ref29 doi: 10.1109/TNSRE.2006.875576 – ident: ref5 doi: 10.3390/s140814601 – ident: ref2 doi: 10.3390/brainsci11010043 – ident: ref49 doi: 10.1109/TNSRE.2022.3183087 – ident: ref9 doi: 10.1016/j.tics.2021.04.003 – ident: ref38 doi: 10.1371/journal.pone.0112099 – ident: ref13 doi: 10.1109/TNSRE.2022.3179971 – ident: ref20 doi: 10.1088/1741-2552/ac0bfa – ident: ref1 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref10 doi: 10.3389/fnbot.2020.00025 – ident: ref51 doi: 10.1109/SMC.2019.8914634 – ident: ref44 doi: 10.3390/electronics8121554 – ident: ref4 doi: 10.1016/j.neucli.2018.10.068 – ident: ref16 doi: 10.1088/1741-2560/12/4/046008 – ident: ref33 doi: 10.1109/TNSRE.2017.2734164 – ident: ref22 doi: 10.1142/S0129065718500181 – ident: ref42 doi: 10.1088/1741-2552/ab2b7d – ident: ref23 doi: 10.1109/TNSRE.2020.3038209 – ident: ref31 doi: 10.1186/1743-0003-8-39 – ident: ref46 doi: 10.1088/1741-2552/abf397 – ident: ref39 doi: 10.26599/BSA.2022.9050006 – ident: ref32 doi: 10.1109/TNSRE.2011.2121919 – ident: ref18 doi: 10.1088/1741-2552/aaf594 – ident: ref27 doi: 10.1109/TNSRE.2022.3208717 – ident: ref24 doi: 10.1016/j.compbiomed.2020.103729 – ident: ref41 doi: 10.1088/1741-2552/aa550d – ident: ref17 doi: 10.1109/TBME.2017.2694818 – ident: ref52 doi: 10.1109/EMBC.2019.8856903 – ident: ref11 doi: 10.1038/s41597-022-01372-9 – ident: ref21 doi: 10.1080/2326263X.2014.944469 – ident: ref7 doi: 10.1109/TIFS.2019.2912272 |
SSID | ssj0017657 |
Score | 2.5243208 |
Snippet | The brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) have been extensively explored due to their advantages in terms of... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1277 |
SubjectTerms | BCI Calibration Electrodes Electroencephalography Encoding Frequency modulation Frequency ranges High frequencies high-frequency visual stimulation Human-computer interface Information transfer Interfaces Signal to noise ratio SSVEP Task analysis Visual evoked potentials Visual stimuli Visualization |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgT7xwHRAYyEjAC0oWO64dP9Kp1UCioLab9hY5vkgTo0Vr88B-PefYaVSQhniKlThxnM-X78Q-3yHkLXO6LoNSOQuyzIWyMA5a26K8ti1bH0wp0cH5y0yenonPF6OL3lk9-sJ47-PmM19gMq7lu7Xt8FfZMYsLdRIs9LtguSVnrWHJQMko6wk9WOSi4uXOQ6bUx8vZYj4pMFB4UaEAHzpO781CUay_j65yO9GME870AZntXjXtM_ledNu2sDd_qTj-d10ekvs99aQfU1t5RO741WPybl9mmC6TxgB9T-d_KHg_IedfYWz5cXkDMx1dQKq76jZ0ep02Yv-ic_RR2FBgwHTcB9qmhuImknwObDam9rIvFueTb_n45NMhOZtOlieneR-TIbcjXm9zyR0KUBkwbIU1wB8A4kq3AuY4sPzaUAfgwbVwrSuN5TxAonKOcaUVE3CsnpKD1XrlnxMKIDFpWBVag962rDa2lVbqyinhRlJkhO0wamxfXYybcdVEw6XUTcS1QVybHteMfBju-ZnkOv6Ze4zQDzlRajueAKSavuc2UKkw0nUIXKI2nqmtEYwbLsFQBbZlMnKI6O4Vl4DNyNGuJTX9uLBpuFJgoAFr4xl5M1yGHo3LNGbl1x3mwW-la8ky8iy1wOHhlUK9Iq1f3FLoS3IPK5j-ER2Rg-11518Ba9q2r2Nv-Q2wTg83 priority: 102 providerName: IEEE |
Title | Optimizing Stimulus Frequency Ranges for Building a High-Rate High Frequency SSVEP-BCI |
URI | https://ieeexplore.ieee.org/document/10042460 https://www.ncbi.nlm.nih.gov/pubmed/37022899 https://www.proquest.com/docview/2777587432 https://www.proquest.com/docview/2797149861 https://doaj.org/article/1bff598ff265480a8ca412a26998509a |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELbQ3hGwDQLbZKTBC_JmO64dP9Kp1UBioLab9mbZTiwhjQ6t7QP8eu4ctwoPwAtPsZJL4tydfXex7ztCTkVrG56MYSJpzpSJMA_GGBBeO_LQJc81Jjh_utKX1-rj7eh2UOoL94T18MA9485FSGlkm5QkVjjnvoleCemlhjgBjF12jcDmbYOpsn5gdMb4hOGsmKol36bLcHu-uJrPJmdYNfysRjQ-zKIemKSM3F9KrfzZ68zWZ_qEPC5uI33fd_cpedQtn5E3Q4hguujxAehbOvsNfXuf3HyGeeHb159gpegcWpu7zYpOH_pN1D_oDPMLVhS8VzouRbKpp7gBhM3AE82tAfl8fjP5wsYXHw7I9XSyuLhkpZ4CiyPZrJmWLYJHeQhKVfRg-0E8tQ0K7BNEbSE1CXzYRrWh5T5KmaBRt62Qxhqh4Fgfkr3l_bJ7QSjwVGgv6hQ8ZsqKxsego7Z1a1Q70qoiYstSF8vnYs2LO5eDDm5dFoNDMbgihoq8293zvYfa-Cv1GCW1o0SY7HwClMcV5XH_Up6KHKCcB6_DlWDNK3K0FbwrY3rlpDEQXIHHJSvyencZRiMusfhld79BGuSVbbSoyPNeYXYPrw1iDVn78n_0_BX-YOCc5Q2JR2Rv_bDpjsE9WoeTPBJOcibjLyTnBcE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFLbQOMAFGAwIjGEk4IKSxY5jx0c6tepgK6jtpt0sx4klxGjR2hy2X7_3nDQqSEOcYqVuHfez_b4X-32PkPes0kXqlYqZl2kslIN10LkS5bVdWtbephIDnE8ncnwmvlzkF12weoiFqes6HD6rEyyGvfxq6Rp8VXbIwkadBA_9Phj-nLXhWv2mgZJB2BPmsIhFxtNNjEyqD-eT2XSYYKrwJEMJPgyd3rJDQa6_y69yN9UMJmf0mEw2D9ueNPmZNOsycTd_6Tj-d2-ekEcd-aSf29GyS-7Vi6fkw7bQMJ23KgP0I53-oeH9jJx_g9Xl148bsHV0BqXmslnR0VV7FPuaTjFKYUWBA9NBl2qbWorHSOIp8NlQ2qo-m50Pv8eDo-M9cjYazo_GcZeVIXY5L9ax5BVKUFlwbYWzwCAA5EyXAqwc-H6lLzww4UJUZZVax7mHQlZVjCutmIBr9pzsLJaL-iWhABKTlmW-tBhvywrrSumkziolqlyKiLANRsZ13cXMGZcmuC6pNgFXg7iaDteIfOq_87sV7Phn7QFC39dEse1wA5Ay3dw10Cmf68J7LlEdzxbOCsYtl-CqAt-yEdlDdLeaa4GNyP5mJJluZVgZrhS4aMDbeETe9R_DnMaNGruolw3Wwf9KF5JF5EU7AvsfzxQqFmn96o5G35IH4_npiTk5nnx9TR5iZ9s3RvtkZ33V1G-AQ63LgzBzbgH3VhKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Stimulus+Frequency+Ranges+for+Building+a+High-Rate+High+Frequency+SSVEP-BCI&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Chen%2C+Xiaogang&rft.au=Liu%2C+Bingchuan&rft.au=Wang%2C+Yijun&rft.au=Cui%2C+Hongyan&rft.date=2023-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=PP&rft_id=info:doi/10.1109%2FTNSRE.2023.3243786&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |