Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Zea mays

Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to lo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 9; p. 1295
Main Authors Maarastawi, Sarah A., Frindte, Katharina, Linnartz, Marius, Knief, Claudia
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 15.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice-rice (RR), maize-maize (MM), maize-rice (MR)] and to rice straw application in the soil and rhizosphere of maize. was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111-0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.
AbstractList Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice-rice (RR), maize-maize (MM), maize-rice (MR)] and to rice straw application in the soil and rhizosphere of maize. Zea mays was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; R = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and R = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111-0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice-rice (RR), maize-maize (MM), maize-rice (MR)] and to rice straw application in the soil and rhizosphere of maize. Zea mays was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; R = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and R = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111-0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.
Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice-rice (RR), maize-maize (MM), maize-rice (MR)] and to rice straw application in the soil and rhizosphere of maize. was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111-0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.
Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice–rice (RR), maize–maize (MM), maize–rice (MR)] and to rice straw application in the soil and rhizosphere of maize. Zea mays was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; R = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and R = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111–0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.
Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption and high methane emissions. To diminish these problems, crop rotation between paddy rice and maize is introduced in Asia, but can lead to losses of carbon and water by the formation of desiccation cracks. To counteract these problems rice straw can be applied. We analyzed soil microbial responses to different crop rotation systems [rice–rice (RR), maize–maize (MM), maize–rice (MR)] and to rice straw application in the soil and rhizosphere of maize. Zea mays was grown in microcosms using soils from different field locations, each including different crop rotation regimes. The bacterial and fungal community composition was analyzed by 16S rRNA gene and ITS based amplicon sequencing in the bulk soil and rhizosphere. The microbiota was clearly different in soils from the different field locations (analysis of similarity, ANOSIM: R = 0.516 for the bacterial community; R = 0.817 for the fungal community). Within the field locations, crop rotation contributed differently to the variation in microbial community composition. Strong differences were observed in communities inhabiting soils under monosuccession (RR vs. MM) (ANOSIM: R = 0.923 for the bacterial and R = 0.714 for the fungal community), while the communities in soils undergoing MR crop rotation were more similar to those of the corresponding RR soils (ANOSIM: R = 0.111–0.175). The observed differences could be explained by altered oxygen availabilities in RR and MR soils, resulting in an enrichment of anaerobic bacteria in the soils, and the presence of the different crops, leading to the enrichment of host-plant specific microbial communities. The responses of the microbial communities to the application of rice straw in the microcosms were rather weak compared to the other factors. The taxa responding in bulk soil and rhizosphere were mostly distinct. In conclusion, this study revealed that the different agricultural management practices affect microbial community composition to different extent, not only in the bulk soil but also in the rhizosphere, and that the microbial responses in bulk soil and rhizosphere are distinct.
Author Knief, Claudia
Maarastawi, Sarah A.
Linnartz, Marius
Frindte, Katharina
AuthorAffiliation Institute of Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, University of Bonn , Bonn , Germany
AuthorAffiliation_xml – name: Institute of Crop Science and Resource Conservation (INRES), Molecular Biology of the Rhizosphere, University of Bonn , Bonn , Germany
Author_xml – sequence: 1
  givenname: Sarah A.
  surname: Maarastawi
  fullname: Maarastawi, Sarah A.
– sequence: 2
  givenname: Katharina
  surname: Frindte
  fullname: Frindte, Katharina
– sequence: 3
  givenname: Marius
  surname: Linnartz
  fullname: Linnartz, Marius
– sequence: 4
  givenname: Claudia
  surname: Knief
  fullname: Knief, Claudia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29963033$$D View this record in MEDLINE/PubMed
BookMark eNp1kkFv1DAQhSNUREvpnRPykcsuYydxkgtStYKyUhGoBQlxsSbOpDuVE4c4C2pP_HS8mxa1SPhgW-P3vpE873ly0PuekuSlhGWaltWbtmNbLxXIcglSVfmT5EhqnS1SUN8OHtwPk5MQriGuDFTcnyWHqqp0Cml6lPxejX4QF37CiX0vsG_E5TTiL3E6DI7tXF13A9pJfGQ7-prRiZXvum3PE1MQHN8ndIyz-_OGHQ8D9yQuPbuwL04bEhcbvvVh2NBIwrfiO6Ho8Ca8SJ626AKd3J3Hydf3776sPizOP52tV6fnC5urclrklUwt1jpXRYU5WFC6KAFQtqCxxDzLak2oCsCilliWWZVppYg05bYumyI9TtYzt_F4bYaROxxvjEc2-4IfrwyOE1tHpmiASJZlQ5nMCFusq6y1RSWpQEuIkfV2Zg3buqPGUh-_zD2CPn7peWOu_E-jQaYFVBHw-g4w-h9bCpPpOFhyDnvy22AU6J0uB4jSVw97_W1yP8Io0LMgDieEkVpjeZ5mbM3OSDC7uJh9XMwuLmYfl2iEf4z37P9a_gBSocWj
CitedBy_id crossref_primary_10_3390_life12122048
crossref_primary_10_31083_j_fbl2706195
crossref_primary_10_3390_microorganisms12112371
crossref_primary_10_1016_j_apsoil_2019_103488
crossref_primary_10_1071_CP20145
crossref_primary_10_1111_ejss_13014
crossref_primary_10_1002_agg2_20031
crossref_primary_10_3389_fmicb_2019_01811
crossref_primary_10_1016_j_scitotenv_2021_152163
crossref_primary_10_1016_j_wse_2021_11_001
crossref_primary_10_1093_femsec_fiz009
crossref_primary_10_1186_s13213_022_01673_9
crossref_primary_10_7717_peerj_6171
crossref_primary_10_1007_s42832_024_0261_3
crossref_primary_10_1016_j_apsoil_2020_103733
crossref_primary_10_1016_j_micres_2020_126690
crossref_primary_10_1002_ldr_4420
crossref_primary_10_1002_ldr_4862
crossref_primary_10_1016_j_apsoil_2019_103374
crossref_primary_10_1016_j_gecco_2021_e01521
crossref_primary_10_1007_s11356_023_28266_6
crossref_primary_10_1094_PHYTOFR_04_21_0026_RVW
crossref_primary_10_1016_j_indcrop_2020_112761
crossref_primary_10_1007_s10725_022_00936_4
crossref_primary_10_3390_plants11060824
crossref_primary_10_3389_fmicb_2024_1358257
crossref_primary_10_3390_agronomy14051025
crossref_primary_10_3390_microorganisms7020057
crossref_primary_10_3389_fsoil_2022_832600
crossref_primary_10_1016_j_geoderma_2020_114544
crossref_primary_10_3389_fpls_2021_779302
crossref_primary_10_3390_microorganisms10030667
crossref_primary_10_1038_s41598_020_73938_9
crossref_primary_10_1038_s41598_020_69623_6
crossref_primary_10_1080_15592324_2022_2104004
crossref_primary_10_1038_s41396_023_01453_6
crossref_primary_10_1038_s41598_020_64857_w
crossref_primary_10_1094_PDIS_09_23_1722_RE
crossref_primary_10_1166_jbmb_2021_2027
crossref_primary_10_1016_j_soilbio_2019_05_007
crossref_primary_10_1016_j_apsoil_2022_104772
crossref_primary_10_1016_j_apsoil_2022_104498
crossref_primary_10_1093_bioadv_vbad059
crossref_primary_10_3390_microorganisms12050938
crossref_primary_10_3390_plants12244153
crossref_primary_10_1094_PHP_08_20_0069_RV
crossref_primary_10_1093_bioinformatics_btaa971
crossref_primary_10_1094_PDIS_04_19_0833_RE
crossref_primary_10_1038_s41598_023_42291_y
crossref_primary_10_1016_j_apsoil_2020_103510
crossref_primary_10_3389_fmicb_2022_982109
crossref_primary_10_1016_j_apsoil_2021_104167
crossref_primary_10_3389_fmicb_2020_588198
crossref_primary_10_1016_j_apsoil_2021_104120
crossref_primary_10_1016_j_chemosphere_2022_137101
crossref_primary_10_1016_j_jenvman_2023_117927
crossref_primary_10_1016_j_gecco_2020_e01118
crossref_primary_10_1016_j_pedsph_2024_05_012
crossref_primary_10_1016_j_jia_2023_01_006
crossref_primary_10_3389_fsufs_2021_624242
crossref_primary_10_1016_j_scitotenv_2024_171191
crossref_primary_10_1371_journal_pone_0270944
crossref_primary_10_3390_agronomy10060888
crossref_primary_10_1016_j_soilbio_2018_09_028
crossref_primary_10_1111_gcbb_12845
crossref_primary_10_1007_s00203_024_04219_6
crossref_primary_10_3389_fmicb_2023_1239855
crossref_primary_10_1007_s13762_024_06209_z
crossref_primary_10_1155_2023_8861216
crossref_primary_10_1007_s00248_021_01717_8
crossref_primary_10_3389_fmicb_2021_632280
crossref_primary_10_1007_s12010_023_04527_5
Cites_doi 10.3389/fmicb.2012.00004
10.1016/j.soilbio.2014.03.023
10.1111/j.1574-6941.2009.00654.x
10.1016/j.agee.2015.04.029
10.1111/j.1364-3703.2011.00764.x
10.1128/AEM.00702-09
10.1371/journal.pone.0130672
10.1111/j.1758-2229.2011.00267.x
10.1007/s00248-015-0633-4
10.1111/j.1747-0765.2007.00177.x
10.3389/fmicb.2016.01207
10.1146/annurev-arplant-050312-120106
10.1007/s10021-013-9650-7
10.1128/mSystems.00075-16
10.1038/s41598-017-15955-9
10.1371/journal.pone.0061217
10.1186/1471-2164-14-274
10.1093/bioinformatics/btv401
10.3389/fmicb.2017.00945
10.1007/s10333-005-0031-5
10.1093/bioinformatics/btq041
10.1146/annurev-phyto-080508-081923
10.1139/W07-010
10.1007/s13225-013-0263-4
10.1007/s11104-004-1829-4
10.2134/jeq2016.04.0125
10.1128/AEM.03209-14
10.1007/s00248-013-0322-0
10.1626/pps.8.231
10.1016/S1002-0160(10)60040-9
10.1016/j.ympev.2006.05.031
10.1038/ismej.2014.194
10.1111/j.1462-2920.2006.01197.x
10.1016/j.soilbio.2008.10.024
10.1111/1462-2920.13041
10.3389/fmicb.2014.00752
10.1093/nar/28.1.173
10.14806/ej.17.1.200
10.3389/fmicb.2017.00630
10.1264/jsme2.ME13030
10.1016/S0167-1987(00)00125-2
10.3389/fmicb.2017.00902
10.1016/j.soilbio.2013.12.002
10.1016/j.soilbio.2011.09.003
10.1016/j.soilbio.2009.10.009
10.1016/j.soilbio.2013.10.017
10.1007/s10705-014-9658-1
10.2307/3761589
10.1016/j.cosust.2012.06.004
10.1073/pnas.1414592112
10.1016/j.soilbio.2010.12.016
10.3389/fpls.2017.00870
10.1111/j.1462-2920.2004.00700.x
10.1016/j.mycres.2008.01.025
10.1073/pnas.1302837110
10.1128/AEM.67.10.4742
10.1007/s00374-003-0658-6
10.1128/AEM.71.10.5710
10.1016/j.apsoil.2015.11.009
10.7872/crym/v37.iss1.2016.75
10.1038/ismej.2010.171
10.1111/j.1365-294X.1993.tb00005.x
10.1111/j.1462-2920.2006.01028.x
10.1007/s00253-013-5213-2
10.1016/j.biortech.2015.08.089
10.1016/j.agee.2013.11.019
10.1103/PhysRevB.77.220407
10.1007/s12275-012-2409-6
10.1111/j.1365-3040.2009.01926.x
10.1038/ismej.2012.53
10.1016/0167-8809(92)90081-L
10.1038/ismej.2015.254
10.1038/nature11237
10.1016/j.ejsobi.2009.07.006
10.1016/j.soilbio.2012.02.016
10.1111/1574-6941.12253
10.11646/phytotaxa.297.1.2
10.1007/s00248-015-0689-1
10.3852/12-353
10.1038/ismej.2011.192
10.1038/nmeth.2604
10.1016/j.soilbio.2017.04.003
10.1111/j.1574-6941.2011.01224.x
10.1111/1365-2435.12512
10.1111/j.1469-8137.2009.03160.x
10.1038/srep27756
10.1002/9781118297674.ch16
10.1016/S0065-2113(09)01005-0
10.1038/s41598-017-04213-7
10.1146/annurev.arplant.57.032905.105159
10.1111/j.1758-2229.2009.00038.x
ContentType Journal Article
Copyright Copyright © 2018 Maarastawi, Frindte, Linnartz and Knief. 2018 Maarastawi, Frindte, Linnartz and Knief
Copyright_xml – notice: Copyright © 2018 Maarastawi, Frindte, Linnartz and Knief. 2018 Maarastawi, Frindte, Linnartz and Knief
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2018.01295
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_7d0ee188de414eafab94fc791e7aceaa
PMC6013709
29963033
10_3389_fmicb_2018_01295
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-5913cab65279a50c0267800a1f06a8a544b6ea270a7b1a88494622ee6e5cb8d73
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:25:43 EDT 2025
Thu Aug 21 14:35:40 EDT 2025
Fri Jul 11 16:47:43 EDT 2025
Thu Apr 03 07:01:49 EDT 2025
Tue Jul 01 00:55:08 EDT 2025
Thu Apr 24 22:50:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords paddy soil
Zea mays
fungal community
rice straw
crop rotation
bacterial community
rhizosphere
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-5913cab65279a50c0267800a1f06a8a544b6ea270a7b1a88494622ee6e5cb8d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Sara Hallin, Swedish University of Agricultural Sciences, Sweden
This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology
Reviewed by: Radha Prasanna, Indian Agricultural Research Institute (ICAR), India; Sven Marhan, University of Hohenheim, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2018.01295
PMID 29963033
PQID 2063709500
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7d0ee188de414eafab94fc791e7aceaa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6013709
proquest_miscellaneous_2063709500
pubmed_primary_29963033
crossref_citationtrail_10_3389_fmicb_2018_01295
crossref_primary_10_3389_fmicb_2018_01295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hernández (B38) 2015; 81
Maidak (B55) 2000; 28
Cabangon (B19) 2000; 56
Hyde (B41) 2013; 63
White (B89) 1990
Letcher (B49) 2008; 112
Parks (B65) 2010; 26
Liu (B51) 2014; 184
Breidenbach (B15) 2015; 5
Dick (B27) 1992; 40
Conrad (B23) 2009; 1
Pascault (B66) 2013; 16
Pausch (B67) 2016; 30
Zhao (B94) 2013; 14
Wang (B83) 2015; 9
Geisseler (B35) 2014; 75
Castellanos (B20) 2009; 45
Smalla (B76) 2001; 67
Lu (B53) 2006; 8
Noll (B62) 2005; 7
Tuong (B79) 2005; 8
Dini-Andreote (B28) 2016; 10
Itoh (B42) 2013; 28
Ladygina (B47) 2010; 42
Lundberg (B54) 2012; 488
Crowther (B25) 2012; 6
Shrestha (B75) 2011; 3
Bilal (B12) 2017; 8
Edgar (B29) 2013; 10
Martin (B56) 2011; 17
McMurdie (B57) 2013; 8
Azziz (B3) 2016; 100
Tardy (B77) 2015; 10
Wang (B86) 2016; 7
Knief (B46) 2012; 6
Zhang (B91) 2016; 71
Gardes (B34) 1993; 2
Bulgarelli (B18) 2013; 64
Edgar (B30) 2015; 31
Kjøller (B45) 2002; 1
Breidenbach (B14) 2015; 18
Fan (B32) 2014; 70
Uroz (B80) 2016; 6
Wang (B84) 2017; 8
Lopes (B52) 2014; 87
Qiao (B71) 2017; 7
Zhao (B92) 2014; 67
Semenov (B74) 2012; 49
Li (B50) 2014; 68
Murase (B58) 2012; 79
Weller (B88) 2015; 101
Bais (B6) 2006; 57
Bates (B8) 2011; 5
Badri (B4) 2009; 32
Berg (B10) 2009; 68
Hussain (B40) 2009; 102
Benitez (B9) 2017; 7
Ahn (B2) 2012; 50
Papizadeh (B64) 2017; 297
Zhang (B90) 2015; 197
Rui (B73) 2009; 75
Na Bhadalung (B59) 2005; 270
Colombo (B22) 2017; 46
Nakamura (B60) 2003; 38
Bernard (B11) 2007; 9
Da Rocha (B26) 2013; 1
Brefort (B13) 2009; 47
Vélez (B82) 2013; 105
Oksanen (B63) 2016
Edwards (B31) 2015; 112
Granzow (B36) 2017; 8
Thiele-Bruhn (B78) 2012; 4
Forster (B33) 2007; 30
Brizzio (B16) 2007; 53
Wang (B85) 2014; 98
Abarenkov (B1) 2010; 186
Qiang (B70) 2012; 13
Conrad (B24) 2012; 3
He (B37) 2015; 210
Huo (B39) 2017; 111
Kikuchi (B44) 2007; 53
Reblova (B72) 2000; 92
Bastian (B7) 2009; 41
Lee (B48) 2011; 43
Chen (B21) 2010; 20
Peiffer (B68) 2013; 110
Bai (B5) 2017; 8
Brockett (B17) 2012; 44
Wang (B87) 2006; 41
Ke (B43) 2015; 70
Neufeld (B61) 2005; 71
Phukhamsakda (B69) 2016; 37
Zhao (B93) 2016; 1
Van Nguyen (B81) 2006; 4
22291691 - Front Microbiol. 2012 Jan 20;3:4
23765881 - Environ Microbiol Rep. 2009 Oct;1(5):285-92
24005888 - Microbes Environ. 2013;28(3):370-80
11571180 - Appl Environ Microbiol. 2001 Oct;67(10):4742-51
22717883 - ISME J. 2012 Nov;6(11):1992-2001
21085198 - ISME J. 2011 May;5(5):908-17
28611735 - Front Microbiol. 2017 May 29;8:902
19508698 - FEMS Microbiol Ecol. 2009 Sep;69(3):313-28
17612608 - Can J Microbiol. 2007 Apr;53(4):519-25
26102585 - PLoS One. 2015 Jun 23;10(6):e0130672
28446904 - Front Microbiol. 2017 Apr 12;8:630
26492897 - Microb Ecol. 2016 Apr;71(3):543-54
27302652 - Sci Rep. 2016 Jun 15;6:27756
24276539 - Microb Ecol. 2014 Feb;67(2):443-53
19143988 - Plant Cell Environ. 2009 Jun;32(6):666-81
22111580 - Mol Plant Pathol. 2012 Jun;13(5):508-18
29146930 - Sci Rep. 2017 Nov 16;7(1):15709
23630581 - PLoS One. 2013 Apr 22;8(4):e61217
25616793 - Appl Environ Microbiol. 2015 Mar;81(6):2244-53
15683399 - Environ Microbiol. 2005 Mar;7(3):382-95
27536292 - Front Microbiol. 2016 Aug 03;7:1207
28177408 - J Environ Qual. 2017 Jan;46(1):227-231
22189496 - ISME J. 2012 Jul;6(7):1378-90
25605935 - Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20
23955772 - Nat Methods. 2013 Oct;10(10):996-8
16837216 - Mol Phylogenet Evol. 2006 Nov;41(2):295-312
24092004 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2765-78
28611799 - Front Plant Sci. 2017 May 29;8:870
23373698 - Annu Rev Plant Biol. 2013;64:807-38
18501579 - Mycol Res. 2008 Jul;112(Pt 7):759-82
24245591 - FEMS Microbiol Ecol. 2014 Mar;87(3):650-63
16204479 - Appl Environ Microbiol. 2005 Oct;71(10):5710-8
26824176 - ISME J. 2016 Aug;10(8):1984-97
17298374 - Environ Microbiol. 2007 Mar;9(3):752-64
19400641 - Annu Rev Phytopathol. 2009;47:423-45
20409185 - New Phytol. 2010 Apr;186(2):281-5
26139637 - Bioinformatics. 2015 Nov 1;31(21):3476-82
22092599 - FEMS Microbiol Ecol. 2012 Feb;79(2):371-9
28638057 - Sci Rep. 2017 Jun 21;7(1):3940
23124742 - J Microbiol. 2012 Oct;50(5):754-65
19465536 - Appl Environ Microbiol. 2009 Jul;75(14):4879-86
19243436 - FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
23761339 - Environ Microbiol Rep. 2011 Oct;3(5):587-96
25303715 - ISME J. 2015 May;9(5):1062-75
16872399 - Environ Microbiol. 2006 Aug;8(8):1351-60
10592216 - Nucleic Acids Res. 2000 Jan 1;28(1):173-4
16669762 - Annu Rev Plant Biol. 2006;57:233-66
26054702 - Microb Ecol. 2015 Nov;70(4):961-70
23709524 - Mycologia. 2013 Sep-Oct;105(5):1251-65
27822546 - mSystems. 2016 Jul 12;1(4)
20130030 - Bioinformatics. 2010 Mar 15;26(6):715-21
26337675 - Environ Microbiol. 2016 Sep;18(9):2868-85
23617724 - BMC Genomics. 2013 Apr 23;14:274
23576752 - Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53
28611747 - Front Microbiol. 2017 May 29;8:945
25620960 - Front Microbiol. 2015 Jan 08;5:752
26342338 - Bioresour Technol. 2015 Dec;197:266-75
22859206 - Nature. 2012 Aug 2;488(7409):86-90
8180733 - Mol Ecol. 1993 Apr;2(2):113-8
References_xml – volume: 3
  year: 2012
  ident: B24
  article-title: Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00004
– volume: 1
  start-page: 267
  year: 2002
  ident: B45
  article-title: Fungal communities, succession, enzymes, and decomposition.
  publication-title: Enzym. Environ. Act. Ecol. Appl.
– start-page: 315
  year: 1990
  ident: B89
  article-title: “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in
  publication-title: PCR Protocols: A Guide to Methods and Applications
– volume: 75
  start-page: 54
  year: 2014
  ident: B35
  article-title: Long-term effects of mineral fertilizers on soil microorganisms - a review.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.03.023
– volume: 68
  start-page: 1
  year: 2009
  ident: B10
  article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00654.x
– volume: 210
  start-page: 15
  year: 2015
  ident: B37
  article-title: Carbon release from rice roots under paddy rice and maize-paddy rice cropping.
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.04.029
– volume: 13
  start-page: 508
  year: 2012
  ident: B70
  article-title: Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range.
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2011.00764.x
– volume: 75
  start-page: 4879
  year: 2009
  ident: B73
  article-title: Succession of bacterial populations during plant residue decomposition in rice field soil.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00702-09
– volume: 10
  year: 2015
  ident: B77
  article-title: Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130672
– volume: 3
  start-page: 587
  year: 2011
  ident: B75
  article-title: Bacterial and archaeal communities involved in the in situ degradation of 13 C-labelled straw in the rice rhizosphere.
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2011.00267.x
– volume: 70
  start-page: 961
  year: 2015
  ident: B43
  article-title: High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-015-0633-4
– volume: 53
  start-page: 448
  year: 2007
  ident: B44
  article-title: Molecular analyses reveal stability of bacterial communities in bulk soil of a Japanese paddy field: estimation by denaturing gradient gel electrophoresis of 16S rRNA genes amplified from DNA accompanied with RNA.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2007.00177.x
– volume: 7
  year: 2016
  ident: B86
  article-title: Wheat and rice growth stages and fertilization regimes alter soil bacterial community structure, but not diversity.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01207
– volume: 64
  start-page: 807
  year: 2013
  ident: B18
  article-title: Structure and functions of the bacterial microbiota of plants.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120106
– volume: 16
  start-page: 810
  year: 2013
  ident: B66
  article-title: Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect.
  publication-title: Ecosystems
  doi: 10.1007/s10021-013-9650-7
– volume: 1
  year: 2016
  ident: B93
  article-title: Zonal soil type determines soil microbial responses to maize cropping and fertilization.
  publication-title: mSystems
  doi: 10.1128/mSystems.00075-16
– volume: 7
  year: 2017
  ident: B9
  article-title: Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15955-9
– volume: 8
  year: 2013
  ident: B57
  article-title: Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061217
– volume: 14
  year: 2013
  ident: B94
  article-title: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-274
– volume: 31
  start-page: 3476
  year: 2015
  ident: B30
  article-title: Sequence analysis error filtering, pair assembly and error correction for next-generation sequencing reads.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv401
– volume: 8
  year: 2017
  ident: B5
  article-title: Microbial community and functional structure significantly varied among distinct types of paddy soils but responded differently along gradients of soil depth layers.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00945
– volume: 4
  start-page: 1
  year: 2006
  ident: B81
  article-title: Meeting the challenges of global rice production.
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-005-0031-5
– volume: 26
  start-page: 715
  year: 2010
  ident: B65
  article-title: Identifying biologically relevant differences between metagenomic communities.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq041
– volume: 47
  start-page: 423
  year: 2009
  ident: B13
  article-title: Ustilago maydis as a pathogen.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080508-081923
– volume: 53
  start-page: 519
  year: 2007
  ident: B16
  article-title: Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina).
  publication-title: Can. J. Microbiol.
  doi: 10.1139/W07-010
– volume: 63
  start-page: 1
  year: 2013
  ident: B41
  article-title: Families of dothideomycetes.
  publication-title: Fungal Divers.
  doi: 10.1007/s13225-013-0263-4
– volume: 270
  start-page: 371
  year: 2005
  ident: B59
  article-title: Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system.
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1829-4
– volume: 46
  start-page: 227
  year: 2017
  ident: B22
  article-title: Arbuscular mycorrhizal fungal association in genetically modified drought-tolerant corn.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.04.0125
– volume: 81
  start-page: 2244
  year: 2015
  ident: B38
  article-title: Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03209-14
– volume: 67
  start-page: 443
  year: 2014
  ident: B92
  article-title: Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in china.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0322-0
– volume: 8
  start-page: 231
  year: 2005
  ident: B79
  article-title: More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia.
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.8.231
– volume: 20
  start-page: 505
  year: 2010
  ident: B21
  article-title: Composition of wheat rhizosphere antagonistic bacteria and wheat sharp eyespot as affected by rice straw mulching.
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(10)60040-9
– volume: 41
  start-page: 295
  year: 2006
  ident: B87
  article-title: Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny.
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2006.05.031
– volume: 9
  start-page: 1062
  year: 2015
  ident: B83
  article-title: Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.194
– volume: 9
  start-page: 752
  year: 2007
  ident: B11
  article-title: Dynamics and identification of soil microbial populations actively assimilating carbon from 13 C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.01197.x
– volume: 41
  start-page: 262
  year: 2009
  ident: B7
  article-title: Impact of wheat straw decomposition on successional patterns of soil microbial community structure.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.024
– volume: 18
  start-page: 2868
  year: 2015
  ident: B14
  article-title: Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13041
– volume: 5
  year: 2015
  ident: B15
  article-title: Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00752
– volume: 28
  start-page: 173
  year: 2000
  ident: B55
  article-title: The RDP (Ribosomal Database Project) continues.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.173
– volume: 17
  start-page: 10
  year: 2011
  ident: B56
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads.
  publication-title: EMBnet. J.
  doi: 10.14806/ej.17.1.200
– volume: 8
  year: 2017
  ident: B84
  article-title: Dynamic response of ammonia-oxidizers to four fertilization regimes across a wheat-rice rotation system.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00630
– volume: 28
  start-page: 370
  year: 2013
  ident: B42
  article-title: Seasonal transition of active bacterial and archaeal communities in relation to water management in paddy soils.
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME13030
– volume: 56
  start-page: 105
  year: 2000
  ident: B19
  article-title: Management of cracked soils for water saving during land preparation for rice cultivation.
  publication-title: Soil Tillage Res.
  doi: 10.1016/S0167-1987(00)00125-2
– volume: 8
  year: 2017
  ident: B36
  article-title: The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00902
– volume: 70
  start-page: 12
  year: 2014
  ident: B32
  article-title: Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.002
– volume: 44
  start-page: 9
  year: 2012
  ident: B17
  article-title: Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.09.003
– volume: 42
  start-page: 162
  year: 2010
  ident: B47
  article-title: Plant species influence microbial diversity and carbon allocation in the rhizosphere.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.10.009
– volume: 68
  start-page: 392
  year: 2014
  ident: B50
  article-title: Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.10.017
– year: 2016
  ident: B63
  publication-title: Vegan: Community Ecology Package. R Package Version 2.3-5
– volume: 101
  start-page: 37
  year: 2015
  ident: B88
  article-title: Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems.
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-014-9658-1
– volume: 92
  start-page: 939
  year: 2000
  ident: B72
  article-title: Phylogeny of chaetosphaeria and its anamorphs based on morphological and molecular data.
  publication-title: Mycologia
  doi: 10.2307/3761589
– volume: 4
  start-page: 523
  year: 2012
  ident: B78
  article-title: Linking soil biodiversity and agricultural soil management.
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2012.06.004
– volume: 112
  start-page: E911
  year: 2015
  ident: B31
  article-title: Structure, variation, and assembly of the root-associated microbiomes of rice.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1414592112
– volume: 43
  start-page: 814
  year: 2011
  ident: B48
  article-title: Bacterial populations assimilating carbon from 13C-labeled plant residue in soil: analysis by a DNA-SIP approach.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.12.016
– volume: 8
  year: 2017
  ident: B12
  article-title: Endophytic Paecilomyces formosus LHL10 augments Glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00870
– volume: 7
  start-page: 382
  year: 2005
  ident: B62
  article-title: Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2004.00700.x
– volume: 112
  start-page: 759
  year: 2008
  ident: B49
  article-title: Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina.
  publication-title: Mycol. Res.
  doi: 10.1016/j.mycres.2008.01.025
– volume: 110
  start-page: 6548
  year: 2013
  ident: B68
  article-title: Diversity and heritability of the maize rhizosphere microbiome under field conditions.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1302837110
– volume: 67
  start-page: 4742
  year: 2001
  ident: B76
  article-title: Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.10.4742
– volume: 38
  start-page: 288
  year: 2003
  ident: B60
  article-title: Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipid fatty acid analysis.
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-003-0658-6
– volume: 71
  start-page: 5710
  year: 2005
  ident: B61
  article-title: Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.10.5710
– volume: 100
  start-page: 8
  year: 2016
  ident: B3
  article-title: The effect of soil type, rice cultivar and water management on ammonia-oxidizing archaea and bacteria populations.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.11.009
– volume: 37
  start-page: 75
  year: 2016
  ident: B69
  article-title: Additions to sporormiaceae: introducing two Novel Genera, Sparticola and Forliomyces, from Spartium.
  publication-title: Cryptogam. Mycol.
  doi: 10.7872/crym/v37.iss1.2016.75
– volume: 5
  start-page: 908
  year: 2011
  ident: B8
  article-title: Examining the global distribution of dominant archaeal populations in soil.
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.171
– volume: 2
  start-page: 113
  year: 1993
  ident: B34
  article-title: ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts.
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.1993.tb00005.x
– volume: 8
  start-page: 1351
  year: 2006
  ident: B53
  article-title: Structure and activity of bacterial community inhabiting rice roots and the rhizosphere.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.01028.x
– volume: 98
  start-page: 2765
  year: 2014
  ident: B85
  article-title: Community structure and abundance of ammonia-oxidizing archaea and bacteria after conversion from soybean to rice paddy in albic soils of Northeast China.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5213-2
– volume: 197
  start-page: 266
  year: 2015
  ident: B90
  article-title: Thermomyces lanuginosus is the dominant fungus in maize straw composts.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.089
– volume: 184
  start-page: 51
  year: 2014
  ident: B51
  article-title: Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics.
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.11.019
– volume: 30
  start-page: 129
  year: 2007
  ident: B33
  article-title: Changes in atmospheric constituents and in radiative forcing (IPCC 2007).
  publication-title: Phys. Sci. Basis
  doi: 10.1103/PhysRevB.77.220407
– volume: 50
  start-page: 754
  year: 2012
  ident: B2
  article-title: Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices.
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-012-2409-6
– volume: 32
  start-page: 666
  year: 2009
  ident: B4
  article-title: Regulation and function of root exudates.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.01926.x
– volume: 6
  start-page: 1992
  year: 2012
  ident: B25
  article-title: Functional and ecological consequences of saprotrophic fungus-grazer interactions.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.53
– volume: 40
  start-page: 25
  year: 1992
  ident: B27
  article-title: A review: long-term effects of agricultural systems on soil biochemical and microbial parameters.
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(92)90081-L
– volume: 10
  start-page: 1984
  year: 2016
  ident: B28
  article-title: Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities.
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.254
– volume: 488
  start-page: 86
  year: 2012
  ident: B54
  article-title: Defining the core Arabidopsis thaliana root microbiome.
  publication-title: Nature
  doi: 10.1038/nature11237
– volume: 45
  start-page: 383
  year: 2009
  ident: B20
  article-title: Search of environmental descriptors to explain the variability of the bacterial diversity from maize rhizospheres across a regional scale.
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2009.07.006
– volume: 49
  start-page: 88
  year: 2012
  ident: B74
  article-title: Impact of incorporated fresh 13C potato tissues on the bacterial and fungal community composition of soil.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.02.016
– volume: 87
  start-page: 650
  year: 2014
  ident: B52
  article-title: Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12253
– volume: 297
  start-page: 15
  year: 2017
  ident: B64
  article-title: Pyrenochaetopsis tabarestanensis (Cucurbitariaceae, Pleosporales), a new species isolated from rice farms in north Iran.
  publication-title: Phytotaxa
  doi: 10.11646/phytotaxa.297.1.2
– volume: 71
  start-page: 543
  year: 2016
  ident: B91
  article-title: Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic): aquatic fungi in the arctic.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-015-0689-1
– volume: 105
  start-page: 1251
  year: 2013
  ident: B82
  article-title: Three new genera in Chytridiales from aquatic habitats in Argentina.
  publication-title: Mycologia
  doi: 10.3852/12-353
– volume: 6
  start-page: 1378
  year: 2012
  ident: B46
  article-title: Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice.
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.192
– volume: 10
  start-page: 996
  year: 2013
  ident: B29
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 111
  start-page: 78
  year: 2017
  ident: B39
  article-title: Rhizosphere priming effect: a meta-analysis.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.04.003
– volume: 79
  start-page: 371
  year: 2012
  ident: B58
  article-title: Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2011.01224.x
– volume: 30
  start-page: 479
  year: 2016
  ident: B67
  article-title: Small but active - pool size does not matter for carbon incorporation in below-ground food webs.
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.12512
– volume: 186
  start-page: 281
  year: 2010
  ident: B1
  article-title: The UNITE database for molecular identification of fungi - recent updates and future perspectives.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03160.x
– volume: 6
  start-page: 1
  year: 2016
  ident: B80
  article-title: Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities.
  publication-title: Sci. Rep.
  doi: 10.1038/srep27756
– volume: 1
  start-page: 169
  year: 2013
  ident: B26
  article-title: Exploration of hitherto-uncultured bacteria from the rhizosphere.
  publication-title: Mol. Microb. Ecol. Rhizosph.
  doi: 10.1002/9781118297674.ch16
– volume: 102
  start-page: 159
  year: 2009
  ident: B40
  article-title: Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions.
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(09)01005-0
– volume: 7
  start-page: 1
  year: 2017
  ident: B71
  article-title: The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04213-7
– volume: 57
  start-page: 233
  year: 2006
  ident: B6
  article-title: The role of root exudates in rhizosphere interactions with plants and other organisms.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105159
– volume: 1
  start-page: 285
  year: 2009
  ident: B23
  article-title: The global methane cycle: recent advances in understanding the microbial processes involved.
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2009.00038.x
– reference: 24245591 - FEMS Microbiol Ecol. 2014 Mar;87(3):650-63
– reference: 24092004 - Appl Microbiol Biotechnol. 2014 Mar;98(6):2765-78
– reference: 23373698 - Annu Rev Plant Biol. 2013;64:807-38
– reference: 26342338 - Bioresour Technol. 2015 Dec;197:266-75
– reference: 22092599 - FEMS Microbiol Ecol. 2012 Feb;79(2):371-9
– reference: 16837216 - Mol Phylogenet Evol. 2006 Nov;41(2):295-312
– reference: 28177408 - J Environ Qual. 2017 Jan;46(1):227-231
– reference: 23124742 - J Microbiol. 2012 Oct;50(5):754-65
– reference: 22717883 - ISME J. 2012 Nov;6(11):1992-2001
– reference: 25620960 - Front Microbiol. 2015 Jan 08;5:752
– reference: 19243436 - FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
– reference: 23709524 - Mycologia. 2013 Sep-Oct;105(5):1251-65
– reference: 25303715 - ISME J. 2015 May;9(5):1062-75
– reference: 10592216 - Nucleic Acids Res. 2000 Jan 1;28(1):173-4
– reference: 15683399 - Environ Microbiol. 2005 Mar;7(3):382-95
– reference: 19143988 - Plant Cell Environ. 2009 Jun;32(6):666-81
– reference: 11571180 - Appl Environ Microbiol. 2001 Oct;67(10):4742-51
– reference: 16669762 - Annu Rev Plant Biol. 2006;57:233-66
– reference: 17612608 - Can J Microbiol. 2007 Apr;53(4):519-25
– reference: 28446904 - Front Microbiol. 2017 Apr 12;8:630
– reference: 27822546 - mSystems. 2016 Jul 12;1(4):
– reference: 25605935 - Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20
– reference: 16872399 - Environ Microbiol. 2006 Aug;8(8):1351-60
– reference: 20130030 - Bioinformatics. 2010 Mar 15;26(6):715-21
– reference: 26054702 - Microb Ecol. 2015 Nov;70(4):961-70
– reference: 28611799 - Front Plant Sci. 2017 May 29;8:870
– reference: 23765881 - Environ Microbiol Rep. 2009 Oct;1(5):285-92
– reference: 23761339 - Environ Microbiol Rep. 2011 Oct;3(5):587-96
– reference: 16204479 - Appl Environ Microbiol. 2005 Oct;71(10):5710-8
– reference: 28611735 - Front Microbiol. 2017 May 29;8:902
– reference: 26139637 - Bioinformatics. 2015 Nov 1;31(21):3476-82
– reference: 19465536 - Appl Environ Microbiol. 2009 Jul;75(14):4879-86
– reference: 24005888 - Microbes Environ. 2013;28(3):370-80
– reference: 26337675 - Environ Microbiol. 2016 Sep;18(9):2868-85
– reference: 28638057 - Sci Rep. 2017 Jun 21;7(1):3940
– reference: 17298374 - Environ Microbiol. 2007 Mar;9(3):752-64
– reference: 22291691 - Front Microbiol. 2012 Jan 20;3:4
– reference: 28611747 - Front Microbiol. 2017 May 29;8:945
– reference: 21085198 - ISME J. 2011 May;5(5):908-17
– reference: 23576752 - Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53
– reference: 24276539 - Microb Ecol. 2014 Feb;67(2):443-53
– reference: 26824176 - ISME J. 2016 Aug;10(8):1984-97
– reference: 20409185 - New Phytol. 2010 Apr;186(2):281-5
– reference: 26492897 - Microb Ecol. 2016 Apr;71(3):543-54
– reference: 29146930 - Sci Rep. 2017 Nov 16;7(1):15709
– reference: 25616793 - Appl Environ Microbiol. 2015 Mar;81(6):2244-53
– reference: 27302652 - Sci Rep. 2016 Jun 15;6:27756
– reference: 22189496 - ISME J. 2012 Jul;6(7):1378-90
– reference: 27536292 - Front Microbiol. 2016 Aug 03;7:1207
– reference: 26102585 - PLoS One. 2015 Jun 23;10(6):e0130672
– reference: 19508698 - FEMS Microbiol Ecol. 2009 Sep;69(3):313-28
– reference: 8180733 - Mol Ecol. 1993 Apr;2(2):113-8
– reference: 19400641 - Annu Rev Phytopathol. 2009;47:423-45
– reference: 23955772 - Nat Methods. 2013 Oct;10(10):996-8
– reference: 23630581 - PLoS One. 2013 Apr 22;8(4):e61217
– reference: 22111580 - Mol Plant Pathol. 2012 Jun;13(5):508-18
– reference: 18501579 - Mycol Res. 2008 Jul;112(Pt 7):759-82
– reference: 22859206 - Nature. 2012 Aug 2;488(7409):86-90
– reference: 23617724 - BMC Genomics. 2013 Apr 23;14:274
SSID ssj0000402000
Score 2.4617414
Snippet Rice is one of the most important nourishments and its cultivation binds large agricultural areas in the world. Its cultivation leads to huge water consumption...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1295
SubjectTerms bacterial community
crop rotation
fungal community
Microbiology
rhizosphere
rice straw
Zea mays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfhJSNx4RDqJH4eS0VVkMqhUKniEo2diYhUklV3q6q3_nQ8drrsIgQXrn7Elmec-cYef8PYG2-96rTD0uUUZsqVrq502TUOu2jgUCRKoaPP-vBEfjpVpxupvigmLNMD54XbNZ1ArKztUFYSoQfvZB-Mq9BAQEjQKNq8DWcq_YPJLRIi30tGL8xFMQ3BUyiXfUdnL2rLDiW6_j9hzN9DJTdsz8E9dncGjXwvT_Y-u4XjA3Y7p5G8esiu98-nBT-e8q06h7HjRDp7yfd-3U7zj-k5JD8aEvNS_Nr8NIQIVfkQ61fpxCP1zqcsiwhA-ZdpOFumwogU-TFF6C2JiQD51PNvCPwHXC0fsZODD1_3D8s5s0IZVG1XpXJVE8BrVRsHSgRKQxWRI1S90GBBSek1Qm0EGF-BtdJJXdeIGlXwtjPNY7YzTiM-ZbzuetcE7YgFR2qI_ok30Gvw4GxdQSjY7s06t2GmHafsF2dtdD9IMm2STEuSaZNkCvZ23WORKTf-0vY9iW7djsiyU0FUoXZWofZfKlSw1zeCb-PmohsTGHG6WMaBdGMiCBWiYE-yIqyHinZcR_vfFMxsqcjWXLZrxuF7IvDWxPMo3LP_Mfnn7A4tB0WvVeoF21mdX-DLiJNW_lXaEj8BKOcVAw
  priority: 102
  providerName: Directory of Open Access Journals
Title Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Zea mays
URI https://www.ncbi.nlm.nih.gov/pubmed/29963033
https://www.proquest.com/docview/2063709500
https://pubmed.ncbi.nlm.nih.gov/PMC6013709
https://doaj.org/article/7d0ee188de414eafab94fc791e7aceaa
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCIkL4k14VEbiwiElTvw8IFQqSkFaDoWVVlyiseOUSEuybLaCvfHT8TjplkUrxCUHx4mTjCfzzYz9DSHPrbaiksanZihhJkxqcibTqjC-CgbOZ5FSaPJRnkz5h5mYXW6PHj9gv9O1w3pS0-X84Of39eug8K_Q4wz2NkigcRZXaekDDKuIq-RasEsK1XQygv34X0ZXKe5JYVJiOiCfDXnLnTfZslORzn8XBv17KeUftun4Frk5gkp6OMyC2-SKb--Q60OZyfVd8uto2S3oaTdk3Sm0FUVS2h_08DJ7Td_H7ZJ00kRmpnC3cesIEq7SJpxfxYhIvHqIwiwCQKWfumbex8aAJOkpruDrkanA066mXzzQb7Du75Hp8dvPRyfpWHkhdSLXq1QYVjiwUuTKgMgclqkKyBJYnUnQIDi30kOuMlCWgdbccJnn3ksvnNWVKu6TvbZr_UNC86o2hZMGWXK4hOC_WAW1BAtG5wxcQl5efOfSjbTkWB1jXgb3BCVTRsmUKJkySiYhLzZXLAZKjn_0fYOi2_RDMu3Y0C3PylE3S1Vl3jOtK88Z91CDNbx2yjCvwHmAhDy7EHwZlA8zKtD67rwPA8lCBZCaZQl5MEyEzVDBzsuAD4qEqK0psvUs22fa5msk-JbIA5mZR_8x7mNyA98WF68x8YTsrZbn_mmASSu7H8ML4fhuxvajJvwGEocTlw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Rotation+and+Straw+Application+Impact+Microbial+Communities+in+Italian+and+Philippine+Soils+and+the+Rhizosphere+of+Zea+mays&rft.jtitle=Frontiers+in+microbiology&rft.au=Maarastawi%2C+Sarah+A&rft.au=Frindte%2C+Katharina&rft.au=Linnartz%2C+Marius&rft.au=Knief%2C+Claudia&rft.date=2018-06-15&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=9&rft.spage=1295&rft_id=info:doi/10.3389%2Ffmicb.2018.01295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon