The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells
The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell me...
Saved in:
Published in | Function (Oxford, England) Vol. 5; no. 3; p. zqae008 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath’s unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, ${{Y}_{X/S}}\ ATP$, or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath’s unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, ${{Y}_{X/S}}\ ATP$, or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.
Graphical Abstract
Graphical Abstract The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs. The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath’s unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, ${{Y}_{X/S}}\ ATP$, or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs. The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs.The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath's unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, [Formula: see text], or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs. The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of research on the subject, no convincing biochemical explanation has been given for the original observations of aerobic glycolysis in cancer cell metabolism. Here, we have worked out a first-principles quantitative analysis of the problem from the principles of stoichiometry and available electron balance. The results have been interpreted using Nath’s unified theory of energy coupling and adenosine triphosphate (ATP) synthesis, and the original data of Warburg and colleagues have been analyzed from this new perspective. Use of the biomass yield based on ATP per unit substrate consumed, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} ${{Y}_{X/S}}\ ATP$\end{document} , or the Nath-Warburg number, NaWa has been shown to excellently model the original data on the Warburg Effect with very small standard deviation values, and without employing additional fitted or adjustable parameters. Based on the results of the quantitative analysis, a novel conservative mechanism of synthesis, utilization, and recycling of ATP and other key metabolites (eg, lactate) is proposed. The mechanism offers fresh insights into metabolic symbiosis and coupling within and/or among proliferating cells. The fundamental understanding gained using our approach should help in catalyzing the development of more efficient metabolism-targeting anticancer drugs. Graphical Abstract |
Author | Nath, Sunil Balling, Rudi |
Author_xml | – sequence: 1 givenname: Sunil orcidid: 0000-0002-0362-069X surname: Nath fullname: Nath, Sunil email: sunath@iitd.ac.in – sequence: 2 givenname: Rudi surname: Balling fullname: Balling, Rudi email: rballing@uni-bonn.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38706962$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9rFDEUxYNUbK1990kCvggyNsn82YkvZVlaLVRcdMXHkGRuuikzyTTJFNZP40c1ZXdL7YM-JSS_c-65yX2JDpx3gNBrSj5QwstTMzmdrHenv24lENI-Q0esKcuibVl58Gh_iE5ivCGEsJoyStgLdFi2M9Lwhh2h36s14J8yqClc43NjQCf8DaxLEMYACTpMCcGbgL37iOf4woaYimWwTtuxh4i_J2_12voBUrAaz53sN9FGLF2HL_cu8j4mNsEPOOVySwhxzIXsHWBv8Hy1xF8ypHxv44CtwwvpNAS8gL6Pr9BzI_sIJ7v1GP24OF8tPhdXXz9dLuZXha5Zm4pKsbZidVcb1tZNq6RRnTIVMXrGy1IpxgwHJk0141DRGeHAjW7yGVfQMFWVx-hs6ztOaoBOg0tB9mIMdpBhI7y04u8bZ9fi2t8JSklTU9pkh3c7h-BvJ4hJDDbq3IN04KcoSlLTis1yuoy-fYLe-Cnkt8sU5bSluQeeqTePIz1k2f9eBsgW0MHHGMA8IJSI-xkR-xkRuxnJkuaJRNvt_-SmbP8v4fut0E_j_8v8AWCF14Q |
CitedBy_id | crossref_primary_10_3390_cells13110924 crossref_primary_10_1186_s12943_024_02119_3 crossref_primary_10_3390_ijms26020498 crossref_primary_10_3390_cancers16213666 crossref_primary_10_1152_ajpcell_01048_2024 crossref_primary_10_1007_s12064_024_00434_3 |
Cites_doi | 10.1016/j.cell.2011.02.013 10.1085/jgp.8.6.519 10.1242/jcs.4.3.645 10.1007/BF02661723 10.1111/j.1742-4658.2007.05686.x 10.1113/JP278810 10.1002/mc.21863 10.3390/ijms9091784 10.1515/bmc-2022-0021 10.1074/jbc.M511064200 10.1007/s10867-021-09591-8 10.1007/s00259-007-0522-2 10.1093/brain/awp202 10.1126/science.1160809 10.1016/j.cell.2017.09.019 10.3892/ijo.2022.5357 10.1016/j.bbabio.2010.03.025 10.1016/j.cplett.2018.03.068 10.1073/pnas.2008173118 10.1016/j.nucmedbio.2012.07.003 10.1002/bit.25492 10.3389/fnut.2014.00027 10.1038/s42255-019-0105-0 10.1038/nchembio.1712 10.4161/cc.8.23.10238 10.1159/000375435 10.1016/j.jbiotec.2009.07.010 10.1038/nrc3038 10.1093/function/zqad051 10.1016/j.bbabio.2010.10.012 10.1038/s41586-022-05661-6 10.3390/cancers12102819 10.1126/science.1058079 10.1016/j.tca.2004.08.004 10.1186/s13075-021-02501-2 10.1093/function/zqac054 10.1007/s10863-011-9396-x 10.1093/neuonc/not086 10.1038/s42255-020-0243-4 10.1016/j.bbrc.2003.11.136 10.1126/science.158.3800.542 10.18632/oncotarget.18175 10.1073/pnas.74.9.3735 10.1126/science.124.3215.269 10.1053/j.seminoncol.2017.10.004 10.1016/j.bpc.2017.03.002 10.1016/S0021-9258(18)96139-9 10.3389/fonc.2022.783908 10.3390/ijms241511914 10.1016/S0959-8049(00)00371-3 10.1016/j.cell.2015.12.034 10.18632/oncotarget.9746 10.1016/S0021-9258(18)84849-9 10.3390/cancers15102862 10.1042/BST20160094 10.3390/ijms242115787 10.1007/s00421-017-3795-6 10.1016/j.ccr.2006.04.023 10.1016/j.molcel.2023.09.034 10.1530/ERC-22-0173 10.1016/j.cmet.2017.11.005 10.1021/acs.jmedchem.0c01013 10.1016/j.bpc.2019.106208 10.1016/j.bbabio.2016.03.012 10.1007/BF01726240 10.1016/j.bpc.2018.08.006 10.1042/BST20150153 10.1016/j.cell.2008.08.021 10.1515/bmc-2020-0014 10.1007/s10863-010-9295-6 10.1038/s42255-020-0172-2 10.3389/fchem.2023.1058500 10.1016/j.bpc.2016.10.002 10.1126/science.123.3191.309 10.1016/j.tibs.2015.12.001 10.1074/jbc.M109950200 10.1113/jphysiol.2003.058701 10.1016/j.bpc.2018.07.006 10.1007/BF02904704 10.1126/scitranslmed.3000677 10.1007/s12064-022-00370-0 10.1007/978-1-4419-9688-6 10.3390/e21080746 10.1038/srep31007 10.1016/j.freeradbiomed.2014.08.027 10.1042/bj1740703 10.1016/j.ccr.2012.02.014 10.1038/nature13611 10.1113/jphysiol.2009.178350 10.1146/annurev-cellbio-092910-154237 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. – notice: The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/function/zqae008 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2633-8823 |
ExternalDocumentID | PMC11065116 38706962 10_1093_function_zqae008 10.1093/function/zqae008 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ AAFWJ AAIKC AAMNW AAPXW ABDBF ABEJV ABXVV ALMA_UNASSIGNED_HOLDINGS EBS ENERS GROUPED_DOAJ IAO ITC ML0 OK1 ROX RPM TOX 7X7 88E 8FI 8FJ AAYXX ABGNP ABUWG ACUHS AFKRA AFPKN AMNDL BBNVY BENPR BHPHI CCPQU CITATION FYUFA HCIFZ HMCUK M1P M7P PHGZM PHGZT PIMPY PSQYO UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ K9. LK8 PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c528t-4b28425d5f28568bafbdbf40fc7933bb22f9e2af479e41709e9fc6f9e9be62b43 |
IEDL.DBID | 7X7 |
ISSN | 2633-8823 |
IngestDate | Thu Aug 21 18:34:26 EDT 2025 Fri Jul 11 06:09:21 EDT 2025 Fri Jul 25 11:46:09 EDT 2025 Thu Apr 03 06:59:25 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Tue Jul 01 01:20:15 EDT 2025 Fri Dec 13 07:13:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | oxidative phosphorylation (OXPHOS) and F biomass yield coefficients based on ATP F cancer, malignancy, and heterogeneity metabolic coupling and symbiosis aerobic glycolysis and the Warburg Effect lactate and lactic acid ATP synthase mathematical model Nath’s two-ion theory of energy coupling and torsional mechanism of ATP synthesis Warburg-Nath ratio; Nath-Warburg number, NaWa; metabolic regulation based on ATP demand and supply stoichiometry and available electron balance Nath’s unified theory of ATP synthesis/hydrolysis oxidative phosphorylation (OXPHOS) and F0F1-ATP synthase |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of American Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-4b28425d5f28568bafbdbf40fc7933bb22f9e2af479e41709e9fc6f9e9be62b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0362-069X |
OpenAccessLink | https://www.proquest.com/docview/3191818569?pq-origsite=%requestingapplication% |
PMID | 38706962 |
PQID | 3191818569 |
PQPubID | 7217058 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11065116 proquest_miscellaneous_3051427568 proquest_journals_3191818569 pubmed_primary_38706962 crossref_primary_10_1093_function_zqae008 crossref_citationtrail_10_1093_function_zqae008 oup_primary_10_1093_function_zqae008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Function (Oxford, England) |
PublicationTitleAlternate | Function (Oxf) |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press |
References | Pavlides (2024050216455888000_bib33) 2009; 8 Fu (2024050216455888000_bib35) 2017; 8 Hume (2024050216455888000_bib91) 1978; 174 DeBerardinis (2024050216455888000_bib70) 2020; 2 Nath (2024050216455888000_bib26) 2018; 699 Nath (2024050216455888000_bib64) 2010; 42 Nath (2024050216455888000_bib44) 2018; 242 Nath (2024050216455888000_bib41) 2019; 252 Rose (2024050216455888000_bib96) 1967; 242 Warburg (2024050216455888000_bib19) 1956; 124 Wray (2024050216455888000_bib83) 2023; 4 Gladden (2024050216455888000_bib46) 2004; 558 Mathupala (2024050216455888000_bib72) 2010; 1797 Vander Heiden (2024050216455888000_bib69) 2009; 324 Ward (2024050216455888000_bib59) 2012; 21 Weinhouse (2024050216455888000_bib20) 1967; 158 Sakashita (2024050216455888000_bib6) 2001; 37 Amemiya (2024050216455888000_bib28) 2022; 12 Tretter (2024050216455888000_bib61) 2016; 1857 Schulz (2024050216455888000_bib25) 2006; 281 Nath (2024050216455888000_bib43) 2018; 241 Bauchop (2024050216455888000_bib89) 1960; 23 Nath (2024050216455888000_bib14) 2016; 219 Schuster (2024050216455888000_bib17) 2015; 43 Nath (2024050216455888000_bib84) 2023; 11 Wilde (2024050216455888000_bib34) 2017; 44 Racker (2024050216455888000_bib5) 1972; 60 Pfeiffer (2024050216455888000_bib16) 2001; 292 Moreno-Sánchez (2024050216455888000_bib21) 2007; 274 Cai (2024050216455888000_bib51) 2023; 83 Potter (2024050216455888000_bib74) 2016; 44 San-Millán (2024050216455888000_bib53) 2017; 38 Nath (2024050216455888000_bib82) 2022; 3 Wu (2024050216455888000_bib58) 2016; 7 Nath (2024050216455888000_bib13) 2015; 112 Nath (2024050216455888000_bib60) 2002; 74 Vaupel (2024050216455888000_bib66) 2021; 599 Warburg (2024050216455888000_bib4) 1927; 8 Chance (2024050216455888000_bib98) 2023; 116 Warburg (2024050216455888000_bib3) 1926; 5 Yen (2024050216455888000_bib10) 2004; 45 Alberghina (2024050216455888000_bib75) 2023; 24 Pastorino (2024050216455888000_bib95) 2002; 277 Riedl (2024050216455888000_bib11) 2008; 35 Cori (2024050216455888000_bib2) 1925; 65 Hsu (2024050216455888000_bib76) 2008; 134 Fantin (2024050216455888000_bib24) 2006; 9 Pascale (2024050216455888000_bib68) 2020; 12 Faubert (2024050216455888000_bib49) 2017; 171 Hensley (2024050216455888000_bib31) 2016; 164 Kilburn (2024050216455888000_bib90) 1969; 4 Weinberg (2024050216455888000_bib32) 2015; 11 Nath (2024050216455888000_bib94) 2022; 13 Ferguson (2024050216455888000_bib56) 2018; 118 Nath (2024050216455888000_bib93) 2020; 11 Bartman (2024050216455888000_bib38) 2023; 614 Nath (2024050216455888000_bib27) 2019; 21 Nath (2024050216455888000_bib92) 2008; 9 Gallagher (2024050216455888000_bib48) 2009; 132 Lai (2024050216455888000_bib8) 2013; 15 Michelakis (2024050216455888000_bib9) 2010; 2 Goodwin (2024050216455888000_bib54) 2015; 1 Nath (2024050216455888000_bib80) 2004; 422 Levy (2024050216455888000_bib100) 2021; 118 Xu (2024050216455888000_bib23) 2015; 38 Casas-Benito (2024050216455888000_bib62) 2023; 15 Warburg (2024050216455888000_bib1) 1924; 152 Jose (2024050216455888000_bib22) 2011; 1807 Stoner (2024050216455888000_bib99) 1972; 7 Park (2024050216455888000_bib12) 2012; 39 Nath (2024050216455888000_bib65) 2011; 43 Roels (2024050216455888000_bib85) 1983 Bustamante (2024050216455888000_bib97) 1977; 74 Shuler (2024050216455888000_bib86) 2002 Zu (2024050216455888000_bib45) 2004; 313 Liberti (2024050216455888000_bib67) 2016; 4 Warburg (2024050216455888000_bib18) 1956; 123 Nath (2024050216455888000_bib42) 2022; 141 Xu (2024050216455888000_bib15) 2020; 63 Martinez-Reyes (2024050216455888000_bib52) 2017; 26 Rabinowitz (2024050216455888000_bib57) 2020; 2 Lunt (2024050216455888000_bib73) 2011; 27 Viale (2024050216455888000_bib30) 2014; 514 Koppenol (2024050216455888000_bib55) 2011; 11 Villadsen (2024050216455888000_bib87) 2011 Chen (2024050216455888000_bib36) 2015; 79 Brooks (2024050216455888000_bib47) 2009; 587 Hardie (2024050216455888000_bib71) 2022; 29 Nath (2024050216455888000_bib81) 2021; 47 Hanahan (2024050216455888000_bib39) 2011; 144 Nath (2024050216455888000_bib63) 2017; 224 Vazquez (2024050216455888000_bib77) 2016; 6 Amemiya (2024050216455888000_bib29) 2023; 24 Liang (2024050216455888000_bib37) 2022; 60 Metallo (2024050216455888000_bib88) 2009; 144 Ast (2024050216455888000_bib78) 2019; 1 Nakajima (2024050216455888000_bib40) 2013; 52 Wang (2024050216455888000_bib50) 2021; 23 Grover-McKay (2024050216455888000_bib7) 1998; 4 Nath (2024050216455888000_bib79) 2003; 85 The Cancer Genome Atlas (TCGA) (2024050216455888000_bib101) 2021 |
References_xml | – volume: 144 start-page: 646 issue: 5 year: 2011 ident: 2024050216455888000_bib39 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 8 start-page: 519 issue: 6 year: 1927 ident: 2024050216455888000_bib4 article-title: The metabolism of tumors in the body publication-title: J Gen Physiol doi: 10.1085/jgp.8.6.519 – volume: 4 start-page: 645 issue: 3 year: 1969 ident: 2024050216455888000_bib90 article-title: The energetics of mammalian cell growth publication-title: J Cell Sci doi: 10.1242/jcs.4.3.645 – volume: 7 start-page: 330 issue: 5 year: 1972 ident: 2024050216455888000_bib99 article-title: Amino acid utilization by L-M strain mouse cells in a chemically defined medium publication-title: In Vitro doi: 10.1007/BF02661723 – volume: 274 start-page: 1393 issue: 6 year: 2007 ident: 2024050216455888000_bib21 article-title: Energy metabolism in tumor cells publication-title: FEBS J doi: 10.1111/j.1742-4658.2007.05686.x – volume: 599 start-page: 1745 issue: 6 year: 2021 ident: 2024050216455888000_bib66 article-title: Revisiting the Warburg effect: historical dogma versus current understanding publication-title: J Physiol doi: 10.1113/JP278810 – volume: 52 start-page: 329 issue: 5 year: 2013 ident: 2024050216455888000_bib40 article-title: Metabolic symbiosis in cancer: refocusing the Warburg lens publication-title: Mol Carcinog doi: 10.1002/mc.21863 – volume: 9 start-page: 1784 issue: 9 year: 2008 ident: 2024050216455888000_bib92 article-title: The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold fundamental consequences and mechanistic implications and its applications in health and disease publication-title: Int J Mol Sci doi: 10.3390/ijms9091784 – volume: 13 start-page: 272 issue: 1 year: 2022 ident: 2024050216455888000_bib94 article-title: Supercomplex supercomplexes: raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation publication-title: Biomol Concepts doi: 10.1515/bmc-2022-0021 – volume: 281 start-page: 977 issue: 2 year: 2006 ident: 2024050216455888000_bib25 article-title: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: otto Warburg revisited publication-title: J Biol Chem doi: 10.1074/jbc.M511064200 – volume: 47 start-page: 401 issue: 4 year: 2021 ident: 2024050216455888000_bib81 article-title: Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology publication-title: J Biol Phys doi: 10.1007/s10867-021-09591-8 – volume: 35 start-page: 39 issue: 1 year: 2008 ident: 2024050216455888000_bib11 article-title: Tumor hypoxia imaging in orthotopic liver tumors and peritoneal metastasis : A comparative study featuring dynamic 18F-MISO and 124I-IAZG PET in the same study cohort publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-007-0522-2 – volume: 132 start-page: 2839 issue: 10 year: 2009 ident: 2024050216455888000_bib48 article-title: The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study publication-title: Brain doi: 10.1093/brain/awp202 – volume: 324 start-page: 1029 issue: 5930 year: 2009 ident: 2024050216455888000_bib69 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 171 start-page: 358 issue: 2 year: 2017 ident: 2024050216455888000_bib49 article-title: Lactate metabolism in human lung tumors publication-title: Cell doi: 10.1016/j.cell.2017.09.019 – volume: 60 start-page: 67 issue: 6 year: 2022 ident: 2024050216455888000_bib37 article-title: Reverse Warburg effect’ of cancer-associated fibroblasts (review) publication-title: Int J Oncol doi: 10.3892/ijo.2022.5357 – volume: 1797 start-page: 1225 year: 2010 ident: 2024050216455888000_bib72 article-title: The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2010.03.025 – volume: 699 start-page: 212 year: 2018 ident: 2024050216455888000_bib26 article-title: Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular interpretation publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2018.03.068 – volume: 85 start-page: 125 year: 2003 ident: 2024050216455888000_bib79 article-title: Molecular mechanisms of energy transduction in cells: engineering applications and biological implications publication-title: Adv Biochem Eng Biotechnol – volume: 118 start-page: e2008173118 issue: 18 year: 2021 ident: 2024050216455888000_bib100 article-title: Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2008173118 – volume: 39 start-page: 1167 issue: 8 year: 2012 ident: 2024050216455888000_bib12 article-title: Biologic correlation between glucose transporters, hexokinase-II, KI-67 and FDG uptake in malignant melanoma publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2012.07.003 – volume: 112 start-page: 429 issue: 3 year: 2015 ident: 2024050216455888000_bib13 article-title: Oxidative phosphorylation revisited publication-title: Biotechnol Bioeng doi: 10.1002/bit.25492 – volume: 1 start-page: 1 year: 2015 ident: 2024050216455888000_bib54 article-title: Lactate and cancer: revisiting the Warburg effect in an era of lactate shuttling publication-title: Front Nutr doi: 10.3389/fnut.2014.00027 – volume: 1 start-page: 858 issue: 9 year: 2019 ident: 2024050216455888000_bib78 article-title: Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? publication-title: Nat Metab doi: 10.1038/s42255-019-0105-0 – volume: 11 start-page: 9 issue: 1 year: 2015 ident: 2024050216455888000_bib32 article-title: Targeting mitochondria metabolism for cancer therapy publication-title: Nat Chem Biol doi: 10.1038/nchembio.1712 – volume: 8 start-page: 3984 issue: 23 year: 2009 ident: 2024050216455888000_bib33 article-title: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma publication-title: Cell Cycle doi: 10.4161/cc.8.23.10238 – volume: 38 start-page: 117 issue: 3 year: 2015 ident: 2024050216455888000_bib23 article-title: Warburg effect or reverse Warburg effect? A review of cancer metabolism publication-title: Oncol Res Treat doi: 10.1159/000375435 – volume: 144 start-page: 167 issue: 3 year: 2009 ident: 2024050216455888000_bib88 article-title: Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2009.07.010 – volume: 11 start-page: 325 year: 2011 ident: 2024050216455888000_bib55 article-title: Otto Warburg’s contributions to current concepts of cancer metabolism publication-title: Nat Rev doi: 10.1038/nrc3038 – volume: 74 start-page: 65 year: 2002 ident: 2024050216455888000_bib60 article-title: The molecular mechanism of ATP synthesis by F1F0-ATP synthase: a scrutiny of the major possibilities publication-title: Adv Biochem Eng Biotechnol – volume: 4 start-page: zqad051 issue: 6 year: 2023 ident: 2024050216455888000_bib83 article-title: Elucidating a complex mechanism: perspective on “Beyond binding change: the molecular mechanism of ATP hydrolysis by F1-ATPase and its biochemical consequences publication-title: Function doi: 10.1093/function/zqad051 – volume: 1807 start-page: 552 year: 2011 ident: 2024050216455888000_bib22 article-title: Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2010.10.012 – volume: 614 start-page: 349 issue: 7947 year: 2023 ident: 2024050216455888000_bib38 article-title: Slow TCA flux and ATP production in primary solid tumors but not metastases publication-title: Nature doi: 10.1038/s41586-022-05661-6 – volume: 12 start-page: 2819 issue: 10 year: 2020 ident: 2024050216455888000_bib68 article-title: The Warburg effect 97 years after its discovery publication-title: Cancers doi: 10.3390/cancers12102819 – volume: 23 start-page: 457 year: 1960 ident: 2024050216455888000_bib89 article-title: The growth of microorganisms in relation to their energy supply publication-title: J Gen Microbiol – volume: 292 start-page: 504 issue: 5516 year: 2001 ident: 2024050216455888000_bib16 article-title: Cooperation and competition in the evolution of ATP-producing pathways publication-title: Science doi: 10.1126/science.1058079 – volume: 422 start-page: 5 issue: 1-2 year: 2004 ident: 2024050216455888000_bib80 article-title: The torsional mechanism of energy transduction and ATP synthesis as a breakthrough in our understanding of the mechanistic, kinetic and thermodynamic details publication-title: Thermochim Acta doi: 10.1016/j.tca.2004.08.004 – volume: 23 start-page: 145 issue: 1 year: 2021 ident: 2024050216455888000_bib50 article-title: Lactate oxidative phosphorylation by annulus fibrosus cells: evidence for lactate-dependent metabolic symbiosis in intervertebral discs publication-title: Arthritis Res Ther doi: 10.1186/s13075-021-02501-2 – volume: 3 start-page: zqac054 issue: 6 year: 2022 ident: 2024050216455888000_bib82 article-title: The need for consistency with physical laws and logic in choosing between competing molecular mechanisms in biological processes: a case study in modeling ATP synthesis publication-title: Function doi: 10.1093/function/zqac054 – volume: 43 start-page: 601 issue: 6 year: 2011 ident: 2024050216455888000_bib65 article-title: New perspectives on photosynthetic phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis publication-title: J Bioenerg Biomembr doi: 10.1007/s10863-011-9396-x – volume: 15 start-page: 1330 issue: 10 year: 2013 ident: 2024050216455888000_bib8 article-title: Nodal regulation of energy metabolism in glioma cells by inducing expression of hypoxia-inducible factor 1α publication-title: Neuro Oncol doi: 10.1093/neuonc/not086 – volume: 2 start-page: 566 issue: 7 year: 2020 ident: 2024050216455888000_bib57 article-title: Lactate: the ugly duckling of energy metabolism publication-title: Nat Metab doi: 10.1038/s42255-020-0243-4 – volume: 313 start-page: 459 issue: 3 year: 2004 ident: 2024050216455888000_bib45 article-title: Cancer metabolism: facts, fantasy and fiction publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2003.11.136 – volume: 158 start-page: 542 issue: 3800 year: 1967 ident: 2024050216455888000_bib20 article-title: Hepatomas publication-title: Science doi: 10.1126/science.158.3800.542 – volume: 8 start-page: 57813 year: 2017 ident: 2024050216455888000_bib35 article-title: The reverse Warburg effect is likely to be an achilles heel of cancer that can be exploited for cancer therapy publication-title: Oncotarget doi: 10.18632/oncotarget.18175 – volume: 38 start-page: 119 year: 2017 ident: 2024050216455888000_bib53 article-title: Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation for the Warburg effect publication-title: Carcinogenesis – volume: 74 start-page: 3735 issue: 9 year: 1977 ident: 2024050216455888000_bib97 article-title: High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.74.9.3735 – volume: 45 start-page: 22 year: 2004 ident: 2024050216455888000_bib10 article-title: 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression publication-title: J Nucl Med – volume: 124 start-page: 269 issue: 3215 year: 1956 ident: 2024050216455888000_bib19 article-title: On respiratory impairment in cancer cells publication-title: Science doi: 10.1126/science.124.3215.269 – volume: 44 start-page: 198 issue: 3 year: 2017 ident: 2024050216455888000_bib34 article-title: Metabolic coupling and the reverse warburg effect in cancer, implications for novel biomarker and anticancer agent development publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2017.10.004 – volume-title: Energetics and Kinetics in Biotechnology year: 1983 ident: 2024050216455888000_bib85 – volume: 224 start-page: 49 year: 2017 ident: 2024050216455888000_bib63 article-title: Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of electrical neutrality publication-title: Biophys Chem doi: 10.1016/j.bpc.2017.03.002 – volume: 116 start-page: 116 year: 2023 ident: 2024050216455888000_bib98 article-title: Some patterns of the respiratory pigments of ascites tumors of mice publication-title: Science – volume: 242 start-page: 1635 issue: 7 year: 1967 ident: 2024050216455888000_bib96 article-title: Mitochondrial hexokinase publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)96139-9 – volume: 12 start-page: 783908 year: 2022 ident: 2024050216455888000_bib28 article-title: Oscillation and dynamic symbiosis in cellular metabolism in cancer publication-title: Front Oncol doi: 10.3389/fonc.2022.783908 – volume: 24 start-page: 11914 issue: 15 year: 2023 ident: 2024050216455888000_bib29 article-title: Metabolic oscillations and glycolytic phenotypes of cancer cells publication-title: Int J Mol Sci doi: 10.3390/ijms241511914 – volume: 37 start-page: 204 issue: 2 year: 2001 ident: 2024050216455888000_bib6 article-title: Glut1 expression in T1 and T2 stage colorectal carcinomas: its relationship to clinicopathological features publication-title: Eur J Cancer doi: 10.1016/S0959-8049(00)00371-3 – volume: 164 start-page: 681 issue: 4 year: 2016 ident: 2024050216455888000_bib31 article-title: Metabolic heterogeneity in human lung tumors publication-title: Cell doi: 10.1016/j.cell.2015.12.034 – volume: 7 start-page: 40621 year: 2016 ident: 2024050216455888000_bib58 article-title: Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation publication-title: Oncotarget doi: 10.18632/oncotarget.9746 – volume: 65 start-page: 397 issue: 2 year: 1925 ident: 2024050216455888000_bib2 article-title: The carbohydrate metabolism of tumours publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)84849-9 – volume: 15 start-page: 2862 issue: 10 year: 2023 ident: 2024050216455888000_bib62 article-title: Succinate-directed approaches for Warburg effect-targeted cancer management, an alternative to current treatments? publication-title: Cancers doi: 10.3390/cancers15102862 – volume: 44 start-page: 1499 issue: 5 year: 2016 ident: 2024050216455888000_bib74 article-title: The Warburg effect: 80 years on publication-title: Biochem Soc Trans doi: 10.1042/BST20160094 – volume: 24 start-page: 15787 issue: 21 year: 2023 ident: 2024050216455888000_bib75 article-title: The Warburg effect explained: integration of enhanced glycolysis with heterogeneous mitochondria to promote cancer cell proliferation publication-title: Int J Mol Sci doi: 10.3390/ijms242115787 – volume: 118 start-page: 691 issue: 4 year: 2018 ident: 2024050216455888000_bib56 article-title: Lactate metabolism: historical context prior misinterpretations and current understanding publication-title: Eur J Appl Physiol doi: 10.1007/s00421-017-3795-6 – year: 2021 ident: 2024050216455888000_bib101 – volume: 152 start-page: 309 year: 1924 ident: 2024050216455888000_bib1 article-title: Über den Stoffwechsel der Carcinomzelle publication-title: Biochem Z – volume: 9 start-page: 425 issue: 6 year: 2006 ident: 2024050216455888000_bib24 article-title: Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.04.023 – volume: 83 start-page: 3904 issue: 21 year: 2023 ident: 2024050216455888000_bib51 article-title: Lactate activates the mitochondrial electron transport chain independently of its metabolism publication-title: Mol Cell doi: 10.1016/j.molcel.2023.09.034 – volume: 29 start-page: T1 issue: 12 year: 2022 ident: 2024050216455888000_bib71 article-title: 100 years of the Warburg effect: a historical perspective publication-title: Endocr Relat Cancer doi: 10.1530/ERC-22-0173 – volume: 26 start-page: 803 issue: 6 year: 2017 ident: 2024050216455888000_bib52 article-title: Waste not, want not: lactate oxidation fuels the TCA cycle publication-title: Cell Metab doi: 10.1016/j.cmet.2017.11.005 – volume-title: Bioprocess Engineering: Basic Concepts year: 2002 ident: 2024050216455888000_bib86 – volume: 63 start-page: 14276 issue: 23 year: 2020 ident: 2024050216455888000_bib15 article-title: Why all the fuss about oxidative phosphorylation (Oxphos)? publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c01013 – volume: 252 start-page: 106208 year: 2019 ident: 2024050216455888000_bib41 article-title: Integration of demand and supply sides in the ATP energy economics of cells publication-title: Biophys Chem doi: 10.1016/j.bpc.2019.106208 – volume: 1857 start-page: 1086 issue: 8 year: 2016 ident: 2024050216455888000_bib61 article-title: Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis publication-title: Biochim Biophys Acta Bioenerg doi: 10.1016/j.bbabio.2016.03.012 – volume: 5 start-page: 829 issue: 19 year: 1926 ident: 2024050216455888000_bib3 article-title: Über den Stoffwechsel der Tumoren im Körper publication-title: Klin Wochenschr doi: 10.1007/BF01726240 – volume: 242 start-page: 15 year: 2018 ident: 2024050216455888000_bib44 article-title: Molecular mechanistic insights into uncoupling of ion transport from ATP synthesis publication-title: Biophys Chem doi: 10.1016/j.bpc.2018.08.006 – volume: 43 start-page: 1187 issue: 6 year: 2015 ident: 2024050216455888000_bib17 article-title: Mathematical models for explaining the Warburg effect: a review focused on ATP and biomass production publication-title: Biochem Soc Trans doi: 10.1042/BST20150153 – volume: 134 start-page: 703 issue: 5 year: 2008 ident: 2024050216455888000_bib76 article-title: Cancer cell metabolism: warburg and beyond publication-title: Cell doi: 10.1016/j.cell.2008.08.021 – volume: 11 start-page: 143 issue: 1 year: 2020 ident: 2024050216455888000_bib93 article-title: A novel conceptual model for the dual role of F0F1-ATP synthase in cell life and cell death publication-title: Biomol Concepts doi: 10.1515/bmc-2020-0014 – volume: 42 start-page: 301 issue: 4 year: 2010 ident: 2024050216455888000_bib64 article-title: Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis—invited review part 2 publication-title: J Bioenerg Biomembr doi: 10.1007/s10863-010-9295-6 – volume: 2 start-page: 127 issue: 2 year: 2020 ident: 2024050216455888000_bib70 article-title: We need to talk about the Warburg effect publication-title: Nat Metab doi: 10.1038/s42255-020-0172-2 – volume: 60 start-page: 56 year: 1972 ident: 2024050216455888000_bib5 article-title: Bioenergetics and the problem of tumor growth publication-title: Am Sci – volume: 11 start-page: 1058500 year: 2023 ident: 2024050216455888000_bib84 article-title: Beyond binding change: the molecular mechanism of ATP hydrolysis by F1-ATPase and its biochemical consequences publication-title: Front Chem doi: 10.3389/fchem.2023.1058500 – volume: 219 start-page: 69 year: 2016 ident: 2024050216455888000_bib14 article-title: The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation publication-title: Biophys Chem doi: 10.1016/j.bpc.2016.10.002 – volume: 123 start-page: 309 issue: 3191 year: 1956 ident: 2024050216455888000_bib18 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 4 start-page: 211 issue: 3 year: 2016 ident: 2024050216455888000_bib67 article-title: The Warburg effect: how does it benefit cancer cells? publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2015.12.001 – volume: 277 start-page: 7610 issue: 9 year: 2002 ident: 2024050216455888000_bib95 article-title: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M109950200 – volume: 558 start-page: 5 issue: 1 year: 2004 ident: 2024050216455888000_bib46 article-title: Lactate metabolism: a new paradigm for the third millennium publication-title: J Physiol doi: 10.1113/jphysiol.2003.058701 – volume: 241 start-page: 20 year: 2018 ident: 2024050216455888000_bib43 article-title: Molecular mechanistic insights into coupling of ion transport to ATP synthesis publication-title: Biophys Chem doi: 10.1016/j.bpc.2018.07.006 – volume: 4 start-page: 115 issue: 2 year: 1998 ident: 2024050216455888000_bib7 article-title: Role for glucose transporter 1 protein in human breast cancer publication-title: Pathol Oncol Res doi: 10.1007/BF02904704 – volume: 2 start-page: 31 issue: 31 year: 2010 ident: 2024050216455888000_bib9 article-title: Metabolic modulation of glioblastoma with dichloroacetate publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000677 – volume: 141 start-page: 249 issue: 3 year: 2022 ident: 2024050216455888000_bib42 article-title: Network representation and analysis of energy coupling mechanisms in cellular metabolism by a graph-theoretical approach publication-title: Theory Biosci doi: 10.1007/s12064-022-00370-0 – volume-title: Bioreaction Engineering Principles year: 2011 ident: 2024050216455888000_bib87 doi: 10.1007/978-1-4419-9688-6 – volume: 21 start-page: 746 issue: 8 year: 2019 ident: 2024050216455888000_bib27 article-title: Entropy production and its application to the coupled nonequilibrium processes of ATP synthesis publication-title: Entropy doi: 10.3390/e21080746 – volume: 6 start-page: 31007 issue: 1 year: 2016 ident: 2024050216455888000_bib77 article-title: Macromolecular crowding explains overflow metabolism in cells publication-title: Sci Rep doi: 10.1038/srep31007 – volume: 79 start-page: 253 year: 2015 ident: 2024050216455888000_bib36 article-title: The Warburg effect: evolving interpretations of an established concept publication-title: Free Radical Biol Med doi: 10.1016/j.freeradbiomed.2014.08.027 – volume: 174 start-page: 703 issue: 3 year: 1978 ident: 2024050216455888000_bib91 article-title: Aerobic glycolysis and lymphocyte transformation publication-title: Biochem J doi: 10.1042/bj1740703 – volume: 21 start-page: 297 issue: 3 year: 2012 ident: 2024050216455888000_bib59 article-title: Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.014 – volume: 514 start-page: 628 issue: 7524 year: 2014 ident: 2024050216455888000_bib30 article-title: Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature doi: 10.1038/nature13611 – volume: 587 start-page: 5591 issue: 23 year: 2009 ident: 2024050216455888000_bib47 article-title: Cell-cell and intracellular lactate shuttles publication-title: J Physiol doi: 10.1113/jphysiol.2009.178350 – volume: 27 start-page: 441 issue: 1 year: 2011 ident: 2024050216455888000_bib73 article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154237 |
SSID | ssj0002512102 |
Score | 2.2954416 |
Snippet | The Warburg Effect is a longstanding enigma in cancer biology. Despite the passage of 100 yr since its discovery, and the accumulation of a vast body of... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | zqae008 |
SubjectTerms | Adenosine triphosphate Adenosine Triphosphate - metabolism Antineoplastic drugs Cancer Drug delivery Drug development Drug metabolism Energy coupling Energy Metabolism Glycolysis Humans Metabolism Metabolites Models, Biological Neoplasms - metabolism Neoplasms - pathology Original Research Quantitative analysis Stoichiometry Symbiosis Warburg Effect, Oncologic |
Title | The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38706962 https://www.proquest.com/docview/3191818569 https://www.proquest.com/docview/3051427568 https://pubmed.ncbi.nlm.nih.gov/PMC11065116 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF61cOmlKtCWtDSaSqhSD1bsjb22uVQhIkKVoBENam7W7noXLAUb4nCgv6Y_tTN-kXBAXHywx3bimfV8nsc3jB2GOgh0JI0Ta1c7vrTSUTz1HCGVFKHxrfWo3_nsXJxe-j_nwbwJuJVNWWX7Tqxe1GmhKUY-QFPxyLmI-MftnUNToyi72ozQeM22ibqMSrrCedjFWMh3e1TAs9_wJg3IWdAfHvy9k8almZJr3mijw20NaD6tl1xzQJN37G2DHGFUq3qHvTL5Ltsb5fjVfPMA36Cq5ayC5HvsH2of_kh6YldQExTDhcnaAkOTgue68LCEIj-CEUwyxIDOtI27l_B7VWT6mjrzicAfWuYSkHkKm2WKQP0pgCgSpo9tm1BYGM2mcIZCqlhk5Q1kOYzJwJYwNotF-Z5dTk5m41OnmcXg6IBHK8dXnBJ2aWA56iBS0qpUWd-1Ghf4UCnObWy4tH4YG98L3djEVgvcFysjuPKHH9hWXuRmnwExAHoiSjmR1QWRiPDLWCoTpK5vEaCYHhu0Okl0Q1RO8zIWSZ0wHyatFpNGiz32vTvjtibpeEb2ENX8ArGD1g6SZlWXyaMN9tjX7jCuR0qyyNwU9yhDhPLEqY-X-FibTXezISWVY8F7LNowqE6AuL43j-TZdcX5jShNIDYWn57_XZ_ZG46oq44RHbCt1fLefEHUtFL9amn02fbxyfn0ol_FHvpVcAu3s1_z_xSgJD8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2V9AAXBC3QQKGDVJA4WLHX9sZGQiiERiltoqikojeza-9SS6ndxqlQ-DX8An4jM7GdJhwqLr3G63Xked59Ox9vGNtvx74fB1JbYWzHlieNtBRPHEtIJUVbe8Y4VO88GIr-qfflzD_bYH_qWhhKq6zXxMVCneQx-chbCBWHNhcRfry8sqhrFEVX6xYaJSyO9PwnHtmKD4ef0b5vOO8djLt9q-oqYMU-D2aWpziFnhLfcJwtUNKoRBnPNjFC1VWKcxNqLo3XDrXntO1QhyYW-FuotODKc3Hee2zTc_Eo02Cbnw6Go5OlV4fYgkMpQzuVUlOLtid6xa1fV1Lb1MVyZf9bq6lbobb_ZmiubHm9R-xhxVWhU4LrMdvQ2Rbb7mR4Tr-Yw1tYZI8u3PLb7DfiDb5JstEPKCWR4USndUqjTsCxbZhPIc_eQwd6KbJOa1R7-gv4OsvT-Jy0AKhlANRaKSCzBNYTI4EqYgB5K4xuCkUhN9AZj2CAg1Q-SYsLSDPoEqSn0NWTSfGEnd6JnZ6yRpZneocBaQ46Ikg4yeP5gQjwLC6V9hPbM0iJdJO1aptEcSWNTh06JlEZonej2opRZcUme7e847KUBbll7D6a-T-G7dY4iKp1pIhuUN9kr5eXcQWgsI7MdH6NY0jCnlT8cYpnJWyWD3MpjB0K3mTBGqCWA0hdfP1Klp4vVMaRFwpk4-L57f9rj93vjwfH0fHh8OgFe8CR85Ueql3WmE2v9UvkbDP1qvpQgH2_62_zLwSgXus |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Warburg+Effect+Reinterpreted+100+yr+on%3A+A+First-Principles+Stoichiometric+Analysis+and+Interpretation+from+the+Perspective+of+ATP+Metabolism+in+Cancer+Cells&rft.jtitle=Function+%28Oxford%2C+England%29&rft.au=Nath%2C+Sunil&rft.au=Balling%2C+Rudi&rft.date=2024&rft.pub=Oxford+University+Press&rft.eissn=2633-8823&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1093%2Ffunction%2Fzqae008&rft.externalDocID=PMC11065116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-8823&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-8823&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-8823&client=summon |