The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases
WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune...
Saved in:
Published in | Frontiers in immunology Vol. 5; p. 428 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
08.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. |
---|---|
AbstractList | When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections. |
Author | Morrison, Thomas E. Burrack, Kristina S. |
AuthorAffiliation | 1 Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA |
AuthorAffiliation_xml | – name: 1 Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA |
Author_xml | – sequence: 1 givenname: Kristina S. surname: Burrack fullname: Burrack, Kristina S. – sequence: 2 givenname: Thomas E. surname: Morrison fullname: Morrison, Thomas E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25250029$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhS1URB90zwp5ySaD30k2SKMp0JFagVBhaznO9YyrxC62U6n_nsxMqVokvPHrnO9a1-cUHYUYAKF3lCw4b9qPzo_jtGCEigUhgjWv0AlVSlScMXH0bH2MznO-JfMQLedcvkHHTDJJCGtPkL_ZAv4RB8DR4esHGKLv8QqGAS9t8fem-BiwCT1epo0PPgC-hmK6OPg8Yh9wme3fTdnGDQTIPu8wv3yacrUO_WShxxc-g8mQ36LXzgwZzh_nM_Tzy-eb1WV19e3rerW8qqxkTamENJyAqEVfC0poDbWUXNYtk1wJobqOut62XUOlk7JulGioc84CVcyZmlB-htYHbh_Nrb5LfjTpQUfj9f4gpo02qXg7gFa9EFwpylXjRONkRxs5t3Pe2F5RuWN9OrDupm6E3kIoyQwvoC9vgt_qTbzXgspaqh3gwyMgxd8T5KJHn-3cXhMgTllTqaRo24arWfr-ea2nIn__ahaQg8CmmHMC9yShRO8SofeJ0LtE6H0iZov6x2J92f_p_Fo__N_4B5reulM |
CitedBy_id | crossref_primary_10_26508_lsa_202302148 crossref_primary_10_3389_fimmu_2024_1473895 crossref_primary_10_3389_fimmu_2016_00630 crossref_primary_10_1021_acs_jproteome_1c00215 crossref_primary_10_1002_hsr2_548 crossref_primary_10_1088_1054_660X_26_11_115602 crossref_primary_10_1126_sciimmunol_ado1227 crossref_primary_10_1088_1612_202X_aa829e crossref_primary_10_3389_fimmu_2022_780839 crossref_primary_10_1002_mco2_94 crossref_primary_10_3389_fncel_2022_969058 crossref_primary_10_1111_jnc_13393 crossref_primary_10_1038_s41467_021_21907_9 crossref_primary_10_3390_jcm10051051 crossref_primary_10_1038_s41598_021_03201_2 crossref_primary_10_1093_infdis_jiy086 crossref_primary_10_3389_fimmu_2024_1385362 crossref_primary_10_1089_vim_2016_0125 crossref_primary_10_1101_gr_241372_118 crossref_primary_10_3389_fimmu_2021_574425 crossref_primary_10_1186_s12974_017_1049_5 crossref_primary_10_1080_1354750X_2023_2273226 crossref_primary_10_3390_nu16081212 crossref_primary_10_3389_fimmu_2017_00890 crossref_primary_10_1007_s00430_015_0402_5 crossref_primary_10_1016_j_brainres_2015_06_034 crossref_primary_10_1016_j_jcpa_2018_12_004 crossref_primary_10_4049_jimmunol_2101099 crossref_primary_10_3390_v7062762 crossref_primary_10_1016_j_ejbt_2024_09_001 crossref_primary_10_1016_j_fsi_2022_06_060 crossref_primary_10_1177_1753425919869436 crossref_primary_10_1016_j_virusres_2020_198108 crossref_primary_10_3390_v13071236 crossref_primary_10_3945_jn_115_228544 crossref_primary_10_3390_cells11020310 crossref_primary_10_1016_j_intimp_2023_110610 crossref_primary_10_3390_ijms19123805 crossref_primary_10_1002_cbin_11565 crossref_primary_10_1016_j_carpath_2024_107652 crossref_primary_10_3390_v12050505 crossref_primary_10_3389_fimmu_2015_00059 crossref_primary_10_1002_cti2_1037 crossref_primary_10_1007_s11684_020_0776_7 crossref_primary_10_3390_ijms252211899 crossref_primary_10_1126_scitranslmed_aat4162 crossref_primary_10_1007_s12223_018_0606_3 crossref_primary_10_1038_nrmicro_2016_12 crossref_primary_10_1016_j_chom_2016_06_008 crossref_primary_10_3390_ijms21186609 crossref_primary_10_3892_ijmm_2020_4636 crossref_primary_10_1016_j_niox_2021_04_003 crossref_primary_10_1111_sji_12429 crossref_primary_10_1186_s13018_017_0674_0 crossref_primary_10_1111_jnc_14039 |
Cites_doi | 10.1084/jem.191.7.1247 10.1371/journal.ppat.1000636 10.1126/science.1281928 10.1016/S1074-7613(00)80469-0 10.1111/j.1476-5381.2009.00291.x 10.4049/jimmunol.180.4.2562 10.1016/j.expneurol.2005.05.016 10.1186/1742-2094-11-20 10.1016/j.immuni.2014.06.008 10.1111/j.1440-1681.2008.05022.x 10.1126/science.1256942 10.1128/JVI.74.8.3605-3612.2000 10.1111/imr.12084 10.4049/jimmunol.175.2.1118 10.1002/hep.24700 10.1007/s10875-012-9861-2 10.1128/JVI.72.9.7703-7706.1998 10.1016/j.trstmh.2010.08.004 10.1016/S0378-1135(02)00010-X 10.1002/jmv.20093 10.1093/infdis/jit062 10.1002/ijc.24265 10.1084/jem.185.9.1533 10.1371/journal.pntd.0001977 10.2174/0929867311320110006 10.1007/s00430-003-0198-6 10.1084/jem.160.2.521 10.1016/j.immuni.2012.10.022 10.1093/infdis/jit469 10.1126/science.1948068 10.1099/vir.0.82131-0 10.1016/j.ajpath.2013.04.015 10.1128/JVI.71.6.4278-4283.1997 10.1038/mi.2010.6 10.1126/science.7690156 10.1161/CIRCRESAHA.109.195230 10.1073/pnas.0900655106 10.1165/rcmb.2006-0121OC 10.1128/JVI.01547-12 10.1016/S0021-9258(18)77279-7 10.1186/1471-2334-5-64 10.1084/jem.188.8.1541 10.1016/j.immuni.2012.04.014 10.4049/jimmunol.166.5.3533 10.1084/jem.174.4.761 10.1073/pnas.89.7.3030 10.1006/viro.2000.0801 10.1371/journal.pone.0014561 10.1007/s00705-012-1593-3 10.1038/mi.2012.46 10.1089/aid.2007.0193 10.4049/jimmunol.1201240 10.1128/CMR.14.4.753-777.2001 10.1172/JCI36264 10.1038/mi.2013.71 10.1128/JVI.69.4.2208-2213.1995 10.1189/jlb.1009673 10.4049/jimmunol.164.1.371 10.1016/0042-6822(88)90144-4 10.1371/journal.ppat.1003735 10.1128/JVI.73.10.8880-8883.1999 10.1038/ncomms3106 10.1016/S0140-6736(09)60207-5 10.1189/jlb.4HI0414-226R 10.1128/JVI.03089-12 10.1016/0952-7915(91)90079-G 10.1172/JCI118613 10.1073/pnas.95.5.2469 10.7150/ijms.3880 10.1073/pnas.93.6.2448 10.1172/JCI116479 10.4049/jimmunol.163.10.5497 10.1099/0022-1317-79-4-825 10.4049/jimmunol.0902193 10.1053/j.gastro.2012.03.041 10.1080/13550280802093927 10.1016/S0014-2999(03)01932-0 10.1038/nri3073 10.1128/JVI.77.8.4911-4927.2003 10.1111/j.1440-1681.2008.04970.x 10.1158/1078-0432.CCR-09-0489 10.1086/653736 10.1016/j.chom.2012.03.009 10.1615/CritRevImmunol.v32.i6.10 10.1128/JVI.69.2.910-915.1995 10.4269/ajtmh.2002.66.762 10.1371/journal.ppat.1004032 10.1128/JVI.01689-12 10.4049/jimmunol.146.8.2719 10.1371/journal.pntd.0001663 10.1128/JVI.01759-12 10.1016/S0002-9440(10)64683-4 10.1128/MMBR.59.4.533-547.1995 10.4049/jimmunol.162.5.2895 10.1189/jlb.0507270 10.1016/0042-6822(89)90244-4 10.4049/jimmunol.1102742 10.1186/1742-2094-9-246 10.1128/JVI.71.7.5227-5235.1997 10.1006/viro.2000.0576 10.1084/jem.20072076 10.1038/nri3175 10.1128/JVI.70.6.3972-3977.1996 10.4049/jimmunol.162.2.957 10.1371/journal.pntd.0001449 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Burrack and Morrison. 2014 |
Copyright_xml | – notice: Copyright © 2014 Burrack and Morrison. 2014 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2014.00428 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_6d443661368f48f5b1850148f4cd6151 PMC4157561 25250029 10_3389_fimmu_2014_00428 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI052066 – fundername: NIAID NIH HHS grantid: R01 AI108725 – fundername: NIAID NIH HHS grantid: U19 AI109680 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-45a30e474d741017e75535792536446bb1fdc9b815f55786481fffce162fa7013 |
IEDL.DBID | DOA |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:28:21 EDT 2025 Thu Aug 21 18:15:36 EDT 2025 Fri Jul 11 06:51:54 EDT 2025 Thu Apr 03 07:02:05 EDT 2025 Tue Jul 01 01:57:21 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | iNOS macrophages viral pathogenicity immunity arginase cellular |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-45a30e474d741017e75535792536446bb1fdc9b815f55786481fffce162fa7013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Masaaki Murakami, Hokkaido University, Japan; Mayda Gursel, Middle East Technical University, Turkey This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology. Edited by: Charles Dudley Mills, BioMedical Consultants, USA |
OpenAccessLink | https://doaj.org/article/6d443661368f48f5b1850148f4cd6151 |
PMID | 25250029 |
PQID | 1565499836 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d443661368f48f5b1850148f4cd6151 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4157561 proquest_miscellaneous_1565499836 pubmed_primary_25250029 crossref_primary_10_3389_fimmu_2014_00428 crossref_citationtrail_10_3389_fimmu_2014_00428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-08 |
PublicationDateYYYYMMDD | 2014-09-08 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2014 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Burggraaf (B47) 2011; 6 Akaike (B48) 1996; 93 Bi (B11) 1995; 69 Adler (B58) 1997; 185 Qin (B73) 2013; 87 Cassol (B100) 2010; 87 James (B8) 1995; 59 Osborne (B83) 2014; 345 Murray (B1) 2011; 11 Jayasekera (B50) 2006; 87 Marques (B60) 2008; 14 Wink (B87) 1991; 254 Murray (B6) 2014; 41 Mora (B61) 2006; 35 Nathan (B7) 1991; 3 Li (B30) 2009; 105 Karupiah (B9) 1993; 261 Bility (B78) 2014; 10 Goody (B44) 2005; 195 Cai (B98) 2013; 33 Munder (B3) 2009; 158 Zell (B91) 2004; 193 Zaragoza (B14) 1998; 95 Flodstrom (B16) 2001; 281 Zhao (B56) 2009; 5 Zhu (B64) 2005; 175 Tucker (B43) 1996; 70 Wilson (B67) 2012; 11 Lepoivre (B85) 1990; 265 Ebrahimi (B63) 2001; 158 Lepique (B103) 2009; 15 Wherry (B95) 2003; 77 Daley-Bauer (B66) 2012; 37 Cao (B71) 2009; 124 Long (B82) 2013; 158 Croen (B10) 1993; 91 Kwon (B86) 1991; 174 Trujillo (B68) 2013; 87 Djeraba (B35) 2002; 86 Lawn (B101) 2001; 14 Butz (B94) 1998; 8 Rimmelzwaan (B45) 1999; 73 Shirey (B19) 2010; 3 Richter (B96) 2013; 9 Costa (B39) 2012; 6 Green (B65) 2013; 87 Wang (B27) 2013; 4 Bowen (B97) 2009; 183 Fagundes (B38) 2011; 5 Sandalova (B79) 2012; 143 Page (B57) 2012; 86 Das (B80) 2008; 205 Lin (B53) 2008; 180 Dutia (B62) 1997; 71 Mills (B92) 1991; 146 Shirey (B20) 2013; 7 Liu (B31) 2013; 183 Nguyen (B88) 1992; 89 De Santo (B81) 2008; 118 Lin (B12) 1997; 71 Zolini (B25) 2014; 11 Ahmed (B93) 1984; 160 Jacobson (B90) 1989; 173 van Den Broek (B23) 2000; 164 Shirey (B21) 2014 Cloke (B74) 2010; 202 MacLean (B26) 1998; 79 Darwish (B46) 2012; 9 Aldridge (B54) 2009; 106 Gabrilovich (B4) 2012; 12 Guidotti (B36) 2000; 191 Getts (B42) 2012; 9 Goldstein (B89) 1988; 166 Liaw (B102) 2009; 373 Kong (B5) 2013; 20 Neves-Souza (B13) 2005; 5 Cloke (B75) 2010; 104 Goh (B104) 2013; 255 Xing (B34) 2000; 74 Konturek (B55) 2003; 472 Mgbemena (B52) 2012; 189 Lowenstein (B17) 1996; 97 Takele (B77) 2013; 7 Norris (B70) 2013; 38 Tacke (B99) 2012; 55 Garg (B76) 2014; 209 Fischer-Smith (B72) 2008; 24 Stamler (B84) 1992; 258 Zaragoza (B15) 1999; 163 Harris (B32) 1995; 69 Bodaghi (B28) 1999; 162 Karupiah (B49) 1998; 188 Gangadharan (B105) 2008; 84 Stoermer (B69) 2012; 189 Kodukula (B22) 1999; 162 Gamba (B59) 2004; 73 Karupiah (B18) 1998; 72 Conrady (B24) 2013; 6 Noda (B29) 2001; 166 Mendes-Ribeiro (B40) 2008; 35 Achike (B41) 2008; 35 Djeraba (B33) 2000; 277 Mills (B2) 2012; 32 Perrone (B51) 2013; 207 Valero (B37) 2002; 66 23349999 - PLoS Negl Trop Dis. 2013;7(1):e1977 1711326 - Curr Opin Immunol. 1991 Feb;3(1):65-70 9568978 - J Gen Virol. 1998 Apr;79 ( Pt 4):825-30 6332167 - J Exp Med. 1984 Aug 1;160(2):521-40 19279209 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5306-11 20042468 - J Leukoc Biol. 2010 Apr;87(4):599-608 23438822 - Immunity. 2013 Feb 21;38(2):309-21 2117605 - J Biol Chem. 1990 Aug 25;265(24):14143-9 10072539 - J Immunol. 1999 Mar 1;162(5):2895-905 23409714 - Curr Med Chem. 2013;20(11):1437-44 22666512 - PLoS Negl Trop Dis. 2012;6(5):e1663 19890055 - J Immunol. 2009 Dec 1;183(11):6971-80 24244162 - PLoS Pathog. 2013;9(11):e1003735 24651854 - PLoS Pathog. 2014 Mar 20;10(3):e1004032 16709958 - Am J Respir Cell Mol Biol. 2006 Oct;35(4):466-73 12663797 - J Virol. 2003 Apr;77(8):4911-27 22437938 - Nat Rev Immunol. 2012 Mar 22;12(4):253-68 18373432 - AIDS Res Hum Retroviruses. 2008 Mar;24(3):417-21 23820884 - Nat Commun. 2013;4:2106 22972923 - J Immunol. 2012 Oct 15;189(8):4047-59 1281928 - Science. 1992 Dec 18;258(5090):1898-902 22711891 - J Immunol. 2012 Jul 15;189(2):606-15 8621766 - J Clin Invest. 1996 Apr 15;97(8):1837-43 23746656 - Am J Pathol. 2013 Aug;183(2):441-9 18505438 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1143-6 10605032 - J Immunol. 2000 Jan 1;164(1):371-8 23152536 - J Virol. 2013 Feb;87(3):1477-90 23354838 - J Clin Immunol. 2013 May;33(4):798-808 21997792 - Nat Rev Immunol. 2011 Oct 14;11(11):723-37 23999600 - J Infect Dis. 2014 Feb 1;209(3):441-51 12871756 - Eur J Pharmacol. 2003 Jul 11;472(3):213-20 23221564 - J Virol. 2013 Feb;87(4):2058-71 18569457 - J Neurovirol. 2008 May;14 (3):229-38 2842955 - Virology. 1988 Sep;166(1):41-51 23420903 - J Infect Dis. 2013 May 15;207(10):1576-84 23397329 - Arch Virol. 2013 Jun;158(6):1305-22 22206036 - PLoS Negl Trop Dis. 2011 Dec;5(12):e1449 21283521 - PLoS One. 2011 Jan 19;6(1):e14561 8637894 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448-53 24479442 - J Neuroinflammation. 2014 Jan 30;11:20 18250467 - J Immunol. 2008 Feb 15;180(4):2562-72 11207313 - J Immunol. 2001 Mar 1;166(5):3533-41 8390481 - J Clin Invest. 1993 Jun;91(6):2446-52 20404812 - Mucosal Immunol. 2010 May;3(3):291-300 25035950 - Immunity. 2014 Jul 17;41(1):14-20 10553076 - J Immunol. 1999 Nov 15;163(10):5497-504 25082704 - Science. 2014 Aug 1;345(6196):578-82 23111065 - J Neuroinflammation. 2012 Oct 30;9:246 1948068 - Science. 1991 Nov 15;254(5034):1001-3 19851468 - PLoS Pathog. 2009 Oct;5(10):e1000636 1717630 - J Exp Med. 1991 Oct 1;174(4):761-7 9151815 - J Virol. 1997 Jun;71(6):4278-83 9916720 - J Immunol. 1999 Jan 15;162(2):957-64 16004984 - Exp Neurol. 2005 Oct;195(2):379-90 7533852 - J Virol. 1995 Apr;69(4):2208-13 1707918 - J Immunol. 1991 Apr 15;146(8):2719-23 8531884 - Microbiol Rev. 1995 Dec;59(4):533-47 9782132 - J Exp Med. 1998 Oct 19;188(8):1541-6 11277693 - Virology. 2001 Mar 15;281(2):205-15 19033672 - J Clin Invest. 2008 Dec;118(12):4036-48 15122810 - J Med Virol. 2004 Jun;73(2):313-22 20843532 - Trans R Soc Trop Med Hyg. 2010 Nov;104(11):746-8 20575659 - J Infect Dis. 2010 Aug 15;202(3):374-85 8648734 - J Virol. 1996 Jun;70(6):3972-7 18436582 - J Leukoc Biol. 2008 Jul;84(1):50-8 9696880 - J Virol. 1998 Sep;72(9):7703-6 22607801 - Cell Host Microbe. 2012 May 17;11(5):481-91 19217993 - Lancet. 2009 Feb 14;373(9663):582-92 10729136 - J Virol. 2000 Apr;74(8):3605-12 17030871 - J Gen Virol. 2006 Nov;87(Pt 11):3361-71 22692455 - Mucosal Immunol. 2013 Jan;6(1):45-55 2554573 - Virology. 1989 Nov;173(1):276-83 1557408 - Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030-4 7690156 - Science. 1993 Sep 10;261(5127):1445-8 24064666 - Mucosal Immunol. 2014 May;7(3):549-57 9188590 - J Virol. 1997 Jul;71(7):5227-35 23428224 - Crit Rev Immunol. 2012;32(6):463-88 11900957 - Vet Microbiol. 2002 May 1;86(3):229-44 19764983 - Br J Pharmacol. 2009 Oct;158(3):638-51 9482909 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2469-74 16109165 - BMC Infect Dis. 2005 Aug 18;5:64 12224588 - Am J Trop Med Hyg. 2002 Jun;66(6):762-4 14513374 - Med Microbiol Immunol. 2004 May;193(2-3):91-100 9491998 - Immunity. 1998 Feb;8(2):167-75 10748242 - J Exp Med. 2000 Apr 3;191(7):1247-52 11395389 - Am J Pathol. 2001 Jun;158(6):2117-25 19608981 - Circ Res. 2009 Aug 14;105(4):353-64 22475535 - Gastroenterology. 2012 Jul;143(1):78-87.e3 10482647 - J Virol. 1999 Oct;73(10):8880-3 25009233 - J Leukoc Biol. 2014 Dec;96(6):951-5 23015710 - J Virol. 2012 Dec;86(24):13334-49 11585784 - Clin Microbiol Rev. 2001 Oct;14(4):753-77, table of contents 19549768 - Clin Cancer Res. 2009 Jul 1;15(13):4391-400 7529336 - J Virol. 1995 Feb;69(2):910-5 18695005 - J Exp Med. 2008 Sep 1;205(9):2111-24 9151890 - J Exp Med. 1997 May 5;185(9):1533-40 11062036 - Virology. 2000 Nov 10;277(1):58-65 19253371 - Int J Cancer. 2009 Jun 15;124(12):2886-92 23947357 - Immunol Rev. 2013 Sep;255(1):210-21 21953144 - Hepatology. 2012 Feb;55(2):343-53 22840843 - Immunity. 2012 Jul 27;37(1):122-33 23269787 - J Virol. 2013 Mar;87(5):2376-89 22253563 - Int J Med Sci. 2012;9(2):157-62 18954330 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1135-6 16002713 - J Immunol. 2005 Jul 15;175(2):1118-26 |
References_xml | – volume: 191 start-page: 1247 issue: 7 year: 2000 ident: B36 article-title: Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice publication-title: J Exp Med doi: 10.1084/jem.191.7.1247 – volume: 5 start-page: e1000636 issue: 10 year: 2009 ident: B56 article-title: Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000636 – volume: 258 start-page: 1898 issue: 5090 year: 1992 ident: B84 article-title: Biochemistry of nitric oxide and its redox-activated forms publication-title: Science doi: 10.1126/science.1281928 – volume: 8 start-page: 167 issue: 2 year: 1998 ident: B94 article-title: Massive expansion of antigen-specific CD8+ T cells during an acute virus infection publication-title: Immunity doi: 10.1016/S1074-7613(00)80469-0 – volume: 158 start-page: 638 issue: 3 year: 2009 ident: B3 article-title: Arginase: an emerging key player in the mammalian immune system publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2009.00291.x – volume: 180 start-page: 2562 issue: 4 year: 2008 ident: B53 article-title: CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality publication-title: J Immunol doi: 10.4049/jimmunol.180.4.2562 – volume: 195 start-page: 379 issue: 2 year: 2005 ident: B44 article-title: Reovirus infection of the CNS enhances iNOS expression in areas of virus-induced injury publication-title: Exp Neurol doi: 10.1016/j.expneurol.2005.05.016 – volume: 11 start-page: 20 year: 2014 ident: B25 article-title: Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia publication-title: J Neuroinflammation doi: 10.1186/1742-2094-11-20 – volume: 41 start-page: 14 issue: 1 year: 2014 ident: B6 article-title: Macrophage activation and polarization: nomenclature and experimental guidelines publication-title: Immunity doi: 10.1016/j.immuni.2014.06.008 – volume: 35 start-page: 1135 issue: 10 year: 2008 ident: B41 article-title: The l-arginine-nitric oxide pathway: a potential therapeutic target in dengue haemorrhagic fever publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/j.1440-1681.2008.05022.x – volume: 345 start-page: 578 issue: 6196 year: 2014 ident: B83 article-title: Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation publication-title: Science doi: 10.1126/science.1256942 – volume: 74 start-page: 3605 issue: 8 year: 2000 ident: B34 article-title: Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus publication-title: J Virol doi: 10.1128/JVI.74.8.3605-3612.2000 – volume: 255 start-page: 210 issue: 1 year: 2013 ident: B104 article-title: Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? publication-title: Immunol Rev doi: 10.1111/imr.12084 – volume: 175 start-page: 1118 issue: 2 year: 2005 ident: B64 article-title: Lentivirus infection causes neuroinflammation and neuronal injury in dorsal root ganglia: pathogenic effects of STAT-1 and inducible nitric oxide synthase publication-title: J Immunol doi: 10.4049/jimmunol.175.2.1118 – volume: 55 start-page: 343 issue: 2 year: 2012 ident: B99 article-title: Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species publication-title: Hepatology doi: 10.1002/hep.24700 – volume: 33 start-page: 798 issue: 4 year: 2013 ident: B98 article-title: Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients publication-title: J Clin Immunol doi: 10.1007/s10875-012-9861-2 – volume: 72 start-page: 7703 issue: 9 year: 1998 ident: B18 article-title: Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection publication-title: J Virol doi: 10.1128/JVI.72.9.7703-7706.1998 – volume: 104 start-page: 746 issue: 11 year: 2010 ident: B75 article-title: Antiretroviral therapy abrogates association between arginase activity and HIV disease severity publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2010.08.004 – volume: 86 start-page: 229 issue: 3 year: 2002 ident: B35 article-title: Resistance and susceptibility to Marek’s disease: nitric oxide synthase/arginase activity balance publication-title: Vet Microbiol doi: 10.1016/S0378-1135(02)00010-X – volume: 73 start-page: 313 issue: 2 year: 2004 ident: B59 article-title: Early inhibition of nitric oxide production increases HSV-1 intranasal infection publication-title: J Med Virol doi: 10.1002/jmv.20093 – volume: 207 start-page: 1576 issue: 10 year: 2013 ident: B51 article-title: Inducible nitric oxide contributes to viral pathogenesis following highly pathogenic influenza virus infection in mice publication-title: J Infect Dis doi: 10.1093/infdis/jit062 – volume: 124 start-page: 2886 issue: 12 year: 2009 ident: B71 article-title: Hepatitis C virus targets over-expression of arginase I in hepatocarcinogenesis publication-title: Int J Cancer doi: 10.1002/ijc.24265 – volume: 185 start-page: 1533 issue: 9 year: 1997 ident: B58 article-title: Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2) publication-title: J Exp Med doi: 10.1084/jem.185.9.1533 – volume: 7 start-page: e1977 issue: 1 year: 2013 ident: B77 article-title: Arginase activity in the blood of patients with visceral leishmaniasis and HIV infection publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001977 – volume: 20 start-page: 1437 issue: 11 year: 2013 ident: B5 article-title: Myeloid derived suppressor cells and their role in diseases publication-title: Curr Med Chem doi: 10.2174/0929867311320110006 – volume: 193 start-page: 91 issue: 2–3 year: 2004 ident: B91 article-title: Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice publication-title: Med Microbiol Immunol doi: 10.1007/s00430-003-0198-6 – volume: 160 start-page: 521 issue: 2 year: 1984 ident: B93 article-title: Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence publication-title: J Exp Med doi: 10.1084/jem.160.2.521 – volume: 38 start-page: 309 issue: 2 year: 2013 ident: B70 article-title: Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity publication-title: Immunity doi: 10.1016/j.immuni.2012.10.022 – volume: 209 start-page: 441 issue: 3 year: 2014 ident: B76 article-title: HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity publication-title: J Infect Dis doi: 10.1093/infdis/jit469 – volume: 254 start-page: 1001 issue: 5034 year: 1991 ident: B87 article-title: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors publication-title: Science doi: 10.1126/science.1948068 – volume: 87 start-page: 3361 issue: Pt 11 year: 2006 ident: B50 article-title: Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice publication-title: J Gen Virol doi: 10.1099/vir.0.82131-0 – volume: 183 start-page: 441 issue: 2 year: 2013 ident: B31 article-title: Cross-regulation of T regulatory-cell response after coxsackievirus B3 infection by NKT and gammadelta T cells in the mouse publication-title: Am J Pathol doi: 10.1016/j.ajpath.2013.04.015 – volume: 71 start-page: 4278 issue: 6 year: 1997 ident: B62 article-title: Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: a role for CD8 T cells publication-title: J Virol doi: 10.1128/JVI.71.6.4278-4283.1997 – volume: 3 start-page: 291 issue: 3 year: 2010 ident: B19 article-title: Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent publication-title: Mucosal Immunol doi: 10.1038/mi.2010.6 – volume: 261 start-page: 1445 issue: 5127 year: 1993 ident: B9 article-title: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase publication-title: Science doi: 10.1126/science.7690156 – volume: 105 start-page: 353 issue: 4 year: 2009 ident: B30 article-title: Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.109.195230 – volume: 106 start-page: 5306 issue: 13 year: 2009 ident: B54 article-title: TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900655106 – volume: 35 start-page: 466 issue: 4 year: 2006 ident: B61 article-title: Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2006-0121OC – volume: 87 start-page: 2058 issue: 4 year: 2013 ident: B65 article-title: Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency publication-title: J Virol doi: 10.1128/JVI.01547-12 – volume: 265 start-page: 14143 issue: 24 year: 1990 ident: B85 article-title: Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)77279-7 – volume: 5 start-page: 64 year: 2005 ident: B13 article-title: Inducible nitric oxide synthase (iNOS) expression in monocytes during acute dengue fever in patients and during in vitro infection publication-title: BMC Infect Dis doi: 10.1186/1471-2334-5-64 – volume: 188 start-page: 1541 issue: 8 year: 1998 ident: B49 article-title: Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice publication-title: J Exp Med doi: 10.1084/jem.188.8.1541 – volume: 37 start-page: 122 issue: 1 year: 2012 ident: B66 article-title: Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes publication-title: Immunity doi: 10.1016/j.immuni.2012.04.014 – volume: 166 start-page: 3533 issue: 5 year: 2001 ident: B29 article-title: Role of nitric oxide synthase type 2 in acute infection with murine cytomegalovirus publication-title: J Immunol doi: 10.4049/jimmunol.166.5.3533 – volume: 174 start-page: 761 issue: 4 year: 1991 ident: B86 article-title: Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide publication-title: J Exp Med doi: 10.1084/jem.174.4.761 – volume: 89 start-page: 3030 issue: 7 year: 1992 ident: B88 article-title: DNA damage and mutation in human cells exposed to nitric oxide in vitro publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.7.3030 – volume: 281 start-page: 205 issue: 2 year: 2001 ident: B16 article-title: A critical role for inducible nitric oxide synthase in host survival following coxsackievirus B4 infection publication-title: Virology doi: 10.1006/viro.2000.0801 – volume: 6 start-page: e14561 issue: 1 year: 2011 ident: B47 article-title: Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection publication-title: PLoS One doi: 10.1371/journal.pone.0014561 – volume: 158 start-page: 1305 issue: 6 year: 2013 ident: B82 article-title: Accumulation of CD11b(+)Gr-1(+) cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses publication-title: Arch Virol doi: 10.1007/s00705-012-1593-3 – volume: 6 start-page: 45 issue: 1 year: 2013 ident: B24 article-title: IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice publication-title: Mucosal Immunol doi: 10.1038/mi.2012.46 – volume: 24 start-page: 417 issue: 3 year: 2008 ident: B72 article-title: CD163/CD16 coexpression by circulating monocytes/macrophages in HIV: potential biomarkers for HIV infection and AIDS progression publication-title: AIDS Res Hum Retroviruses doi: 10.1089/aid.2007.0193 – volume: 189 start-page: 4047 issue: 8 year: 2012 ident: B69 article-title: Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus publication-title: J Immunol doi: 10.4049/jimmunol.1201240 – volume: 14 start-page: 753 issue: 4 year: 2001 ident: B101 article-title: Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection publication-title: Clin Microbiol Rev doi: 10.1128/CMR.14.4.753-777.2001 – volume: 118 start-page: 4036 issue: 12 year: 2008 ident: B81 article-title: Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans publication-title: J Clin Invest doi: 10.1172/JCI36264 – volume: 7 start-page: 549 issue: 3 year: 2013 ident: B20 article-title: Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology publication-title: Mucosal Immunol doi: 10.1038/mi.2013.71 – volume: 69 start-page: 2208 issue: 4 year: 1995 ident: B11 article-title: Inhibition of vesicular stomatitis virus infection by nitric oxide publication-title: J Virol doi: 10.1128/JVI.69.4.2208-2213.1995 – volume: 87 start-page: 599 issue: 4 year: 2010 ident: B100 article-title: Macrophage polarization and HIV-1 infection publication-title: J Leukoc Biol doi: 10.1189/jlb.1009673 – volume: 164 start-page: 371 issue: 1 year: 2000 ident: B23 article-title: IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2 publication-title: J Immunol doi: 10.4049/jimmunol.164.1.371 – volume: 166 start-page: 41 issue: 1 year: 1988 ident: B89 article-title: Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant publication-title: Virology doi: 10.1016/0042-6822(88)90144-4 – volume: 9 start-page: e1003735 issue: 11 year: 2013 ident: B96 article-title: Macrophage and T cell produced IL-10 promotes viral chronicity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003735 – volume: 73 start-page: 8880 issue: 10 year: 1999 ident: B45 article-title: Inhibition of influenza virus replication by nitric oxide publication-title: J Virol doi: 10.1128/JVI.73.10.8880-8883.1999 – volume: 4 start-page: 2106 year: 2013 ident: B27 article-title: Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages publication-title: Nat Commun doi: 10.1038/ncomms3106 – volume: 373 start-page: 582 issue: 9663 year: 2009 ident: B102 article-title: Hepatitis B virus infection publication-title: Lancet doi: 10.1016/S0140-6736(09)60207-5 – year: 2014 ident: B21 article-title: Agents that increase AAM differentiation blunt RSV-mediated lung pathology publication-title: J Leukoc Biol doi: 10.1189/jlb.4HI0414-226R – volume: 87 start-page: 2376 issue: 5 year: 2013 ident: B68 article-title: Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection publication-title: J Virol doi: 10.1128/JVI.03089-12 – volume: 3 start-page: 65 issue: 1 year: 1991 ident: B7 article-title: Role of nitric oxide synthesis in macrophage antimicrobial activity publication-title: Curr Opin Immunol doi: 10.1016/0952-7915(91)90079-G – volume: 97 start-page: 1837 issue: 8 year: 1996 ident: B17 article-title: Nitric oxide inhibits viral replication in murine myocarditis publication-title: J Clin Invest doi: 10.1172/JCI118613 – volume: 95 start-page: 2469 issue: 5 year: 1998 ident: B14 article-title: The role of inducible nitric oxide synthase in the host response to coxsackievirus myocarditis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.5.2469 – volume: 9 start-page: 157 issue: 2 year: 2012 ident: B46 article-title: Inhaled nitric oxide therapy fails to improve outcome in experimental severe influenza publication-title: Int J Med Sci doi: 10.7150/ijms.3880 – volume: 93 start-page: 2448 issue: 6 year: 1996 ident: B48 article-title: Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.6.2448 – volume: 91 start-page: 2446 issue: 6 year: 1993 ident: B10 article-title: Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication publication-title: J Clin Invest doi: 10.1172/JCI116479 – volume: 163 start-page: 5497 issue: 10 year: 1999 ident: B15 article-title: Inducible nitric oxide synthase protection against coxsackievirus pancreatitis publication-title: J Immunol doi: 10.4049/jimmunol.163.10.5497 – volume: 79 start-page: 825 issue: Pt 4 year: 1998 ident: B26 article-title: Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses publication-title: J Gen Virol doi: 10.1099/0022-1317-79-4-825 – volume: 183 start-page: 6971 issue: 11 year: 2009 ident: B97 article-title: Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease publication-title: J Immunol doi: 10.4049/jimmunol.0902193 – volume: 143 start-page: 78–87.e3 issue: 1 year: 2012 ident: B79 article-title: Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.03.041 – volume: 14 start-page: 229 issue: 3 year: 2008 ident: B60 article-title: Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis publication-title: J Neurovirol doi: 10.1080/13550280802093927 – volume: 472 start-page: 213 issue: 3 year: 2003 ident: B55 article-title: Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(03)01932-0 – volume: 11 start-page: 723 issue: 11 year: 2011 ident: B1 article-title: Protective and pathogenic functions of macrophage subsets publication-title: Nat Rev Immunol doi: 10.1038/nri3073 – volume: 77 start-page: 4911 issue: 8 year: 2003 ident: B95 article-title: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment publication-title: J Virol doi: 10.1128/JVI.77.8.4911-4927.2003 – volume: 35 start-page: 1143 issue: 10 year: 2008 ident: B40 article-title: Dengue fever activates the l-arginine-nitric oxide pathway: an explanation for reduced aggregation of human platelets publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/j.1440-1681.2008.04970.x – volume: 15 start-page: 4391 issue: 13 year: 2009 ident: B103 article-title: HPV16 tumor associated macrophages suppress antitumor T cell responses publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-0489 – volume: 202 start-page: 374 issue: 3 year: 2010 ident: B74 article-title: Increased level of arginase activity correlates with disease severity in HIV-seropositive patients publication-title: J Infect Dis doi: 10.1086/653736 – volume: 11 start-page: 481 issue: 5 year: 2012 ident: B67 article-title: Emergence of distinct multiarmed immunoregulatory antigen-presenting cells during persistent viral infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.03.009 – volume: 32 start-page: 463 issue: 6 year: 2012 ident: B2 article-title: M1 and M2 macrophages: oracles of health and disease publication-title: Crit Rev Immunol doi: 10.1615/CritRevImmunol.v32.i6.10 – volume: 69 start-page: 910 issue: 2 year: 1995 ident: B32 article-title: Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication publication-title: J Virol doi: 10.1128/JVI.69.2.910-915.1995 – volume: 66 start-page: 762 issue: 6 year: 2002 ident: B37 article-title: Short report: increased level of serum nitric oxide in patients with dengue publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2002.66.762 – volume: 10 start-page: e1004032 issue: 3 year: 2014 ident: B78 article-title: Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004032 – volume: 86 start-page: 13334 issue: 24 year: 2012 ident: B57 article-title: Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection publication-title: J Virol doi: 10.1128/JVI.01689-12 – volume: 146 start-page: 2719 issue: 8 year: 1991 ident: B92 article-title: Molecular basis of “suppressor†macrophages. Arginine metabolism via the nitric oxide synthetase pathway publication-title: J Immunol doi: 10.4049/jimmunol.146.8.2719 – volume: 6 start-page: e1663 issue: 5 year: 2012 ident: B39 article-title: A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-gamma in host resistance to infection publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001663 – volume: 87 start-page: 1477 issue: 3 year: 2013 ident: B73 article-title: Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals publication-title: J Virol doi: 10.1128/JVI.01759-12 – volume: 158 start-page: 2117 issue: 6 year: 2001 ident: B63 article-title: Murine gammaherpesvirus-68 infection causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor knockout mice publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)64683-4 – volume: 59 start-page: 533 issue: 4 year: 1995 ident: B8 article-title: Role of nitric oxide in parasitic infections publication-title: Microbiol Rev doi: 10.1128/MMBR.59.4.533-547.1995 – volume: 162 start-page: 2895 issue: 5 year: 1999 ident: B22 article-title: Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system publication-title: J Immunol doi: 10.4049/jimmunol.162.5.2895 – volume: 84 start-page: 50 issue: 1 year: 2008 ident: B105 article-title: Murine gammaherpesvirus-induced fibrosis is associated with the development of alternatively activated macrophages publication-title: J Leukoc Biol doi: 10.1189/jlb.0507270 – volume: 173 start-page: 276 issue: 1 year: 1989 ident: B90 article-title: A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells publication-title: Virology doi: 10.1016/0042-6822(89)90244-4 – volume: 189 start-page: 606 issue: 2 year: 2012 ident: B52 article-title: Transactivation of inducible nitric oxide synthase gene by Kruppel-like factor 6 regulates apoptosis during influenza A virus infection publication-title: J Immunol doi: 10.4049/jimmunol.1102742 – volume: 9 start-page: 246 year: 2012 ident: B42 article-title: Targeted blockade in lethal West Nile virus encephalitis indicates a crucial role for very late antigen (VLA)-4-dependent recruitment of nitric oxide-producing macrophages publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-246 – volume: 71 start-page: 5227 issue: 7 year: 1997 ident: B12 article-title: Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication publication-title: J Virol doi: 10.1128/JVI.71.7.5227-5235.1997 – volume: 277 start-page: 58 issue: 1 year: 2000 ident: B33 article-title: Nitric oxide inhibits Marek’s disease virus replication but is not the single decisive factor in interferon-gamma-mediated viral inhibition publication-title: Virology doi: 10.1006/viro.2000.0576 – volume: 205 start-page: 2111 issue: 9 year: 2008 ident: B80 article-title: Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection publication-title: J Exp Med doi: 10.1084/jem.20072076 – volume: 12 start-page: 253 issue: 4 year: 2012 ident: B4 article-title: Coordinated regulation of myeloid cells by tumours publication-title: Nat Rev Immunol doi: 10.1038/nri3175 – volume: 70 start-page: 3972 issue: 6 year: 1996 ident: B43 article-title: Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis publication-title: J Virol doi: 10.1128/JVI.70.6.3972-3977.1996 – volume: 162 start-page: 957 issue: 2 year: 1999 ident: B28 article-title: Role of IFN-gamma-induced indoleamine 2,3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells publication-title: J Immunol doi: 10.4049/jimmunol.162.2.957 – volume: 5 start-page: e1449 issue: 12 year: 2011 ident: B38 article-title: IFN-gamma production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001449 – reference: 8621766 - J Clin Invest. 1996 Apr 15;97(8):1837-43 – reference: 9151815 - J Virol. 1997 Jun;71(6):4278-83 – reference: 16002713 - J Immunol. 2005 Jul 15;175(2):1118-26 – reference: 12663797 - J Virol. 2003 Apr;77(8):4911-27 – reference: 10482647 - J Virol. 1999 Oct;73(10):8880-3 – reference: 25009233 - J Leukoc Biol. 2014 Dec;96(6):951-5 – reference: 19549768 - Clin Cancer Res. 2009 Jul 1;15(13):4391-400 – reference: 2842955 - Virology. 1988 Sep;166(1):41-51 – reference: 23269787 - J Virol. 2013 Mar;87(5):2376-89 – reference: 23999600 - J Infect Dis. 2014 Feb 1;209(3):441-51 – reference: 24244162 - PLoS Pathog. 2013;9(11):e1003735 – reference: 9188590 - J Virol. 1997 Jul;71(7):5227-35 – reference: 9696880 - J Virol. 1998 Sep;72(9):7703-6 – reference: 16004984 - Exp Neurol. 2005 Oct;195(2):379-90 – reference: 11277693 - Virology. 2001 Mar 15;281(2):205-15 – reference: 7533852 - J Virol. 1995 Apr;69(4):2208-13 – reference: 23438822 - Immunity. 2013 Feb 21;38(2):309-21 – reference: 19608981 - Circ Res. 2009 Aug 14;105(4):353-64 – reference: 21997792 - Nat Rev Immunol. 2011 Oct 14;11(11):723-37 – reference: 22607801 - Cell Host Microbe. 2012 May 17;11(5):481-91 – reference: 18436582 - J Leukoc Biol. 2008 Jul;84(1):50-8 – reference: 19764983 - Br J Pharmacol. 2009 Oct;158(3):638-51 – reference: 1717630 - J Exp Med. 1991 Oct 1;174(4):761-7 – reference: 23111065 - J Neuroinflammation. 2012 Oct 30;9:246 – reference: 9782132 - J Exp Med. 1998 Oct 19;188(8):1541-6 – reference: 23221564 - J Virol. 2013 Feb;87(4):2058-71 – reference: 23152536 - J Virol. 2013 Feb;87(3):1477-90 – reference: 23397329 - Arch Virol. 2013 Jun;158(6):1305-22 – reference: 19217993 - Lancet. 2009 Feb 14;373(9663):582-92 – reference: 8637894 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448-53 – reference: 25035950 - Immunity. 2014 Jul 17;41(1):14-20 – reference: 10605032 - J Immunol. 2000 Jan 1;164(1):371-8 – reference: 18373432 - AIDS Res Hum Retroviruses. 2008 Mar;24(3):417-21 – reference: 23015710 - J Virol. 2012 Dec;86(24):13334-49 – reference: 9151890 - J Exp Med. 1997 May 5;185(9):1533-40 – reference: 25082704 - Science. 2014 Aug 1;345(6196):578-82 – reference: 1948068 - Science. 1991 Nov 15;254(5034):1001-3 – reference: 20843532 - Trans R Soc Trop Med Hyg. 2010 Nov;104(11):746-8 – reference: 19033672 - J Clin Invest. 2008 Dec;118(12):4036-48 – reference: 9482909 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2469-74 – reference: 10072539 - J Immunol. 1999 Mar 1;162(5):2895-905 – reference: 23409714 - Curr Med Chem. 2013;20(11):1437-44 – reference: 22475535 - Gastroenterology. 2012 Jul;143(1):78-87.e3 – reference: 10729136 - J Virol. 2000 Apr;74(8):3605-12 – reference: 8648734 - J Virol. 1996 Jun;70(6):3972-7 – reference: 14513374 - Med Microbiol Immunol. 2004 May;193(2-3):91-100 – reference: 19851468 - PLoS Pathog. 2009 Oct;5(10):e1000636 – reference: 18569457 - J Neurovirol. 2008 May;14 (3):229-38 – reference: 1711326 - Curr Opin Immunol. 1991 Feb;3(1):65-70 – reference: 7529336 - J Virol. 1995 Feb;69(2):910-5 – reference: 23349999 - PLoS Negl Trop Dis. 2013;7(1):e1977 – reference: 18505438 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1143-6 – reference: 19253371 - Int J Cancer. 2009 Jun 15;124(12):2886-92 – reference: 18250467 - J Immunol. 2008 Feb 15;180(4):2562-72 – reference: 18695005 - J Exp Med. 2008 Sep 1;205(9):2111-24 – reference: 11585784 - Clin Microbiol Rev. 2001 Oct;14(4):753-77, table of contents – reference: 20575659 - J Infect Dis. 2010 Aug 15;202(3):374-85 – reference: 9916720 - J Immunol. 1999 Jan 15;162(2):957-64 – reference: 22253563 - Int J Med Sci. 2012;9(2):157-62 – reference: 23820884 - Nat Commun. 2013;4:2106 – reference: 21953144 - Hepatology. 2012 Feb;55(2):343-53 – reference: 22692455 - Mucosal Immunol. 2013 Jan;6(1):45-55 – reference: 23947357 - Immunol Rev. 2013 Sep;255(1):210-21 – reference: 23428224 - Crit Rev Immunol. 2012;32(6):463-88 – reference: 2117605 - J Biol Chem. 1990 Aug 25;265(24):14143-9 – reference: 11207313 - J Immunol. 2001 Mar 1;166(5):3533-41 – reference: 22206036 - PLoS Negl Trop Dis. 2011 Dec;5(12):e1449 – reference: 10748242 - J Exp Med. 2000 Apr 3;191(7):1247-52 – reference: 22840843 - Immunity. 2012 Jul 27;37(1):122-33 – reference: 22972923 - J Immunol. 2012 Oct 15;189(8):4047-59 – reference: 21283521 - PLoS One. 2011 Jan 19;6(1):e14561 – reference: 7690156 - Science. 1993 Sep 10;261(5127):1445-8 – reference: 8390481 - J Clin Invest. 1993 Jun;91(6):2446-52 – reference: 16709958 - Am J Respir Cell Mol Biol. 2006 Oct;35(4):466-73 – reference: 2554573 - Virology. 1989 Nov;173(1):276-83 – reference: 11900957 - Vet Microbiol. 2002 May 1;86(3):229-44 – reference: 24651854 - PLoS Pathog. 2014 Mar 20;10(3):e1004032 – reference: 22711891 - J Immunol. 2012 Jul 15;189(2):606-15 – reference: 19890055 - J Immunol. 2009 Dec 1;183(11):6971-80 – reference: 9491998 - Immunity. 1998 Feb;8(2):167-75 – reference: 23420903 - J Infect Dis. 2013 May 15;207(10):1576-84 – reference: 19279209 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5306-11 – reference: 15122810 - J Med Virol. 2004 Jun;73(2):313-22 – reference: 24479442 - J Neuroinflammation. 2014 Jan 30;11:20 – reference: 20404812 - Mucosal Immunol. 2010 May;3(3):291-300 – reference: 6332167 - J Exp Med. 1984 Aug 1;160(2):521-40 – reference: 8531884 - Microbiol Rev. 1995 Dec;59(4):533-47 – reference: 10553076 - J Immunol. 1999 Nov 15;163(10):5497-504 – reference: 23746656 - Am J Pathol. 2013 Aug;183(2):441-9 – reference: 24064666 - Mucosal Immunol. 2014 May;7(3):549-57 – reference: 18954330 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1135-6 – reference: 12224588 - Am J Trop Med Hyg. 2002 Jun;66(6):762-4 – reference: 17030871 - J Gen Virol. 2006 Nov;87(Pt 11):3361-71 – reference: 22666512 - PLoS Negl Trop Dis. 2012;6(5):e1663 – reference: 16109165 - BMC Infect Dis. 2005 Aug 18;5:64 – reference: 11062036 - Virology. 2000 Nov 10;277(1):58-65 – reference: 12871756 - Eur J Pharmacol. 2003 Jul 11;472(3):213-20 – reference: 1557408 - Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030-4 – reference: 1707918 - J Immunol. 1991 Apr 15;146(8):2719-23 – reference: 23354838 - J Clin Immunol. 2013 May;33(4):798-808 – reference: 20042468 - J Leukoc Biol. 2010 Apr;87(4):599-608 – reference: 11395389 - Am J Pathol. 2001 Jun;158(6):2117-25 – reference: 22437938 - Nat Rev Immunol. 2012 Mar 22;12(4):253-68 – reference: 1281928 - Science. 1992 Dec 18;258(5090):1898-902 – reference: 9568978 - J Gen Virol. 1998 Apr;79 ( Pt 4):825-30 |
SSID | ssj0000493335 |
Score | 2.300506 |
SecondaryResourceType | review_article |
Snippet | WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic... When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 428 |
SubjectTerms | Arginase Immunity, Cellular Immunology iNOS Macrophages Viral pathogenicity |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50RfCy-Da-aMGLh7hJv9I5iKi4LMJ6cmBvTfo1RiaJJjOL8--tSrKjI4Mnr0l3EvrrSn1fd3UVIS8dyAjtlU3LYC0IFO1SW1YsVSGggwpMZ3je-fyzOluITxfy4vfx6HkAh4PSDutJLfrV658_tm_B4N-g4gR_exLrptlglBYmwgY6fZ3cAL9UoJmez2T_28SFOedy2qs82HHPN40p_A_xzr_DJ__wR6e3yfFMJOm7Cfk75Fpo75KbU2nJ7T1SA_4UQwdpF2mzDauu9hRX6SmeZJjWYWnVelr1S6wREWgT1jAhVvXQ0LqlwAspVivulvgzrAd8zGXdb4YURDxMB0_nrZ3hPlmcfvzy4SydyyqkTjK9ToWseBZEITywCTDIUEjJZVEyyYEcKWvz6F1pdS6jBHtWQucxRhdyxWJVAGV8QI7arg2PCEW6o1jmS6Zz4QpZCRlAgeXSKV-GKkvIydWAGjfnHMfSFysD2gMhMCMEBiEwIwQJebXr8X3Kt_GPtu8Ro107zJQ9Xuj6pZkNzygvBAcSwpWOQkdpgaDgKmoUziObS8iLK4QNWBYCUbWh2wwGlC2KZ81VQh5OiO9exXA3OGNlQoq9ubD3Lft32vrrmL0bGFMBpPXx__j4J-QWDscY86afkqN1vwnPgCSt7fNx7v8CXswQNA priority: 102 providerName: Scholars Portal |
Title | The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25250029 https://www.proquest.com/docview/1565499836 https://pubmed.ncbi.nlm.nih.gov/PMC4157561 https://doaj.org/article/6d443661368f48f5b1850148f4cd6151 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiJZXgFZG4sIh2sSvOEdAlAqpnKi0Nyt-laBNgja7SP33nYnT1S6q4MIlh8RJLH_jzPfZkxlC3jmQEdorm9fBWhAo2uW2bliuQkAHFZgu8H_ny2_q4kp8XcrlXqkvjAlL6YHTwC2UF4KDE-FKR6GjtOBgcBUsCufRG-PXF3zenpj6mXgv51ymfUlQYfUitl23xVAuzJYtsPj6nh-a0vXfxzH_DJXc8z3nT8jjmTTSD6mzx-RB6E_Iw1RG8uYpaQFrimGCdIi0uwmrofUUV-Qp_rWQ1lxp03varK-xHkSgXdgA-Kt27GjbU-CAFCsTD9f44WtHfMzvdr0dcxDsAL2n8zbO-IxcnX_-_ukin0so5E4yvcmFbHgRRCU8MAeYfKGSksuqZpIDEVLWltG72upSRglzVwldxhhdKBWLTQX08Dk56oc-vCQUqY1iha-ZLoWrZCNkALVVSqd8HZoiI4u7ATVuzi-OZS5WBnQGQmAmCAxCYCYIMvJ-d8evlFvjL20_Ika7dpgVezoBtmJmWzH_spWMvL1D2MAsQiCaPgzb0YCKRaGsucrIi4T47lUMd34LVmekOrCFg74cXunbH1OmbmBHFRDUV_-j86_JIxyOKb5NvyFHm_U2nAIh2tizyfbh-GVZwvFS6FvGCQj7 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+myeloid+cell+activation+and+arginine+metabolism+in+the+pathogenesis+of+virus-induced+diseases&rft.jtitle=Frontiers+in+immunology&rft.au=Kristina+S.+Burrack&rft.au=Thomas+E.+Morrison&rft.date=2014-09-08&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=5&rft_id=info:doi/10.3389%2Ffimmu.2014.00428&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d443661368f48f5b1850148f4cd6151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |