The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases

WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 5; p. 428
Main Authors Burrack, Kristina S., Morrison, Thomas E.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 08.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
AbstractList When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
Author Morrison, Thomas E.
Burrack, Kristina S.
AuthorAffiliation 1 Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
AuthorAffiliation_xml – name: 1 Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
Author_xml – sequence: 1
  givenname: Kristina S.
  surname: Burrack
  fullname: Burrack, Kristina S.
– sequence: 2
  givenname: Thomas E.
  surname: Morrison
  fullname: Morrison, Thomas E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25250029$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhS1URB90zwp5ySaD30k2SKMp0JFagVBhaznO9YyrxC62U6n_nsxMqVokvPHrnO9a1-cUHYUYAKF3lCw4b9qPzo_jtGCEigUhgjWv0AlVSlScMXH0bH2MznO-JfMQLedcvkHHTDJJCGtPkL_ZAv4RB8DR4esHGKLv8QqGAS9t8fem-BiwCT1epo0PPgC-hmK6OPg8Yh9wme3fTdnGDQTIPu8wv3yacrUO_WShxxc-g8mQ36LXzgwZzh_nM_Tzy-eb1WV19e3rerW8qqxkTamENJyAqEVfC0poDbWUXNYtk1wJobqOut62XUOlk7JulGioc84CVcyZmlB-htYHbh_Nrb5LfjTpQUfj9f4gpo02qXg7gFa9EFwpylXjRONkRxs5t3Pe2F5RuWN9OrDupm6E3kIoyQwvoC9vgt_qTbzXgspaqh3gwyMgxd8T5KJHn-3cXhMgTllTqaRo24arWfr-ea2nIn__ahaQg8CmmHMC9yShRO8SofeJ0LtE6H0iZov6x2J92f_p_Fo__N_4B5reulM
CitedBy_id crossref_primary_10_26508_lsa_202302148
crossref_primary_10_3389_fimmu_2024_1473895
crossref_primary_10_3389_fimmu_2016_00630
crossref_primary_10_1021_acs_jproteome_1c00215
crossref_primary_10_1002_hsr2_548
crossref_primary_10_1088_1054_660X_26_11_115602
crossref_primary_10_1126_sciimmunol_ado1227
crossref_primary_10_1088_1612_202X_aa829e
crossref_primary_10_3389_fimmu_2022_780839
crossref_primary_10_1002_mco2_94
crossref_primary_10_3389_fncel_2022_969058
crossref_primary_10_1111_jnc_13393
crossref_primary_10_1038_s41467_021_21907_9
crossref_primary_10_3390_jcm10051051
crossref_primary_10_1038_s41598_021_03201_2
crossref_primary_10_1093_infdis_jiy086
crossref_primary_10_3389_fimmu_2024_1385362
crossref_primary_10_1089_vim_2016_0125
crossref_primary_10_1101_gr_241372_118
crossref_primary_10_3389_fimmu_2021_574425
crossref_primary_10_1186_s12974_017_1049_5
crossref_primary_10_1080_1354750X_2023_2273226
crossref_primary_10_3390_nu16081212
crossref_primary_10_3389_fimmu_2017_00890
crossref_primary_10_1007_s00430_015_0402_5
crossref_primary_10_1016_j_brainres_2015_06_034
crossref_primary_10_1016_j_jcpa_2018_12_004
crossref_primary_10_4049_jimmunol_2101099
crossref_primary_10_3390_v7062762
crossref_primary_10_1016_j_ejbt_2024_09_001
crossref_primary_10_1016_j_fsi_2022_06_060
crossref_primary_10_1177_1753425919869436
crossref_primary_10_1016_j_virusres_2020_198108
crossref_primary_10_3390_v13071236
crossref_primary_10_3945_jn_115_228544
crossref_primary_10_3390_cells11020310
crossref_primary_10_1016_j_intimp_2023_110610
crossref_primary_10_3390_ijms19123805
crossref_primary_10_1002_cbin_11565
crossref_primary_10_1016_j_carpath_2024_107652
crossref_primary_10_3390_v12050505
crossref_primary_10_3389_fimmu_2015_00059
crossref_primary_10_1002_cti2_1037
crossref_primary_10_1007_s11684_020_0776_7
crossref_primary_10_3390_ijms252211899
crossref_primary_10_1126_scitranslmed_aat4162
crossref_primary_10_1007_s12223_018_0606_3
crossref_primary_10_1038_nrmicro_2016_12
crossref_primary_10_1016_j_chom_2016_06_008
crossref_primary_10_3390_ijms21186609
crossref_primary_10_3892_ijmm_2020_4636
crossref_primary_10_1016_j_niox_2021_04_003
crossref_primary_10_1111_sji_12429
crossref_primary_10_1186_s13018_017_0674_0
crossref_primary_10_1111_jnc_14039
Cites_doi 10.1084/jem.191.7.1247
10.1371/journal.ppat.1000636
10.1126/science.1281928
10.1016/S1074-7613(00)80469-0
10.1111/j.1476-5381.2009.00291.x
10.4049/jimmunol.180.4.2562
10.1016/j.expneurol.2005.05.016
10.1186/1742-2094-11-20
10.1016/j.immuni.2014.06.008
10.1111/j.1440-1681.2008.05022.x
10.1126/science.1256942
10.1128/JVI.74.8.3605-3612.2000
10.1111/imr.12084
10.4049/jimmunol.175.2.1118
10.1002/hep.24700
10.1007/s10875-012-9861-2
10.1128/JVI.72.9.7703-7706.1998
10.1016/j.trstmh.2010.08.004
10.1016/S0378-1135(02)00010-X
10.1002/jmv.20093
10.1093/infdis/jit062
10.1002/ijc.24265
10.1084/jem.185.9.1533
10.1371/journal.pntd.0001977
10.2174/0929867311320110006
10.1007/s00430-003-0198-6
10.1084/jem.160.2.521
10.1016/j.immuni.2012.10.022
10.1093/infdis/jit469
10.1126/science.1948068
10.1099/vir.0.82131-0
10.1016/j.ajpath.2013.04.015
10.1128/JVI.71.6.4278-4283.1997
10.1038/mi.2010.6
10.1126/science.7690156
10.1161/CIRCRESAHA.109.195230
10.1073/pnas.0900655106
10.1165/rcmb.2006-0121OC
10.1128/JVI.01547-12
10.1016/S0021-9258(18)77279-7
10.1186/1471-2334-5-64
10.1084/jem.188.8.1541
10.1016/j.immuni.2012.04.014
10.4049/jimmunol.166.5.3533
10.1084/jem.174.4.761
10.1073/pnas.89.7.3030
10.1006/viro.2000.0801
10.1371/journal.pone.0014561
10.1007/s00705-012-1593-3
10.1038/mi.2012.46
10.1089/aid.2007.0193
10.4049/jimmunol.1201240
10.1128/CMR.14.4.753-777.2001
10.1172/JCI36264
10.1038/mi.2013.71
10.1128/JVI.69.4.2208-2213.1995
10.1189/jlb.1009673
10.4049/jimmunol.164.1.371
10.1016/0042-6822(88)90144-4
10.1371/journal.ppat.1003735
10.1128/JVI.73.10.8880-8883.1999
10.1038/ncomms3106
10.1016/S0140-6736(09)60207-5
10.1189/jlb.4HI0414-226R
10.1128/JVI.03089-12
10.1016/0952-7915(91)90079-G
10.1172/JCI118613
10.1073/pnas.95.5.2469
10.7150/ijms.3880
10.1073/pnas.93.6.2448
10.1172/JCI116479
10.4049/jimmunol.163.10.5497
10.1099/0022-1317-79-4-825
10.4049/jimmunol.0902193
10.1053/j.gastro.2012.03.041
10.1080/13550280802093927
10.1016/S0014-2999(03)01932-0
10.1038/nri3073
10.1128/JVI.77.8.4911-4927.2003
10.1111/j.1440-1681.2008.04970.x
10.1158/1078-0432.CCR-09-0489
10.1086/653736
10.1016/j.chom.2012.03.009
10.1615/CritRevImmunol.v32.i6.10
10.1128/JVI.69.2.910-915.1995
10.4269/ajtmh.2002.66.762
10.1371/journal.ppat.1004032
10.1128/JVI.01689-12
10.4049/jimmunol.146.8.2719
10.1371/journal.pntd.0001663
10.1128/JVI.01759-12
10.1016/S0002-9440(10)64683-4
10.1128/MMBR.59.4.533-547.1995
10.4049/jimmunol.162.5.2895
10.1189/jlb.0507270
10.1016/0042-6822(89)90244-4
10.4049/jimmunol.1102742
10.1186/1742-2094-9-246
10.1128/JVI.71.7.5227-5235.1997
10.1006/viro.2000.0576
10.1084/jem.20072076
10.1038/nri3175
10.1128/JVI.70.6.3972-3977.1996
10.4049/jimmunol.162.2.957
10.1371/journal.pntd.0001449
ContentType Journal Article
Copyright Copyright © 2014 Burrack and Morrison. 2014
Copyright_xml – notice: Copyright © 2014 Burrack and Morrison. 2014
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2014.00428
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_6d443661368f48f5b1850148f4cd6151
PMC4157561
25250029
10_3389_fimmu_2014_00428
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI052066
– fundername: NIAID NIH HHS
  grantid: R01 AI108725
– fundername: NIAID NIH HHS
  grantid: U19 AI109680
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c528t-45a30e474d741017e75535792536446bb1fdc9b815f55786481fffce162fa7013
IEDL.DBID DOA
ISSN 1664-3224
IngestDate Wed Aug 27 01:28:21 EDT 2025
Thu Aug 21 18:15:36 EDT 2025
Fri Jul 11 06:51:54 EDT 2025
Thu Apr 03 07:02:05 EDT 2025
Tue Jul 01 01:57:21 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords iNOS
macrophages
viral pathogenicity
immunity
arginase
cellular
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-45a30e474d741017e75535792536446bb1fdc9b815f55786481fffce162fa7013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Masaaki Murakami, Hokkaido University, Japan; Mayda Gursel, Middle East Technical University, Turkey
This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology.
Edited by: Charles Dudley Mills, BioMedical Consultants, USA
OpenAccessLink https://doaj.org/article/6d443661368f48f5b1850148f4cd6151
PMID 25250029
PQID 1565499836
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6d443661368f48f5b1850148f4cd6151
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4157561
proquest_miscellaneous_1565499836
pubmed_primary_25250029
crossref_primary_10_3389_fimmu_2014_00428
crossref_citationtrail_10_3389_fimmu_2014_00428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-08
PublicationDateYYYYMMDD 2014-09-08
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2014
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Burggraaf (B47) 2011; 6
Akaike (B48) 1996; 93
Bi (B11) 1995; 69
Adler (B58) 1997; 185
Qin (B73) 2013; 87
Cassol (B100) 2010; 87
James (B8) 1995; 59
Osborne (B83) 2014; 345
Murray (B1) 2011; 11
Jayasekera (B50) 2006; 87
Marques (B60) 2008; 14
Wink (B87) 1991; 254
Murray (B6) 2014; 41
Mora (B61) 2006; 35
Nathan (B7) 1991; 3
Li (B30) 2009; 105
Karupiah (B9) 1993; 261
Bility (B78) 2014; 10
Goody (B44) 2005; 195
Cai (B98) 2013; 33
Munder (B3) 2009; 158
Zell (B91) 2004; 193
Zaragoza (B14) 1998; 95
Flodstrom (B16) 2001; 281
Zhao (B56) 2009; 5
Zhu (B64) 2005; 175
Tucker (B43) 1996; 70
Wilson (B67) 2012; 11
Lepoivre (B85) 1990; 265
Ebrahimi (B63) 2001; 158
Lepique (B103) 2009; 15
Wherry (B95) 2003; 77
Daley-Bauer (B66) 2012; 37
Cao (B71) 2009; 124
Long (B82) 2013; 158
Croen (B10) 1993; 91
Kwon (B86) 1991; 174
Trujillo (B68) 2013; 87
Djeraba (B35) 2002; 86
Lawn (B101) 2001; 14
Butz (B94) 1998; 8
Rimmelzwaan (B45) 1999; 73
Shirey (B19) 2010; 3
Richter (B96) 2013; 9
Costa (B39) 2012; 6
Green (B65) 2013; 87
Wang (B27) 2013; 4
Bowen (B97) 2009; 183
Fagundes (B38) 2011; 5
Sandalova (B79) 2012; 143
Page (B57) 2012; 86
Das (B80) 2008; 205
Lin (B53) 2008; 180
Dutia (B62) 1997; 71
Mills (B92) 1991; 146
Shirey (B20) 2013; 7
Liu (B31) 2013; 183
Nguyen (B88) 1992; 89
De Santo (B81) 2008; 118
Lin (B12) 1997; 71
Zolini (B25) 2014; 11
Ahmed (B93) 1984; 160
Jacobson (B90) 1989; 173
van Den Broek (B23) 2000; 164
Shirey (B21) 2014
Cloke (B74) 2010; 202
MacLean (B26) 1998; 79
Darwish (B46) 2012; 9
Aldridge (B54) 2009; 106
Gabrilovich (B4) 2012; 12
Guidotti (B36) 2000; 191
Getts (B42) 2012; 9
Goldstein (B89) 1988; 166
Liaw (B102) 2009; 373
Kong (B5) 2013; 20
Neves-Souza (B13) 2005; 5
Cloke (B75) 2010; 104
Goh (B104) 2013; 255
Xing (B34) 2000; 74
Konturek (B55) 2003; 472
Mgbemena (B52) 2012; 189
Lowenstein (B17) 1996; 97
Takele (B77) 2013; 7
Norris (B70) 2013; 38
Tacke (B99) 2012; 55
Garg (B76) 2014; 209
Fischer-Smith (B72) 2008; 24
Stamler (B84) 1992; 258
Zaragoza (B15) 1999; 163
Harris (B32) 1995; 69
Bodaghi (B28) 1999; 162
Karupiah (B49) 1998; 188
Gangadharan (B105) 2008; 84
Stoermer (B69) 2012; 189
Kodukula (B22) 1999; 162
Gamba (B59) 2004; 73
Karupiah (B18) 1998; 72
Conrady (B24) 2013; 6
Noda (B29) 2001; 166
Mendes-Ribeiro (B40) 2008; 35
Achike (B41) 2008; 35
Djeraba (B33) 2000; 277
Mills (B2) 2012; 32
Perrone (B51) 2013; 207
Valero (B37) 2002; 66
23349999 - PLoS Negl Trop Dis. 2013;7(1):e1977
1711326 - Curr Opin Immunol. 1991 Feb;3(1):65-70
9568978 - J Gen Virol. 1998 Apr;79 ( Pt 4):825-30
6332167 - J Exp Med. 1984 Aug 1;160(2):521-40
19279209 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5306-11
20042468 - J Leukoc Biol. 2010 Apr;87(4):599-608
23438822 - Immunity. 2013 Feb 21;38(2):309-21
2117605 - J Biol Chem. 1990 Aug 25;265(24):14143-9
10072539 - J Immunol. 1999 Mar 1;162(5):2895-905
23409714 - Curr Med Chem. 2013;20(11):1437-44
22666512 - PLoS Negl Trop Dis. 2012;6(5):e1663
19890055 - J Immunol. 2009 Dec 1;183(11):6971-80
24244162 - PLoS Pathog. 2013;9(11):e1003735
24651854 - PLoS Pathog. 2014 Mar 20;10(3):e1004032
16709958 - Am J Respir Cell Mol Biol. 2006 Oct;35(4):466-73
12663797 - J Virol. 2003 Apr;77(8):4911-27
22437938 - Nat Rev Immunol. 2012 Mar 22;12(4):253-68
18373432 - AIDS Res Hum Retroviruses. 2008 Mar;24(3):417-21
23820884 - Nat Commun. 2013;4:2106
22972923 - J Immunol. 2012 Oct 15;189(8):4047-59
1281928 - Science. 1992 Dec 18;258(5090):1898-902
22711891 - J Immunol. 2012 Jul 15;189(2):606-15
8621766 - J Clin Invest. 1996 Apr 15;97(8):1837-43
23746656 - Am J Pathol. 2013 Aug;183(2):441-9
18505438 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1143-6
10605032 - J Immunol. 2000 Jan 1;164(1):371-8
23152536 - J Virol. 2013 Feb;87(3):1477-90
23354838 - J Clin Immunol. 2013 May;33(4):798-808
21997792 - Nat Rev Immunol. 2011 Oct 14;11(11):723-37
23999600 - J Infect Dis. 2014 Feb 1;209(3):441-51
12871756 - Eur J Pharmacol. 2003 Jul 11;472(3):213-20
23221564 - J Virol. 2013 Feb;87(4):2058-71
18569457 - J Neurovirol. 2008 May;14 (3):229-38
2842955 - Virology. 1988 Sep;166(1):41-51
23420903 - J Infect Dis. 2013 May 15;207(10):1576-84
23397329 - Arch Virol. 2013 Jun;158(6):1305-22
22206036 - PLoS Negl Trop Dis. 2011 Dec;5(12):e1449
21283521 - PLoS One. 2011 Jan 19;6(1):e14561
8637894 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448-53
24479442 - J Neuroinflammation. 2014 Jan 30;11:20
18250467 - J Immunol. 2008 Feb 15;180(4):2562-72
11207313 - J Immunol. 2001 Mar 1;166(5):3533-41
8390481 - J Clin Invest. 1993 Jun;91(6):2446-52
20404812 - Mucosal Immunol. 2010 May;3(3):291-300
25035950 - Immunity. 2014 Jul 17;41(1):14-20
10553076 - J Immunol. 1999 Nov 15;163(10):5497-504
25082704 - Science. 2014 Aug 1;345(6196):578-82
23111065 - J Neuroinflammation. 2012 Oct 30;9:246
1948068 - Science. 1991 Nov 15;254(5034):1001-3
19851468 - PLoS Pathog. 2009 Oct;5(10):e1000636
1717630 - J Exp Med. 1991 Oct 1;174(4):761-7
9151815 - J Virol. 1997 Jun;71(6):4278-83
9916720 - J Immunol. 1999 Jan 15;162(2):957-64
16004984 - Exp Neurol. 2005 Oct;195(2):379-90
7533852 - J Virol. 1995 Apr;69(4):2208-13
1707918 - J Immunol. 1991 Apr 15;146(8):2719-23
8531884 - Microbiol Rev. 1995 Dec;59(4):533-47
9782132 - J Exp Med. 1998 Oct 19;188(8):1541-6
11277693 - Virology. 2001 Mar 15;281(2):205-15
19033672 - J Clin Invest. 2008 Dec;118(12):4036-48
15122810 - J Med Virol. 2004 Jun;73(2):313-22
20843532 - Trans R Soc Trop Med Hyg. 2010 Nov;104(11):746-8
20575659 - J Infect Dis. 2010 Aug 15;202(3):374-85
8648734 - J Virol. 1996 Jun;70(6):3972-7
18436582 - J Leukoc Biol. 2008 Jul;84(1):50-8
9696880 - J Virol. 1998 Sep;72(9):7703-6
22607801 - Cell Host Microbe. 2012 May 17;11(5):481-91
19217993 - Lancet. 2009 Feb 14;373(9663):582-92
10729136 - J Virol. 2000 Apr;74(8):3605-12
17030871 - J Gen Virol. 2006 Nov;87(Pt 11):3361-71
22692455 - Mucosal Immunol. 2013 Jan;6(1):45-55
2554573 - Virology. 1989 Nov;173(1):276-83
1557408 - Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030-4
7690156 - Science. 1993 Sep 10;261(5127):1445-8
24064666 - Mucosal Immunol. 2014 May;7(3):549-57
9188590 - J Virol. 1997 Jul;71(7):5227-35
23428224 - Crit Rev Immunol. 2012;32(6):463-88
11900957 - Vet Microbiol. 2002 May 1;86(3):229-44
19764983 - Br J Pharmacol. 2009 Oct;158(3):638-51
9482909 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2469-74
16109165 - BMC Infect Dis. 2005 Aug 18;5:64
12224588 - Am J Trop Med Hyg. 2002 Jun;66(6):762-4
14513374 - Med Microbiol Immunol. 2004 May;193(2-3):91-100
9491998 - Immunity. 1998 Feb;8(2):167-75
10748242 - J Exp Med. 2000 Apr 3;191(7):1247-52
11395389 - Am J Pathol. 2001 Jun;158(6):2117-25
19608981 - Circ Res. 2009 Aug 14;105(4):353-64
22475535 - Gastroenterology. 2012 Jul;143(1):78-87.e3
10482647 - J Virol. 1999 Oct;73(10):8880-3
25009233 - J Leukoc Biol. 2014 Dec;96(6):951-5
23015710 - J Virol. 2012 Dec;86(24):13334-49
11585784 - Clin Microbiol Rev. 2001 Oct;14(4):753-77, table of contents
19549768 - Clin Cancer Res. 2009 Jul 1;15(13):4391-400
7529336 - J Virol. 1995 Feb;69(2):910-5
18695005 - J Exp Med. 2008 Sep 1;205(9):2111-24
9151890 - J Exp Med. 1997 May 5;185(9):1533-40
11062036 - Virology. 2000 Nov 10;277(1):58-65
19253371 - Int J Cancer. 2009 Jun 15;124(12):2886-92
23947357 - Immunol Rev. 2013 Sep;255(1):210-21
21953144 - Hepatology. 2012 Feb;55(2):343-53
22840843 - Immunity. 2012 Jul 27;37(1):122-33
23269787 - J Virol. 2013 Mar;87(5):2376-89
22253563 - Int J Med Sci. 2012;9(2):157-62
18954330 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1135-6
16002713 - J Immunol. 2005 Jul 15;175(2):1118-26
References_xml – volume: 191
  start-page: 1247
  issue: 7
  year: 2000
  ident: B36
  article-title: Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice
  publication-title: J Exp Med
  doi: 10.1084/jem.191.7.1247
– volume: 5
  start-page: e1000636
  issue: 10
  year: 2009
  ident: B56
  article-title: Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000636
– volume: 258
  start-page: 1898
  issue: 5090
  year: 1992
  ident: B84
  article-title: Biochemistry of nitric oxide and its redox-activated forms
  publication-title: Science
  doi: 10.1126/science.1281928
– volume: 8
  start-page: 167
  issue: 2
  year: 1998
  ident: B94
  article-title: Massive expansion of antigen-specific CD8+ T cells during an acute virus infection
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80469-0
– volume: 158
  start-page: 638
  issue: 3
  year: 2009
  ident: B3
  article-title: Arginase: an emerging key player in the mammalian immune system
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2009.00291.x
– volume: 180
  start-page: 2562
  issue: 4
  year: 2008
  ident: B53
  article-title: CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.4.2562
– volume: 195
  start-page: 379
  issue: 2
  year: 2005
  ident: B44
  article-title: Reovirus infection of the CNS enhances iNOS expression in areas of virus-induced injury
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2005.05.016
– volume: 11
  start-page: 20
  year: 2014
  ident: B25
  article-title: Defense against HSV-1 in a murine model is mediated by iNOS and orchestrated by the activation of TLR2 and TLR9 in trigeminal ganglia
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-11-20
– volume: 41
  start-page: 14
  issue: 1
  year: 2014
  ident: B6
  article-title: Macrophage activation and polarization: nomenclature and experimental guidelines
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.06.008
– volume: 35
  start-page: 1135
  issue: 10
  year: 2008
  ident: B41
  article-title: The l-arginine-nitric oxide pathway: a potential therapeutic target in dengue haemorrhagic fever
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/j.1440-1681.2008.05022.x
– volume: 345
  start-page: 578
  issue: 6196
  year: 2014
  ident: B83
  article-title: Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation
  publication-title: Science
  doi: 10.1126/science.1256942
– volume: 74
  start-page: 3605
  issue: 8
  year: 2000
  ident: B34
  article-title: Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus
  publication-title: J Virol
  doi: 10.1128/JVI.74.8.3605-3612.2000
– volume: 255
  start-page: 210
  issue: 1
  year: 2013
  ident: B104
  article-title: Myeloid-derived suppressor cells: the dark knight or the joker in viral infections?
  publication-title: Immunol Rev
  doi: 10.1111/imr.12084
– volume: 175
  start-page: 1118
  issue: 2
  year: 2005
  ident: B64
  article-title: Lentivirus infection causes neuroinflammation and neuronal injury in dorsal root ganglia: pathogenic effects of STAT-1 and inducible nitric oxide synthase
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.2.1118
– volume: 55
  start-page: 343
  issue: 2
  year: 2012
  ident: B99
  article-title: Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species
  publication-title: Hepatology
  doi: 10.1002/hep.24700
– volume: 33
  start-page: 798
  issue: 4
  year: 2013
  ident: B98
  article-title: Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients
  publication-title: J Clin Immunol
  doi: 10.1007/s10875-012-9861-2
– volume: 72
  start-page: 7703
  issue: 9
  year: 1998
  ident: B18
  article-title: Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection
  publication-title: J Virol
  doi: 10.1128/JVI.72.9.7703-7706.1998
– volume: 104
  start-page: 746
  issue: 11
  year: 2010
  ident: B75
  article-title: Antiretroviral therapy abrogates association between arginase activity and HIV disease severity
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2010.08.004
– volume: 86
  start-page: 229
  issue: 3
  year: 2002
  ident: B35
  article-title: Resistance and susceptibility to Marek’s disease: nitric oxide synthase/arginase activity balance
  publication-title: Vet Microbiol
  doi: 10.1016/S0378-1135(02)00010-X
– volume: 73
  start-page: 313
  issue: 2
  year: 2004
  ident: B59
  article-title: Early inhibition of nitric oxide production increases HSV-1 intranasal infection
  publication-title: J Med Virol
  doi: 10.1002/jmv.20093
– volume: 207
  start-page: 1576
  issue: 10
  year: 2013
  ident: B51
  article-title: Inducible nitric oxide contributes to viral pathogenesis following highly pathogenic influenza virus infection in mice
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jit062
– volume: 124
  start-page: 2886
  issue: 12
  year: 2009
  ident: B71
  article-title: Hepatitis C virus targets over-expression of arginase I in hepatocarcinogenesis
  publication-title: Int J Cancer
  doi: 10.1002/ijc.24265
– volume: 185
  start-page: 1533
  issue: 9
  year: 1997
  ident: B58
  article-title: Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2)
  publication-title: J Exp Med
  doi: 10.1084/jem.185.9.1533
– volume: 7
  start-page: e1977
  issue: 1
  year: 2013
  ident: B77
  article-title: Arginase activity in the blood of patients with visceral leishmaniasis and HIV infection
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001977
– volume: 20
  start-page: 1437
  issue: 11
  year: 2013
  ident: B5
  article-title: Myeloid derived suppressor cells and their role in diseases
  publication-title: Curr Med Chem
  doi: 10.2174/0929867311320110006
– volume: 193
  start-page: 91
  issue: 2–3
  year: 2004
  ident: B91
  article-title: Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice
  publication-title: Med Microbiol Immunol
  doi: 10.1007/s00430-003-0198-6
– volume: 160
  start-page: 521
  issue: 2
  year: 1984
  ident: B93
  article-title: Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence
  publication-title: J Exp Med
  doi: 10.1084/jem.160.2.521
– volume: 38
  start-page: 309
  issue: 2
  year: 2013
  ident: B70
  article-title: Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.10.022
– volume: 209
  start-page: 441
  issue: 3
  year: 2014
  ident: B76
  article-title: HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jit469
– volume: 254
  start-page: 1001
  issue: 5034
  year: 1991
  ident: B87
  article-title: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors
  publication-title: Science
  doi: 10.1126/science.1948068
– volume: 87
  start-page: 3361
  issue: Pt 11
  year: 2006
  ident: B50
  article-title: Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.82131-0
– volume: 183
  start-page: 441
  issue: 2
  year: 2013
  ident: B31
  article-title: Cross-regulation of T regulatory-cell response after coxsackievirus B3 infection by NKT and gammadelta T cells in the mouse
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2013.04.015
– volume: 71
  start-page: 4278
  issue: 6
  year: 1997
  ident: B62
  article-title: Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: a role for CD8 T cells
  publication-title: J Virol
  doi: 10.1128/JVI.71.6.4278-4283.1997
– volume: 3
  start-page: 291
  issue: 3
  year: 2010
  ident: B19
  article-title: Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2010.6
– volume: 261
  start-page: 1445
  issue: 5127
  year: 1993
  ident: B9
  article-title: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase
  publication-title: Science
  doi: 10.1126/science.7690156
– volume: 105
  start-page: 353
  issue: 4
  year: 2009
  ident: B30
  article-title: Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.109.195230
– volume: 106
  start-page: 5306
  issue: 13
  year: 2009
  ident: B54
  article-title: TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900655106
– volume: 35
  start-page: 466
  issue: 4
  year: 2006
  ident: B61
  article-title: Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2006-0121OC
– volume: 87
  start-page: 2058
  issue: 4
  year: 2013
  ident: B65
  article-title: Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency
  publication-title: J Virol
  doi: 10.1128/JVI.01547-12
– volume: 265
  start-page: 14143
  issue: 24
  year: 1990
  ident: B85
  article-title: Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)77279-7
– volume: 5
  start-page: 64
  year: 2005
  ident: B13
  article-title: Inducible nitric oxide synthase (iNOS) expression in monocytes during acute dengue fever in patients and during in vitro infection
  publication-title: BMC Infect Dis
  doi: 10.1186/1471-2334-5-64
– volume: 188
  start-page: 1541
  issue: 8
  year: 1998
  ident: B49
  article-title: Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice
  publication-title: J Exp Med
  doi: 10.1084/jem.188.8.1541
– volume: 37
  start-page: 122
  issue: 1
  year: 2012
  ident: B66
  article-title: Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.04.014
– volume: 166
  start-page: 3533
  issue: 5
  year: 2001
  ident: B29
  article-title: Role of nitric oxide synthase type 2 in acute infection with murine cytomegalovirus
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.5.3533
– volume: 174
  start-page: 761
  issue: 4
  year: 1991
  ident: B86
  article-title: Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide
  publication-title: J Exp Med
  doi: 10.1084/jem.174.4.761
– volume: 89
  start-page: 3030
  issue: 7
  year: 1992
  ident: B88
  article-title: DNA damage and mutation in human cells exposed to nitric oxide in vitro
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.7.3030
– volume: 281
  start-page: 205
  issue: 2
  year: 2001
  ident: B16
  article-title: A critical role for inducible nitric oxide synthase in host survival following coxsackievirus B4 infection
  publication-title: Virology
  doi: 10.1006/viro.2000.0801
– volume: 6
  start-page: e14561
  issue: 1
  year: 2011
  ident: B47
  article-title: Increased inducible nitric oxide synthase expression in organs is associated with a higher severity of H5N1 influenza virus infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014561
– volume: 158
  start-page: 1305
  issue: 6
  year: 2013
  ident: B82
  article-title: Accumulation of CD11b(+)Gr-1(+) cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses
  publication-title: Arch Virol
  doi: 10.1007/s00705-012-1593-3
– volume: 6
  start-page: 45
  issue: 1
  year: 2013
  ident: B24
  article-title: IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2012.46
– volume: 24
  start-page: 417
  issue: 3
  year: 2008
  ident: B72
  article-title: CD163/CD16 coexpression by circulating monocytes/macrophages in HIV: potential biomarkers for HIV infection and AIDS progression
  publication-title: AIDS Res Hum Retroviruses
  doi: 10.1089/aid.2007.0193
– volume: 189
  start-page: 4047
  issue: 8
  year: 2012
  ident: B69
  article-title: Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1201240
– volume: 14
  start-page: 753
  issue: 4
  year: 2001
  ident: B101
  article-title: Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.14.4.753-777.2001
– volume: 118
  start-page: 4036
  issue: 12
  year: 2008
  ident: B81
  article-title: Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans
  publication-title: J Clin Invest
  doi: 10.1172/JCI36264
– volume: 7
  start-page: 549
  issue: 3
  year: 2013
  ident: B20
  article-title: Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2013.71
– volume: 69
  start-page: 2208
  issue: 4
  year: 1995
  ident: B11
  article-title: Inhibition of vesicular stomatitis virus infection by nitric oxide
  publication-title: J Virol
  doi: 10.1128/JVI.69.4.2208-2213.1995
– volume: 87
  start-page: 599
  issue: 4
  year: 2010
  ident: B100
  article-title: Macrophage polarization and HIV-1 infection
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.1009673
– volume: 164
  start-page: 371
  issue: 1
  year: 2000
  ident: B23
  article-title: IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.1.371
– volume: 166
  start-page: 41
  issue: 1
  year: 1988
  ident: B89
  article-title: Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant
  publication-title: Virology
  doi: 10.1016/0042-6822(88)90144-4
– volume: 9
  start-page: e1003735
  issue: 11
  year: 2013
  ident: B96
  article-title: Macrophage and T cell produced IL-10 promotes viral chronicity
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003735
– volume: 73
  start-page: 8880
  issue: 10
  year: 1999
  ident: B45
  article-title: Inhibition of influenza virus replication by nitric oxide
  publication-title: J Virol
  doi: 10.1128/JVI.73.10.8880-8883.1999
– volume: 4
  start-page: 2106
  year: 2013
  ident: B27
  article-title: Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages
  publication-title: Nat Commun
  doi: 10.1038/ncomms3106
– volume: 373
  start-page: 582
  issue: 9663
  year: 2009
  ident: B102
  article-title: Hepatitis B virus infection
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)60207-5
– year: 2014
  ident: B21
  article-title: Agents that increase AAM differentiation blunt RSV-mediated lung pathology
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.4HI0414-226R
– volume: 87
  start-page: 2376
  issue: 5
  year: 2013
  ident: B68
  article-title: Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection
  publication-title: J Virol
  doi: 10.1128/JVI.03089-12
– volume: 3
  start-page: 65
  issue: 1
  year: 1991
  ident: B7
  article-title: Role of nitric oxide synthesis in macrophage antimicrobial activity
  publication-title: Curr Opin Immunol
  doi: 10.1016/0952-7915(91)90079-G
– volume: 97
  start-page: 1837
  issue: 8
  year: 1996
  ident: B17
  article-title: Nitric oxide inhibits viral replication in murine myocarditis
  publication-title: J Clin Invest
  doi: 10.1172/JCI118613
– volume: 95
  start-page: 2469
  issue: 5
  year: 1998
  ident: B14
  article-title: The role of inducible nitric oxide synthase in the host response to coxsackievirus myocarditis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.5.2469
– volume: 9
  start-page: 157
  issue: 2
  year: 2012
  ident: B46
  article-title: Inhaled nitric oxide therapy fails to improve outcome in experimental severe influenza
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.3880
– volume: 93
  start-page: 2448
  issue: 6
  year: 1996
  ident: B48
  article-title: Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.6.2448
– volume: 91
  start-page: 2446
  issue: 6
  year: 1993
  ident: B10
  article-title: Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication
  publication-title: J Clin Invest
  doi: 10.1172/JCI116479
– volume: 163
  start-page: 5497
  issue: 10
  year: 1999
  ident: B15
  article-title: Inducible nitric oxide synthase protection against coxsackievirus pancreatitis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.10.5497
– volume: 79
  start-page: 825
  issue: Pt 4
  year: 1998
  ident: B26
  article-title: Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-79-4-825
– volume: 183
  start-page: 6971
  issue: 11
  year: 2009
  ident: B97
  article-title: Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902193
– volume: 143
  start-page: 78–87.e3
  issue: 1
  year: 2012
  ident: B79
  article-title: Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.03.041
– volume: 14
  start-page: 229
  issue: 3
  year: 2008
  ident: B60
  article-title: Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis
  publication-title: J Neurovirol
  doi: 10.1080/13550280802093927
– volume: 472
  start-page: 213
  issue: 3
  year: 2003
  ident: B55
  article-title: Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(03)01932-0
– volume: 11
  start-page: 723
  issue: 11
  year: 2011
  ident: B1
  article-title: Protective and pathogenic functions of macrophage subsets
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3073
– volume: 77
  start-page: 4911
  issue: 8
  year: 2003
  ident: B95
  article-title: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment
  publication-title: J Virol
  doi: 10.1128/JVI.77.8.4911-4927.2003
– volume: 35
  start-page: 1143
  issue: 10
  year: 2008
  ident: B40
  article-title: Dengue fever activates the l-arginine-nitric oxide pathway: an explanation for reduced aggregation of human platelets
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/j.1440-1681.2008.04970.x
– volume: 15
  start-page: 4391
  issue: 13
  year: 2009
  ident: B103
  article-title: HPV16 tumor associated macrophages suppress antitumor T cell responses
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-0489
– volume: 202
  start-page: 374
  issue: 3
  year: 2010
  ident: B74
  article-title: Increased level of arginase activity correlates with disease severity in HIV-seropositive patients
  publication-title: J Infect Dis
  doi: 10.1086/653736
– volume: 11
  start-page: 481
  issue: 5
  year: 2012
  ident: B67
  article-title: Emergence of distinct multiarmed immunoregulatory antigen-presenting cells during persistent viral infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.03.009
– volume: 32
  start-page: 463
  issue: 6
  year: 2012
  ident: B2
  article-title: M1 and M2 macrophages: oracles of health and disease
  publication-title: Crit Rev Immunol
  doi: 10.1615/CritRevImmunol.v32.i6.10
– volume: 69
  start-page: 910
  issue: 2
  year: 1995
  ident: B32
  article-title: Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication
  publication-title: J Virol
  doi: 10.1128/JVI.69.2.910-915.1995
– volume: 66
  start-page: 762
  issue: 6
  year: 2002
  ident: B37
  article-title: Short report: increased level of serum nitric oxide in patients with dengue
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2002.66.762
– volume: 10
  start-page: e1004032
  issue: 3
  year: 2014
  ident: B78
  article-title: Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004032
– volume: 86
  start-page: 13334
  issue: 24
  year: 2012
  ident: B57
  article-title: Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection
  publication-title: J Virol
  doi: 10.1128/JVI.01689-12
– volume: 146
  start-page: 2719
  issue: 8
  year: 1991
  ident: B92
  article-title: Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway
  publication-title: J Immunol
  doi: 10.4049/jimmunol.146.8.2719
– volume: 6
  start-page: e1663
  issue: 5
  year: 2012
  ident: B39
  article-title: A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-gamma in host resistance to infection
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001663
– volume: 87
  start-page: 1477
  issue: 3
  year: 2013
  ident: B73
  article-title: Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals
  publication-title: J Virol
  doi: 10.1128/JVI.01759-12
– volume: 158
  start-page: 2117
  issue: 6
  year: 2001
  ident: B63
  article-title: Murine gammaherpesvirus-68 infection causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor knockout mice
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64683-4
– volume: 59
  start-page: 533
  issue: 4
  year: 1995
  ident: B8
  article-title: Role of nitric oxide in parasitic infections
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.59.4.533-547.1995
– volume: 162
  start-page: 2895
  issue: 5
  year: 1999
  ident: B22
  article-title: Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.5.2895
– volume: 84
  start-page: 50
  issue: 1
  year: 2008
  ident: B105
  article-title: Murine gammaherpesvirus-induced fibrosis is associated with the development of alternatively activated macrophages
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0507270
– volume: 173
  start-page: 276
  issue: 1
  year: 1989
  ident: B90
  article-title: A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90244-4
– volume: 189
  start-page: 606
  issue: 2
  year: 2012
  ident: B52
  article-title: Transactivation of inducible nitric oxide synthase gene by Kruppel-like factor 6 regulates apoptosis during influenza A virus infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102742
– volume: 9
  start-page: 246
  year: 2012
  ident: B42
  article-title: Targeted blockade in lethal West Nile virus encephalitis indicates a crucial role for very late antigen (VLA)-4-dependent recruitment of nitric oxide-producing macrophages
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-246
– volume: 71
  start-page: 5227
  issue: 7
  year: 1997
  ident: B12
  article-title: Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication
  publication-title: J Virol
  doi: 10.1128/JVI.71.7.5227-5235.1997
– volume: 277
  start-page: 58
  issue: 1
  year: 2000
  ident: B33
  article-title: Nitric oxide inhibits Marek’s disease virus replication but is not the single decisive factor in interferon-gamma-mediated viral inhibition
  publication-title: Virology
  doi: 10.1006/viro.2000.0576
– volume: 205
  start-page: 2111
  issue: 9
  year: 2008
  ident: B80
  article-title: Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20072076
– volume: 12
  start-page: 253
  issue: 4
  year: 2012
  ident: B4
  article-title: Coordinated regulation of myeloid cells by tumours
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3175
– volume: 70
  start-page: 3972
  issue: 6
  year: 1996
  ident: B43
  article-title: Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis
  publication-title: J Virol
  doi: 10.1128/JVI.70.6.3972-3977.1996
– volume: 162
  start-page: 957
  issue: 2
  year: 1999
  ident: B28
  article-title: Role of IFN-gamma-induced indoleamine 2,3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.2.957
– volume: 5
  start-page: e1449
  issue: 12
  year: 2011
  ident: B38
  article-title: IFN-gamma production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001449
– reference: 8621766 - J Clin Invest. 1996 Apr 15;97(8):1837-43
– reference: 9151815 - J Virol. 1997 Jun;71(6):4278-83
– reference: 16002713 - J Immunol. 2005 Jul 15;175(2):1118-26
– reference: 12663797 - J Virol. 2003 Apr;77(8):4911-27
– reference: 10482647 - J Virol. 1999 Oct;73(10):8880-3
– reference: 25009233 - J Leukoc Biol. 2014 Dec;96(6):951-5
– reference: 19549768 - Clin Cancer Res. 2009 Jul 1;15(13):4391-400
– reference: 2842955 - Virology. 1988 Sep;166(1):41-51
– reference: 23269787 - J Virol. 2013 Mar;87(5):2376-89
– reference: 23999600 - J Infect Dis. 2014 Feb 1;209(3):441-51
– reference: 24244162 - PLoS Pathog. 2013;9(11):e1003735
– reference: 9188590 - J Virol. 1997 Jul;71(7):5227-35
– reference: 9696880 - J Virol. 1998 Sep;72(9):7703-6
– reference: 16004984 - Exp Neurol. 2005 Oct;195(2):379-90
– reference: 11277693 - Virology. 2001 Mar 15;281(2):205-15
– reference: 7533852 - J Virol. 1995 Apr;69(4):2208-13
– reference: 23438822 - Immunity. 2013 Feb 21;38(2):309-21
– reference: 19608981 - Circ Res. 2009 Aug 14;105(4):353-64
– reference: 21997792 - Nat Rev Immunol. 2011 Oct 14;11(11):723-37
– reference: 22607801 - Cell Host Microbe. 2012 May 17;11(5):481-91
– reference: 18436582 - J Leukoc Biol. 2008 Jul;84(1):50-8
– reference: 19764983 - Br J Pharmacol. 2009 Oct;158(3):638-51
– reference: 1717630 - J Exp Med. 1991 Oct 1;174(4):761-7
– reference: 23111065 - J Neuroinflammation. 2012 Oct 30;9:246
– reference: 9782132 - J Exp Med. 1998 Oct 19;188(8):1541-6
– reference: 23221564 - J Virol. 2013 Feb;87(4):2058-71
– reference: 23152536 - J Virol. 2013 Feb;87(3):1477-90
– reference: 23397329 - Arch Virol. 2013 Jun;158(6):1305-22
– reference: 19217993 - Lancet. 2009 Feb 14;373(9663):582-92
– reference: 8637894 - Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2448-53
– reference: 25035950 - Immunity. 2014 Jul 17;41(1):14-20
– reference: 10605032 - J Immunol. 2000 Jan 1;164(1):371-8
– reference: 18373432 - AIDS Res Hum Retroviruses. 2008 Mar;24(3):417-21
– reference: 23015710 - J Virol. 2012 Dec;86(24):13334-49
– reference: 9151890 - J Exp Med. 1997 May 5;185(9):1533-40
– reference: 25082704 - Science. 2014 Aug 1;345(6196):578-82
– reference: 1948068 - Science. 1991 Nov 15;254(5034):1001-3
– reference: 20843532 - Trans R Soc Trop Med Hyg. 2010 Nov;104(11):746-8
– reference: 19033672 - J Clin Invest. 2008 Dec;118(12):4036-48
– reference: 9482909 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2469-74
– reference: 10072539 - J Immunol. 1999 Mar 1;162(5):2895-905
– reference: 23409714 - Curr Med Chem. 2013;20(11):1437-44
– reference: 22475535 - Gastroenterology. 2012 Jul;143(1):78-87.e3
– reference: 10729136 - J Virol. 2000 Apr;74(8):3605-12
– reference: 8648734 - J Virol. 1996 Jun;70(6):3972-7
– reference: 14513374 - Med Microbiol Immunol. 2004 May;193(2-3):91-100
– reference: 19851468 - PLoS Pathog. 2009 Oct;5(10):e1000636
– reference: 18569457 - J Neurovirol. 2008 May;14 (3):229-38
– reference: 1711326 - Curr Opin Immunol. 1991 Feb;3(1):65-70
– reference: 7529336 - J Virol. 1995 Feb;69(2):910-5
– reference: 23349999 - PLoS Negl Trop Dis. 2013;7(1):e1977
– reference: 18505438 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1143-6
– reference: 19253371 - Int J Cancer. 2009 Jun 15;124(12):2886-92
– reference: 18250467 - J Immunol. 2008 Feb 15;180(4):2562-72
– reference: 18695005 - J Exp Med. 2008 Sep 1;205(9):2111-24
– reference: 11585784 - Clin Microbiol Rev. 2001 Oct;14(4):753-77, table of contents
– reference: 20575659 - J Infect Dis. 2010 Aug 15;202(3):374-85
– reference: 9916720 - J Immunol. 1999 Jan 15;162(2):957-64
– reference: 22253563 - Int J Med Sci. 2012;9(2):157-62
– reference: 23820884 - Nat Commun. 2013;4:2106
– reference: 21953144 - Hepatology. 2012 Feb;55(2):343-53
– reference: 22692455 - Mucosal Immunol. 2013 Jan;6(1):45-55
– reference: 23947357 - Immunol Rev. 2013 Sep;255(1):210-21
– reference: 23428224 - Crit Rev Immunol. 2012;32(6):463-88
– reference: 2117605 - J Biol Chem. 1990 Aug 25;265(24):14143-9
– reference: 11207313 - J Immunol. 2001 Mar 1;166(5):3533-41
– reference: 22206036 - PLoS Negl Trop Dis. 2011 Dec;5(12):e1449
– reference: 10748242 - J Exp Med. 2000 Apr 3;191(7):1247-52
– reference: 22840843 - Immunity. 2012 Jul 27;37(1):122-33
– reference: 22972923 - J Immunol. 2012 Oct 15;189(8):4047-59
– reference: 21283521 - PLoS One. 2011 Jan 19;6(1):e14561
– reference: 7690156 - Science. 1993 Sep 10;261(5127):1445-8
– reference: 8390481 - J Clin Invest. 1993 Jun;91(6):2446-52
– reference: 16709958 - Am J Respir Cell Mol Biol. 2006 Oct;35(4):466-73
– reference: 2554573 - Virology. 1989 Nov;173(1):276-83
– reference: 11900957 - Vet Microbiol. 2002 May 1;86(3):229-44
– reference: 24651854 - PLoS Pathog. 2014 Mar 20;10(3):e1004032
– reference: 22711891 - J Immunol. 2012 Jul 15;189(2):606-15
– reference: 19890055 - J Immunol. 2009 Dec 1;183(11):6971-80
– reference: 9491998 - Immunity. 1998 Feb;8(2):167-75
– reference: 23420903 - J Infect Dis. 2013 May 15;207(10):1576-84
– reference: 19279209 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5306-11
– reference: 15122810 - J Med Virol. 2004 Jun;73(2):313-22
– reference: 24479442 - J Neuroinflammation. 2014 Jan 30;11:20
– reference: 20404812 - Mucosal Immunol. 2010 May;3(3):291-300
– reference: 6332167 - J Exp Med. 1984 Aug 1;160(2):521-40
– reference: 8531884 - Microbiol Rev. 1995 Dec;59(4):533-47
– reference: 10553076 - J Immunol. 1999 Nov 15;163(10):5497-504
– reference: 23746656 - Am J Pathol. 2013 Aug;183(2):441-9
– reference: 24064666 - Mucosal Immunol. 2014 May;7(3):549-57
– reference: 18954330 - Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1135-6
– reference: 12224588 - Am J Trop Med Hyg. 2002 Jun;66(6):762-4
– reference: 17030871 - J Gen Virol. 2006 Nov;87(Pt 11):3361-71
– reference: 22666512 - PLoS Negl Trop Dis. 2012;6(5):e1663
– reference: 16109165 - BMC Infect Dis. 2005 Aug 18;5:64
– reference: 11062036 - Virology. 2000 Nov 10;277(1):58-65
– reference: 12871756 - Eur J Pharmacol. 2003 Jul 11;472(3):213-20
– reference: 1557408 - Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030-4
– reference: 1707918 - J Immunol. 1991 Apr 15;146(8):2719-23
– reference: 23354838 - J Clin Immunol. 2013 May;33(4):798-808
– reference: 20042468 - J Leukoc Biol. 2010 Apr;87(4):599-608
– reference: 11395389 - Am J Pathol. 2001 Jun;158(6):2117-25
– reference: 22437938 - Nat Rev Immunol. 2012 Mar 22;12(4):253-68
– reference: 1281928 - Science. 1992 Dec 18;258(5090):1898-902
– reference: 9568978 - J Gen Virol. 1998 Apr;79 ( Pt 4):825-30
SSID ssj0000493335
Score 2.300506
SecondaryResourceType review_article
Snippet WHEN AN ANTIVIRAL IMMUNE RESPONSE IS GENERATED, A BALANCE MUST BE REACHED BETWEEN TWO OPPOSING PATHWAYS: the production of proinflammatory and cytotoxic...
When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 428
SubjectTerms Arginase
Immunity, Cellular
Immunology
iNOS
Macrophages
Viral pathogenicity
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50RfCy-Da-aMGLh7hJv9I5iKi4LMJ6cmBvTfo1RiaJJjOL8--tSrKjI4Mnr0l3EvrrSn1fd3UVIS8dyAjtlU3LYC0IFO1SW1YsVSGggwpMZ3je-fyzOluITxfy4vfx6HkAh4PSDutJLfrV658_tm_B4N-g4gR_exLrptlglBYmwgY6fZ3cAL9UoJmez2T_28SFOedy2qs82HHPN40p_A_xzr_DJ__wR6e3yfFMJOm7Cfk75Fpo75KbU2nJ7T1SA_4UQwdpF2mzDauu9hRX6SmeZJjWYWnVelr1S6wREWgT1jAhVvXQ0LqlwAspVivulvgzrAd8zGXdb4YURDxMB0_nrZ3hPlmcfvzy4SydyyqkTjK9ToWseBZEITywCTDIUEjJZVEyyYEcKWvz6F1pdS6jBHtWQucxRhdyxWJVAGV8QI7arg2PCEW6o1jmS6Zz4QpZCRlAgeXSKV-GKkvIydWAGjfnHMfSFysD2gMhMCMEBiEwIwQJebXr8X3Kt_GPtu8Ro107zJQ9Xuj6pZkNzygvBAcSwpWOQkdpgaDgKmoUziObS8iLK4QNWBYCUbWh2wwGlC2KZ81VQh5OiO9exXA3OGNlQoq9ubD3Lft32vrrmL0bGFMBpPXx__j4J-QWDscY86afkqN1vwnPgCSt7fNx7v8CXswQNA
  priority: 102
  providerName: Scholars Portal
Title The Role of Myeloid Cell Activation and Arginine Metabolism in the Pathogenesis of Virus-Induced Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/25250029
https://www.proquest.com/docview/1565499836
https://pubmed.ncbi.nlm.nih.gov/PMC4157561
https://doaj.org/article/6d443661368f48f5b1850148f4cd6151
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiJZXgFZG4sIh2sSvOEdAlAqpnKi0Nyt-laBNgja7SP33nYnT1S6q4MIlh8RJLH_jzPfZkxlC3jmQEdorm9fBWhAo2uW2bliuQkAHFZgu8H_ny2_q4kp8XcrlXqkvjAlL6YHTwC2UF4KDE-FKR6GjtOBgcBUsCufRG-PXF3zenpj6mXgv51ymfUlQYfUitl23xVAuzJYtsPj6nh-a0vXfxzH_DJXc8z3nT8jjmTTSD6mzx-RB6E_Iw1RG8uYpaQFrimGCdIi0uwmrofUUV-Qp_rWQ1lxp03varK-xHkSgXdgA-Kt27GjbU-CAFCsTD9f44WtHfMzvdr0dcxDsAL2n8zbO-IxcnX_-_ukin0so5E4yvcmFbHgRRCU8MAeYfKGSksuqZpIDEVLWltG72upSRglzVwldxhhdKBWLTQX08Dk56oc-vCQUqY1iha-ZLoWrZCNkALVVSqd8HZoiI4u7ATVuzi-OZS5WBnQGQmAmCAxCYCYIMvJ-d8evlFvjL20_Ika7dpgVezoBtmJmWzH_spWMvL1D2MAsQiCaPgzb0YCKRaGsucrIi4T47lUMd34LVmekOrCFg74cXunbH1OmbmBHFRDUV_-j86_JIxyOKb5NvyFHm_U2nAIh2tizyfbh-GVZwvFS6FvGCQj7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+myeloid+cell+activation+and+arginine+metabolism+in+the+pathogenesis+of+virus-induced+diseases&rft.jtitle=Frontiers+in+immunology&rft.au=Kristina+S.+Burrack&rft.au=Thomas+E.+Morrison&rft.date=2014-09-08&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=5&rft_id=info:doi/10.3389%2Ffimmu.2014.00428&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d443661368f48f5b1850148f4cd6151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon