Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection
is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate strai...
Saved in:
Published in | Frontiers in microbiology Vol. 8; p. 1613 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
23.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that
may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate
strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable
090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary
pneumonia. We demonstrated that the nasal priming with viable
090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable
improved lung CD3
CD4
IFN-γ
, and CD3
CD4
IL-10
T cells as well as CD11c
SiglecF
IFN-β
alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that
colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable
could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects. |
---|---|
AbstractList | Corynebacterium pseudodiphtheriticum
is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that
C. pseudodiphtheriticum
may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate
C. pseudodiphtheriticum
strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable
C. pseudodiphtheriticum
090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary
Streptococcus pneumoniae
pneumonia. We demonstrated that the nasal priming with viable
C. pseudodiphtheriticum
090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable
C. pseudodiphtheriticum
improved lung CD3
+
CD4
+
IFN-γ
+
, and CD3
+
CD4
+
IL-10
+
T cells as well as CD11c
+
SiglecF
+
IFN-β
+
alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that
C. pseudodiphtheriticum
colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable
C. pseudodiphtheriticum
could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects. Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects. is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary pneumonia. We demonstrated that the nasal priming with viable 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable improved lung CD3 CD4 IFN-γ , and CD3 CD4 IL-10 T cells as well as CD11c SiglecF IFN-β alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects. Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects. |
Author | Vizoso-Pinto, Maria G. Takahashi, Hideki Rodriguez, Cecilia Melnikov, Vyacheslav Alvarez, Susana Kanmani, Paulraj Clua, Patricia Villena, Julio Kitazawa, Haruki |
AuthorAffiliation | 2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan 6 Laboratory of Genetics, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina 3 Immunobiotics Research Group Tucuman, Argentina 5 Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman Tucuman, Argentina 4 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University Sendai, Japan 8 Central Research Institute of Epidemiology Moscow, Russia 7 Gabrichevsky Institute of Epidemiology and Microbiology Moscow, Russia 9 Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan 10 Plant Immunology Unit, International Education and Research Center for Food and Agricu |
AuthorAffiliation_xml | – name: 8 Central Research Institute of Epidemiology Moscow, Russia – name: 3 Immunobiotics Research Group Tucuman, Argentina – name: 5 Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman Tucuman, Argentina – name: 7 Gabrichevsky Institute of Epidemiology and Microbiology Moscow, Russia – name: 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University Sendai, Japan – name: 2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan – name: 6 Laboratory of Genetics, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina – name: 10 Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan – name: 4 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina – name: 9 Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan |
Author_xml | – sequence: 1 givenname: Paulraj surname: Kanmani fullname: Kanmani, Paulraj – sequence: 2 givenname: Patricia surname: Clua fullname: Clua, Patricia – sequence: 3 givenname: Maria G. surname: Vizoso-Pinto fullname: Vizoso-Pinto, Maria G. – sequence: 4 givenname: Cecilia surname: Rodriguez fullname: Rodriguez, Cecilia – sequence: 5 givenname: Susana surname: Alvarez fullname: Alvarez, Susana – sequence: 6 givenname: Vyacheslav surname: Melnikov fullname: Melnikov, Vyacheslav – sequence: 7 givenname: Hideki surname: Takahashi fullname: Takahashi, Hideki – sequence: 8 givenname: Haruki surname: Kitazawa fullname: Kitazawa, Haruki – sequence: 9 givenname: Julio surname: Villena fullname: Villena, Julio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28878760$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Us-P1CAYbcwa94d792Q4epkRKKXtxUQnqzvJGhNHjTcC9GOHTQsV6Cb9s_wPZWbWzayJHIDv8b73ILzz4sR5B0XxiuBlWTbtWzNYrZYUk3qJCSfls-KMcM4WJaY_T472p8VljHc4D4Zpnl8Up7Rp6qbm-Kz4_RXiaINMPsxo5YcBXJQ9-iB1gmBlhsLsQB3KaUBjhKnznR23aZuRZHUG18MY_D1ElMVsTNJpQN6gtTPSJfTZ5jJ5dOy0mZ2ek81OP2yYIpKuQ5sUYExee60zMjqYBu-sBLSZxmzlDOhkvXtZPDeyj3D5sF4U3z9efVtdL26-fFqv3t8sdEWbtGCsLnFLKtUaQ4BK3ELFCK4YKK6AKdCqUQ1uOFecGgyattlA87IyHakxKS-K9UG38_JOjMEOMszCSyv2gA-3Qob8_h4EY7oBTlWnNWVtKyVrOgNVx8qOc8N11np30BonNUCnwaUg-yeiT0-c3Ypbfy-qqqYlr7PAmweB4H9NEJMYbNTQ99KBn6Igbck5ZTVuM_X1sdejyd8_zwR8IOjgYwxgHikEi12yxD5ZYpcssU9WbuH_tGib5O438m1t___GPw3i23E |
CitedBy_id | crossref_primary_10_1099_jmm_0_001368 crossref_primary_10_1128_JB_00480_20 crossref_primary_10_3389_fcimb_2019_00256 crossref_primary_10_3389_fimmu_2022_867022 crossref_primary_10_1016_j_lanwpc_2024_101282 crossref_primary_10_3390_microorganisms9050941 crossref_primary_10_1186_s12934_020_01483_1 crossref_primary_10_1128_mBio_02491_18 crossref_primary_10_3390_life12030341 crossref_primary_10_3390_pathogens10060634 crossref_primary_10_3390_pathogens11091063 crossref_primary_10_1111_mec_16398 crossref_primary_10_12938_bmfh_2022_009 crossref_primary_10_1016_j_chom_2020_07_004 crossref_primary_10_1164_rccm_202112_2704PP crossref_primary_10_1177_0194599820933170 crossref_primary_10_3389_fped_2019_00393 crossref_primary_10_1128_spectrum_01693_21 crossref_primary_10_1016_j_intimp_2019_106115 crossref_primary_10_3390_cells11192986 crossref_primary_10_3390_ijms26010407 crossref_primary_10_1016_S2213_2600_24_00148_6 crossref_primary_10_3389_fgene_2019_01230 crossref_primary_10_3389_falgy_2021_738987 crossref_primary_10_1111_cmi_12966 crossref_primary_10_1097_MOP_0000000000001438 crossref_primary_10_1016_j_ijporl_2021_110629 crossref_primary_10_4049_jimmunol_2001044 crossref_primary_10_1016_j_humic_2020_100073 crossref_primary_10_3390_vaccines11030611 crossref_primary_10_3389_fimmu_2020_568636 crossref_primary_10_3390_cells9071653 crossref_primary_10_1016_j_jaci_2018_02_020 crossref_primary_10_18093_0869_0189_2022_32_6_876_884 crossref_primary_10_3390_vaccines12040412 crossref_primary_10_1007_s11756_022_01147_y crossref_primary_10_1016_j_yapd_2022_03_012 crossref_primary_10_1016_j_tim_2018_12_004 crossref_primary_10_3390_microorganisms10112255 crossref_primary_10_1016_j_clim_2021_108725 crossref_primary_10_3390_ijms232314898 crossref_primary_10_3390_ijms25074051 crossref_primary_10_1042_ETLS20170041 crossref_primary_10_1016_j_ijporl_2019_109836 crossref_primary_10_1016_S2213_2600_18_30449_1 crossref_primary_10_1038_s41590_019_0451_9 crossref_primary_10_1186_s12906_020_02958_9 crossref_primary_10_1038_s41598_018_29793_w crossref_primary_10_3389_fnut_2021_626254 crossref_primary_10_18821_0869_2084_2019_64_11_693_699 crossref_primary_10_1007_s12275_024_00167_4 crossref_primary_10_1038_s41401_020_00573_5 crossref_primary_10_1016_j_jconrel_2024_01_020 crossref_primary_10_1016_j_arr_2020_101123 crossref_primary_10_1128_msystems_01132_24 crossref_primary_10_3390_v13122362 crossref_primary_10_3389_fimmu_2018_01421 crossref_primary_10_3390_metabo12060489 crossref_primary_10_3389_fmicb_2021_713703 crossref_primary_10_1016_j_chom_2018_08_005 crossref_primary_10_3920_BM2022_0118 crossref_primary_10_1016_j_coi_2020_03_010 crossref_primary_10_1038_s41564_021_01043_2 crossref_primary_10_1186_s12879_018_3086_9 crossref_primary_10_1002_jsfa_11843 crossref_primary_10_1128_iai_00445_24 crossref_primary_10_1155_2022_7752426 crossref_primary_10_3389_fcimb_2024_1530178 crossref_primary_10_1007_s10096_018_3305_8 crossref_primary_10_3389_fimmu_2020_593901 crossref_primary_10_1016_j_clinme_2024_100251 crossref_primary_10_1080_17476348_2021_1893168 crossref_primary_10_1371_journal_pone_0257207 crossref_primary_10_15789_2220_7619_DOM_1163 crossref_primary_10_36488_cmac_2024_1_21_30 crossref_primary_10_1007_s11427_020_1721_5 crossref_primary_10_1111_pai_13524 crossref_primary_10_3389_fimmu_2020_00543 crossref_primary_10_1016_j_pedneo_2019_10_004 crossref_primary_10_3389_fmicb_2021_804935 crossref_primary_10_1371_journal_pone_0262767 crossref_primary_10_1164_rccm_201810_1993OC crossref_primary_10_4102_sajid_v36i1_225 crossref_primary_10_1007_s12393_022_09315_1 crossref_primary_10_1016_j_micres_2021_126927 crossref_primary_10_3390_microorganisms9061324 crossref_primary_10_1002_ppul_24699 crossref_primary_10_3390_applmicrobiol2030046 crossref_primary_10_3390_v13091725 crossref_primary_10_1016_j_coviro_2019_05_009 crossref_primary_10_1093_cid_ciac184 crossref_primary_10_3389_fcimb_2020_00137 crossref_primary_10_1038_s41467_024_45518_2 crossref_primary_10_3389_fimmu_2018_02640 crossref_primary_10_3390_microorganisms12071295 crossref_primary_10_1016_j_micpath_2019_03_019 crossref_primary_10_1152_ajpendo_00298_2020 crossref_primary_10_3389_fimmu_2022_820366 crossref_primary_10_3390_microorganisms8050727 |
Cites_doi | 10.1203/01.pdr.0000188699.55279.1b 10.1089/mdr.2009.0122 10.1152/ajplung.00065.2011 10.1165/rcmb.2013-0316OC 10.1016/j.chom.2015.03.008 10.4049/jimmunol.1100764 10.1016/S0140-6736(14)61698-6 10.1093/clinids/20.1.41 10.3201/eid1608.100193 10.1016/j.vaccine.2016.09.030 10.1111/j.1348-0421.2008.00050.x 10.1128/AEM.01051-12 10.4049/jimmunol.1101021 10.5694/j.1326-5377.1997.tb123164.x 10.1093/jn/135.6.1462 10.1093/bmb/61.1.13 10.3390/v8050124 10.1016/S0140-6736(12)60560-1 10.4049/jimmunol.173.5.3408 10.1016/j.ijfoodmicro.2009.12.024 10.3389/fimmu.2014.00201 10.1186/1471-2172-13-53 10.1016/j.intimp.2013.06.024 10.1002/jsfa.4467 10.1007/s00011-015-0837-6 10.1111/1348-0421.12163 10.1007/s10156-010-0097-x 10.1186/1471-2172-14-40 10.1053/jhin.1999.0680 10.1007/s00011-016-0957-7 10.1371/journal.pone.0146599 10.1128/JVI.00671-08 10.1371/journal.ppat.1003727 10.1126/sciadv.1400216 10.1128/genomeA.00921-13 10.1542/peds.113.6.1728 10.1371/journal.ppat.1003057 10.1007/s12602-013-9147-x 10.1164/rccm.201311-2110OC 10.3201/eid1907.121625 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena. 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena |
Copyright_xml | – notice: Copyright © 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena. 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2017.01613 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_44c8e62bdcc2499aa48dfe5d43d66f6c PMC5572367 28878760 10_3389_fmicb_2017_01613 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-44730915b9ff1e2a09e541054eb6be4becb8b80866b62f0ec29fecc635fd17013 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:29:36 EDT 2025 Thu Aug 21 18:19:10 EDT 2025 Fri Jul 11 11:55:55 EDT 2025 Thu Jan 02 22:29:30 EST 2025 Tue Jul 01 00:54:46 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Corynebacterium pseudodiphtheriticum nasal probiotic Respiratory Synsytial Virus respiratory immunity TLR3 Streptococcus pneumoniae |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-44730915b9ff1e2a09e541054eb6be4becb8b80866b62f0ec29fecc635fd17013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology These authors have contributed equally to this work. Edited by: Rebeca Martín, INRA Centre Jouy-en-Josas, France Reviewed by: Narayanan Parameswaran, Michigan State University, United States; Analia Graciela Abraham, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Argentina |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.01613 |
PMID | 28878760 |
PQID | 1936624709 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44c8e62bdcc2499aa48dfe5d43d66f6c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5572367 proquest_miscellaneous_1936624709 pubmed_primary_28878760 crossref_primary_10_3389_fmicb_2017_01613 crossref_citationtrail_10_3389_fmicb_2017_01613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-23 |
PublicationDateYYYYMMDD | 2017-08-23 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Medina (B22) 2008; 52 Uehara (B34) 2000; 44 Zelaya (B39) 2015; 64 Weiss (B38) 2011; 187 Gomez (B9) 2015; 52 Murawski (B23) 2009; 83 Bosch (B4) 2013; 9 Villena (B36) 2005; 135 Liu (B17) 2015; 1 Teo (B32) 2015; 17 Maragkoudakis (B20) 2010; 141 Stacey (B29) 2011; 187 Liu (B19) 2015; 385 McNamara (B21) 2002; 61 Villena (B35) 2012; 13 Ahmed (B1) 1995; 20 Weinberger (B37) 2013; 19 Bittar (B3) 2010; 16 Chiba (B8) 2013; 17 Olender (B24) 2010; 16 LeMessurier (B15) 2013; 9 Sun (B30) 2016; 35 Smith (B28) 2014; 190 Cervantes-Ortiz (B7) 2016; 8 Kiryukhina (B13) 2013; 5 Levine (B16) 2004; 113 Burke (B5) 1997; 166 Cebey-Lopez (B6) 2016; 11 Pettigrew (B25) 2012; 78 Kitazawa (B14) 2014; 5 Hament (B10) 2005; 58 Tada (B31) 2016; 65 Rutigliano (B26) 2004; 173 Karlyshev (B12) 2013; 1 Bem (B2) 2011; 301 Liu (B18) 2012; 379 Zelaya (B40) 2014; 58 Hishiki (B11) 2011; 17 Tomosada (B33) 2013; 14 Salva (B27) 2011; 91 15930453 - J Nutr. 2005 Jun;135(6):1462-9 23763864 - Emerg Infect Dis. 2013 Jul;19(7):1084-91 21604277 - J Sci Food Agric. 2011 Oct;91(13):2355-62 23947615 - BMC Immunol. 2013 Aug 15;14:40 25100610 - Am J Respir Cell Mol Biol. 2015 Mar;52(3):349-64 27686836 - Vaccine. 2017 Jan 11;35(3):481-488 26072063 - Inflamm Res. 2015 Aug;64(8):589-602 22752171 - Appl Environ Microbiol. 2012 Sep;78(17):6262-70 22579125 - Lancet. 2012 Jun 9;379(9832):2151-61 20438346 - Microb Drug Resist. 2010 Jun;16(2):119-22 9137282 - Med J Aust. 1997 Apr 7;166(7):362-4 26601194 - Sci Adv. 2015 Jun 05;1(5):e1400216 20678316 - Emerg Infect Dis. 2010 Aug;16(8):1231-6 23326226 - PLoS Pathog. 2013 Jan;9(1):e1003057 24244159 - PLoS Pathog. 2013;9(11):e1003727 11997296 - Br Med Bull. 2002;61:13-28 21849677 - J Immunol. 2011 Sep 15;187(6):2944-52 21571908 - Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L148-56 27187445 - Viruses. 2016 May 12;8(5):null 18667039 - Microbiol Immunol. 2008 Aug;52(8):399-409 24860569 - Front Immunol. 2014 May 12;5:201 15322205 - J Immunol. 2004 Sep 1;173(5):3408-17 26783069 - Probiotics Antimicrob Proteins. 2013 Dec;5(4):233-8 27279272 - Inflamm Res. 2016 Oct;65(10 ):771-83 16306193 - Pediatr Res. 2005 Dec;58(6):1198-203 21844390 - J Immunol. 2011 Sep 15;187(6):3145-54 22989047 - BMC Immunol. 2012 Sep 18;13:53 20106541 - Int J Food Microbiol. 2010 Jul 31;141 Suppl 1:S91-7 25280870 - Lancet. 2015 Jan 31;385(9966):430-40 25865368 - Cell Host Microbe. 2015 May 13;17(5):704-15 24888715 - Microbiol Immunol. 2014 Jul;58(7):416-26 19019963 - J Virol. 2009 Feb;83(3):1492-500 15173498 - Pediatrics. 2004 Jun;113(6):1728-34 10662563 - J Hosp Infect. 2000 Feb;44(2):127-33 24201200 - Genome Announc. 2013 Nov 07;1(6):null 20700753 - J Infect Chemother. 2011 Feb;17(1):87-90 7727668 - Clin Infect Dis. 1995 Jan;20(1):41-6 26872131 - PLoS One. 2016 Feb 12;11(2):e0146599 23838113 - Int Immunopharmacol. 2013 Oct;17(2):373-82 24941423 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):196-207 |
References_xml | – volume: 58 start-page: 1198 year: 2005 ident: B10 article-title: Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and pneumococcal invasiveness in a murine model publication-title: Pediatr. Res. doi: 10.1203/01.pdr.0000188699.55279.1b – volume: 16 start-page: 119 year: 2010 ident: B24 article-title: Macrolide, lincosamide, and streptogramin B-constitutive-type resistance in Corynebacterium pseudodiphtheriticum isolated from upper respiratory tract specimens publication-title: Microb. Drug Resist. doi: 10.1089/mdr.2009.0122 – volume: 301 start-page: L148 year: 2011 ident: B2 article-title: Animal models of human respiratory syncytial virus disease publication-title: Am. J. Physiol. Lung Cell. Mol. physiol. doi: 10.1152/ajplung.00065.2011 – volume: 52 start-page: 349 year: 2015 ident: B9 article-title: Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia publication-title: Am. J. Respir Cell Mol. Biol. doi: 10.1165/rcmb.2013-0316OC – volume: 17 start-page: 704 year: 2015 ident: B32 article-title: The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.03.008 – volume: 187 start-page: 3145 year: 2011 ident: B38 article-title: Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1100764 – volume: 385 start-page: 430 year: 2015 ident: B19 article-title: Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(14)61698-6 – volume: 20 start-page: 41 year: 1995 ident: B1 article-title: Corynebacterium pseudodiphtheriticum: a respiratory tract pathogen publication-title: Clin. Infect. Dis. doi: 10.1093/clinids/20.1.41 – volume: 16 start-page: 1231 year: 2010 ident: B3 article-title: Outbreak of Corynebacterium pseudodiphtheriticum infection in cystic fibrosis patients, France publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1608.100193 – volume: 35 start-page: 481 year: 2016 ident: B30 article-title: The innate immune response to RSV: advances in our understanding of critical viral and host factors publication-title: Vaccine doi: 10.1016/j.vaccine.2016.09.030 – volume: 52 start-page: 399 year: 2008 ident: B22 article-title: Nasal administration of Lactococcus lactis improves the local and systemic immune responses against Streptococcus pneumonia publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.2008.00050.x – volume: 78 start-page: 6262 year: 2012 ident: B25 article-title: Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01051-12 – volume: 187 start-page: 2944 year: 2011 ident: B29 article-title: IL-10 restricts activation-induced death of NK cells during acute murine cytomegalovirus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1101021 – volume: 166 start-page: 362 year: 1997 ident: B5 article-title: Opportunistic lung infection with Corynebacterium pseudodiphtheriticum after lung and heart transplantation publication-title: Med. J. Aust. doi: 10.5694/j.1326-5377.1997.tb123164.x – volume: 135 start-page: 1462 year: 2005 ident: B36 article-title: Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice publication-title: J. Nutr. doi: 10.1093/jn/135.6.1462 – volume: 61 start-page: 13 year: 2002 ident: B21 article-title: The pathogenesis of respiratory syncytial virus disease in childhood publication-title: Br. Med. Bull. doi: 10.1093/bmb/61.1.13 – volume: 8 start-page: E124 year: 2016 ident: B7 article-title: Respiratory syncytial virus and cellular stress responses: impact on replication and physiopathology publication-title: Viruses doi: 10.3390/v8050124 – volume: 379 start-page: 2151 year: 2012 ident: B18 article-title: Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000 publication-title: Lancet doi: 10.1016/S0140-6736(12)60560-1 – volume: 173 start-page: 3408 year: 2004 ident: B26 article-title: Prolonged production of TNF-alpha exacerbates illness during respiratory syncytial virus infection publication-title: J. Immunol. doi: 10.4049/jimmunol.173.5.3408 – volume: 141 start-page: S91 year: 2010 ident: B20 article-title: Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2009.12.024 – volume: 5 start-page: 201 year: 2014 ident: B14 article-title: Modulation of respiratory TLR3-anti-viral response by probiotic microorganisms: lessons learned from Lactobacillus rhamnosus CRL1505 publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00201 – volume: 13 start-page: 53 year: 2012 ident: B35 article-title: Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C) publication-title: BMC Immunol. doi: 10.1186/1471-2172-13-53 – volume: 17 start-page: 373 year: 2013 ident: B8 article-title: Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2013.06.024 – volume: 91 start-page: 2355 year: 2011 ident: B27 article-title: Development of a fermented goats' milk containing Lactobacillus rhamnosus: in vivo study of health benefits publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.4467 – volume: 64 start-page: 589 year: 2015 ident: B39 article-title: Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage publication-title: Inflamm. Res. doi: 10.1007/s00011-015-0837-6 – volume: 58 start-page: 416 year: 2014 ident: B40 article-title: Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobiotic Lactobacillus rhamnosus CRL1505: role of toll-like receptor 2 publication-title: Microbiol. Immunol. doi: 10.1111/1348-0421.12163 – volume: 17 start-page: 87 year: 2011 ident: B11 article-title: Incidence of bacterial coinfection with respiratory syncytial virus bronchopulmonary infection in pediatric inpatients publication-title: J. Inf. Chemother. doi: 10.1007/s10156-010-0097-x – volume: 14 start-page: 40 year: 2013 ident: B33 article-title: Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection publication-title: BMC Immunol. doi: 10.1186/1471-2172-14-40 – volume: 44 start-page: 127 year: 2000 ident: B34 article-title: Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp publication-title: J. Hosp. Infect. doi: 10.1053/jhin.1999.0680 – volume: 65 start-page: 771 year: 2016 ident: B31 article-title: Immunobiotic Lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after Toll-like receptor 3 activation publication-title: Inflamm. Res. doi: 10.1007/s00011-016-0957-7 – volume: 11 start-page: e0146599 year: 2016 ident: B6 article-title: Bacteremia in children hospitalized with respiratory syncytial virus infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0146599 – volume: 83 start-page: 1492 year: 2009 ident: B23 article-title: Respiratory syncytial virus activates innate immunity through Toll-like receptor 2 publication-title: J. Virol. doi: 10.1128/JVI.00671-08 – volume: 9 start-page: e1003727 year: 2013 ident: B15 article-title: Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003727 – volume: 1 start-page: e1400216 year: 2015 ident: B17 article-title: Staphylococcus aureus and the ecology of the nasal microbiome publication-title: Sci. Adv. doi: 10.1126/sciadv.1400216 – volume: 1 start-page: e00921 year: 2013 ident: B12 article-title: Draft genome sequence of Corynebacterium pseudodiphtheriticum strain 090104 “Sokolov” publication-title: Genome Announc. doi: 10.1128/genomeA.00921-13 – volume: 113 start-page: 1728 year: 2004 ident: B16 article-title: Risk of serious bacterial infection in young febrile infants with respiratory syncytial virus infections publication-title: Pediatrics doi: 10.1542/peds.113.6.1728 – volume: 9 start-page: e1003057 year: 2013 ident: B4 article-title: Viral and bacterial interactions in the upper respiratory tract publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003057 – volume: 5 start-page: 233 year: 2013 ident: B13 article-title: Use of Corynebacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers exposed to abnormal microclimate and altered gaseous environment publication-title: Probiot. Antimicrob. Proteins doi: 10.1007/s12602-013-9147-x – volume: 190 start-page: 196 year: 2014 ident: B28 article-title: Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201311-2110OC – volume: 19 start-page: 1084 year: 2013 ident: B37 article-title: Influence of pneumococcal vaccines and respiratory syncytial virus on alveolar pneumonia, Israel publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1907.121625 – reference: 25865368 - Cell Host Microbe. 2015 May 13;17(5):704-15 – reference: 11997296 - Br Med Bull. 2002;61:13-28 – reference: 9137282 - Med J Aust. 1997 Apr 7;166(7):362-4 – reference: 23838113 - Int Immunopharmacol. 2013 Oct;17(2):373-82 – reference: 21844390 - J Immunol. 2011 Sep 15;187(6):3145-54 – reference: 20438346 - Microb Drug Resist. 2010 Jun;16(2):119-22 – reference: 27686836 - Vaccine. 2017 Jan 11;35(3):481-488 – reference: 26601194 - Sci Adv. 2015 Jun 05;1(5):e1400216 – reference: 16306193 - Pediatr Res. 2005 Dec;58(6):1198-203 – reference: 10662563 - J Hosp Infect. 2000 Feb;44(2):127-33 – reference: 20700753 - J Infect Chemother. 2011 Feb;17(1):87-90 – reference: 23326226 - PLoS Pathog. 2013 Jan;9(1):e1003057 – reference: 18667039 - Microbiol Immunol. 2008 Aug;52(8):399-409 – reference: 25280870 - Lancet. 2015 Jan 31;385(9966):430-40 – reference: 7727668 - Clin Infect Dis. 1995 Jan;20(1):41-6 – reference: 23763864 - Emerg Infect Dis. 2013 Jul;19(7):1084-91 – reference: 20106541 - Int J Food Microbiol. 2010 Jul 31;141 Suppl 1:S91-7 – reference: 22579125 - Lancet. 2012 Jun 9;379(9832):2151-61 – reference: 21604277 - J Sci Food Agric. 2011 Oct;91(13):2355-62 – reference: 25100610 - Am J Respir Cell Mol Biol. 2015 Mar;52(3):349-64 – reference: 24860569 - Front Immunol. 2014 May 12;5:201 – reference: 24941423 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):196-207 – reference: 22752171 - Appl Environ Microbiol. 2012 Sep;78(17):6262-70 – reference: 24201200 - Genome Announc. 2013 Nov 07;1(6):null – reference: 21849677 - J Immunol. 2011 Sep 15;187(6):2944-52 – reference: 15322205 - J Immunol. 2004 Sep 1;173(5):3408-17 – reference: 26872131 - PLoS One. 2016 Feb 12;11(2):e0146599 – reference: 27187445 - Viruses. 2016 May 12;8(5):null – reference: 24888715 - Microbiol Immunol. 2014 Jul;58(7):416-26 – reference: 15930453 - J Nutr. 2005 Jun;135(6):1462-9 – reference: 26072063 - Inflamm Res. 2015 Aug;64(8):589-602 – reference: 22989047 - BMC Immunol. 2012 Sep 18;13:53 – reference: 20678316 - Emerg Infect Dis. 2010 Aug;16(8):1231-6 – reference: 26783069 - Probiotics Antimicrob Proteins. 2013 Dec;5(4):233-8 – reference: 23947615 - BMC Immunol. 2013 Aug 15;14:40 – reference: 24244159 - PLoS Pathog. 2013;9(11):e1003727 – reference: 19019963 - J Virol. 2009 Feb;83(3):1492-500 – reference: 15173498 - Pediatrics. 2004 Jun;113(6):1728-34 – reference: 21571908 - Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L148-56 – reference: 27279272 - Inflamm Res. 2016 Oct;65(10 ):771-83 |
SSID | ssj0000402000 |
Score | 2.476822 |
Snippet | is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that
may be potentially used as a... Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested... Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1613 |
SubjectTerms | Corynebacterium pseudodiphtheriticum Microbiology nasal probiotic respiratory immunity Respiratory Synsytial Virus Streptococcus pneumoniae TLR3 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpDxmJC4fQrOM48ZEiqoIEB0pRb5EfY3Wl1ol2k8P-LP4hM3G67CIEF45x_JLn83jGHn9m7DXaCD6YBeRCVy6Xvta5EUrkQQbtvBdOmCnK94s6PZefLqqLnae-KCYs0QOngTuS0jWghPXOoaegjZGND1B5WXqlgnKkfXHN23GmJh1MblFRpHNJ9MI0imnpLIVy1W_Jyin31qGJrv9PNubvoZI7a8_JPXZ3Nhr5u9TZ--wWxAfsdnpGcvOQ_fj667yc040PdE0x-3EiYjaYtNpEsOlzvOb9Gkbf-WV_Od3-I_qNa552F2DNsTKyKREMvAv8Yww49vwz6hM-dHy3pbMNKmZUEFf8-3I1rrmJntMhdz90qGUdpvQRRoT50gA_G4lSeY78io_Y-cmHb-9P8_kphtxVohlyKVET6EVldQgLEKbQUFGAqASrLEgEgm1sg-6RskqEApzQWKFDayZ4YnwvH7OD2EV4yvjCgS-wBBSgJf62BpoSbA21kM44kbGjG8G0buYpp-cyrlr0V0iU7STKlkTZTqLM2JttiT5xdPwl7zHJepuP2LWnBMRcO2Ou_RfmMvbqBiktzkY6YjERunHdojmslJB1oTP2JCFn25RAfY5rT5Gxeg9Te33Z_xOXlxPjd1XVxLR3-D86_4zdoeGgfXFRPmcHw2qEF2hYDfblNId-AviJK8o priority: 102 providerName: Directory of Open Access Journals |
Title | Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28878760 https://www.proquest.com/docview/1936624709 https://pubmed.ncbi.nlm.nih.gov/PMC5572367 https://doaj.org/article/44c8e62bdcc2499aa48dfe5d43d66f6c |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4s0WqIzEhUNK1nGc5IAQRZSCVA6URXuL_BjTlbbJskmk7s_iHzLjZLddtOLAJVIcO44yD39jjz8z9goxgvN6DJEoUhtJlxWRFkpEXvrCOies0CHL96s6mcgv03R6tT16-IHNztCOzpOaLOeHl79W79Dg31LEieMtSmBmDWVpZYcEYJKb7BaOSxmZ6ekA9oNfplApjvu1yp0NiRkYjQ4dRLw1TAU2_10Q9O9MymtD0_E9dnfAlPx9rwT32Q2oHrDb_SmTq4fs97er5XROG0IwcsXqRz1Ps8ai5aoC0992F3zRQOdqN1uch82BxM5xwfvJB2g4vowgJ-oKrz3_XHkUDT9Fd8Pbml_v6WyFfhv9x5z_mC27huvKcVoDX7Q1OmGLJYsKOrSCmQZ-1hHj8pAYVj1ik-OP3z-cRMNJDZFNRd5GUqKjKMapKbwfg9BxASnlj0owyoBEPTG5yTF6UkYJH4MVBb7QItjxjgjhk8dsr6oreMr42IKLsQXEUEh8bDTkCZgMMiGttmLE3qwFU9qBxpxO05iXGM6QVMsg1ZKkWgapjtjrTYtFT-Hxj7pHJOtNPSLfDgX18mc52HIppc1BCeOsxeC10FrmzkPqZOKU8sqO2Mu1ppRorLQCoyuou6ZEtKyUkFlcjNiTXnM2Xa01b8SyLZ3a-pbtJ9XsPBCCp2lGRHz7_93yGbtD_4DmykXynO21yw5eINhqzUGYpMDrp-n4INjTH_QzNMk |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+Commensal+Bacteria+Corynebacterium+pseudodiphtheriticum+Improves+Resistance+of+Infant+Mice+to+Respiratory+Syncytial+Virus+and+Streptococcus+pneumoniae+Superinfection&rft.jtitle=Frontiers+in+microbiology&rft.au=Kanmani%2C+Paulraj&rft.au=Clua%2C+Patricia&rft.au=Vizoso-Pinto%2C+Maria+G.&rft.au=Rodriguez%2C+Cecilia&rft.date=2017-08-23&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.01613&rft_id=info%3Apmid%2F28878760&rft.externalDocID=PMC5572367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |