Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection

is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate strai...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 8; p. 1613
Main Authors Kanmani, Paulraj, Clua, Patricia, Vizoso-Pinto, Maria G., Rodriguez, Cecilia, Alvarez, Susana, Melnikov, Vyacheslav, Takahashi, Hideki, Kitazawa, Haruki, Villena, Julio
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary pneumonia. We demonstrated that the nasal priming with viable 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable improved lung CD3 CD4 IFN-γ , and CD3 CD4 IL-10 T cells as well as CD11c SiglecF IFN-β alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.
AbstractList Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3 + CD4 + IFN-γ + , and CD3 + CD4 + IL-10 + T cells as well as CD11c + SiglecF + IFN-β + alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.
Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.
is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary pneumonia. We demonstrated that the nasal priming with viable 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable improved lung CD3 CD4 IFN-γ , and CD3 CD4 IL-10 T cells as well as CD11c SiglecF IFN-β alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.
Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that C. pseudodiphtheriticum may be potentially used as a next-generation probiotic for nasal application, although no deep studies were performed in this regard. We hypothesized that human isolate C. pseudodiphtheriticum strain 090104 is able to modulate the respiratory innate immune response and beneficially influence the resistance to viral and bacterial infections. Therefore, in the present study we investigated how the exposure of infant mice to nasal priming with viable or non-viable C. pseudodiphtheriticum 090104 influences the respiratory innate immune response triggered by Toll-like receptor (TLR)-3 activation, the susceptibility to primary Respiratory Synsytial Virus (RSV) infection, and the resistance to secondary Streptococcus pneumoniae pneumonia. We demonstrated that the nasal priming with viable C. pseudodiphtheriticum 090104 differentially modulated TLR3-mediated innate antiviral immune response in the respiratory tract of infant mice, improving their resistance to primary RSV infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that viable C. pseudodiphtheriticum improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-β+ alveolar macrophages. Of interest, non-viable bacteria did not have the same protective effect, suggesting that C. pseudodiphtheriticum colonization is needed for achieving its protective effect. In conclusion, we present evidence that nasal application of viable C. pseudodiphtheriticum could be thought as an alternative to boost defenses against RSV and secondary pneumococcal pneumonia, which should be further studied and validated in clinical trials. Due to the absence of a long-lasting immunity, re-infection with RSV throughout life is common. Thus, a possible perspective use could be a seasonal application of a nasal probiotic spray to boost respiratory innate immunity in immunocompetent subjects.
Author Vizoso-Pinto, Maria G.
Takahashi, Hideki
Rodriguez, Cecilia
Melnikov, Vyacheslav
Alvarez, Susana
Kanmani, Paulraj
Clua, Patricia
Villena, Julio
Kitazawa, Haruki
AuthorAffiliation 2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
6 Laboratory of Genetics, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina
3 Immunobiotics Research Group Tucuman, Argentina
5 Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman Tucuman, Argentina
4 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina
1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
8 Central Research Institute of Epidemiology Moscow, Russia
7 Gabrichevsky Institute of Epidemiology and Microbiology Moscow, Russia
9 Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
10 Plant Immunology Unit, International Education and Research Center for Food and Agricu
AuthorAffiliation_xml – name: 8 Central Research Institute of Epidemiology Moscow, Russia
– name: 3 Immunobiotics Research Group Tucuman, Argentina
– name: 5 Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman Tucuman, Argentina
– name: 7 Gabrichevsky Institute of Epidemiology and Microbiology Moscow, Russia
– name: 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
– name: 2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
– name: 6 Laboratory of Genetics, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina
– name: 10 Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
– name: 4 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) Tucuman, Argentina
– name: 9 Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University Sendai, Japan
Author_xml – sequence: 1
  givenname: Paulraj
  surname: Kanmani
  fullname: Kanmani, Paulraj
– sequence: 2
  givenname: Patricia
  surname: Clua
  fullname: Clua, Patricia
– sequence: 3
  givenname: Maria G.
  surname: Vizoso-Pinto
  fullname: Vizoso-Pinto, Maria G.
– sequence: 4
  givenname: Cecilia
  surname: Rodriguez
  fullname: Rodriguez, Cecilia
– sequence: 5
  givenname: Susana
  surname: Alvarez
  fullname: Alvarez, Susana
– sequence: 6
  givenname: Vyacheslav
  surname: Melnikov
  fullname: Melnikov, Vyacheslav
– sequence: 7
  givenname: Hideki
  surname: Takahashi
  fullname: Takahashi, Hideki
– sequence: 8
  givenname: Haruki
  surname: Kitazawa
  fullname: Kitazawa, Haruki
– sequence: 9
  givenname: Julio
  surname: Villena
  fullname: Villena, Julio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28878760$$D View this record in MEDLINE/PubMed
BookMark eNp1Us-P1CAYbcwa94d792Q4epkRKKXtxUQnqzvJGhNHjTcC9GOHTQsV6Cb9s_wPZWbWzayJHIDv8b73ILzz4sR5B0XxiuBlWTbtWzNYrZYUk3qJCSfls-KMcM4WJaY_T472p8VljHc4D4Zpnl8Up7Rp6qbm-Kz4_RXiaINMPsxo5YcBXJQ9-iB1gmBlhsLsQB3KaUBjhKnznR23aZuRZHUG18MY_D1ElMVsTNJpQN6gtTPSJfTZ5jJ5dOy0mZ2ek81OP2yYIpKuQ5sUYExee60zMjqYBu-sBLSZxmzlDOhkvXtZPDeyj3D5sF4U3z9efVtdL26-fFqv3t8sdEWbtGCsLnFLKtUaQ4BK3ELFCK4YKK6AKdCqUQ1uOFecGgyattlA87IyHakxKS-K9UG38_JOjMEOMszCSyv2gA-3Qob8_h4EY7oBTlWnNWVtKyVrOgNVx8qOc8N11np30BonNUCnwaUg-yeiT0-c3Ypbfy-qqqYlr7PAmweB4H9NEJMYbNTQ99KBn6Igbck5ZTVuM_X1sdejyd8_zwR8IOjgYwxgHikEi12yxD5ZYpcssU9WbuH_tGib5O438m1t___GPw3i23E
CitedBy_id crossref_primary_10_1099_jmm_0_001368
crossref_primary_10_1128_JB_00480_20
crossref_primary_10_3389_fcimb_2019_00256
crossref_primary_10_3389_fimmu_2022_867022
crossref_primary_10_1016_j_lanwpc_2024_101282
crossref_primary_10_3390_microorganisms9050941
crossref_primary_10_1186_s12934_020_01483_1
crossref_primary_10_1128_mBio_02491_18
crossref_primary_10_3390_life12030341
crossref_primary_10_3390_pathogens10060634
crossref_primary_10_3390_pathogens11091063
crossref_primary_10_1111_mec_16398
crossref_primary_10_12938_bmfh_2022_009
crossref_primary_10_1016_j_chom_2020_07_004
crossref_primary_10_1164_rccm_202112_2704PP
crossref_primary_10_1177_0194599820933170
crossref_primary_10_3389_fped_2019_00393
crossref_primary_10_1128_spectrum_01693_21
crossref_primary_10_1016_j_intimp_2019_106115
crossref_primary_10_3390_cells11192986
crossref_primary_10_3390_ijms26010407
crossref_primary_10_1016_S2213_2600_24_00148_6
crossref_primary_10_3389_fgene_2019_01230
crossref_primary_10_3389_falgy_2021_738987
crossref_primary_10_1111_cmi_12966
crossref_primary_10_1097_MOP_0000000000001438
crossref_primary_10_1016_j_ijporl_2021_110629
crossref_primary_10_4049_jimmunol_2001044
crossref_primary_10_1016_j_humic_2020_100073
crossref_primary_10_3390_vaccines11030611
crossref_primary_10_3389_fimmu_2020_568636
crossref_primary_10_3390_cells9071653
crossref_primary_10_1016_j_jaci_2018_02_020
crossref_primary_10_18093_0869_0189_2022_32_6_876_884
crossref_primary_10_3390_vaccines12040412
crossref_primary_10_1007_s11756_022_01147_y
crossref_primary_10_1016_j_yapd_2022_03_012
crossref_primary_10_1016_j_tim_2018_12_004
crossref_primary_10_3390_microorganisms10112255
crossref_primary_10_1016_j_clim_2021_108725
crossref_primary_10_3390_ijms232314898
crossref_primary_10_3390_ijms25074051
crossref_primary_10_1042_ETLS20170041
crossref_primary_10_1016_j_ijporl_2019_109836
crossref_primary_10_1016_S2213_2600_18_30449_1
crossref_primary_10_1038_s41590_019_0451_9
crossref_primary_10_1186_s12906_020_02958_9
crossref_primary_10_1038_s41598_018_29793_w
crossref_primary_10_3389_fnut_2021_626254
crossref_primary_10_18821_0869_2084_2019_64_11_693_699
crossref_primary_10_1007_s12275_024_00167_4
crossref_primary_10_1038_s41401_020_00573_5
crossref_primary_10_1016_j_jconrel_2024_01_020
crossref_primary_10_1016_j_arr_2020_101123
crossref_primary_10_1128_msystems_01132_24
crossref_primary_10_3390_v13122362
crossref_primary_10_3389_fimmu_2018_01421
crossref_primary_10_3390_metabo12060489
crossref_primary_10_3389_fmicb_2021_713703
crossref_primary_10_1016_j_chom_2018_08_005
crossref_primary_10_3920_BM2022_0118
crossref_primary_10_1016_j_coi_2020_03_010
crossref_primary_10_1038_s41564_021_01043_2
crossref_primary_10_1186_s12879_018_3086_9
crossref_primary_10_1002_jsfa_11843
crossref_primary_10_1128_iai_00445_24
crossref_primary_10_1155_2022_7752426
crossref_primary_10_3389_fcimb_2024_1530178
crossref_primary_10_1007_s10096_018_3305_8
crossref_primary_10_3389_fimmu_2020_593901
crossref_primary_10_1016_j_clinme_2024_100251
crossref_primary_10_1080_17476348_2021_1893168
crossref_primary_10_1371_journal_pone_0257207
crossref_primary_10_15789_2220_7619_DOM_1163
crossref_primary_10_36488_cmac_2024_1_21_30
crossref_primary_10_1007_s11427_020_1721_5
crossref_primary_10_1111_pai_13524
crossref_primary_10_3389_fimmu_2020_00543
crossref_primary_10_1016_j_pedneo_2019_10_004
crossref_primary_10_3389_fmicb_2021_804935
crossref_primary_10_1371_journal_pone_0262767
crossref_primary_10_1164_rccm_201810_1993OC
crossref_primary_10_4102_sajid_v36i1_225
crossref_primary_10_1007_s12393_022_09315_1
crossref_primary_10_1016_j_micres_2021_126927
crossref_primary_10_3390_microorganisms9061324
crossref_primary_10_1002_ppul_24699
crossref_primary_10_3390_applmicrobiol2030046
crossref_primary_10_3390_v13091725
crossref_primary_10_1016_j_coviro_2019_05_009
crossref_primary_10_1093_cid_ciac184
crossref_primary_10_3389_fcimb_2020_00137
crossref_primary_10_1038_s41467_024_45518_2
crossref_primary_10_3389_fimmu_2018_02640
crossref_primary_10_3390_microorganisms12071295
crossref_primary_10_1016_j_micpath_2019_03_019
crossref_primary_10_1152_ajpendo_00298_2020
crossref_primary_10_3389_fimmu_2022_820366
crossref_primary_10_3390_microorganisms8050727
Cites_doi 10.1203/01.pdr.0000188699.55279.1b
10.1089/mdr.2009.0122
10.1152/ajplung.00065.2011
10.1165/rcmb.2013-0316OC
10.1016/j.chom.2015.03.008
10.4049/jimmunol.1100764
10.1016/S0140-6736(14)61698-6
10.1093/clinids/20.1.41
10.3201/eid1608.100193
10.1016/j.vaccine.2016.09.030
10.1111/j.1348-0421.2008.00050.x
10.1128/AEM.01051-12
10.4049/jimmunol.1101021
10.5694/j.1326-5377.1997.tb123164.x
10.1093/jn/135.6.1462
10.1093/bmb/61.1.13
10.3390/v8050124
10.1016/S0140-6736(12)60560-1
10.4049/jimmunol.173.5.3408
10.1016/j.ijfoodmicro.2009.12.024
10.3389/fimmu.2014.00201
10.1186/1471-2172-13-53
10.1016/j.intimp.2013.06.024
10.1002/jsfa.4467
10.1007/s00011-015-0837-6
10.1111/1348-0421.12163
10.1007/s10156-010-0097-x
10.1186/1471-2172-14-40
10.1053/jhin.1999.0680
10.1007/s00011-016-0957-7
10.1371/journal.pone.0146599
10.1128/JVI.00671-08
10.1371/journal.ppat.1003727
10.1126/sciadv.1400216
10.1128/genomeA.00921-13
10.1542/peds.113.6.1728
10.1371/journal.ppat.1003057
10.1007/s12602-013-9147-x
10.1164/rccm.201311-2110OC
10.3201/eid1907.121625
ContentType Journal Article
Copyright Copyright © 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena. 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena
Copyright_xml – notice: Copyright © 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena. 2017 Kanmani, Clua, Vizoso-Pinto, Rodriguez, Alvarez, Melnikov, Takahashi, Kitazawa and Villena
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2017.01613
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_44c8e62bdcc2499aa48dfe5d43d66f6c
PMC5572367
28878760
10_3389_fmicb_2017_01613
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-44730915b9ff1e2a09e541054eb6be4becb8b80866b62f0ec29fecc635fd17013
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:29:36 EDT 2025
Thu Aug 21 18:19:10 EDT 2025
Fri Jul 11 11:55:55 EDT 2025
Thu Jan 02 22:29:30 EST 2025
Tue Jul 01 00:54:46 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Corynebacterium pseudodiphtheriticum
nasal probiotic
Respiratory Synsytial Virus
respiratory immunity
TLR3
Streptococcus pneumoniae
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-44730915b9ff1e2a09e541054eb6be4becb8b80866b62f0ec29fecc635fd17013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology
These authors have contributed equally to this work.
Edited by: Rebeca Martín, INRA Centre Jouy-en-Josas, France
Reviewed by: Narayanan Parameswaran, Michigan State University, United States; Analia Graciela Abraham, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Argentina
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.01613
PMID 28878760
PQID 1936624709
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_44c8e62bdcc2499aa48dfe5d43d66f6c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5572367
proquest_miscellaneous_1936624709
pubmed_primary_28878760
crossref_primary_10_3389_fmicb_2017_01613
crossref_citationtrail_10_3389_fmicb_2017_01613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-23
PublicationDateYYYYMMDD 2017-08-23
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-23
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Medina (B22) 2008; 52
Uehara (B34) 2000; 44
Zelaya (B39) 2015; 64
Weiss (B38) 2011; 187
Gomez (B9) 2015; 52
Murawski (B23) 2009; 83
Bosch (B4) 2013; 9
Villena (B36) 2005; 135
Liu (B17) 2015; 1
Teo (B32) 2015; 17
Maragkoudakis (B20) 2010; 141
Stacey (B29) 2011; 187
Liu (B19) 2015; 385
McNamara (B21) 2002; 61
Villena (B35) 2012; 13
Ahmed (B1) 1995; 20
Weinberger (B37) 2013; 19
Bittar (B3) 2010; 16
Chiba (B8) 2013; 17
Olender (B24) 2010; 16
LeMessurier (B15) 2013; 9
Sun (B30) 2016; 35
Smith (B28) 2014; 190
Cervantes-Ortiz (B7) 2016; 8
Kiryukhina (B13) 2013; 5
Levine (B16) 2004; 113
Burke (B5) 1997; 166
Cebey-Lopez (B6) 2016; 11
Pettigrew (B25) 2012; 78
Kitazawa (B14) 2014; 5
Hament (B10) 2005; 58
Tada (B31) 2016; 65
Rutigliano (B26) 2004; 173
Karlyshev (B12) 2013; 1
Bem (B2) 2011; 301
Liu (B18) 2012; 379
Zelaya (B40) 2014; 58
Hishiki (B11) 2011; 17
Tomosada (B33) 2013; 14
Salva (B27) 2011; 91
15930453 - J Nutr. 2005 Jun;135(6):1462-9
23763864 - Emerg Infect Dis. 2013 Jul;19(7):1084-91
21604277 - J Sci Food Agric. 2011 Oct;91(13):2355-62
23947615 - BMC Immunol. 2013 Aug 15;14:40
25100610 - Am J Respir Cell Mol Biol. 2015 Mar;52(3):349-64
27686836 - Vaccine. 2017 Jan 11;35(3):481-488
26072063 - Inflamm Res. 2015 Aug;64(8):589-602
22752171 - Appl Environ Microbiol. 2012 Sep;78(17):6262-70
22579125 - Lancet. 2012 Jun 9;379(9832):2151-61
20438346 - Microb Drug Resist. 2010 Jun;16(2):119-22
9137282 - Med J Aust. 1997 Apr 7;166(7):362-4
26601194 - Sci Adv. 2015 Jun 05;1(5):e1400216
20678316 - Emerg Infect Dis. 2010 Aug;16(8):1231-6
23326226 - PLoS Pathog. 2013 Jan;9(1):e1003057
24244159 - PLoS Pathog. 2013;9(11):e1003727
11997296 - Br Med Bull. 2002;61:13-28
21849677 - J Immunol. 2011 Sep 15;187(6):2944-52
21571908 - Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L148-56
27187445 - Viruses. 2016 May 12;8(5):null
18667039 - Microbiol Immunol. 2008 Aug;52(8):399-409
24860569 - Front Immunol. 2014 May 12;5:201
15322205 - J Immunol. 2004 Sep 1;173(5):3408-17
26783069 - Probiotics Antimicrob Proteins. 2013 Dec;5(4):233-8
27279272 - Inflamm Res. 2016 Oct;65(10 ):771-83
16306193 - Pediatr Res. 2005 Dec;58(6):1198-203
21844390 - J Immunol. 2011 Sep 15;187(6):3145-54
22989047 - BMC Immunol. 2012 Sep 18;13:53
20106541 - Int J Food Microbiol. 2010 Jul 31;141 Suppl 1:S91-7
25280870 - Lancet. 2015 Jan 31;385(9966):430-40
25865368 - Cell Host Microbe. 2015 May 13;17(5):704-15
24888715 - Microbiol Immunol. 2014 Jul;58(7):416-26
19019963 - J Virol. 2009 Feb;83(3):1492-500
15173498 - Pediatrics. 2004 Jun;113(6):1728-34
10662563 - J Hosp Infect. 2000 Feb;44(2):127-33
24201200 - Genome Announc. 2013 Nov 07;1(6):null
20700753 - J Infect Chemother. 2011 Feb;17(1):87-90
7727668 - Clin Infect Dis. 1995 Jan;20(1):41-6
26872131 - PLoS One. 2016 Feb 12;11(2):e0146599
23838113 - Int Immunopharmacol. 2013 Oct;17(2):373-82
24941423 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):196-207
References_xml – volume: 58
  start-page: 1198
  year: 2005
  ident: B10
  article-title: Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and pneumococcal invasiveness in a murine model
  publication-title: Pediatr. Res.
  doi: 10.1203/01.pdr.0000188699.55279.1b
– volume: 16
  start-page: 119
  year: 2010
  ident: B24
  article-title: Macrolide, lincosamide, and streptogramin B-constitutive-type resistance in Corynebacterium pseudodiphtheriticum isolated from upper respiratory tract specimens
  publication-title: Microb. Drug Resist.
  doi: 10.1089/mdr.2009.0122
– volume: 301
  start-page: L148
  year: 2011
  ident: B2
  article-title: Animal models of human respiratory syncytial virus disease
  publication-title: Am. J. Physiol. Lung Cell. Mol. physiol.
  doi: 10.1152/ajplung.00065.2011
– volume: 52
  start-page: 349
  year: 2015
  ident: B9
  article-title: Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia
  publication-title: Am. J. Respir Cell Mol. Biol.
  doi: 10.1165/rcmb.2013-0316OC
– volume: 17
  start-page: 704
  year: 2015
  ident: B32
  article-title: The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.03.008
– volume: 187
  start-page: 3145
  year: 2011
  ident: B38
  article-title: Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100764
– volume: 385
  start-page: 430
  year: 2015
  ident: B19
  article-title: Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61698-6
– volume: 20
  start-page: 41
  year: 1995
  ident: B1
  article-title: Corynebacterium pseudodiphtheriticum: a respiratory tract pathogen
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/clinids/20.1.41
– volume: 16
  start-page: 1231
  year: 2010
  ident: B3
  article-title: Outbreak of Corynebacterium pseudodiphtheriticum infection in cystic fibrosis patients, France
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1608.100193
– volume: 35
  start-page: 481
  year: 2016
  ident: B30
  article-title: The innate immune response to RSV: advances in our understanding of critical viral and host factors
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.09.030
– volume: 52
  start-page: 399
  year: 2008
  ident: B22
  article-title: Nasal administration of Lactococcus lactis improves the local and systemic immune responses against Streptococcus pneumonia
  publication-title: Microbiol. Immunol.
  doi: 10.1111/j.1348-0421.2008.00050.x
– volume: 78
  start-page: 6262
  year: 2012
  ident: B25
  article-title: Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01051-12
– volume: 187
  start-page: 2944
  year: 2011
  ident: B29
  article-title: IL-10 restricts activation-induced death of NK cells during acute murine cytomegalovirus infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101021
– volume: 166
  start-page: 362
  year: 1997
  ident: B5
  article-title: Opportunistic lung infection with Corynebacterium pseudodiphtheriticum after lung and heart transplantation
  publication-title: Med. J. Aust.
  doi: 10.5694/j.1326-5377.1997.tb123164.x
– volume: 135
  start-page: 1462
  year: 2005
  ident: B36
  article-title: Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice
  publication-title: J. Nutr.
  doi: 10.1093/jn/135.6.1462
– volume: 61
  start-page: 13
  year: 2002
  ident: B21
  article-title: The pathogenesis of respiratory syncytial virus disease in childhood
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/61.1.13
– volume: 8
  start-page: E124
  year: 2016
  ident: B7
  article-title: Respiratory syncytial virus and cellular stress responses: impact on replication and physiopathology
  publication-title: Viruses
  doi: 10.3390/v8050124
– volume: 379
  start-page: 2151
  year: 2012
  ident: B18
  article-title: Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60560-1
– volume: 173
  start-page: 3408
  year: 2004
  ident: B26
  article-title: Prolonged production of TNF-alpha exacerbates illness during respiratory syncytial virus infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.5.3408
– volume: 141
  start-page: S91
  year: 2010
  ident: B20
  article-title: Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2009.12.024
– volume: 5
  start-page: 201
  year: 2014
  ident: B14
  article-title: Modulation of respiratory TLR3-anti-viral response by probiotic microorganisms: lessons learned from Lactobacillus rhamnosus CRL1505
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00201
– volume: 13
  start-page: 53
  year: 2012
  ident: B35
  article-title: Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C)
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-13-53
– volume: 17
  start-page: 373
  year: 2013
  ident: B8
  article-title: Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2013.06.024
– volume: 91
  start-page: 2355
  year: 2011
  ident: B27
  article-title: Development of a fermented goats' milk containing Lactobacillus rhamnosus: in vivo study of health benefits
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.4467
– volume: 64
  start-page: 589
  year: 2015
  ident: B39
  article-title: Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-015-0837-6
– volume: 58
  start-page: 416
  year: 2014
  ident: B40
  article-title: Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobiotic Lactobacillus rhamnosus CRL1505: role of toll-like receptor 2
  publication-title: Microbiol. Immunol.
  doi: 10.1111/1348-0421.12163
– volume: 17
  start-page: 87
  year: 2011
  ident: B11
  article-title: Incidence of bacterial coinfection with respiratory syncytial virus bronchopulmonary infection in pediatric inpatients
  publication-title: J. Inf. Chemother.
  doi: 10.1007/s10156-010-0097-x
– volume: 14
  start-page: 40
  year: 2013
  ident: B33
  article-title: Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-14-40
– volume: 44
  start-page: 127
  year: 2000
  ident: B34
  article-title: Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp
  publication-title: J. Hosp. Infect.
  doi: 10.1053/jhin.1999.0680
– volume: 65
  start-page: 771
  year: 2016
  ident: B31
  article-title: Immunobiotic Lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after Toll-like receptor 3 activation
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-016-0957-7
– volume: 11
  start-page: e0146599
  year: 2016
  ident: B6
  article-title: Bacteremia in children hospitalized with respiratory syncytial virus infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146599
– volume: 83
  start-page: 1492
  year: 2009
  ident: B23
  article-title: Respiratory syncytial virus activates innate immunity through Toll-like receptor 2
  publication-title: J. Virol.
  doi: 10.1128/JVI.00671-08
– volume: 9
  start-page: e1003727
  year: 2013
  ident: B15
  article-title: Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003727
– volume: 1
  start-page: e1400216
  year: 2015
  ident: B17
  article-title: Staphylococcus aureus and the ecology of the nasal microbiome
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1400216
– volume: 1
  start-page: e00921
  year: 2013
  ident: B12
  article-title: Draft genome sequence of Corynebacterium pseudodiphtheriticum strain 090104 “Sokolov”
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.00921-13
– volume: 113
  start-page: 1728
  year: 2004
  ident: B16
  article-title: Risk of serious bacterial infection in young febrile infants with respiratory syncytial virus infections
  publication-title: Pediatrics
  doi: 10.1542/peds.113.6.1728
– volume: 9
  start-page: e1003057
  year: 2013
  ident: B4
  article-title: Viral and bacterial interactions in the upper respiratory tract
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003057
– volume: 5
  start-page: 233
  year: 2013
  ident: B13
  article-title: Use of Corynebacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers exposed to abnormal microclimate and altered gaseous environment
  publication-title: Probiot. Antimicrob. Proteins
  doi: 10.1007/s12602-013-9147-x
– volume: 190
  start-page: 196
  year: 2014
  ident: B28
  article-title: Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201311-2110OC
– volume: 19
  start-page: 1084
  year: 2013
  ident: B37
  article-title: Influence of pneumococcal vaccines and respiratory syncytial virus on alveolar pneumonia, Israel
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1907.121625
– reference: 25865368 - Cell Host Microbe. 2015 May 13;17(5):704-15
– reference: 11997296 - Br Med Bull. 2002;61:13-28
– reference: 9137282 - Med J Aust. 1997 Apr 7;166(7):362-4
– reference: 23838113 - Int Immunopharmacol. 2013 Oct;17(2):373-82
– reference: 21844390 - J Immunol. 2011 Sep 15;187(6):3145-54
– reference: 20438346 - Microb Drug Resist. 2010 Jun;16(2):119-22
– reference: 27686836 - Vaccine. 2017 Jan 11;35(3):481-488
– reference: 26601194 - Sci Adv. 2015 Jun 05;1(5):e1400216
– reference: 16306193 - Pediatr Res. 2005 Dec;58(6):1198-203
– reference: 10662563 - J Hosp Infect. 2000 Feb;44(2):127-33
– reference: 20700753 - J Infect Chemother. 2011 Feb;17(1):87-90
– reference: 23326226 - PLoS Pathog. 2013 Jan;9(1):e1003057
– reference: 18667039 - Microbiol Immunol. 2008 Aug;52(8):399-409
– reference: 25280870 - Lancet. 2015 Jan 31;385(9966):430-40
– reference: 7727668 - Clin Infect Dis. 1995 Jan;20(1):41-6
– reference: 23763864 - Emerg Infect Dis. 2013 Jul;19(7):1084-91
– reference: 20106541 - Int J Food Microbiol. 2010 Jul 31;141 Suppl 1:S91-7
– reference: 22579125 - Lancet. 2012 Jun 9;379(9832):2151-61
– reference: 21604277 - J Sci Food Agric. 2011 Oct;91(13):2355-62
– reference: 25100610 - Am J Respir Cell Mol Biol. 2015 Mar;52(3):349-64
– reference: 24860569 - Front Immunol. 2014 May 12;5:201
– reference: 24941423 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):196-207
– reference: 22752171 - Appl Environ Microbiol. 2012 Sep;78(17):6262-70
– reference: 24201200 - Genome Announc. 2013 Nov 07;1(6):null
– reference: 21849677 - J Immunol. 2011 Sep 15;187(6):2944-52
– reference: 15322205 - J Immunol. 2004 Sep 1;173(5):3408-17
– reference: 26872131 - PLoS One. 2016 Feb 12;11(2):e0146599
– reference: 27187445 - Viruses. 2016 May 12;8(5):null
– reference: 24888715 - Microbiol Immunol. 2014 Jul;58(7):416-26
– reference: 15930453 - J Nutr. 2005 Jun;135(6):1462-9
– reference: 26072063 - Inflamm Res. 2015 Aug;64(8):589-602
– reference: 22989047 - BMC Immunol. 2012 Sep 18;13:53
– reference: 20678316 - Emerg Infect Dis. 2010 Aug;16(8):1231-6
– reference: 26783069 - Probiotics Antimicrob Proteins. 2013 Dec;5(4):233-8
– reference: 23947615 - BMC Immunol. 2013 Aug 15;14:40
– reference: 24244159 - PLoS Pathog. 2013;9(11):e1003727
– reference: 19019963 - J Virol. 2009 Feb;83(3):1492-500
– reference: 15173498 - Pediatrics. 2004 Jun;113(6):1728-34
– reference: 21571908 - Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L148-56
– reference: 27279272 - Inflamm Res. 2016 Oct;65(10 ):771-83
SSID ssj0000402000
Score 2.476822
Snippet is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested that may be potentially used as a...
Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested...
Corynebacterium pseudodiphtheriticum is a Gram-positive bacterium found as a member of the normal microbiota of the upper respiratory tract. It was suggested...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1613
SubjectTerms Corynebacterium pseudodiphtheriticum
Microbiology
nasal probiotic
respiratory immunity
Respiratory Synsytial Virus
Streptococcus pneumoniae
TLR3
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpDxmJC4fQrOM48ZEiqoIEB0pRb5EfY3Wl1ol2k8P-LP4hM3G67CIEF45x_JLn83jGHn9m7DXaCD6YBeRCVy6Xvta5EUrkQQbtvBdOmCnK94s6PZefLqqLnae-KCYs0QOngTuS0jWghPXOoaegjZGND1B5WXqlgnKkfXHN23GmJh1MblFRpHNJ9MI0imnpLIVy1W_Jyin31qGJrv9PNubvoZI7a8_JPXZ3Nhr5u9TZ--wWxAfsdnpGcvOQ_fj667yc040PdE0x-3EiYjaYtNpEsOlzvOb9Gkbf-WV_Od3-I_qNa552F2DNsTKyKREMvAv8Yww49vwz6hM-dHy3pbMNKmZUEFf8-3I1rrmJntMhdz90qGUdpvQRRoT50gA_G4lSeY78io_Y-cmHb-9P8_kphtxVohlyKVET6EVldQgLEKbQUFGAqASrLEgEgm1sg-6RskqEApzQWKFDayZ4YnwvH7OD2EV4yvjCgS-wBBSgJf62BpoSbA21kM44kbGjG8G0buYpp-cyrlr0V0iU7STKlkTZTqLM2JttiT5xdPwl7zHJepuP2LWnBMRcO2Ou_RfmMvbqBiktzkY6YjERunHdojmslJB1oTP2JCFn25RAfY5rT5Gxeg9Te33Z_xOXlxPjd1XVxLR3-D86_4zdoeGgfXFRPmcHw2qEF2hYDfblNId-AviJK8o
  priority: 102
  providerName: Directory of Open Access Journals
Title Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection
URI https://www.ncbi.nlm.nih.gov/pubmed/28878760
https://www.proquest.com/docview/1936624709
https://pubmed.ncbi.nlm.nih.gov/PMC5572367
https://doaj.org/article/44c8e62bdcc2499aa48dfe5d43d66f6c
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4s0WqIzEhUNK1nGc5IAQRZSCVA6URXuL_BjTlbbJskmk7s_iHzLjZLddtOLAJVIcO44yD39jjz8z9goxgvN6DJEoUhtJlxWRFkpEXvrCOies0CHL96s6mcgv03R6tT16-IHNztCOzpOaLOeHl79W79Dg31LEieMtSmBmDWVpZYcEYJKb7BaOSxmZ6ekA9oNfplApjvu1yp0NiRkYjQ4dRLw1TAU2_10Q9O9MymtD0_E9dnfAlPx9rwT32Q2oHrDb_SmTq4fs97er5XROG0IwcsXqRz1Ps8ai5aoC0992F3zRQOdqN1uch82BxM5xwfvJB2g4vowgJ-oKrz3_XHkUDT9Fd8Pbml_v6WyFfhv9x5z_mC27huvKcVoDX7Q1OmGLJYsKOrSCmQZ-1hHj8pAYVj1ik-OP3z-cRMNJDZFNRd5GUqKjKMapKbwfg9BxASnlj0owyoBEPTG5yTF6UkYJH4MVBb7QItjxjgjhk8dsr6oreMr42IKLsQXEUEh8bDTkCZgMMiGttmLE3qwFU9qBxpxO05iXGM6QVMsg1ZKkWgapjtjrTYtFT-Hxj7pHJOtNPSLfDgX18mc52HIppc1BCeOsxeC10FrmzkPqZOKU8sqO2Mu1ppRorLQCoyuou6ZEtKyUkFlcjNiTXnM2Xa01b8SyLZ3a-pbtJ9XsPBCCp2lGRHz7_93yGbtD_4DmykXynO21yw5eINhqzUGYpMDrp-n4INjTH_QzNMk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+Commensal+Bacteria+Corynebacterium+pseudodiphtheriticum+Improves+Resistance+of+Infant+Mice+to+Respiratory+Syncytial+Virus+and+Streptococcus+pneumoniae+Superinfection&rft.jtitle=Frontiers+in+microbiology&rft.au=Kanmani%2C+Paulraj&rft.au=Clua%2C+Patricia&rft.au=Vizoso-Pinto%2C+Maria+G.&rft.au=Rodriguez%2C+Cecilia&rft.date=2017-08-23&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.01613&rft_id=info%3Apmid%2F28878760&rft.externalDocID=PMC5572367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon