Improved definition of the mouse transcriptome via targeted RNA sequencing
Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly....
Saved in:
Published in | Genome research Vol. 26; no. 5; pp. 705 - 716 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press (CSHL Press)
01.05.2016
Cold Spring Harbor Laboratory Press |
Subjects | |
Online Access | Get full text |
ISSN | 1088-9051 1549-5469 1549-5469 |
DOI | 10.1101/gr.199760.115 |
Cover
Abstract | Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources. |
---|---|
AbstractList | Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.
The authors acknowledge the following funding sources: an Australian National Health and Medical Research Council (NHMRC) Australia Fellowship (631668 to J.S.M. and 631542 to M.E.D.); an NHMRC Early Career Fellowship (APP1072662 to M.B.C.); an EMBO Long Term Fellowship (ALTF 864-2013 to M.B.C.); an Australian National Health and Medical Research Council (NHMRC) Project Grant (APP1062106 to T.R.M.) and Career Development Fellowship (APP1062470 to T.R.M); and an EMBL Interdisciplinary Postdoc (EIPOD) under Marie Curie Actions (COFUND) (to G.B.). Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources. Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources. |
Author | Leonardi, Tommaso Dinger, Marcel E. Mattick, John S. Bussotti, Giovanni Notredame, Cedric Crawford, Joanna Malquori, Lorenzo Enright, Anton J. Mercer, Tim R. Clark, Michael B. |
AuthorAffiliation | 6 Comparative Bioinformatics, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain 5 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia 3 MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom 4 St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia 2 Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia 1 EMBL, European Bioinformatics Institute, Cambridge, CB10 1SD, United Kingdom |
AuthorAffiliation_xml | – name: 3 MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom – name: 1 EMBL, European Bioinformatics Institute, Cambridge, CB10 1SD, United Kingdom – name: 2 Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia – name: 4 St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia – name: 6 Comparative Bioinformatics, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain – name: 5 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia |
Author_xml | – sequence: 1 givenname: Giovanni orcidid: 0000-0002-4078-7413 surname: Bussotti fullname: Bussotti, Giovanni – sequence: 2 givenname: Tommaso orcidid: 0000-0002-4449-1863 surname: Leonardi fullname: Leonardi, Tommaso – sequence: 3 givenname: Michael B. surname: Clark fullname: Clark, Michael B. – sequence: 4 givenname: Tim R. surname: Mercer fullname: Mercer, Tim R. – sequence: 5 givenname: Joanna surname: Crawford fullname: Crawford, Joanna – sequence: 6 givenname: Lorenzo surname: Malquori fullname: Malquori, Lorenzo – sequence: 7 givenname: Cedric surname: Notredame fullname: Notredame, Cedric – sequence: 8 givenname: Marcel E. surname: Dinger fullname: Dinger, Marcel E. – sequence: 9 givenname: John S. surname: Mattick fullname: Mattick, John S. – sequence: 10 givenname: Anton J. orcidid: 0000-0002-6090-3100 surname: Enright fullname: Enright, Anton J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27197243$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1rHSEUlZLSfHXZbZhlNpOqo6NuAiGkTUpooTRrsc51YpnRF_U9yL-Pk_cS2lLoQvTgOcd7vPcQ7YUYAKEPBJ8RgsnHMZ0RpUS_QP4GHRDOVMtZr_bqGUvZKszJPjrM-RfGuGNSvkP7VBAlKOsO0JebeZXiBoZmAOeDLz6GJrqm3EMzx3WGpiQTsk1-VeIMzcabppg0QqmS718vmgwPawjWh_EYvXVmyvB-tx-hu09XPy6v29tvn28uL25by6ksLaPO9URh1xFBBZYDw5ga7rCgvRODA9tRRyUbgGFjCatoILwX3AkhgQ_dETrf-q7WP2cYLIRa4qRXyc8mPepovP7zJvh7PcaNZrJnjItqQLYGNq-tTmAhWVOeha9gWbSWpDvCGJNVc7p7NMUaOBc9-2xhmkyA-k2aSCx7wqVi_6cKhRmXmC6uJ79Hec3w0p9K6HalpphzAqetL2ZpUk3mJ02wXqZAj0lvp6BCXlXtX6oX43_znwDolrMf |
CitedBy_id | crossref_primary_10_3389_fnins_2019_01097 crossref_primary_10_1038_s41467_020_17009_7 crossref_primary_10_3389_fgene_2019_00309 crossref_primary_10_1021_jacs_7b07914 crossref_primary_10_1186_s13059_021_02337_8 crossref_primary_10_3389_fcvm_2019_00009 crossref_primary_10_1021_acs_analchem_3c03741 crossref_primary_10_1038_s41467_023_43535_1 crossref_primary_10_1111_tpj_13415 crossref_primary_10_1016_j_tig_2016_08_004 crossref_primary_10_1038_ng_3988 crossref_primary_10_1038_s41576_018_0017_y crossref_primary_10_1038_nprot_2018_001 crossref_primary_10_3390_ijms24055024 crossref_primary_10_1016_j_celrep_2022_110546 crossref_primary_10_1155_2017_3250624 crossref_primary_10_1093_nar_gkae343 crossref_primary_10_1186_s13073_017_0441_1 crossref_primary_10_1080_15476286_2020_1777768 |
Cites_doi | 10.1093/nar/gkt1030 10.1007/978-1-61779-839-9_7 10.1101/gr.097857.109 10.1186/gb-2008-9-12-r175 10.1016/j.cell.2015.01.006 10.1073/pnas.1318948111 10.1093/bioinformatics/btq033 10.1016/j.jmb.2013.06.031 10.1006/jmbi.1990.9999 10.1371/journal.pbio.1000625 10.1126/science.1228186 10.1126/science.1115901 10.1038/nature13182 10.1093/hmg/ddl046 10.1101/gr.132159.111 10.1093/nar/gkm391 10.1093/nar/gkv1157 10.1007/s00439-011-1008-7 10.1016/j.bbadis.2008.09.017 10.1093/nar/gku365 10.1083/jcb.201304152 10.1038/nature10398 10.1186/gb-2013-14-4-r36 10.1093/bioinformatics/btr209 10.1371/journal.pgen.1000944 10.1002/(SICI)1096-8628(19990910)86:2<102::AID-AJMG2>3.0.CO;2-C 10.3390/ijms140815423 10.1016/j.bbagrm.2014.08.012 10.1038/nmeth.2714 10.1093/bioinformatics/btu638 10.1038/nbt.1883 10.1261/rna.1705309 10.1101/gad.17446611 10.1093/bib/bbs038 10.1002/ajmg.a.20401 10.1038/nmeth1005-731 10.1101/gr.131037.111 10.1111/j.2517-6161.1995.tb02031.x 10.1136/jmg.39.6.430 10.1186/s13059-014-0550-8 10.1038/nbt.2450 10.1101/gr.182899.114 10.1101/gr.3715005 10.1101/gr.121095.111 10.1101/gr.229102. Article published online before print in May 2002 10.1038/nmeth.3321 10.1016/j.bbagrm.2013.10.009 10.1126/science.1112014 10.1038/nbt.3122 10.1038/ng.149 10.1093/bioinformatics/btv034 10.1534/genetics.104.028944 10.1093/nar/gkq1138 10.1038/nbt.1621 10.1261/rna.046342.114 10.1038/nbt.1633 10.1038/ng.3192 10.1016/j.semcdb.2011.05.002 10.1101/gr.135350.111 10.1016/j.neuron.2011.06.039 10.1093/nar/gkh103 10.1093/nar/gkr1079 10.1093/nar/gkt006 10.1371/journal.pgen.0020062 10.1093/nar/30.1.281 10.1038/ncomms6903 10.1016/j.tiv.2006.06.003 10.1038/nprot.2014.058 10.1093/bioinformatics/btl567 10.1186/gb-2009-10-3-r25 10.1371/journal.pgen.1000459 10.1038/nbt.2024 10.1038/nrg2934 10.1038/72829 10.1093/bioinformatics/bts582 |
ContentType | Journal Article |
Copyright | 2016 Bussotti et al.; Published by Cold Spring Harbor Laboratory Press. info:eu-repo/semantics/openAccess © 2016 Bussotti et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. http://creativecommons.org/licenses/by/4.0 2016 |
Copyright_xml | – notice: 2016 Bussotti et al.; Published by Cold Spring Harbor Laboratory Press. – notice: info:eu-repo/semantics/openAccess © 2016 Bussotti et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at <a href="http://creativecommons.org/licenses/by/4.0/.">http://creativecommons.org/licenses/by/4.0/.</a> <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a> – notice: 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 XX2 5PM |
DOI | 10.1101/gr.199760.115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Recercat PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Bussotti et al |
EISSN | 1549-5469 |
EndPage | 716 |
ExternalDocumentID | PMC4864457 oai_recercat_cat_2072_314448 27197243 10_1101_gr_199760_115 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Health and Medical Research Council grantid: APP1062106; APP1062470 – fundername: National Health and Medical Research Council grantid: 631668; 631542; APP1072662 |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 XX2 5PM |
ID | FETCH-LOGICAL-c528t-42ff6190f3172708d4002a5f0726f7dfec32f284de40ac1432fd15675f778e5d3 |
ISSN | 1088-9051 1549-5469 |
IngestDate | Thu Aug 21 18:34:13 EDT 2025 Fri Sep 05 18:07:41 EDT 2025 Fri Sep 05 11:51:43 EDT 2025 Fri Sep 05 04:41:29 EDT 2025 Mon Jul 21 06:02:13 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Tue Jul 01 02:20:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2016 Bussotti et al.; Published by Cold Spring Harbor Laboratory Press. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c528t-42ff6190f3172708d4002a5f0726f7dfec32f284de40ac1432fd15675f778e5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Hub de Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, 75724 Paris Cedex 15, France |
ORCID | 0000-0002-6090-3100 0000-0002-4078-7413 0000-0002-4449-1863 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4864457 |
PMID | 27197243 |
PQID | 1790458028 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4864457 csuc_recercat_oai_recercat_cat_2072_314448 proquest_miscellaneous_1808615894 proquest_miscellaneous_1790458028 pubmed_primary_27197243 crossref_citationtrail_10_1101_gr_199760_115 crossref_primary_10_1101_gr_199760_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2016 |
Publisher | Cold Spring Harbor Laboratory Press (CSHL Press) Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press (CSHL Press) – name: Cold Spring Harbor Laboratory Press |
References | (2021111811144258000_26.5.705.44) 2004; 124A 2021111811144258000_26.5.705.52 2021111811144258000_26.5.705.51 (2021111811144258000_26.5.705.8) 1995; 57 2021111811144258000_26.5.705.50 2021111811144258000_26.5.705.12 2021111811144258000_26.5.705.56 2021111811144258000_26.5.705.11 2021111811144258000_26.5.705.55 2021111811144258000_26.5.705.10 2021111811144258000_26.5.705.54 2021111811144258000_26.5.705.53 2021111811144258000_26.5.705.49 2021111811144258000_26.5.705.48 2021111811144258000_26.5.705.47 2021111811144258000_26.5.705.46 (2021111811144258000_26.5.705.75) 2014; 1839 2021111811144258000_26.5.705.63 2021111811144258000_26.5.705.62 2021111811144258000_26.5.705.61 2021111811144258000_26.5.705.60 2021111811144258000_26.5.705.23 2021111811144258000_26.5.705.67 2021111811144258000_26.5.705.22 2021111811144258000_26.5.705.66 2021111811144258000_26.5.705.21 2021111811144258000_26.5.705.65 2021111811144258000_26.5.705.20 2021111811144258000_26.5.705.64 2021111811144258000_26.5.705.16 2021111811144258000_26.5.705.15 2021111811144258000_26.5.705.59 2021111811144258000_26.5.705.14 2021111811144258000_26.5.705.58 2021111811144258000_26.5.705.13 2021111811144258000_26.5.705.57 2021111811144258000_26.5.705.19 2021111811144258000_26.5.705.18 2021111811144258000_26.5.705.17 (2021111811144258000_26.5.705.32) 2015; 9 2021111811144258000_26.5.705.70 2021111811144258000_26.5.705.30 2021111811144258000_26.5.705.74 2021111811144258000_26.5.705.73 2021111811144258000_26.5.705.72 2021111811144258000_26.5.705.71 2021111811144258000_26.5.705.34 2021111811144258000_26.5.705.78 2021111811144258000_26.5.705.33 2021111811144258000_26.5.705.77 2021111811144258000_26.5.705.76 2021111811144258000_26.5.705.31 2021111811144258000_26.5.705.27 2021111811144258000_26.5.705.26 2021111811144258000_26.5.705.25 2021111811144258000_26.5.705.69 2021111811144258000_26.5.705.24 2021111811144258000_26.5.705.68 2021111811144258000_26.5.705.29 2021111811144258000_26.5.705.28 2021111811144258000_26.5.705.7 2021111811144258000_26.5.705.6 2021111811144258000_26.5.705.9 2021111811144258000_26.5.705.41 2021111811144258000_26.5.705.40 2021111811144258000_26.5.705.1 2021111811144258000_26.5.705.3 2021111811144258000_26.5.705.45 2021111811144258000_26.5.705.2 2021111811144258000_26.5.705.5 2021111811144258000_26.5.705.43 2021111811144258000_26.5.705.4 2021111811144258000_26.5.705.42 2021111811144258000_26.5.705.38 2021111811144258000_26.5.705.37 2021111811144258000_26.5.705.36 2021111811144258000_26.5.705.35 2021111811144258000_26.5.705.39 16024819 - Genome Res. 2005 Aug;15(8):1034-50 14735593 - Am J Med Genet A. 2004 Feb 1;124A(4):413-5 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 22081020 - Nat Biotechnol. 2012 Jan;30(1):99-104 17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 22908213 - Brief Bioinform. 2013 Mar;14(2):144-61 16930941 - Toxicol In Vitro. 2006 Dec;20(8):1582-6 21621631 - Semin Cell Dev Biol. 2011 Jun;22(4):327 24705597 - Nat Protoc. 2014 May;9(5):989-1009 22955988 - Genome Res. 2012 Sep;22(9):1775-89 12045153 - Genome Res. 2002 Jun;12(6):996-1006 26687719 - Nucleic Acids Res. 2016 Jan 4;44(D1):D710-6 21191423 - Nat Rev Genet. 2011 Feb;12(2):87-98 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53 16179916 - Nat Methods. 2005 Oct;2(10):731-4 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 19390609 - PLoS Genet. 2009 Apr;5(4):e1000459 21874018 - Nature. 2011 Sep 15;477(7364):295-300 24799436 - Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 12070254 - J Med Genet. 2002 Jun;39(6):430-3 24753594 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6131-8 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 23887659 - Int J Mol Sci. 2013;14(8):15423-58 21867878 - Neuron. 2011 Aug 25;71(4):605-16 23816838 - J Mol Biol. 2013 Oct 9;425(19):3698-706 25561518 - Genome Res. 2015 Feb;25(2):290-303 21572440 - Nat Biotechnol. 2011 Jul;29(7):644-52 21685081 - Bioinformatics. 2011 Jul 1;27(13):i275-82 22406755 - Genome Res. 2012 May;22(5):885-98 17098774 - Bioinformatics. 2007 Jan 15;23(2):257-8 16141075 - Science. 2005 Sep 2;309(5740):1570-3 19087247 - Genome Biol. 2008;9(12):R175 25802408 - RNA. 2015 May;21(5):801-12 24185837 - Nat Methods. 2013 Dec;10(12):1177-84 16651366 - Hum Mol Genet. 2006 Apr 15;15 Spec No 1:R17-29 23044541 - Bioinformatics. 2012 Dec 1;28(23):3042-50 25159663 - Biochim Biophys Acta. 2014 Nov;1839(11):1097-109 22955987 - Genome Res. 2012 Sep;22(9):1760-74 21626138 - Hum Genet. 2011 Aug;130(2):223-36 25516281 - Genome Biol. 2014;15(12):550 21816910 - Genome Res. 2011 Sep;21(9):1543-51 25599403 - Nat Genet. 2015 Mar;47(3):199-208 19858363 - Genome Res. 2010 Jan;20(1):110-21 22121212 - Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27 24200874 - Biochim Biophys Acta. 2014 Mar;1839(3):215-22 16683036 - PLoS Genet. 2006 Apr;2(4):e62 10655063 - Nat Genet. 2000 Feb;24(2):167-70 25690850 - Nat Biotechnol. 2015 Mar;33(3):290-5 25798087 - Front Cell Neurosci. 2015 Mar 06;9:63 15454550 - Genetics. 2004 Sep;168(1):373-81 20485561 - PLoS Genet. 2010 May;6(5):e1000944 11752315 - Nucleic Acids Res. 2002 Jan 1;30(1):281-3 10449641 - Am J Med Genet. 1999 Sep 10;86(2):102-6 23335781 - Nucleic Acids Res. 2013 Apr 1;41(6):e74 23618408 - Genome Biol. 2013;14(4):R36 25635462 - Cell. 2015 Jan 29;160(3):554-66 25751143 - Nat Methods. 2015 Apr;12(4):339-42 24217914 - Nucleic Acids Res. 2014 Jan;42(Database issue):D32-7 22589127 - Methods Mol Biol. 2012;883:97-110 23258891 - Science. 2012 Dec 21;338(6114):1593-9 18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26 19261174 - Genome Biol. 2009;10(3):R25 14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 18469813 - Nat Genet. 2008 Jun;40(6):776-81 16141072 - Science. 2005 Sep 2;309(5740):1559-63 21112873 - Nucleic Acids Res. 2011 Jan;39(Database issue):D146-51 19767420 - RNA. 2009 Nov;15(11):2013-27 24395636 - J Cell Biol. 2014 Jan 6;204(1):61-75 25582907 - Nat Commun. 2015;6:5903 20436462 - Nat Biotechnol. 2010 May;28(5):503-10 25617416 - Bioinformatics. 2015 Jul 15;31(14):2400-2 24670764 - Nature. 2014 Mar 27;507(7493):462-70 |
References_xml | – ident: 2021111811144258000_26.5.705.9 doi: 10.1093/nar/gkt1030 – ident: 2021111811144258000_26.5.705.10 doi: 10.1007/978-1-61779-839-9_7 – ident: 2021111811144258000_26.5.705.58 doi: 10.1101/gr.097857.109 – ident: 2021111811144258000_26.5.705.16 doi: 10.1186/gb-2008-9-12-r175 – ident: 2021111811144258000_26.5.705.72 doi: 10.1016/j.cell.2015.01.006 – ident: 2021111811144258000_26.5.705.35 doi: 10.1073/pnas.1318948111 – ident: 2021111811144258000_26.5.705.61 doi: 10.1093/bioinformatics/btq033 – ident: 2021111811144258000_26.5.705.22 doi: 10.1016/j.jmb.2013.06.031 – ident: 2021111811144258000_26.5.705.2 doi: 10.1006/jmbi.1990.9999 – ident: 2021111811144258000_26.5.705.13 doi: 10.1371/journal.pbio.1000625 – ident: 2021111811144258000_26.5.705.52 doi: 10.1126/science.1228186 – ident: 2021111811144258000_26.5.705.74 doi: 10.1126/science.1115901 – ident: 2021111811144258000_26.5.705.21 doi: 10.1038/nature13182 – ident: 2021111811144258000_26.5.705.48 doi: 10.1093/hmg/ddl046 – ident: 2021111811144258000_26.5.705.17 doi: 10.1101/gr.132159.111 – ident: 2021111811144258000_26.5.705.38 doi: 10.1093/nar/gkm391 – ident: 2021111811144258000_26.5.705.76 doi: 10.1093/nar/gkv1157 – ident: 2021111811144258000_26.5.705.59 doi: 10.1007/s00439-011-1008-7 – ident: 2021111811144258000_26.5.705.69 doi: 10.1016/j.bbadis.2008.09.017 – ident: 2021111811144258000_26.5.705.63 doi: 10.1093/nar/gku365 – ident: 2021111811144258000_26.5.705.78 doi: 10.1083/jcb.201304152 – ident: 2021111811144258000_26.5.705.27 doi: 10.1038/nature10398 – ident: 2021111811144258000_26.5.705.37 doi: 10.1186/gb-2013-14-4-r36 – ident: 2021111811144258000_26.5.705.41 doi: 10.1093/bioinformatics/btr209 – ident: 2021111811144258000_26.5.705.24 doi: 10.1371/journal.pgen.1000944 – ident: 2021111811144258000_26.5.705.29 doi: 10.1002/(SICI)1096-8628(19990910)86:2<102::AID-AJMG2>3.0.CO;2-C – ident: 2021111811144258000_26.5.705.65 – ident: 2021111811144258000_26.5.705.11 doi: 10.3390/ijms140815423 – volume: 1839 start-page: 1097 year: 2014 ident: 2021111811144258000_26.5.705.75 article-title: LncRNA: a link between RNA and cancer publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2014.08.012 – ident: 2021111811144258000_26.5.705.67 doi: 10.1038/nmeth.2714 – ident: 2021111811144258000_26.5.705.5 doi: 10.1093/bioinformatics/btu638 – ident: 2021111811144258000_26.5.705.25 doi: 10.1038/nbt.1883 – ident: 2021111811144258000_26.5.705.3 doi: 10.1261/rna.1705309 – ident: 2021111811144258000_26.5.705.12 doi: 10.1101/gad.17446611 – ident: 2021111811144258000_26.5.705.39 doi: 10.1093/bib/bbs038 – volume: 124A start-page: 413 year: 2004 ident: 2021111811144258000_26.5.705.44 article-title: Does the P172H mutation at the TM4SF2 gene cause X-linked mental retardation? publication-title: Am J Med Genet doi: 10.1002/ajmg.a.20401 – ident: 2021111811144258000_26.5.705.6 doi: 10.1038/nmeth1005-731 – ident: 2021111811144258000_26.5.705.14 doi: 10.1101/gr.131037.111 – volume: 57 start-page: 289 year: 1995 ident: 2021111811144258000_26.5.705.8 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Statist Soc B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 2021111811144258000_26.5.705.1 doi: 10.1136/jmg.39.6.430 – ident: 2021111811144258000_26.5.705.42 doi: 10.1186/s13059-014-0550-8 – ident: 2021111811144258000_26.5.705.71 doi: 10.1038/nbt.2450 – ident: 2021111811144258000_26.5.705.51 doi: 10.1101/gr.182899.114 – ident: 2021111811144258000_26.5.705.64 doi: 10.1101/gr.3715005 – ident: 2021111811144258000_26.5.705.31 doi: 10.1101/gr.121095.111 – ident: 2021111811144258000_26.5.705.36 doi: 10.1101/gr.229102. Article published online before print in May 2002 – ident: 2021111811144258000_26.5.705.15 doi: 10.1038/nmeth.3321 – ident: 2021111811144258000_26.5.705.53 doi: 10.1016/j.bbagrm.2013.10.009 – ident: 2021111811144258000_26.5.705.20 doi: 10.1126/science.1112014 – ident: 2021111811144258000_26.5.705.56 doi: 10.1038/nbt.3122 – ident: 2021111811144258000_26.5.705.18 doi: 10.1038/ng.149 – ident: 2021111811144258000_26.5.705.34 doi: 10.1093/bioinformatics/btv034 – ident: 2021111811144258000_26.5.705.62 – ident: 2021111811144258000_26.5.705.68 doi: 10.1534/genetics.104.028944 – ident: 2021111811144258000_26.5.705.4 doi: 10.1093/nar/gkq1138 – ident: 2021111811144258000_26.5.705.70 doi: 10.1038/nbt.1621 – ident: 2021111811144258000_26.5.705.54 doi: 10.1261/rna.046342.114 – ident: 2021111811144258000_26.5.705.26 doi: 10.1038/nbt.1633 – ident: 2021111811144258000_26.5.705.30 doi: 10.1038/ng.3192 – volume: 9 start-page: 63 year: 2015 ident: 2021111811144258000_26.5.705.32 article-title: Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations publication-title: Front Cell Neurosci – ident: 2021111811144258000_26.5.705.47 doi: 10.1016/j.semcdb.2011.05.002 – ident: 2021111811144258000_26.5.705.28 doi: 10.1101/gr.135350.111 – ident: 2021111811144258000_26.5.705.7 doi: 10.1016/j.neuron.2011.06.039 – ident: 2021111811144258000_26.5.705.33 doi: 10.1093/nar/gkh103 – ident: 2021111811144258000_26.5.705.60 doi: 10.1093/nar/gkr1079 – ident: 2021111811144258000_26.5.705.73 doi: 10.1093/nar/gkt006 – ident: 2021111811144258000_26.5.705.43 doi: 10.1371/journal.pgen.0020062 – ident: 2021111811144258000_26.5.705.45 doi: 10.1093/nar/30.1.281 – ident: 2021111811144258000_26.5.705.57 doi: 10.1038/ncomms6903 – ident: 2021111811144258000_26.5.705.66 doi: 10.1016/j.tiv.2006.06.003 – ident: 2021111811144258000_26.5.705.50 doi: 10.1038/nprot.2014.058 – ident: 2021111811144258000_26.5.705.19 doi: 10.1093/bioinformatics/btl567 – ident: 2021111811144258000_26.5.705.40 doi: 10.1186/gb-2009-10-3-r25 – ident: 2021111811144258000_26.5.705.46 doi: 10.1371/journal.pgen.1000459 – ident: 2021111811144258000_26.5.705.49 doi: 10.1038/nbt.2024 – ident: 2021111811144258000_26.5.705.55 doi: 10.1038/nrg2934 – ident: 2021111811144258000_26.5.705.77 doi: 10.1038/72829 – ident: 2021111811144258000_26.5.705.23 doi: 10.1093/bioinformatics/bts582 – reference: 21867878 - Neuron. 2011 Aug 25;71(4):605-16 – reference: 25798087 - Front Cell Neurosci. 2015 Mar 06;9:63 – reference: 21112873 - Nucleic Acids Res. 2011 Jan;39(Database issue):D146-51 – reference: 23044541 - Bioinformatics. 2012 Dec 1;28(23):3042-50 – reference: 25751143 - Nat Methods. 2015 Apr;12(4):339-42 – reference: 24395636 - J Cell Biol. 2014 Jan 6;204(1):61-75 – reference: 16141075 - Science. 2005 Sep 2;309(5740):1570-3 – reference: 19767420 - RNA. 2009 Nov;15(11):2013-27 – reference: 11752315 - Nucleic Acids Res. 2002 Jan 1;30(1):281-3 – reference: 23335781 - Nucleic Acids Res. 2013 Apr 1;41(6):e74 – reference: 24200874 - Biochim Biophys Acta. 2014 Mar;1839(3):215-22 – reference: 22955988 - Genome Res. 2012 Sep;22(9):1775-89 – reference: 16930941 - Toxicol In Vitro. 2006 Dec;20(8):1582-6 – reference: 12070254 - J Med Genet. 2002 Jun;39(6):430-3 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 25561518 - Genome Res. 2015 Feb;25(2):290-303 – reference: 21621631 - Semin Cell Dev Biol. 2011 Jun;22(4):327 – reference: 21685081 - Bioinformatics. 2011 Jul 1;27(13):i275-82 – reference: 19858363 - Genome Res. 2010 Jan;20(1):110-21 – reference: 10449641 - Am J Med Genet. 1999 Sep 10;86(2):102-6 – reference: 22908213 - Brief Bioinform. 2013 Mar;14(2):144-61 – reference: 24799436 - Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91 – reference: 21626138 - Hum Genet. 2011 Aug;130(2):223-36 – reference: 17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 – reference: 22406755 - Genome Res. 2012 May;22(5):885-98 – reference: 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27 – reference: 25690850 - Nat Biotechnol. 2015 Mar;33(3):290-5 – reference: 17098774 - Bioinformatics. 2007 Jan 15;23(2):257-8 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 24185837 - Nat Methods. 2013 Dec;10(12):1177-84 – reference: 23618408 - Genome Biol. 2013;14(4):R36 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 21816910 - Genome Res. 2011 Sep;21(9):1543-51 – reference: 25635462 - Cell. 2015 Jan 29;160(3):554-66 – reference: 20436462 - Nat Biotechnol. 2010 May;28(5):503-10 – reference: 25617416 - Bioinformatics. 2015 Jul 15;31(14):2400-2 – reference: 16141072 - Science. 2005 Sep 2;309(5740):1559-63 – reference: 23258891 - Science. 2012 Dec 21;338(6114):1593-9 – reference: 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53 – reference: 25582907 - Nat Commun. 2015;6:5903 – reference: 22121212 - Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5 – reference: 24705597 - Nat Protoc. 2014 May;9(5):989-1009 – reference: 15454550 - Genetics. 2004 Sep;168(1):373-81 – reference: 10655063 - Nat Genet. 2000 Feb;24(2):167-70 – reference: 19087247 - Genome Biol. 2008;9(12):R175 – reference: 24753594 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6131-8 – reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006 – reference: 21874018 - Nature. 2011 Sep 15;477(7364):295-300 – reference: 14735593 - Am J Med Genet A. 2004 Feb 1;124A(4):413-5 – reference: 16179916 - Nat Methods. 2005 Oct;2(10):731-4 – reference: 21191423 - Nat Rev Genet. 2011 Feb;12(2):87-98 – reference: 16651366 - Hum Mol Genet. 2006 Apr 15;15 Spec No 1:R17-29 – reference: 22081020 - Nat Biotechnol. 2012 Jan;30(1):99-104 – reference: 16024819 - Genome Res. 2005 Aug;15(8):1034-50 – reference: 25599403 - Nat Genet. 2015 Mar;47(3):199-208 – reference: 22589127 - Methods Mol Biol. 2012;883:97-110 – reference: 23887659 - Int J Mol Sci. 2013;14(8):15423-58 – reference: 20485561 - PLoS Genet. 2010 May;6(5):e1000944 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 25802408 - RNA. 2015 May;21(5):801-12 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 – reference: 18469813 - Nat Genet. 2008 Jun;40(6):776-81 – reference: 24670764 - Nature. 2014 Mar 27;507(7493):462-70 – reference: 26687719 - Nucleic Acids Res. 2016 Jan 4;44(D1):D710-6 – reference: 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102 – reference: 23816838 - J Mol Biol. 2013 Oct 9;425(19):3698-706 – reference: 25159663 - Biochim Biophys Acta. 2014 Nov;1839(11):1097-109 – reference: 22955987 - Genome Res. 2012 Sep;22(9):1760-74 – reference: 18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26 – reference: 19390609 - PLoS Genet. 2009 Apr;5(4):e1000459 – reference: 16683036 - PLoS Genet. 2006 Apr;2(4):e62 – reference: 24217914 - Nucleic Acids Res. 2014 Jan;42(Database issue):D32-7 – reference: 21572440 - Nat Biotechnol. 2011 Jul;29(7):644-52 |
SSID | ssj0003488 |
Score | 2.3312736 |
Snippet | Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene... |
SourceID | pubmedcentral csuc proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 705 |
SubjectTerms | Animals Gene Expression Profiling - methods Genètica High-Throughput Nucleotide Sequencing - methods Mice Ratolins Resource RNA RNA, Long Noncoding - biosynthesis RNA, Long Noncoding - genetics Transcriptome |
Title | Improved definition of the mouse transcriptome via targeted RNA sequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27197243 https://www.proquest.com/docview/1790458028 https://www.proquest.com/docview/1808615894 https://recercat.cat/handle/2072/314448 https://pubmed.ncbi.nlm.nih.gov/PMC4864457 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKEYIXBBuXcpOR0B4I6RLXrpPHtoJNg00wbdLeolzsUalNpi5Fgh_Db-Wc2Ll0DAR7aJSkzvV8sb9jf-eYkDd-miVhyDJXsiBzUcDoBnHG3cxLBE9kGicMg5MPj8b7p_zgTJz1ej87qqV1mQzTH9fGldzEqrAP7IpRsv9h2eaksAPWwb6wBAvD8p9sbHoEgDJmSs_zeU3-kEuiR69wAojc1AvFUjnf5rFjlN9wyPHRxLE66rr1shx1T-VY2qYBarqLp2t4mtKM_u-hhDXP562cBwg9QK2yfrFcxpdFM7ixsGpsK9B3psPGyCiqqRHjHA-7PRD-uNX7GSFQsQBqXHVDYuQRQNf5ZACMKoGukgQrWKjVXMwJZtofW-ny0BXcTNlS18omjt6iT3SqWOmJTmstTaTm7w1BNQHB-QqjMSV2oJmg0Q4oLpYVKpjEiddMqqgrmbc_H854AHxRyFvkNpOykgF8_NJmox_xwIRa2mdqcrj6uxtXxozT9jIb9KefXq7T61ybqwrdDuU5eUDuW1-FTgzwHpKeyrfI9iSHV778TndopR6uhmW2yJ1pvXZ3Vs8huE0OaoTSFqG00BQQSiuE0g2EUkAorRFKAaG0Regjcvrh_cls37Wzd7ipYEHpcqY1eOeeHiFH9oIMWgsWC-1JNtYy0yodMQ3kKFPci1Og7UxnvgD_VUsZKJGNHpN-XuTqKaEhS4VOwbGH03GfSfDpQ-UJHSoOHI_pAXlXv9QotantcYaVRVS5uJ4fna8iYw7YFAOy0xS_MDld_lTwLVooAu4BH0RcRpiLvdnAH4OniUY-5zwYkNe1HSN4yzjuFucKXmWESfC4CIDJ_6VM4AXgXAQhH5AnxvbNvdXYGRC5gYqmAN7W5j_5_GuVKt7i99mNj3xO7rWf_AvSL1dr9RJoeJm8qr6FX9Tu3z4 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+definition+of+the+mouse+transcriptome+via+targeted+RNA+sequencing&rft.jtitle=Genome+research&rft.au=Bussotti%2C+Giovanni&rft.au=Leonardi%2C+Tommaso&rft.au=Clark%2C+Michael+B.&rft.au=Mercer%2C+Tim+R.&rft.date=2016-05-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=26&rft.issue=5&rft.spage=705&rft.epage=716&rft_id=info:doi/10.1101%2Fgr.199760.115&rft_id=info%3Apmid%2F27197243&rft.externalDocID=PMC4864457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |