Improved definition of the mouse transcriptome via targeted RNA sequencing

Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly....

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 26; no. 5; pp. 705 - 716
Main Authors Bussotti, Giovanni, Leonardi, Tommaso, Clark, Michael B., Mercer, Tim R., Crawford, Joanna, Malquori, Lorenzo, Notredame, Cedric, Dinger, Marcel E., Mattick, John S., Enright, Anton J.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press (CSHL Press) 01.05.2016
Cold Spring Harbor Laboratory Press
Subjects
Online AccessGet full text
ISSN1088-9051
1549-5469
1549-5469
DOI10.1101/gr.199760.115

Cover

Abstract Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.
AbstractList Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources. The authors acknowledge the following funding sources: an Australian National Health and Medical Research Council (NHMRC) Australia Fellowship (631668 to J.S.M. and 631542 to M.E.D.); an NHMRC Early Career Fellowship (APP1072662 to M.B.C.); an EMBO Long Term Fellowship (ALTF 864-2013 to M.B.C.); an Australian National Health and Medical Research Council (NHMRC) Project Grant (APP1062106 to T.R.M.) and Career Development Fellowship (APP1062470 to T.R.M); and an EMBL Interdisciplinary Postdoc (EIPOD) under Marie Curie Actions (COFUND) (to G.B.).
Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.
Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene expression, and quantitative expression data. We applied CaptureSeq to refine transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand transcript boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse ENCODE resources.
Author Leonardi, Tommaso
Dinger, Marcel E.
Mattick, John S.
Bussotti, Giovanni
Notredame, Cedric
Crawford, Joanna
Malquori, Lorenzo
Enright, Anton J.
Mercer, Tim R.
Clark, Michael B.
AuthorAffiliation 6 Comparative Bioinformatics, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
5 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
3 MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
4 St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
2 Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
1 EMBL, European Bioinformatics Institute, Cambridge, CB10 1SD, United Kingdom
AuthorAffiliation_xml – name: 3 MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
– name: 1 EMBL, European Bioinformatics Institute, Cambridge, CB10 1SD, United Kingdom
– name: 2 Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
– name: 4 St Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
– name: 6 Comparative Bioinformatics, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
– name: 5 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
Author_xml – sequence: 1
  givenname: Giovanni
  orcidid: 0000-0002-4078-7413
  surname: Bussotti
  fullname: Bussotti, Giovanni
– sequence: 2
  givenname: Tommaso
  orcidid: 0000-0002-4449-1863
  surname: Leonardi
  fullname: Leonardi, Tommaso
– sequence: 3
  givenname: Michael B.
  surname: Clark
  fullname: Clark, Michael B.
– sequence: 4
  givenname: Tim R.
  surname: Mercer
  fullname: Mercer, Tim R.
– sequence: 5
  givenname: Joanna
  surname: Crawford
  fullname: Crawford, Joanna
– sequence: 6
  givenname: Lorenzo
  surname: Malquori
  fullname: Malquori, Lorenzo
– sequence: 7
  givenname: Cedric
  surname: Notredame
  fullname: Notredame, Cedric
– sequence: 8
  givenname: Marcel E.
  surname: Dinger
  fullname: Dinger, Marcel E.
– sequence: 9
  givenname: John S.
  surname: Mattick
  fullname: Mattick, John S.
– sequence: 10
  givenname: Anton J.
  orcidid: 0000-0002-6090-3100
  surname: Enright
  fullname: Enright, Anton J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27197243$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1rHSEUlZLSfHXZbZhlNpOqo6NuAiGkTUpooTRrsc51YpnRF_U9yL-Pk_cS2lLoQvTgOcd7vPcQ7YUYAKEPBJ8RgsnHMZ0RpUS_QP4GHRDOVMtZr_bqGUvZKszJPjrM-RfGuGNSvkP7VBAlKOsO0JebeZXiBoZmAOeDLz6GJrqm3EMzx3WGpiQTsk1-VeIMzcabppg0QqmS718vmgwPawjWh_EYvXVmyvB-tx-hu09XPy6v29tvn28uL25by6ksLaPO9URh1xFBBZYDw5ga7rCgvRODA9tRRyUbgGFjCatoILwX3AkhgQ_dETrf-q7WP2cYLIRa4qRXyc8mPepovP7zJvh7PcaNZrJnjItqQLYGNq-tTmAhWVOeha9gWbSWpDvCGJNVc7p7NMUaOBc9-2xhmkyA-k2aSCx7wqVi_6cKhRmXmC6uJ79Hec3w0p9K6HalpphzAqetL2ZpUk3mJ02wXqZAj0lvp6BCXlXtX6oX43_znwDolrMf
CitedBy_id crossref_primary_10_3389_fnins_2019_01097
crossref_primary_10_1038_s41467_020_17009_7
crossref_primary_10_3389_fgene_2019_00309
crossref_primary_10_1021_jacs_7b07914
crossref_primary_10_1186_s13059_021_02337_8
crossref_primary_10_3389_fcvm_2019_00009
crossref_primary_10_1021_acs_analchem_3c03741
crossref_primary_10_1038_s41467_023_43535_1
crossref_primary_10_1111_tpj_13415
crossref_primary_10_1016_j_tig_2016_08_004
crossref_primary_10_1038_ng_3988
crossref_primary_10_1038_s41576_018_0017_y
crossref_primary_10_1038_nprot_2018_001
crossref_primary_10_3390_ijms24055024
crossref_primary_10_1016_j_celrep_2022_110546
crossref_primary_10_1155_2017_3250624
crossref_primary_10_1093_nar_gkae343
crossref_primary_10_1186_s13073_017_0441_1
crossref_primary_10_1080_15476286_2020_1777768
Cites_doi 10.1093/nar/gkt1030
10.1007/978-1-61779-839-9_7
10.1101/gr.097857.109
10.1186/gb-2008-9-12-r175
10.1016/j.cell.2015.01.006
10.1073/pnas.1318948111
10.1093/bioinformatics/btq033
10.1016/j.jmb.2013.06.031
10.1006/jmbi.1990.9999
10.1371/journal.pbio.1000625
10.1126/science.1228186
10.1126/science.1115901
10.1038/nature13182
10.1093/hmg/ddl046
10.1101/gr.132159.111
10.1093/nar/gkm391
10.1093/nar/gkv1157
10.1007/s00439-011-1008-7
10.1016/j.bbadis.2008.09.017
10.1093/nar/gku365
10.1083/jcb.201304152
10.1038/nature10398
10.1186/gb-2013-14-4-r36
10.1093/bioinformatics/btr209
10.1371/journal.pgen.1000944
10.1002/(SICI)1096-8628(19990910)86:2<102::AID-AJMG2>3.0.CO;2-C
10.3390/ijms140815423
10.1016/j.bbagrm.2014.08.012
10.1038/nmeth.2714
10.1093/bioinformatics/btu638
10.1038/nbt.1883
10.1261/rna.1705309
10.1101/gad.17446611
10.1093/bib/bbs038
10.1002/ajmg.a.20401
10.1038/nmeth1005-731
10.1101/gr.131037.111
10.1111/j.2517-6161.1995.tb02031.x
10.1136/jmg.39.6.430
10.1186/s13059-014-0550-8
10.1038/nbt.2450
10.1101/gr.182899.114
10.1101/gr.3715005
10.1101/gr.121095.111
10.1101/gr.229102. Article published online before print in May 2002
10.1038/nmeth.3321
10.1016/j.bbagrm.2013.10.009
10.1126/science.1112014
10.1038/nbt.3122
10.1038/ng.149
10.1093/bioinformatics/btv034
10.1534/genetics.104.028944
10.1093/nar/gkq1138
10.1038/nbt.1621
10.1261/rna.046342.114
10.1038/nbt.1633
10.1038/ng.3192
10.1016/j.semcdb.2011.05.002
10.1101/gr.135350.111
10.1016/j.neuron.2011.06.039
10.1093/nar/gkh103
10.1093/nar/gkr1079
10.1093/nar/gkt006
10.1371/journal.pgen.0020062
10.1093/nar/30.1.281
10.1038/ncomms6903
10.1016/j.tiv.2006.06.003
10.1038/nprot.2014.058
10.1093/bioinformatics/btl567
10.1186/gb-2009-10-3-r25
10.1371/journal.pgen.1000459
10.1038/nbt.2024
10.1038/nrg2934
10.1038/72829
10.1093/bioinformatics/bts582
ContentType Journal Article
Copyright 2016 Bussotti et al.; Published by Cold Spring Harbor Laboratory Press.
info:eu-repo/semantics/openAccess © 2016 Bussotti et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. http://creativecommons.org/licenses/by/4.0
2016
Copyright_xml – notice: 2016 Bussotti et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: info:eu-repo/semantics/openAccess © 2016 Bussotti et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at <a href="http://creativecommons.org/licenses/by/4.0/.">http://creativecommons.org/licenses/by/4.0/.</a> <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>
– notice: 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
XX2
5PM
DOI 10.1101/gr.199760.115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Recercat
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Bussotti et al
EISSN 1549-5469
EndPage 716
ExternalDocumentID PMC4864457
oai_recercat_cat_2072_314448
27197243
10_1101_gr_199760_115
Genre Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council
  grantid: APP1062106; APP1062470
– fundername: National Health and Medical Research Council
  grantid: 631668; 631542; APP1072662
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
XX2
5PM
ID FETCH-LOGICAL-c528t-42ff6190f3172708d4002a5f0726f7dfec32f284de40ac1432fd15675f778e5d3
ISSN 1088-9051
1549-5469
IngestDate Thu Aug 21 18:34:13 EDT 2025
Fri Sep 05 18:07:41 EDT 2025
Fri Sep 05 11:51:43 EDT 2025
Fri Sep 05 04:41:29 EDT 2025
Mon Jul 21 06:02:13 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Tue Jul 01 02:20:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2016 Bussotti et al.; Published by Cold Spring Harbor Laboratory Press.
This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c528t-42ff6190f3172708d4002a5f0726f7dfec32f284de40ac1432fd15675f778e5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Hub de Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, 75724 Paris Cedex 15, France
ORCID 0000-0002-6090-3100
0000-0002-4078-7413
0000-0002-4449-1863
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4864457
PMID 27197243
PQID 1790458028
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4864457
csuc_recercat_oai_recercat_cat_2072_314448
proquest_miscellaneous_1808615894
proquest_miscellaneous_1790458028
pubmed_primary_27197243
crossref_citationtrail_10_1101_gr_199760_115
crossref_primary_10_1101_gr_199760_115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2016
Publisher Cold Spring Harbor Laboratory Press (CSHL Press)
Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press (CSHL Press)
– name: Cold Spring Harbor Laboratory Press
References (2021111811144258000_26.5.705.44) 2004; 124A
2021111811144258000_26.5.705.52
2021111811144258000_26.5.705.51
(2021111811144258000_26.5.705.8) 1995; 57
2021111811144258000_26.5.705.50
2021111811144258000_26.5.705.12
2021111811144258000_26.5.705.56
2021111811144258000_26.5.705.11
2021111811144258000_26.5.705.55
2021111811144258000_26.5.705.10
2021111811144258000_26.5.705.54
2021111811144258000_26.5.705.53
2021111811144258000_26.5.705.49
2021111811144258000_26.5.705.48
2021111811144258000_26.5.705.47
2021111811144258000_26.5.705.46
(2021111811144258000_26.5.705.75) 2014; 1839
2021111811144258000_26.5.705.63
2021111811144258000_26.5.705.62
2021111811144258000_26.5.705.61
2021111811144258000_26.5.705.60
2021111811144258000_26.5.705.23
2021111811144258000_26.5.705.67
2021111811144258000_26.5.705.22
2021111811144258000_26.5.705.66
2021111811144258000_26.5.705.21
2021111811144258000_26.5.705.65
2021111811144258000_26.5.705.20
2021111811144258000_26.5.705.64
2021111811144258000_26.5.705.16
2021111811144258000_26.5.705.15
2021111811144258000_26.5.705.59
2021111811144258000_26.5.705.14
2021111811144258000_26.5.705.58
2021111811144258000_26.5.705.13
2021111811144258000_26.5.705.57
2021111811144258000_26.5.705.19
2021111811144258000_26.5.705.18
2021111811144258000_26.5.705.17
(2021111811144258000_26.5.705.32) 2015; 9
2021111811144258000_26.5.705.70
2021111811144258000_26.5.705.30
2021111811144258000_26.5.705.74
2021111811144258000_26.5.705.73
2021111811144258000_26.5.705.72
2021111811144258000_26.5.705.71
2021111811144258000_26.5.705.34
2021111811144258000_26.5.705.78
2021111811144258000_26.5.705.33
2021111811144258000_26.5.705.77
2021111811144258000_26.5.705.76
2021111811144258000_26.5.705.31
2021111811144258000_26.5.705.27
2021111811144258000_26.5.705.26
2021111811144258000_26.5.705.25
2021111811144258000_26.5.705.69
2021111811144258000_26.5.705.24
2021111811144258000_26.5.705.68
2021111811144258000_26.5.705.29
2021111811144258000_26.5.705.28
2021111811144258000_26.5.705.7
2021111811144258000_26.5.705.6
2021111811144258000_26.5.705.9
2021111811144258000_26.5.705.41
2021111811144258000_26.5.705.40
2021111811144258000_26.5.705.1
2021111811144258000_26.5.705.3
2021111811144258000_26.5.705.45
2021111811144258000_26.5.705.2
2021111811144258000_26.5.705.5
2021111811144258000_26.5.705.43
2021111811144258000_26.5.705.4
2021111811144258000_26.5.705.42
2021111811144258000_26.5.705.38
2021111811144258000_26.5.705.37
2021111811144258000_26.5.705.36
2021111811144258000_26.5.705.35
2021111811144258000_26.5.705.39
16024819 - Genome Res. 2005 Aug;15(8):1034-50
14735593 - Am J Med Genet A. 2004 Feb 1;124A(4):413-5
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
22081020 - Nat Biotechnol. 2012 Jan;30(1):99-104
17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9
22908213 - Brief Bioinform. 2013 Mar;14(2):144-61
16930941 - Toxicol In Vitro. 2006 Dec;20(8):1582-6
21621631 - Semin Cell Dev Biol. 2011 Jun;22(4):327
24705597 - Nat Protoc. 2014 May;9(5):989-1009
22955988 - Genome Res. 2012 Sep;22(9):1775-89
12045153 - Genome Res. 2002 Jun;12(6):996-1006
26687719 - Nucleic Acids Res. 2016 Jan 4;44(D1):D710-6
21191423 - Nat Rev Genet. 2011 Feb;12(2):87-98
23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53
16179916 - Nat Methods. 2005 Oct;2(10):731-4
21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102
19390609 - PLoS Genet. 2009 Apr;5(4):e1000459
21874018 - Nature. 2011 Sep 15;477(7364):295-300
24799436 - Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
12070254 - J Med Genet. 2002 Jun;39(6):430-3
24753594 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6131-8
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
23887659 - Int J Mol Sci. 2013;14(8):15423-58
21867878 - Neuron. 2011 Aug 25;71(4):605-16
23816838 - J Mol Biol. 2013 Oct 9;425(19):3698-706
25561518 - Genome Res. 2015 Feb;25(2):290-303
21572440 - Nat Biotechnol. 2011 Jul;29(7):644-52
21685081 - Bioinformatics. 2011 Jul 1;27(13):i275-82
22406755 - Genome Res. 2012 May;22(5):885-98
17098774 - Bioinformatics. 2007 Jan 15;23(2):257-8
16141075 - Science. 2005 Sep 2;309(5740):1570-3
19087247 - Genome Biol. 2008;9(12):R175
25802408 - RNA. 2015 May;21(5):801-12
24185837 - Nat Methods. 2013 Dec;10(12):1177-84
16651366 - Hum Mol Genet. 2006 Apr 15;15 Spec No 1:R17-29
23044541 - Bioinformatics. 2012 Dec 1;28(23):3042-50
25159663 - Biochim Biophys Acta. 2014 Nov;1839(11):1097-109
22955987 - Genome Res. 2012 Sep;22(9):1760-74
21626138 - Hum Genet. 2011 Aug;130(2):223-36
25516281 - Genome Biol. 2014;15(12):550
21816910 - Genome Res. 2011 Sep;21(9):1543-51
25599403 - Nat Genet. 2015 Mar;47(3):199-208
19858363 - Genome Res. 2010 Jan;20(1):110-21
22121212 - Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5
21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27
24200874 - Biochim Biophys Acta. 2014 Mar;1839(3):215-22
16683036 - PLoS Genet. 2006 Apr;2(4):e62
10655063 - Nat Genet. 2000 Feb;24(2):167-70
25690850 - Nat Biotechnol. 2015 Mar;33(3):290-5
25798087 - Front Cell Neurosci. 2015 Mar 06;9:63
15454550 - Genetics. 2004 Sep;168(1):373-81
20485561 - PLoS Genet. 2010 May;6(5):e1000944
11752315 - Nucleic Acids Res. 2002 Jan 1;30(1):281-3
10449641 - Am J Med Genet. 1999 Sep 10;86(2):102-6
23335781 - Nucleic Acids Res. 2013 Apr 1;41(6):e74
23618408 - Genome Biol. 2013;14(4):R36
25635462 - Cell. 2015 Jan 29;160(3):554-66
25751143 - Nat Methods. 2015 Apr;12(4):339-42
24217914 - Nucleic Acids Res. 2014 Jan;42(Database issue):D32-7
22589127 - Methods Mol Biol. 2012;883:97-110
23258891 - Science. 2012 Dec 21;338(6114):1593-9
18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26
19261174 - Genome Biol. 2009;10(3):R25
14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6
18469813 - Nat Genet. 2008 Jun;40(6):776-81
16141072 - Science. 2005 Sep 2;309(5740):1559-63
21112873 - Nucleic Acids Res. 2011 Jan;39(Database issue):D146-51
19767420 - RNA. 2009 Nov;15(11):2013-27
24395636 - J Cell Biol. 2014 Jan 6;204(1):61-75
25582907 - Nat Commun. 2015;6:5903
20436462 - Nat Biotechnol. 2010 May;28(5):503-10
25617416 - Bioinformatics. 2015 Jul 15;31(14):2400-2
24670764 - Nature. 2014 Mar 27;507(7493):462-70
References_xml – ident: 2021111811144258000_26.5.705.9
  doi: 10.1093/nar/gkt1030
– ident: 2021111811144258000_26.5.705.10
  doi: 10.1007/978-1-61779-839-9_7
– ident: 2021111811144258000_26.5.705.58
  doi: 10.1101/gr.097857.109
– ident: 2021111811144258000_26.5.705.16
  doi: 10.1186/gb-2008-9-12-r175
– ident: 2021111811144258000_26.5.705.72
  doi: 10.1016/j.cell.2015.01.006
– ident: 2021111811144258000_26.5.705.35
  doi: 10.1073/pnas.1318948111
– ident: 2021111811144258000_26.5.705.61
  doi: 10.1093/bioinformatics/btq033
– ident: 2021111811144258000_26.5.705.22
  doi: 10.1016/j.jmb.2013.06.031
– ident: 2021111811144258000_26.5.705.2
  doi: 10.1006/jmbi.1990.9999
– ident: 2021111811144258000_26.5.705.13
  doi: 10.1371/journal.pbio.1000625
– ident: 2021111811144258000_26.5.705.52
  doi: 10.1126/science.1228186
– ident: 2021111811144258000_26.5.705.74
  doi: 10.1126/science.1115901
– ident: 2021111811144258000_26.5.705.21
  doi: 10.1038/nature13182
– ident: 2021111811144258000_26.5.705.48
  doi: 10.1093/hmg/ddl046
– ident: 2021111811144258000_26.5.705.17
  doi: 10.1101/gr.132159.111
– ident: 2021111811144258000_26.5.705.38
  doi: 10.1093/nar/gkm391
– ident: 2021111811144258000_26.5.705.76
  doi: 10.1093/nar/gkv1157
– ident: 2021111811144258000_26.5.705.59
  doi: 10.1007/s00439-011-1008-7
– ident: 2021111811144258000_26.5.705.69
  doi: 10.1016/j.bbadis.2008.09.017
– ident: 2021111811144258000_26.5.705.63
  doi: 10.1093/nar/gku365
– ident: 2021111811144258000_26.5.705.78
  doi: 10.1083/jcb.201304152
– ident: 2021111811144258000_26.5.705.27
  doi: 10.1038/nature10398
– ident: 2021111811144258000_26.5.705.37
  doi: 10.1186/gb-2013-14-4-r36
– ident: 2021111811144258000_26.5.705.41
  doi: 10.1093/bioinformatics/btr209
– ident: 2021111811144258000_26.5.705.24
  doi: 10.1371/journal.pgen.1000944
– ident: 2021111811144258000_26.5.705.29
  doi: 10.1002/(SICI)1096-8628(19990910)86:2<102::AID-AJMG2>3.0.CO;2-C
– ident: 2021111811144258000_26.5.705.65
– ident: 2021111811144258000_26.5.705.11
  doi: 10.3390/ijms140815423
– volume: 1839
  start-page: 1097
  year: 2014
  ident: 2021111811144258000_26.5.705.75
  article-title: LncRNA: a link between RNA and cancer
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagrm.2014.08.012
– ident: 2021111811144258000_26.5.705.67
  doi: 10.1038/nmeth.2714
– ident: 2021111811144258000_26.5.705.5
  doi: 10.1093/bioinformatics/btu638
– ident: 2021111811144258000_26.5.705.25
  doi: 10.1038/nbt.1883
– ident: 2021111811144258000_26.5.705.3
  doi: 10.1261/rna.1705309
– ident: 2021111811144258000_26.5.705.12
  doi: 10.1101/gad.17446611
– ident: 2021111811144258000_26.5.705.39
  doi: 10.1093/bib/bbs038
– volume: 124A
  start-page: 413
  year: 2004
  ident: 2021111811144258000_26.5.705.44
  article-title: Does the P172H mutation at the TM4SF2 gene cause X-linked mental retardation?
  publication-title: Am J Med Genet
  doi: 10.1002/ajmg.a.20401
– ident: 2021111811144258000_26.5.705.6
  doi: 10.1038/nmeth1005-731
– ident: 2021111811144258000_26.5.705.14
  doi: 10.1101/gr.131037.111
– volume: 57
  start-page: 289
  year: 1995
  ident: 2021111811144258000_26.5.705.8
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Statist Soc B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2021111811144258000_26.5.705.1
  doi: 10.1136/jmg.39.6.430
– ident: 2021111811144258000_26.5.705.42
  doi: 10.1186/s13059-014-0550-8
– ident: 2021111811144258000_26.5.705.71
  doi: 10.1038/nbt.2450
– ident: 2021111811144258000_26.5.705.51
  doi: 10.1101/gr.182899.114
– ident: 2021111811144258000_26.5.705.64
  doi: 10.1101/gr.3715005
– ident: 2021111811144258000_26.5.705.31
  doi: 10.1101/gr.121095.111
– ident: 2021111811144258000_26.5.705.36
  doi: 10.1101/gr.229102. Article published online before print in May 2002
– ident: 2021111811144258000_26.5.705.15
  doi: 10.1038/nmeth.3321
– ident: 2021111811144258000_26.5.705.53
  doi: 10.1016/j.bbagrm.2013.10.009
– ident: 2021111811144258000_26.5.705.20
  doi: 10.1126/science.1112014
– ident: 2021111811144258000_26.5.705.56
  doi: 10.1038/nbt.3122
– ident: 2021111811144258000_26.5.705.18
  doi: 10.1038/ng.149
– ident: 2021111811144258000_26.5.705.34
  doi: 10.1093/bioinformatics/btv034
– ident: 2021111811144258000_26.5.705.62
– ident: 2021111811144258000_26.5.705.68
  doi: 10.1534/genetics.104.028944
– ident: 2021111811144258000_26.5.705.4
  doi: 10.1093/nar/gkq1138
– ident: 2021111811144258000_26.5.705.70
  doi: 10.1038/nbt.1621
– ident: 2021111811144258000_26.5.705.54
  doi: 10.1261/rna.046342.114
– ident: 2021111811144258000_26.5.705.26
  doi: 10.1038/nbt.1633
– ident: 2021111811144258000_26.5.705.30
  doi: 10.1038/ng.3192
– volume: 9
  start-page: 63
  year: 2015
  ident: 2021111811144258000_26.5.705.32
  article-title: Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations
  publication-title: Front Cell Neurosci
– ident: 2021111811144258000_26.5.705.47
  doi: 10.1016/j.semcdb.2011.05.002
– ident: 2021111811144258000_26.5.705.28
  doi: 10.1101/gr.135350.111
– ident: 2021111811144258000_26.5.705.7
  doi: 10.1016/j.neuron.2011.06.039
– ident: 2021111811144258000_26.5.705.33
  doi: 10.1093/nar/gkh103
– ident: 2021111811144258000_26.5.705.60
  doi: 10.1093/nar/gkr1079
– ident: 2021111811144258000_26.5.705.73
  doi: 10.1093/nar/gkt006
– ident: 2021111811144258000_26.5.705.43
  doi: 10.1371/journal.pgen.0020062
– ident: 2021111811144258000_26.5.705.45
  doi: 10.1093/nar/30.1.281
– ident: 2021111811144258000_26.5.705.57
  doi: 10.1038/ncomms6903
– ident: 2021111811144258000_26.5.705.66
  doi: 10.1016/j.tiv.2006.06.003
– ident: 2021111811144258000_26.5.705.50
  doi: 10.1038/nprot.2014.058
– ident: 2021111811144258000_26.5.705.19
  doi: 10.1093/bioinformatics/btl567
– ident: 2021111811144258000_26.5.705.40
  doi: 10.1186/gb-2009-10-3-r25
– ident: 2021111811144258000_26.5.705.46
  doi: 10.1371/journal.pgen.1000459
– ident: 2021111811144258000_26.5.705.49
  doi: 10.1038/nbt.2024
– ident: 2021111811144258000_26.5.705.55
  doi: 10.1038/nrg2934
– ident: 2021111811144258000_26.5.705.77
  doi: 10.1038/72829
– ident: 2021111811144258000_26.5.705.23
  doi: 10.1093/bioinformatics/bts582
– reference: 21867878 - Neuron. 2011 Aug 25;71(4):605-16
– reference: 25798087 - Front Cell Neurosci. 2015 Mar 06;9:63
– reference: 21112873 - Nucleic Acids Res. 2011 Jan;39(Database issue):D146-51
– reference: 23044541 - Bioinformatics. 2012 Dec 1;28(23):3042-50
– reference: 25751143 - Nat Methods. 2015 Apr;12(4):339-42
– reference: 24395636 - J Cell Biol. 2014 Jan 6;204(1):61-75
– reference: 16141075 - Science. 2005 Sep 2;309(5740):1570-3
– reference: 19767420 - RNA. 2009 Nov;15(11):2013-27
– reference: 11752315 - Nucleic Acids Res. 2002 Jan 1;30(1):281-3
– reference: 23335781 - Nucleic Acids Res. 2013 Apr 1;41(6):e74
– reference: 24200874 - Biochim Biophys Acta. 2014 Mar;1839(3):215-22
– reference: 22955988 - Genome Res. 2012 Sep;22(9):1775-89
– reference: 16930941 - Toxicol In Vitro. 2006 Dec;20(8):1582-6
– reference: 12070254 - J Med Genet. 2002 Jun;39(6):430-3
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 25561518 - Genome Res. 2015 Feb;25(2):290-303
– reference: 21621631 - Semin Cell Dev Biol. 2011 Jun;22(4):327
– reference: 21685081 - Bioinformatics. 2011 Jul 1;27(13):i275-82
– reference: 19858363 - Genome Res. 2010 Jan;20(1):110-21
– reference: 10449641 - Am J Med Genet. 1999 Sep 10;86(2):102-6
– reference: 22908213 - Brief Bioinform. 2013 Mar;14(2):144-61
– reference: 24799436 - Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91
– reference: 21626138 - Hum Genet. 2011 Aug;130(2):223-36
– reference: 17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9
– reference: 22406755 - Genome Res. 2012 May;22(5):885-98
– reference: 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27
– reference: 25690850 - Nat Biotechnol. 2015 Mar;33(3):290-5
– reference: 17098774 - Bioinformatics. 2007 Jan 15;23(2):257-8
– reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
– reference: 24185837 - Nat Methods. 2013 Dec;10(12):1177-84
– reference: 23618408 - Genome Biol. 2013;14(4):R36
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 21816910 - Genome Res. 2011 Sep;21(9):1543-51
– reference: 25635462 - Cell. 2015 Jan 29;160(3):554-66
– reference: 20436462 - Nat Biotechnol. 2010 May;28(5):503-10
– reference: 25617416 - Bioinformatics. 2015 Jul 15;31(14):2400-2
– reference: 16141072 - Science. 2005 Sep 2;309(5740):1559-63
– reference: 23258891 - Science. 2012 Dec 21;338(6114):1593-9
– reference: 23222703 - Nat Biotechnol. 2013 Jan;31(1):46-53
– reference: 25582907 - Nat Commun. 2015;6:5903
– reference: 22121212 - Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5
– reference: 24705597 - Nat Protoc. 2014 May;9(5):989-1009
– reference: 15454550 - Genetics. 2004 Sep;168(1):373-81
– reference: 10655063 - Nat Genet. 2000 Feb;24(2):167-70
– reference: 19087247 - Genome Biol. 2008;9(12):R175
– reference: 24753594 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6131-8
– reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006
– reference: 21874018 - Nature. 2011 Sep 15;477(7364):295-300
– reference: 14735593 - Am J Med Genet A. 2004 Feb 1;124A(4):413-5
– reference: 16179916 - Nat Methods. 2005 Oct;2(10):731-4
– reference: 21191423 - Nat Rev Genet. 2011 Feb;12(2):87-98
– reference: 16651366 - Hum Mol Genet. 2006 Apr 15;15 Spec No 1:R17-29
– reference: 22081020 - Nat Biotechnol. 2012 Jan;30(1):99-104
– reference: 16024819 - Genome Res. 2005 Aug;15(8):1034-50
– reference: 25599403 - Nat Genet. 2015 Mar;47(3):199-208
– reference: 22589127 - Methods Mol Biol. 2012;883:97-110
– reference: 23887659 - Int J Mol Sci. 2013;14(8):15423-58
– reference: 20485561 - PLoS Genet. 2010 May;6(5):e1000944
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 25802408 - RNA. 2015 May;21(5):801-12
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 14681465 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6
– reference: 18469813 - Nat Genet. 2008 Jun;40(6):776-81
– reference: 24670764 - Nature. 2014 Mar 27;507(7493):462-70
– reference: 26687719 - Nucleic Acids Res. 2016 Jan 4;44(D1):D710-6
– reference: 21765801 - PLoS Biol. 2011 Jul;9(7):e1000625; discussion e1001102
– reference: 23816838 - J Mol Biol. 2013 Oct 9;425(19):3698-706
– reference: 25159663 - Biochim Biophys Acta. 2014 Nov;1839(11):1097-109
– reference: 22955987 - Genome Res. 2012 Sep;22(9):1760-74
– reference: 18992329 - Biochim Biophys Acta. 2009 Jan;1792(1):14-26
– reference: 19390609 - PLoS Genet. 2009 Apr;5(4):e1000459
– reference: 16683036 - PLoS Genet. 2006 Apr;2(4):e62
– reference: 24217914 - Nucleic Acids Res. 2014 Jan;42(Database issue):D32-7
– reference: 21572440 - Nat Biotechnol. 2011 Jul;29(7):644-52
SSID ssj0003488
Score 2.3312736
Snippet Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched read coverage, accurate measurement of gene...
SourceID pubmedcentral
csuc
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 705
SubjectTerms Animals
Gene Expression Profiling - methods
Genètica
High-Throughput Nucleotide Sequencing - methods
Mice
Ratolins
Resource
RNA
RNA, Long Noncoding - biosynthesis
RNA, Long Noncoding - genetics
Transcriptome
Title Improved definition of the mouse transcriptome via targeted RNA sequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/27197243
https://www.proquest.com/docview/1790458028
https://www.proquest.com/docview/1808615894
https://recercat.cat/handle/2072/314448
https://pubmed.ncbi.nlm.nih.gov/PMC4864457
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKEYIXBBuXcpOR0B4I6RLXrpPHtoJNg00wbdLeolzsUalNpi5Fgh_Db-Wc2Ll0DAR7aJSkzvV8sb9jf-eYkDd-miVhyDJXsiBzUcDoBnHG3cxLBE9kGicMg5MPj8b7p_zgTJz1ej87qqV1mQzTH9fGldzEqrAP7IpRsv9h2eaksAPWwb6wBAvD8p9sbHoEgDJmSs_zeU3-kEuiR69wAojc1AvFUjnf5rFjlN9wyPHRxLE66rr1shx1T-VY2qYBarqLp2t4mtKM_u-hhDXP562cBwg9QK2yfrFcxpdFM7ixsGpsK9B3psPGyCiqqRHjHA-7PRD-uNX7GSFQsQBqXHVDYuQRQNf5ZACMKoGukgQrWKjVXMwJZtofW-ny0BXcTNlS18omjt6iT3SqWOmJTmstTaTm7w1BNQHB-QqjMSV2oJmg0Q4oLpYVKpjEiddMqqgrmbc_H854AHxRyFvkNpOykgF8_NJmox_xwIRa2mdqcrj6uxtXxozT9jIb9KefXq7T61ybqwrdDuU5eUDuW1-FTgzwHpKeyrfI9iSHV778TndopR6uhmW2yJ1pvXZ3Vs8huE0OaoTSFqG00BQQSiuE0g2EUkAorRFKAaG0Regjcvrh_cls37Wzd7ipYEHpcqY1eOeeHiFH9oIMWgsWC-1JNtYy0yodMQ3kKFPci1Og7UxnvgD_VUsZKJGNHpN-XuTqKaEhS4VOwbGH03GfSfDpQ-UJHSoOHI_pAXlXv9QotantcYaVRVS5uJ4fna8iYw7YFAOy0xS_MDld_lTwLVooAu4BH0RcRpiLvdnAH4OniUY-5zwYkNe1HSN4yzjuFucKXmWESfC4CIDJ_6VM4AXgXAQhH5AnxvbNvdXYGRC5gYqmAN7W5j_5_GuVKt7i99mNj3xO7rWf_AvSL1dr9RJoeJm8qr6FX9Tu3z4
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+definition+of+the+mouse+transcriptome+via+targeted+RNA+sequencing&rft.jtitle=Genome+research&rft.au=Bussotti%2C+Giovanni&rft.au=Leonardi%2C+Tommaso&rft.au=Clark%2C+Michael+B.&rft.au=Mercer%2C+Tim+R.&rft.date=2016-05-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5469&rft.volume=26&rft.issue=5&rft.spage=705&rft.epage=716&rft_id=info:doi/10.1101%2Fgr.199760.115&rft_id=info%3Apmid%2F27197243&rft.externalDocID=PMC4864457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon