Network-based characterization of brain functional connectivity in Zen practitioners
In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontopar...
Saved in:
Published in | Frontiers in psychology Vol. 6; p. 603 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
12.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontoparietal attentional circuits, saliency-related regions, and primary sensory cortices. We collected functional magnetic resonance imaging data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into nine functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of frontoparietal circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual, or frontoparietal regions. Multivariate pattern analysis of modulewise FC, using support vector machine (SVM), classified meditators, and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%). Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among frontoparietal, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating the neural correlates of contemplative practices. |
---|---|
AbstractList | In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontoparietal attentional circuits, saliency-related regions, and primary sensory cortices. We collected functional magnetic resonance imaging data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into nine functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of frontoparietal circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual, or frontoparietal regions. Multivariate pattern analysis of modulewise FC, using support vector machine (SVM), classified meditators, and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%). Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among frontoparietal, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating the neural correlates of contemplative practices. In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontoparietal (FP) attentional circuits, saliency-related regions, and primary sensory cortices. We collected fMRI data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into 9 functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of FP circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual or FP regions. Multivariate pattern analysis of modulewise FC, using Support Vector Machine (SVM), classified meditators and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%). Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among FP, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing (RVIP) test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating the neural correlates of contemplative practices. In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontoparietal attentional circuits, saliency-related regions, and primary sensory cortices. We collected functional magnetic resonance imaging data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into nine functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of frontoparietal circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual, or frontoparietal regions. Multivariate pattern analysis of modulewise FC, using support vector machine (SVM), classified meditators, and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%). Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among frontoparietal, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating the neural correlates of contemplative practices.In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontoparietal attentional circuits, saliency-related regions, and primary sensory cortices. We collected functional magnetic resonance imaging data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into nine functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of frontoparietal circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual, or frontoparietal regions. Multivariate pattern analysis of modulewise FC, using support vector machine (SVM), classified meditators, and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%). Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among frontoparietal, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating the neural correlates of contemplative practices. |
Author | Kemmer, Phebe B. Guo, Ying Pagnoni, Giuseppe Wang, Yikai |
AuthorAffiliation | 2 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy 1 Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University Atlanta, GA, USA |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University Atlanta, GA, USA – name: 2 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy |
Author_xml | – sequence: 1 givenname: Phebe B. surname: Kemmer fullname: Kemmer, Phebe B. – sequence: 2 givenname: Ying surname: Guo fullname: Guo, Ying – sequence: 3 givenname: Yikai surname: Wang fullname: Wang, Yikai – sequence: 4 givenname: Giuseppe surname: Pagnoni fullname: Pagnoni, Giuseppe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26029141$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1vFDEQxS0UREJIT4W2pLljbO967QYJRQEiRdCEhsbyx_jisGcf9l7Q8dezexeiBAk39sy89xtL7yU5SjkhIa8pLDmX6l3Y1N1qyYB2SwAB_Bk5oUK0Cwq9PHr0PiZntd7CdFpgAOwFOWYCmKItPSHXX3D8lcuPhTUVfeNuTDFuxBJ_mzHm1OTQ2GJiasI2ubljhsbllHAq7uK4a6bRd0zNZrbFWYClviLPgxkqnt3fp-Tbx4vr88-Lq6-fLs8_XC1cx-S44BZBgbTSGkY5Gi8k9y5IIUwfpFKBBgCvOCrjlTEdWi-VV0oIwazwgZ-SywPXZ3OrNyWuTdnpbKLeN3JZaVPG6AbUFlqkrPe2t66lHUjgTtCJI6nhshMT6_2BtdnaNXqHaSxmeAJ9OknxRq_ynW5bJhlrJ8Dbe0DJP7dYR72O1eEwmIR5WzUVsuvbTsC8683jXQ9L_sYyCeAgcCXXWjA8SCjoOXy9D1_P4et9-JNF_GNxcdxnOP02Dv83_gFG-rbV |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2020_108726 crossref_primary_10_3390_medicina56120712 crossref_primary_10_3389_fpsyg_2015_01757 crossref_primary_10_3758_s13415_023_01136_x crossref_primary_10_1007_s12559_022_10075_7 crossref_primary_10_3389_fpsyg_2021_708973 crossref_primary_10_1093_cercor_bhw027 crossref_primary_10_3389_fnins_2016_00123 crossref_primary_10_4103_ijoy_ijoy_17_22 crossref_primary_10_1111_nyas_13171 crossref_primary_10_1152_jn_00551_2017 crossref_primary_10_1016_j_neubiorev_2022_104846 crossref_primary_10_1016_j_neuroimage_2016_04_024 crossref_primary_10_1016_j_neuroimage_2018_12_024 crossref_primary_10_3389_fnhum_2020_579703 crossref_primary_10_1214_22_AOAS1670 crossref_primary_10_1007_s00429_022_02496_9 crossref_primary_10_1038_s41598_019_55818_z crossref_primary_10_1093_biostatistics_kxab007 crossref_primary_10_1111_nyas_13044 crossref_primary_10_3758_s13423_018_1459_0 crossref_primary_10_1016_j_biosystems_2019_103975 crossref_primary_10_1016_j_pscychresns_2017_04_002 crossref_primary_10_1523_ENEURO_0335_18_2019 crossref_primary_10_1089_brain_2018_0615 crossref_primary_10_3390_brainsci11101263 crossref_primary_10_1038_s41598_022_15195_6 crossref_primary_10_1016_j_bpsgos_2024_100402 crossref_primary_10_1093_nc_niac013 crossref_primary_10_1080_15294145_2021_1976666 crossref_primary_10_1002_brb3_503 |
Cites_doi | 10.3389/fnhum.2012.00038 10.1111/j.1541-0420.2011.01601.x 10.1073/pnas.98.2.676 10.1093/scan/nsm030 10.1371/journal.pone.0068910 10.3389/fnhum.2011.00183 10.1016/0028-3932(96)00029-2 10.1016/j.neulet.2010.10.056 10.1016/j.neuroimage.2011.02.034 10.1145/1961189.1961199 10.1111/biom.12068 10.1016/j.neuroimage.2012.01.014 10.1002/brb3.219 10.1016/j.neuroimage.2008.05.008 10.1016/j.neuroimage.2011.07.008 10.1162/jocn_a_00077 10.3389/fnagi.2014.00076 10.1093/scan/nss066 10.1016/S0167-8760(02)00107-1 10.1073/pnas.0900234106 10.1016/j.tics.2013.09.016 10.1162/089892903770007416 10.1073/pnas.1214900110 10.1073/pnas.1112029108 10.1038/nrn2201 10.1126/science.1131295 10.3389/fpsyg.2013.00725 10.1016/j.neuroimage.2012.01.042 10.1093/scan/nsr087 10.1038/nn.2853 10.1097/00001648-199801000-00004 10.3389/fnhum.2014.00832 10.1016/S1474-4422(13)70144-3 10.1523/JNEUROSCI.1929-08.2008 10.1155/2012/680407 10.1016/j.neuron.2011.09.006 10.1162/089892999563265 10.1016/j.neurobiolaging.2007.06.008 10.1073/pnas.0905267106 10.1523/JNEUROSCI.4135-11.2012 10.3389/fnsys.2010.00022 10.1016/j.neuroimage.2009.11.020 10.1371/journal.pone.0003083 10.3389/fnsys.2011.00002 10.1073/pnas.0308627101 10.1002/mrm.1910340409 10.1038/nrn755 10.1016/j.neuroimage.2010.08.063 10.1126/science.1194144 10.1002/hbm.20113 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2009.10.080 10.1093/cercor/bhu036 10.1016/S0165-0173(01)00044-3 10.1523/JNEUROSCI.2177-05.2005 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Kemmer, Guo, Wang and Pagnoni. 2015 |
Copyright_xml | – notice: Copyright © 2015 Kemmer, Guo, Wang and Pagnoni. 2015 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpsyg.2015.00603 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1664-1078 |
ExternalDocumentID | oai_doaj_org_article_b04e127db7bc4150803c6162b81a3856 PMC4428224 26029141 10_3389_fpsyg_2015_00603 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH079448 – fundername: NCCIH NIH HHS grantid: P30 AT000609 – fundername: NIMH NIH HHS grantid: R01 MH105561 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ABIVO ACGFO ACGFS ACHQT ACXDI ADBBV ADRAZ AEGXH AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN F5P GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-3be0908b8ba213ead683dcf866a7f899f1f00d93e9ad9aa5ebd89d996662b6df3 |
IEDL.DBID | M48 |
ISSN | 1664-1078 |
IngestDate | Wed Aug 27 01:25:03 EDT 2025 Thu Aug 21 18:19:54 EDT 2025 Thu Jul 10 17:27:36 EDT 2025 Thu Apr 03 07:10:02 EDT 2025 Tue Jul 01 01:45:02 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | fMRI network analysis functional connectivity meditation sustained attention |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-3be0908b8ba213ead683dcf866a7f899f1f00d93e9ad9aa5ebd89d996662b6df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Barbara Tomasino, University of Udine, Italy This article was submitted to Cognition, a section of the journal Frontiers in Psychology Reviewed by: Yi-Yuan Tang, Texas Tech University, USA; Shanshan Li, Indiana University Richard M. Fairbanks School of Public Health, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpsyg.2015.00603 |
PMID | 26029141 |
PQID | 1685745606 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b04e127db7bc4150803c6162b81a3856 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4428224 proquest_miscellaneous_1685745606 pubmed_primary_26029141 crossref_primary_10_3389_fpsyg_2015_00603 crossref_citationtrail_10_3389_fpsyg_2015_00603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-12 |
PublicationDateYYYYMMDD | 2015-05-12 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in psychology |
PublicationTitleAlternate | Front Psychol |
PublicationYear | 2015 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Lowe (B40) 2012; 62 Tzourio-Mazoyer (B55) 2002; 15 Farb (B16) 2007; 2 Zuo (B58) 2010; 49 Jang (B30) 2011; 487 Xia (B57) 2013; 8 Froeliger (B21) 2012; 2012 Kam (B32) 2013; 4 Raichle (B47) 2001; 98 Guo (B25) 2011; 67 Laird (B34) 2011; 23 Fransson (B20) 2005; 26 Hasenkamp (B28) 2012; 6 Dosenbach (B14) 2010; 329 Smith (B52) 2011; 54 Fornito (B18) 2010; 4 Biswal (B4) 1995; 34 Lehmann (B37) 2012; 60 Mason (B42) 2007; 315 Cohen (B9) 1988 Guo (B26) 2008; 42 Bassett (B2) 2008; 28 Kilpatrick (B33) 2011; 56 Smith (B51) 2009; 106 Cooper (B10) 2003; 47 Lim (B39) 2010; 49 Greicius (B24) 2004; 101 Guo (B27) 2013; 69 Coull (B12) 1996; 34 Corbetta (B11) 2002; 3 Power (B46) 2011; 72 Taylor (B54) 2013; 8 Garrison (B23) 2014; 4 Walker (B56) 2011; 14 Gard (B22) 2014; 6 Csardi (B13) 2006; 1695 Sarter (B49) 2001; 35 Chang (B7) 2011; 2 Buckner (B6) 2005; 25 Farb (B15) 2013; 8 Fox (B19) 2007; 8 Binder (B3) 1999; 11 Pagnoni (B44) 2007; 28 Liang (B38) 2013; 110 Josipovic (B31) 2011; 5 Christoff (B8) 2009; 106 Smith (B53) 2013; 17 Sahakian (B48) 1992; 85 Pagnoni (B43) 2012; 32 Filippi (B17) 2013; 12 Pagnoni (B45) 2008; 3 Hasenkamp (B29) 2012; 59 Lang (B35) 1998; 9 Satterthwaite (B50) 2014 Marzetti (B41) 2014; 8 Allen (B1) 2011; 5 Brewer (B5) 2011; 108 Lawrence (B36) 2003; 15 18985137 - Soc Cogn Affect Neurosci. 2007 Dec;2(4):313-22 22114193 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20254-9 22446298 - Soc Cogn Affect Neurosci. 2013 Jan;8(1):4-14 22287947 - Front Hum Neurosci. 2012 Jan 03;5:183 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 20817103 - Neuroimage. 2011 Jan 15;54(2):875-91 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 22536289 - Evid Based Complement Alternat Med. 2012;2012:680407 19433790 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24 9430261 - Epidemiology. 1998 Jan;9(1):7-8 21334442 - Neuroimage. 2011 May 1;56(1):290-8 9950716 - J Cogn Neurosci. 1999 Jan;11(1):80-95 14614813 - J Cogn Neurosci. 2003 Oct 1;15(7):1028-38 23861951 - PLoS One. 2013 Jul 04;8(7):e68910 21671731 - J Cogn Neurosci. 2011 Dec;23(12):4022-37 24944863 - Brain Behav. 2014 May;4(3):337-47 22245648 - Neuroimage. 2012 Aug 15;62(2):1146-51 22496570 - J Neurosci. 2012 Apr 11;32(15):5242-9 24133472 - Front Psychol. 2013 Oct 14;4:725 20592949 - Front Syst Neurosci. 2010 Jun 17;4:22 25360102 - Front Hum Neurosci. 2014 Oct 15;8:832 18769538 - PLoS One. 2008 Sep 03;3(9):e3083 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 8904746 - Neuropsychologia. 1996 Nov;34(11):1085-95 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 24238796 - Trends Cogn Sci. 2013 Dec;17(12):666-82 24646613 - Cereb Cortex. 2015 Sep;25(9):2383-94 22403536 - Front Hum Neurosci. 2012 Mar 01;6:38 24795629 - Front Aging Neurosci. 2014 Apr 22;6:76 24120645 - Lancet Neurol. 2013 Dec;12(12):1189-99 11336780 - Brain Res Brain Res Rev. 2001 Apr;35(2):146-60 21034792 - Neurosci Lett. 2011 Jan 10;487(3):358-62 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2 1629849 - J R Soc Med. 1992 Jul;85(7):399-402 18650105 - Neuroimage. 2008 Sep 1;42(3):1078-93 12543447 - Int J Psychophysiol. 2003 Jan;47(1):65-74 19896537 - Neuroimage. 2010 Feb 1;49(3):2163-77 19925871 - Neuroimage. 2010 Feb 15;49(4):3426-35 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 20829489 - Science. 2010 Sep 10;329(5997):1358-61 21782031 - Neuroimage. 2012 Jan 2;59(1):750-60 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 17234951 - Science. 2007 Jan 19;315(5810):393-5 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 24033125 - Biometrics. 2013 Dec;69(4):970-81 16120771 - J Neurosci. 2005 Aug 24;25(34):7709-17 22266174 - Neuroimage. 2012 Apr 2;60(2):1574-86 21517789 - Biometrics. 2011 Dec;67(4):1532-42 22689216 - Soc Cogn Affect Neurosci. 2013 Jan;8(1):15-26 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 22099467 - Neuron. 2011 Nov 17;72(4):665-78 21613991 - Nat Neurosci. 2011 Jun;14(6):669-70 11771995 - Neuroimage. 2002 Jan;15(1):273-89 17655980 - Neurobiol Aging. 2007 Oct;28(10):1623-7 |
References_xml | – volume: 6 issue: 38 year: 2012 ident: B28 article-title: Effects of meditation experience on functional connectivity of distributed brain networks. publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00038 – volume: 67 start-page: 1532 year: 2011 ident: B25 article-title: A general probabilistic model for group independent component analysis and its estimation methods. publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01601.x – volume: 98 start-page: 676 year: 2001 ident: B47 article-title: A default mode of brain function. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.98.2.676 – volume: 2 start-page: 313 year: 2007 ident: B16 article-title: Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsm030 – volume: 8 issue: e68910 year: 2013 ident: B57 article-title: BrainNet Viewer: a network visualization tool for human brain connectomics. publication-title: PLoS ONE doi: 10.1371/journal.pone.0068910 – volume: 5 issue: 183 year: 2011 ident: B31 article-title: Influence of meditation on anti-correlated networks in the brain. publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2011.00183 – volume: 34 start-page: 1085 year: 1996 ident: B12 article-title: A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. publication-title: Neuropsychologia doi: 10.1016/0028-3932(96)00029-2 – year: 1988 ident: B9 publication-title: Statistical Power Analysis for the Behavioral Sciences – volume: 487 start-page: 358 year: 2011 ident: B30 article-title: Increased default mode network connectivity associated with meditation. publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.10.056 – volume: 56 start-page: 290 year: 2011 ident: B33 article-title: Impact of mindfulness-based stress reduction training on intrinsic brain connectivity. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.034 – volume: 2 issue: 27 year: 2011 ident: B7 article-title: LIBSVM: a library for support vector machines. publication-title: ACM Trans. Intell. Sys. Technol. doi: 10.1145/1961189.1961199 – volume: 69 start-page: 970 year: 2013 ident: B27 article-title: A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies. publication-title: Biometrics doi: 10.1111/biom.12068 – volume: 62 start-page: 1146 year: 2012 ident: B40 article-title: The emergence of doing “nothing†as a viable paradigm design. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.014 – volume: 1695 start-page: 1 year: 2006 ident: B13 article-title: The igraph software package for complex network research. publication-title: Inter. J. Complex Syst. – volume: 4 start-page: 337 year: 2014 ident: B23 article-title: BOLD signal and functional connectivity associated with loving kindness meditation. publication-title: Brain Behav. doi: 10.1002/brb3.219 – volume: 42 start-page: 1078 year: 2008 ident: B26 article-title: A unified framework for group independent component analysis for multi-subject fMRI data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 59 start-page: 750 year: 2012 ident: B29 article-title: Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.008 – volume: 23 start-page: 4022 year: 2011 ident: B34 article-title: Behavioral interpretations of intrinsic connectivity networks. publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00077 – volume: 6 issue: 76 year: 2014 ident: B22 article-title: Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00076 – volume: 8 start-page: 15 year: 2013 ident: B15 article-title: Mindfulness meditation training alters cortical representations of interoceptive attention. publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nss066 – volume: 47 start-page: 65 year: 2003 ident: B10 article-title: Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(02)00107-1 – volume: 106 start-page: 8719 year: 2009 ident: B8 article-title: Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0900234106 – volume: 17 start-page: 666 year: 2013 ident: B53 article-title: Functional connectomics from resting-state fMRI. publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.016 – volume: 15 start-page: 1028 year: 2003 ident: B36 article-title: Multiple neuronal networks mediate sustained attention. publication-title: J. Cogn. Neuroscie. doi: 10.1162/089892903770007416 – volume: 110 start-page: 1929 year: 2013 ident: B38 article-title: Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1214900110 – volume: 108 start-page: 20254 year: 2011 ident: B5 article-title: Meditation experience is associated with differences in default mode network activity and connectivity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1112029108 – volume: 8 start-page: 700 year: 2007 ident: B19 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 315 start-page: 393 year: 2007 ident: B42 article-title: Wandering minds: the default network and stimulus-independent thought. publication-title: Science doi: 10.1126/science.1131295 – volume: 4 issue: 725 year: 2013 ident: B32 article-title: The neurocognitive consequences of the wandering mind: a mechanistic account of sensory-motor decoupling. publication-title: Front. Psychol. doi: 10.3389/fpsyg.2013.00725 – volume: 60 start-page: 1574 year: 2012 ident: B37 article-title: Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.042 – volume: 8 start-page: 4 year: 2013 ident: B54 article-title: Impact of meditation training on the default mode network during a restful state. publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsr087 – volume: 14 start-page: 669 year: 2011 ident: B56 article-title: Amyloid by default. publication-title: Nat. Neurosci. doi: 10.1038/nn.2853 – volume: 9 start-page: 7 year: 1998 ident: B35 article-title: That confounded p-value. publication-title: Epidemiology doi: 10.1097/00001648-199801000-00004 – volume: 85 start-page: 399 year: 1992 ident: B48 article-title: Computerized assessment in neuropsychiatry using CANTAB: discussion paper. publication-title: J. R. Soc. Med. – volume: 8 issue: 832 year: 2014 ident: B41 article-title: Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation. publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00832 – volume: 12 start-page: 1189 year: 2013 ident: B17 article-title: Assessment of system dysfunction in the brain through MRI-based connectomics. publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70144-3 – volume: 28 start-page: 9239 year: 2008 ident: B2 article-title: Hierarchical organization of human cortical networks in health and schizophrenia. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1929-08.2008 – volume: 2012 issue: 680407 year: 2012 ident: B21 article-title: Meditation-state functional connectivity (msFC): strengthening of the dorsal attention network and beyond. publication-title: Evid. Based Complement. Alternat. Med. doi: 10.1155/2012/680407 – volume: 72 start-page: 665 year: 2011 ident: B46 article-title: Functional network organization of the human brain. publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 11 start-page: 80 year: 1999 ident: B3 article-title: Conceptual processing during the conscious resting state. A functional MRI study. publication-title: J Cogn. Neurosci doi: 10.1162/089892999563265 – volume: 28 start-page: 1623 year: 2007 ident: B44 article-title: Age effects on gray matter volume and attentional performance in Zen meditation. publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.06.008 – volume: 106 start-page: 13040 year: 2009 ident: B51 article-title: Correspondence of the brain’s functional architecture during activation and rest. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0905267106 – volume: 32 start-page: 5242 year: 2012 ident: B43 article-title: Dynamical properties of BOLD activity from the ventral posteromedial cortex associated with meditation and attentional skills. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4135-11.2012 – volume: 4 issue: 22 year: 2010 ident: B18 article-title: Network scaling effects in graph analytic studies of human resting-state fMRI data. publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00022 – volume: 49 start-page: 3426 year: 2010 ident: B39 article-title: Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.020 – volume: 3 issue: e3083 year: 2008 ident: B45 article-title: “Thinking about not-thinkingâ€: neural correlates of conceptual processing during Zen meditation. publication-title: PLoS ONE doi: 10.1371/journal.pone.0003083 – volume: 5 issue: 2 year: 2011 ident: B1 article-title: A baseline for the multivariate comparison of resting state networks. publication-title: Front. Neurosci. doi: 10.3389/fnsys.2011.00002 – volume: 101 start-page: 4637 year: 2004 ident: B24 article-title: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0308627101 – volume: 34 start-page: 537 year: 1995 ident: B4 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340409 – volume: 3 start-page: 201 year: 2002 ident: B11 article-title: Control of goal-directed and stimulus-driven attention in the brain. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn755 – volume: 54 start-page: 875 year: 2011 ident: B52 article-title: Network modelling methods for FMRI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 329 start-page: 1358 year: 2010 ident: B14 article-title: Prediction of individual brain maturity using fMRI. publication-title: Science doi: 10.1126/science.1194144 – volume: 26 start-page: 15 year: 2005 ident: B20 article-title: Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20113 – volume: 15 start-page: 273 year: 2002 ident: B55 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 49 start-page: 2163 year: 2010 ident: B58 article-title: Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.080 – year: 2014 ident: B50 article-title: Linked sex differences in cognition and functional connectivity in youth. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu036 – volume: 35 start-page: 146 year: 2001 ident: B49 article-title: The cognitive neuroscience of sustained attention: where top-down meets bottom-up. publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(01)00044-3 – volume: 25 start-page: 7709 year: 2005 ident: B6 article-title: Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2177-05.2005 – reference: 24033125 - Biometrics. 2013 Dec;69(4):970-81 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 16120771 - J Neurosci. 2005 Aug 24;25(34):7709-17 – reference: 18985137 - Soc Cogn Affect Neurosci. 2007 Dec;2(4):313-22 – reference: 17655980 - Neurobiol Aging. 2007 Oct;28(10):1623-7 – reference: 22536289 - Evid Based Complement Alternat Med. 2012;2012:680407 – reference: 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15 – reference: 24795629 - Front Aging Neurosci. 2014 Apr 22;6:76 – reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 – reference: 24238796 - Trends Cogn Sci. 2013 Dec;17(12):666-82 – reference: 12543447 - Int J Psychophysiol. 2003 Jan;47(1):65-74 – reference: 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2 – reference: 20817103 - Neuroimage. 2011 Jan 15;54(2):875-91 – reference: 22245648 - Neuroimage. 2012 Aug 15;62(2):1146-51 – reference: 24646613 - Cereb Cortex. 2015 Sep;25(9):2383-94 – reference: 20829489 - Science. 2010 Sep 10;329(5997):1358-61 – reference: 22114193 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20254-9 – reference: 24944863 - Brain Behav. 2014 May;4(3):337-47 – reference: 23319644 - Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 – reference: 21334442 - Neuroimage. 2011 May 1;56(1):290-8 – reference: 9950716 - J Cogn Neurosci. 1999 Jan;11(1):80-95 – reference: 21782031 - Neuroimage. 2012 Jan 2;59(1):750-60 – reference: 24133472 - Front Psychol. 2013 Oct 14;4:725 – reference: 18769538 - PLoS One. 2008 Sep 03;3(9):e3083 – reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78 – reference: 25360102 - Front Hum Neurosci. 2014 Oct 15;8:832 – reference: 23861951 - PLoS One. 2013 Jul 04;8(7):e68910 – reference: 22689216 - Soc Cogn Affect Neurosci. 2013 Jan;8(1):15-26 – reference: 21613991 - Nat Neurosci. 2011 Jun;14(6):669-70 – reference: 18650105 - Neuroimage. 2008 Sep 1;42(3):1078-93 – reference: 1629849 - J R Soc Med. 1992 Jul;85(7):399-402 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 22446298 - Soc Cogn Affect Neurosci. 2013 Jan;8(1):4-14 – reference: 20592949 - Front Syst Neurosci. 2010 Jun 17;4:22 – reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 21671731 - J Cogn Neurosci. 2011 Dec;23(12):4022-37 – reference: 11336780 - Brain Res Brain Res Rev. 2001 Apr;35(2):146-60 – reference: 22287947 - Front Hum Neurosci. 2012 Jan 03;5:183 – reference: 21517789 - Biometrics. 2011 Dec;67(4):1532-42 – reference: 14614813 - J Cogn Neurosci. 2003 Oct 1;15(7):1028-38 – reference: 24120645 - Lancet Neurol. 2013 Dec;12(12):1189-99 – reference: 22496570 - J Neurosci. 2012 Apr 11;32(15):5242-9 – reference: 19433790 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24 – reference: 18784304 - J Neurosci. 2008 Sep 10;28(37):9239-48 – reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 – reference: 9430261 - Epidemiology. 1998 Jan;9(1):7-8 – reference: 22266174 - Neuroimage. 2012 Apr 2;60(2):1574-86 – reference: 22403536 - Front Hum Neurosci. 2012 Mar 01;6:38 – reference: 21034792 - Neurosci Lett. 2011 Jan 10;487(3):358-62 – reference: 19925871 - Neuroimage. 2010 Feb 15;49(4):3426-35 – reference: 8904746 - Neuropsychologia. 1996 Nov;34(11):1085-95 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98 (2):676-82 – reference: 19896537 - Neuroimage. 2010 Feb 1;49(3):2163-77 |
SSID | ssj0000402002 |
Score | 2.2745245 |
Snippet | In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 603 |
SubjectTerms | fMRI functional connectivity Meditation Network analysis Psychology sustained attention |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iyUuxrW1fv4jQSw_L2yS7-ThqqYigJwXxEjL50EJZH33Pg_99M8m-5T0p9eJ1kyVhZpKZXzL5DSHfFE_RKTCNjCYDFBEhr7kgG66Ud1yBSgbfDp9fyNOr7uy6v94o9YU5YZUeuApuDm0XGVcBFPgOyctb4SWTHDRzQveFbDv7vA0wVfZghEWYuoP3khmFmXlaLB9vMZULz1DkukbW6IcKXf-_YsynqZIbvudkn7wag0Z6VCf7muzE4Q3Zm_aux7fk8qKmczfolQL1Ew1zfWVJ7xMFLAZB0Y_V4z_qMcfF1-oRNDfdxIEuNuiLlgfk6uTn5Y_TZiyY0Pie61UjILam1aDBcSayjUgtgk9aSqdSBlaJpbYNRkTjgnGujxC0CYh4sjxlSOId2R3yAB8IhZicAOVDTD4jlF47Z8DpyHnsuwhpRuZr8Vk_soljUYvfNqMKFLgtArcocFsEPiPfpz8WlUnjP32PUSNTP-TALh-yZdjRMuxzljEjh2t92rxm8CLEDfH-YWmZ1L3KkWOb-7yv-p2GyviOG9axGVFbmt-ay3bL8Ouu8HJ3XcnJ_fgSk_9E9lAcmKfA-Geyu_rzEL_k8GcFX4ul_wVhzwZw priority: 102 providerName: Directory of Open Access Journals |
Title | Network-based characterization of brain functional connectivity in Zen practitioners |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26029141 https://www.proquest.com/docview/1685745606 https://pubmed.ncbi.nlm.nih.gov/PMC4428224 https://doaj.org/article/b04e127db7bc4150803c6162b81a3856 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYlueRS2vS1bRNU6KUHN5Zs63EooS0NoZCcshB6EXqmheDd7m4g--8zIzlutiyFHm3JD400mvmk0TeEvJc8RSudrkTUAFCa6EDngqi4lN5y6WTSeHb47FycTtvvl93ln-PRgwCXW6Ed5pOaLq4_3v5eH4PCf0LECfb2KM2X6yuM0sLlEYHUn7tglySq6dng7Od5GaFSCUIUooX5R6qyb7n1JRt2KtP5b_NB_w6lfGCbTp6Qx4NTST-XUfCUPIr9Ptkb57b1M3JxXsK9K7RagfqRprmcwqSzRB0mi6Bo58ryIPUYA-NLdgkKRT9iT-cP6I2Wz8n05NvF19NqSKhQ-Y6rVdW4WOtaOeUsZw2MIaGa4JMSwsoEwCuxVNdBN1HboK3togtKB0REgjsRUvOC7PTwgVeEuphs46QPMXlAMJ2yVjurIuexa6NLE3J0Lz7jB7ZxTHpxbQB1oMBNFrhBgZss8An5MD4xL0wb_6j7BXtkrIcc2fnGbHFlBpUzrm4j4zI46XyLtPd14wWDlihmG9WJCXl3358GdAo3SmwfZzdLw4TqJHiWNdR5Wfp3_BTgP65ZyyZEbvT8xr9slvS_fmbe7rbNMbuv_6Ohb8geXmC4AuNvyc5qcRMPwAtaucO8enCYh_gdqXcJtw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-based+characterization+of+brain+functional+connectivity+in+Zen+practitioners&rft.jtitle=Frontiers+in+psychology&rft.au=Kemmer%2C+Phebe+B.&rft.au=Guo%2C+Ying&rft.au=Wang%2C+Yikai&rft.au=Pagnoni%2C+Giuseppe&rft.date=2015-05-12&rft.issn=1664-1078&rft.eissn=1664-1078&rft.volume=6&rft_id=info:doi/10.3389%2Ffpsyg.2015.00603&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpsyg_2015_00603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-1078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-1078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-1078&client=summon |