Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases
Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the...
Saved in:
Published in | Frontiers in immunology Vol. 6; p. 554 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
03.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR-NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression. |
---|---|
AbstractList | Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR-NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression. Short-Chain Fatty Acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here we describe that SCFAs have rapid and reversible effects on Toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4 and TLR9 agonists. NF-κB activation in response to TNFα was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1 (MCP-1). SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor Trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR-NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprogramming of cytokine/chemokine expression. |
Author | van Putten, Jos P. M. Lin, May Young de Zoete, Marcel R. Strijbis, Karin |
AuthorAffiliation | 1 Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands |
AuthorAffiliation_xml | – name: 1 Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands |
Author_xml | – sequence: 1 givenname: May Young surname: Lin fullname: Lin, May Young – sequence: 2 givenname: Marcel R. surname: de Zoete fullname: de Zoete, Marcel R. – sequence: 3 givenname: Jos P. M. surname: van Putten fullname: van Putten, Jos P. M. – sequence: 4 givenname: Karin surname: Strijbis fullname: Strijbis, Karin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26579129$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1r3DAQhk1JadI0956Kjr3sVrI-bF8KYZs0C4FC2p7FWB9rBVvaSnJg_321u0lICtVBM0jvPDMw7_vqxAdvquojwUtK2-6LddM0L2tM-BJjztmb6owIwRa0rtnJi_y0ukjpHpfDOkopf1ed1oI3Ham7s2p7Z7SLRmUXPAoWXW1dHszoYETrgvcG3Zm0DT6ZhPod-jmEmBerAZxH15DzDl0qpxPKQwzzZkBrP7jePcFuXMplZvTNgDJ5N0KhfKjeWhiTuXiM59Xv66tfq5vF7Y_v69Xl7ULxus1lcEH7tul73huhcGtpx6GhPSWk5co2mgDmgDUWwGpNmBJE1b0hJTIFXNHzan3k6gD3chvdBHEnAzh5eAhxIyFmp0YjO6oF41YTrYCB1R10uFzKWtXU1vSF9fXI2s79ZLQyPkcYX0Ff_3g3yE14kExQLAQugM-PgBj-zCZlObmkzDiCN2FOkjSs413TNG2RfnrZ67nJ08qKAB8FKoaUorHPEoLl3hjyYAy5N4Y8GKOUiH9KlMuw31KZ1o3_L_wLV3bBSw |
CitedBy_id | crossref_primary_10_1016_j_ntm_2023_100020 crossref_primary_10_3389_fimmu_2020_590783 crossref_primary_10_1155_2018_1304397 crossref_primary_10_1038_s41598_021_84881_8 crossref_primary_10_3389_frmbi_2024_1418633 crossref_primary_10_3389_fcimb_2022_835217 crossref_primary_10_1016_j_foodres_2020_109641 crossref_primary_10_1021_acs_jafc_3c00611 crossref_primary_10_1007_s00394_022_02927_7 crossref_primary_10_1097_CM9_0000000000000228 crossref_primary_10_3389_fcimb_2024_1364545 crossref_primary_10_3389_fphar_2021_712531 crossref_primary_10_3892_ol_2018_9201 crossref_primary_10_12677_HJBM_2024_141009 crossref_primary_10_1155_2021_9981480 crossref_primary_10_1016_j_smim_2024_101891 crossref_primary_10_1093_advances_nmz057 crossref_primary_10_3390_nu15082008 crossref_primary_10_1007_s12602_024_10243_1 crossref_primary_10_3390_microorganisms13030675 crossref_primary_10_3390_nu13030850 crossref_primary_10_1021_acs_jafc_4c03278 crossref_primary_10_3390_ijms241210409 crossref_primary_10_1021_acs_jafc_0c04370 crossref_primary_10_3389_fimmu_2020_571731 crossref_primary_10_3390_nu15194229 crossref_primary_10_3389_fimmu_2020_615536 crossref_primary_10_1155_2021_9995903 crossref_primary_10_3389_fmicb_2022_961536 crossref_primary_10_1016_j_freeradbiomed_2019_04_005 crossref_primary_10_1172_JCI150473 crossref_primary_10_1007_s10068_024_01664_3 crossref_primary_10_3390_nu14214622 crossref_primary_10_4049_jimmunol_2300016 crossref_primary_10_3389_fimmu_2023_1124704 crossref_primary_10_1093_ibd_izz188 crossref_primary_10_5812_jjm_136504 crossref_primary_10_1016_j_biopha_2021_112147 crossref_primary_10_3390_ijms22179641 crossref_primary_10_3389_fmars_2024_1495373 crossref_primary_10_1007_s11912_023_01492_4 crossref_primary_10_1016_j_heliyon_2024_e34389 crossref_primary_10_1097_MD_0000000000023039 crossref_primary_10_1016_j_bbih_2024_100923 crossref_primary_10_3748_wjg_v23_i46_8217 crossref_primary_10_1016_j_job_2024_01_002 crossref_primary_10_1016_j_pharmthera_2023_108387 crossref_primary_10_1002_cbf_4108 crossref_primary_10_1016_j_ijbiomac_2019_05_171 crossref_primary_10_1128_msystems_00602_24 crossref_primary_10_3390_app10020568 crossref_primary_10_1016_j_ijbiomac_2024_131482 crossref_primary_10_3389_fmicb_2017_02171 crossref_primary_10_1016_j_metabol_2016_11_006 crossref_primary_10_1152_ajplung_00306_2018 crossref_primary_10_1016_j_jff_2021_104505 crossref_primary_10_3389_fmed_2021_655956 crossref_primary_10_1093_nutrit_nuae172 crossref_primary_10_1002_jcb_25625 crossref_primary_10_1016_j_livsci_2017_07_004 crossref_primary_10_3168_jds_2020_19092 crossref_primary_10_1002_mnfr_202000745 crossref_primary_10_3390_biom13050817 crossref_primary_10_1099_jmm_0_001049 crossref_primary_10_3389_fnut_2022_850014 crossref_primary_10_1016_j_fbio_2024_103656 crossref_primary_10_4239_wjd_v15_i4_793 crossref_primary_10_1038_s41598_020_80859_0 crossref_primary_10_1016_j_biopha_2023_114620 crossref_primary_10_1128_mbio_01321_24 crossref_primary_10_4239_wjd_v13_i4_308 crossref_primary_10_3389_fimmu_2018_00055 crossref_primary_10_3390_molecules29020379 crossref_primary_10_1093_gastro_goaa085 crossref_primary_10_1155_2020_4074832 crossref_primary_10_3389_fimmu_2023_1171834 crossref_primary_10_3390_foods12203800 crossref_primary_10_3389_fimmu_2024_1380476 crossref_primary_10_2147_JMDH_S367591 crossref_primary_10_1016_j_neo_2021_04_004 crossref_primary_10_1016_j_intimp_2025_114193 crossref_primary_10_3390_ijms22147683 crossref_primary_10_2147_IJNRD_S489074 crossref_primary_10_3390_cells11020307 crossref_primary_10_1021_acs_jafc_1c05014 crossref_primary_10_3389_fimmu_2023_1186892 crossref_primary_10_1016_j_apsb_2022_12_010 crossref_primary_10_1007_s00253_021_11406_8 crossref_primary_10_1093_ibd_izaa253 crossref_primary_10_1002_mnfr_201900943 crossref_primary_10_1016_j_vetmic_2024_110342 crossref_primary_10_1016_j_molimm_2017_09_011 crossref_primary_10_3389_fphys_2017_00822 crossref_primary_10_1016_j_aninu_2020_10_002 crossref_primary_10_3389_fimmu_2019_02754 crossref_primary_10_1016_j_carbpol_2022_120329 crossref_primary_10_1152_ajpgi_00411_2015 crossref_primary_10_3390_biom15040469 crossref_primary_10_1124_pharmrev_122_000674 crossref_primary_10_1177_2050640618804444 crossref_primary_10_1096_fj_202402105RR crossref_primary_10_1016_j_jff_2021_104536 crossref_primary_10_17827_aktd_1330297 crossref_primary_10_1016_j_ecoenv_2024_117316 crossref_primary_10_21876_rcshci_v12i1_1223 crossref_primary_10_3390_nu16111714 crossref_primary_10_1007_s12013_024_01587_0 crossref_primary_10_1186_s12974_022_02502_1 crossref_primary_10_3390_nu14091977 crossref_primary_10_1016_j_lfs_2024_123072 crossref_primary_10_12677_ACM_2022_127869 crossref_primary_10_1016_j_it_2023_06_003 crossref_primary_10_3389_fphys_2021_650313 |
Cites_doi | 10.1046/j.1365-2036.1998.00337.x 10.1038/nri2707 10.1074/jbc.M110.139469 10.1038/nature08530 10.4049/jimmunol.178.11.7110 10.1093/jn/133.7.2485S 10.1186/1471-2202-12-50 10.1111/j.1365-2672.1992.tb05187.x 10.1016/0092-8674(78)90305-7 10.1016/0092-8674(78)90306-9 10.1038/nature04768 10.1128/MCB.26.8.3106-3113.2006 10.1128/IAI.68.12.7010-7017.2000 10.1016/j.molimm.2007.04.001 10.1016/j.it.2011.04.001 10.1016/j.cyto.2005.03.001 10.1038/nrd4360 10.1046/j.1365-2249.2003.02056.x 10.1152/physrev.2001.81.3.1031 10.1016/S0021-9258(17)37831-6 10.3390/nu3100858 10.4049/jimmunol.0901921 10.1136/gut.28.10.1221 10.1053/j.gastro.2014.02.037 10.1038/ni.1863 10.1126/science.1062374 10.1016/j.ydbio.2008.04.011 10.1038/nri2587 10.1016/j.chom.2013.10.009 10.1128/JB.00024-10 10.1016/S0021-9258(17)34804-4 10.1093/jn/132.5.1012 10.1079/PNS2002207 10.1074/jbc.274.13.9108 10.1016/j.cell.2010.01.022 10.1016/j.molimm.2007.09.013 10.1038/sj.onc.1210617 10.1016/j.cell.2013.12.016 10.1203/00006450-199804001-00501 10.1038/43710 10.1182/blood-2003-09-3131 10.1016/0016-5085(92)91094-K 10.1136/gut.47.3.397 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Lin, de Zoete, van Putten and Strijbis. 2015 Lin, de Zoete, van Putten and Strijbis |
Copyright_xml | – notice: Copyright © 2015 Lin, de Zoete, van Putten and Strijbis. 2015 Lin, de Zoete, van Putten and Strijbis |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2015.00554 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
EndPage | 554 |
ExternalDocumentID | oai_doaj_org_article_93d645fd1dca4afd9a90d9acffc72feb PMC4630660 26579129 10_3389_fimmu_2015_00554 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Seventh Framework Programme grantid: REA grant PIIF-GA-2013-623967 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-3263b87bb5be6c08f395a73b31185cf7d1a05a0d06a42d14c61c2be1c614ca5c3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Thu Aug 21 18:20:29 EDT 2025 Fri Jul 11 04:06:32 EDT 2025 Thu Apr 03 07:09:56 EDT 2025 Tue Jul 01 01:57:29 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NF-κB butyrate toll-like receptors SCFAs flagellin TLR5 histone acetylation HDAC |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-3263b87bb5be6c08f395a73b31185cf7d1a05a0d06a42d14c61c2be1c614ca5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Abhay Satoskar, The Ohio State University, USA Reviewed by: Ryo Inoue, Kyoto Prefectural University, Japan; Narasimham L. Parinandi, The Ohio State University College of Medicine, USA Specialty section: This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2015.00554 |
PMID | 26579129 |
PQID | 1749597778 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93d645fd1dca4afd9a90d9acffc72feb pubmedcentral_primary_oai_pubmedcentral_nih_gov_4630660 proquest_miscellaneous_1749597778 pubmed_primary_26579129 crossref_primary_10_3389_fimmu_2015_00554 crossref_citationtrail_10_3389_fimmu_2015_00554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-03 |
PublicationDateYYYYMMDD | 2015-11-03 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2015 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Abreu (B12) 2010; 10 Shakespear (B27) 2011; 32 Hinnebusch (B34) 2002; 132 Chen (B41) 2001; 293 Bocker (B11) 2003; 131 Macfarlane (B4) 2003; 62 Cario (B13) 2000; 68 Keestra (B19) 2007; 178 Nusinzon (B38) 2006; 26 van Aubel (B20) 2007; 44 Barton (B22) 2009; 9 Takeuchi (B16) 2010; 140 Fusunyan (B45) 1998; 43 Mayer (B1) 2014; 146 Keestra (B18) 2008; 45 Ma (B43) 2008; 319 Keestra (B23) 2010; 185 De Vadder (B7) 2014; 156 Sealy (B26) 1978; 14 Rodriguez (B17) 1999; 274 Kruh (B33) 1982; 42 Heerdt (B10) 1994; 54 Macfarlane (B2) 1992; 72 Candido (B25) 1978; 14 Boffa (B24) 1978; 253 Pakala (B40) 2010; 285 Segain (B47) 2000; 47 Cullender (B14) 2013; 14 Cook (B3) 1998; 12 Mariadason (B32) 2000; 60 Cummings (B5) 1987; 28 Finnin (B29) 1999; 401 Falkenberg (B35) 2014; 13 Zhou (B42) 2011; 12 Vaquero (B44) 2007; 26 Cousens (B28) 1979; 254 Kawai (B15) 2010; 11 Davie (B30) 2003; 133 Van Lint (B31) 1996; 5 Vinolo (B46) 2011; 3 Deng (B36) 2004; 103 Topping (B6) 2001; 81 Lu (B37) 2005; 31 Wosten (B21) 2010; 192 Scheppach (B8) 1992; 103 Maslowski (B9) 2009; 461 Gilchrist (B39) 2006; 441 8723390 - Gene Expr. 1996;5(4-5):245-53 11427691 - Physiol Rev. 2001 Jul;81(3):1031-64 11533489 - Science. 2001 Aug 31;293(5535):1653-7 25131830 - Nat Rev Drug Discov. 2014 Sep;13(9):673-91 762168 - J Biol Chem. 1979 Mar 10;254(5):1716-23 24412651 - Cell. 2014 Jan 16;156(1-2):84-96 21615950 - BMC Neurosci. 2011 May 26;12:50 17513760 - J Immunol. 2007 Jun 1;178(11):7110-9 16688168 - Nature. 2006 May 11;441(7090):173-8 17694090 - Oncogene. 2007 Aug 13;26(37):5505-20 20098461 - Nat Rev Immunol. 2010 Feb;10 (2):131-44 9678808 - Aliment Pharmacol Ther. 1998 Jun;12(6):499-507 20519513 - J Biol Chem. 2010 Jul 30;285(31):23590-7 16581785 - Mol Cell Biol. 2006 Apr;26(8):3106-13 20348251 - J Bacteriol. 2010 Jun;192(11):2729-36 649576 - J Biol Chem. 1978 May 25;253(10):3364-6 24583088 - Gastroenterology. 2014 May;146(6):1500-12 6174854 - Mol Cell Biochem. 1982 Feb 5;42(2):65-82 667927 - Cell. 1978 May;14(1):105-13 9432117 - Pediatr Res. 1998 Jan;43(1):84-90 1541601 - J Appl Bacteriol. 1992 Jan;72(1):57-64 15869883 - Cytokine. 2005 Jul 7;31(1):46-51 21570914 - Trends Immunol. 2011 Jul;32(7):335-43 10085161 - J Biol Chem. 1999 Mar 26;274(13):9108-15 10940278 - Gut. 2000 Sep;47(3):397-403 24237702 - Cell Host Microbe. 2013 Nov 13;14(5):571-81 12840228 - J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S 12519386 - Clin Exp Immunol. 2003 Jan;131(1):53-60 667928 - Cell. 1978 May;14(1):115-21 10969808 - Cancer Res. 2000 Aug 15;60(16):4561-72 1612357 - Gastroenterology. 1992 Jul;103(1):51-6 19865172 - Nature. 2009 Oct 29;461(7268):1282-6 17964652 - Mol Immunol. 2008 Mar;45(5):1298-307 20404851 - Nat Immunol. 2010 May;11(5):373-84 11983830 - J Nutr. 2002 May;132(5):1012-7 12740060 - Proc Nutr Soc. 2003 Feb;62(1):67-72 14630807 - Blood. 2004 Mar 15;103(6):2135-42 22254083 - Nutrients. 2011 Oct;3(10):858-76 10490031 - Nature. 1999 Sep 9;401(6749):188-93 20303872 - Cell. 2010 Mar 19;140(6):805-20 20498358 - J Immunol. 2010 Jul 1;185(1):460-7 19556980 - Nat Rev Immunol. 2009 Aug;9(8):535-42 8205551 - Cancer Res. 1994 Jun 15;54(12):3288-93 3678950 - Gut. 1987 Oct;28(10 ):1221-7 18501342 - Dev Biol. 2008 Jul 1;319(1):110-20 11083826 - Infect Immun. 2000 Dec;68(12):7010-7 17493681 - Mol Immunol. 2007 Jul;44(15):3702-14 |
References_xml | – volume: 12 start-page: 499 year: 1998 ident: B3 article-title: Review article: short chain fatty acids in health and disease publication-title: Aliment Pharmacol Ther doi: 10.1046/j.1365-2036.1998.00337.x – volume: 10 start-page: 131 year: 2010 ident: B12 article-title: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function publication-title: Nat Rev Immunol doi: 10.1038/nri2707 – volume: 5 start-page: 245 year: 1996 ident: B31 article-title: The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation publication-title: Gene Expr – volume: 285 start-page: 23590 year: 2010 ident: B40 article-title: Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis publication-title: J Biol Chem doi: 10.1074/jbc.M110.139469 – volume: 461 start-page: 1282 year: 2009 ident: B9 article-title: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 publication-title: Nature doi: 10.1038/nature08530 – volume: 178 start-page: 7110 year: 2007 ident: B19 article-title: The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2 publication-title: J Immunol doi: 10.4049/jimmunol.178.11.7110 – volume: 133 start-page: 2485S year: 2003 ident: B30 article-title: Inhibition of histone deacetylase activity by butyrate publication-title: J Nutr doi: 10.1093/jn/133.7.2485S – volume: 12 start-page: 50 year: 2011 ident: B42 article-title: Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells publication-title: BMC Neurosci doi: 10.1186/1471-2202-12-50 – volume: 72 start-page: 57 year: 1992 ident: B2 article-title: Comparison of fermentation reactions in different regions of the human colon publication-title: J Appl Bacteriol doi: 10.1111/j.1365-2672.1992.tb05187.x – volume: 54 start-page: 3288 year: 1994 ident: B10 article-title: Potentiation by specific short-chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines publication-title: Cancer Res – volume: 14 start-page: 105 year: 1978 ident: B25 article-title: Sodium butyrate inhibits histone deacetylation in cultured cells publication-title: Cell doi: 10.1016/0092-8674(78)90305-7 – volume: 14 start-page: 115 year: 1978 ident: B26 article-title: The effect of sodium butyrate on histone modification publication-title: Cell doi: 10.1016/0092-8674(78)90306-9 – volume: 441 start-page: 173 year: 2006 ident: B39 article-title: Systems biology approaches identify ATF3 as a negative regulator of toll-like receptor 4 publication-title: Nature doi: 10.1038/nature04768 – volume: 26 start-page: 3106 year: 2006 ident: B38 article-title: Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation publication-title: Mol Cell Biol doi: 10.1128/MCB.26.8.3106-3113.2006 – volume: 68 start-page: 7010 year: 2000 ident: B13 article-title: Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease publication-title: Infect Immun doi: 10.1128/IAI.68.12.7010-7017.2000 – volume: 44 start-page: 3702 year: 2007 ident: B20 article-title: Ligand-induced differential cross-regulation of toll-like receptors 2, 4 and 5 in intestinal epithelial cells publication-title: Mol Immunol doi: 10.1016/j.molimm.2007.04.001 – volume: 32 start-page: 335 year: 2011 ident: B27 article-title: Histone deacetylases as regulators of inflammation and immunity publication-title: Trends Immunol doi: 10.1016/j.it.2011.04.001 – volume: 31 start-page: 46 year: 2005 ident: B37 article-title: Interleukin-12 p40 promoter activity is regulated by the reversible acetylation mediated by HDAC1 and p300 publication-title: Cytokine doi: 10.1016/j.cyto.2005.03.001 – volume: 13 start-page: 673 year: 2014 ident: B35 article-title: Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4360 – volume: 131 start-page: 53 year: 2003 ident: B11 article-title: Butyrate modulates intestinal epithelial cell-mediated neutrophil migration publication-title: Clin Exp Immunol doi: 10.1046/j.1365-2249.2003.02056.x – volume: 81 start-page: 1031 year: 2001 ident: B6 article-title: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides publication-title: Physiol Rev doi: 10.1152/physrev.2001.81.3.1031 – volume: 254 start-page: 1716 year: 1979 ident: B28 article-title: Different accessibilities in chromatin to histone acetylase publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)37831-6 – volume: 3 start-page: 858 year: 2011 ident: B46 article-title: Regulation of inflammation by short chain fatty acids publication-title: Nutrients doi: 10.3390/nu3100858 – volume: 42 start-page: 65 year: 1982 ident: B33 article-title: Effects of sodium butyrate, a new pharmacological agent, on cells in culture publication-title: Mol Cell Biochem – volume: 185 start-page: 460 year: 2010 ident: B23 article-title: Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9 publication-title: J Immunol doi: 10.4049/jimmunol.0901921 – volume: 28 start-page: 1221 year: 1987 ident: B5 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut doi: 10.1136/gut.28.10.1221 – volume: 146 start-page: 1500 year: 2014 ident: B1 article-title: Brain-gut microbiome interactions and functional bowel disorders publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.02.037 – volume: 11 start-page: 373 year: 2010 ident: B15 article-title: The role of pattern-recognition receptors in innate immunity: update on toll-like receptors publication-title: Nat Immunol doi: 10.1038/ni.1863 – volume: 293 start-page: 1653 year: 2001 ident: B41 article-title: Duration of nuclear NF-kappaB action regulated by reversible acetylation publication-title: Science doi: 10.1126/science.1062374 – volume: 319 start-page: 110 year: 2008 ident: B43 article-title: Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos publication-title: Dev Biol doi: 10.1016/j.ydbio.2008.04.011 – volume: 9 start-page: 535 year: 2009 ident: B22 article-title: A cell biological view of toll-like receptor function: regulation through compartmentalization publication-title: Nat Rev Immunol doi: 10.1038/nri2587 – volume: 14 start-page: 571 year: 2013 ident: B14 article-title: Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.10.009 – volume: 192 start-page: 2729 year: 2010 ident: B21 article-title: Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni publication-title: J Bacteriol doi: 10.1128/JB.00024-10 – volume: 253 start-page: 3364 year: 1978 ident: B24 article-title: Suppression of histone deacetylation in vivo and in vitro by sodium butyrate publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)34804-4 – volume: 132 start-page: 1012 year: 2002 ident: B34 article-title: The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation publication-title: J Nutr doi: 10.1093/jn/132.5.1012 – volume: 60 start-page: 4561 year: 2000 ident: B32 article-title: Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer publication-title: Cancer Res – volume: 62 start-page: 67 year: 2003 ident: B4 article-title: Regulation of short-chain fatty acid production publication-title: Proc Nutr Soc doi: 10.1079/PNS2002207 – volume: 274 start-page: 9108 year: 1999 ident: B17 article-title: Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation publication-title: J Biol Chem doi: 10.1074/jbc.274.13.9108 – volume: 140 start-page: 805 year: 2010 ident: B16 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 45 start-page: 1298 year: 2008 ident: B18 article-title: Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin publication-title: Mol Immunol doi: 10.1016/j.molimm.2007.09.013 – volume: 26 start-page: 5505 year: 2007 ident: B44 article-title: NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs publication-title: Oncogene doi: 10.1038/sj.onc.1210617 – volume: 156 start-page: 84 year: 2014 ident: B7 article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits publication-title: Cell doi: 10.1016/j.cell.2013.12.016 – volume: 43 start-page: 84 year: 1998 ident: B45 article-title: Butyrate enhances interleukin (IL)-8 secretion by intestinal epithelial cells in response to IL-1beta and lipopolysaccharide publication-title: Pediatr Res doi: 10.1203/00006450-199804001-00501 – volume: 401 start-page: 188 year: 1999 ident: B29 article-title: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors publication-title: Nature doi: 10.1038/43710 – volume: 103 start-page: 2135 year: 2004 ident: B36 article-title: Role of p300 and PCAF in regulating cyclooxygenase-2 promoter activation by inflammatory mediators publication-title: Blood doi: 10.1182/blood-2003-09-3131 – volume: 103 start-page: 51 year: 1992 ident: B8 article-title: Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis publication-title: Gastroenterology doi: 10.1016/0016-5085(92)91094-K – volume: 47 start-page: 397 year: 2000 ident: B47 article-title: Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease publication-title: Gut doi: 10.1136/gut.47.3.397 – reference: 16581785 - Mol Cell Biol. 2006 Apr;26(8):3106-13 – reference: 20519513 - J Biol Chem. 2010 Jul 30;285(31):23590-7 – reference: 20348251 - J Bacteriol. 2010 Jun;192(11):2729-36 – reference: 17513760 - J Immunol. 2007 Jun 1;178(11):7110-9 – reference: 20404851 - Nat Immunol. 2010 May;11(5):373-84 – reference: 19556980 - Nat Rev Immunol. 2009 Aug;9(8):535-42 – reference: 15869883 - Cytokine. 2005 Jul 7;31(1):46-51 – reference: 24583088 - Gastroenterology. 2014 May;146(6):1500-12 – reference: 10940278 - Gut. 2000 Sep;47(3):397-403 – reference: 667927 - Cell. 1978 May;14(1):105-13 – reference: 24412651 - Cell. 2014 Jan 16;156(1-2):84-96 – reference: 17493681 - Mol Immunol. 2007 Jul;44(15):3702-14 – reference: 20303872 - Cell. 2010 Mar 19;140(6):805-20 – reference: 22254083 - Nutrients. 2011 Oct;3(10):858-76 – reference: 649576 - J Biol Chem. 1978 May 25;253(10):3364-6 – reference: 12740060 - Proc Nutr Soc. 2003 Feb;62(1):67-72 – reference: 10490031 - Nature. 1999 Sep 9;401(6749):188-93 – reference: 10969808 - Cancer Res. 2000 Aug 15;60(16):4561-72 – reference: 24237702 - Cell Host Microbe. 2013 Nov 13;14(5):571-81 – reference: 20498358 - J Immunol. 2010 Jul 1;185(1):460-7 – reference: 11983830 - J Nutr. 2002 May;132(5):1012-7 – reference: 12519386 - Clin Exp Immunol. 2003 Jan;131(1):53-60 – reference: 17694090 - Oncogene. 2007 Aug 13;26(37):5505-20 – reference: 9432117 - Pediatr Res. 1998 Jan;43(1):84-90 – reference: 21615950 - BMC Neurosci. 2011 May 26;12:50 – reference: 21570914 - Trends Immunol. 2011 Jul;32(7):335-43 – reference: 11533489 - Science. 2001 Aug 31;293(5535):1653-7 – reference: 19865172 - Nature. 2009 Oct 29;461(7268):1282-6 – reference: 25131830 - Nat Rev Drug Discov. 2014 Sep;13(9):673-91 – reference: 18501342 - Dev Biol. 2008 Jul 1;319(1):110-20 – reference: 12840228 - J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S – reference: 17964652 - Mol Immunol. 2008 Mar;45(5):1298-307 – reference: 1541601 - J Appl Bacteriol. 1992 Jan;72(1):57-64 – reference: 3678950 - Gut. 1987 Oct;28(10 ):1221-7 – reference: 9678808 - Aliment Pharmacol Ther. 1998 Jun;12(6):499-507 – reference: 14630807 - Blood. 2004 Mar 15;103(6):2135-42 – reference: 8723390 - Gene Expr. 1996;5(4-5):245-53 – reference: 20098461 - Nat Rev Immunol. 2010 Feb;10 (2):131-44 – reference: 6174854 - Mol Cell Biochem. 1982 Feb 5;42(2):65-82 – reference: 1612357 - Gastroenterology. 1992 Jul;103(1):51-6 – reference: 667928 - Cell. 1978 May;14(1):115-21 – reference: 11427691 - Physiol Rev. 2001 Jul;81(3):1031-64 – reference: 10085161 - J Biol Chem. 1999 Mar 26;274(13):9108-15 – reference: 16688168 - Nature. 2006 May 11;441(7090):173-8 – reference: 11083826 - Infect Immun. 2000 Dec;68(12):7010-7 – reference: 762168 - J Biol Chem. 1979 Mar 10;254(5):1716-23 – reference: 8205551 - Cancer Res. 1994 Jun 15;54(12):3288-93 |
SSID | ssj0000493335 |
Score | 2.456145 |
Snippet | Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have... Short-Chain Fatty Acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here we describe that SCFAs have... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 554 |
SubjectTerms | Butyrate Flagellin HDAC histone acetylation Immunology NF-κB Toll-Like Receptors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltE0fbtOiQi89mJWth61jWhJCIT2UBnIT0khiXRJnib2H_fcdWd5lt5T20osNtiwNMyPNN9ZohpCPrg0eXelY2laFUkRelzpaV0bOQmzBemDpgPPVN3V5Lb7eyJu9Ul8pJiynB86MW2julZDRVx6ssNFrqxleIEZo6hhcWn3R5u05Uz8z7uWcy7wviV6YXsTu7m6dQrnSPxQpxYEdmtL1_wlj_h4quWd7Lp6SJzNopGeZ2GfkUeifk-NcRnJzQlbfQ7ZMyGN6H2lYpYMWt6hZNJHTB_qQI2HDQN2GDkuE3BSWtutptOO4oRY6P9C5ZA_t-mXnum1nU0Ji7MLj2hnGDYLtMLwg1xfnP75clnMlhRJk3Y4lYjTu2sY56YIC1kaupW244-heSIiNryyTlnmmrKh9JUBVULtQ4V2AlcBfkqMex3pNaOAxbU1GsM6JKjDdeHDgJSBScb5SBVls-WpgTjOeql3cGnQ3kiTMJAmTJGEmSRTk0-6LVU6x8Ze2n5Oodu1ScuzpAaqMmVXG_EtlCvJhK2iDkyntkNg-3K8Hg-6ZTgn5mrYgr7Lgd0PVSjYa0VFBmgOVOKDl8E3fLaeE3UKhY6bYm_9B_FvyOLFjOg7JT8nR-LAO7xAXje79NAV-AaXwFOA priority: 102 providerName: Directory of Open Access Journals |
Title | Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26579129 https://www.proquest.com/docview/1749597778 https://pubmed.ncbi.nlm.nih.gov/PMC4630660 https://doaj.org/article/93d645fd1dca4afd9a90d9acffc72feb |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERIXRHkaaLVIXDiY2t6XfUCotA0tUjkUIuVm7ZMYpU6IHQn_e2bXTtqgiAMXW7L3Yc3D883uzgxCb1VuDbjSLpY5tzF1JIsLJ1XsSGJdrqXRiQ9wvvzKz8f0y4RNbsKjBwI2O107X09qvJy9__2r-wgK_8F7nGBvj1x1fb3yp7T88giYx7voHtgl4dX0cgD7P3ssTAhh_V7lzo4-MzBnokgD4LwxUyGb_y4I-vdJylumafQIPRwwJT7uhWAf3bH1Y3S_rzLZPUGLK9sbLmABnjt8tvBxGDMQPHzho0MsvuoPytoGqw5_mwIx4pOprGo8km3b4WNdmQYPFX3wRT2tVLUeLKQZgSFO4ddq2w6wuG2eovHo7PvJeTwUWog1y_I2BghHVC6UYspyneSOFEwKogh4H0w7YVKZMJmYhEuamZRqnupM2RTuVEumyTO0V8NcLxC2xPmdS6elUjS1SSGMVtowDUBGmZRH6GhN11IPWch9MYxZCd6IZ0oZmFJ6ppSBKRF6t-mx6DNw_KPtJ8-qTTufOzs8mC9_lIMqlgUxnDJnUqMllc4Uskjgop3TInNWRejNmtEl6JrfQJG1na-aEry3wufrE3mEnveM30y1FpwIiS2R2PqW7Td1NQ35vCkHv40nL_-75yv0wNMghEiS12ivXa7sAWClVh2GNQa4fp6kh0Ed_gCOCRtH |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redirection+of+Epithelial+Immune+Responses+by+Short-Chain+Fatty+Acids+through+Inhibition+of+Histone+Deacetylases&rft.jtitle=Frontiers+in+immunology&rft.au=Lin%2C+May+Young&rft.au=de+Zoete%2C+Marcel+R.&rft.au=van+Putten%2C+Jos+P.+M.&rft.au=Strijbis%2C+Karin&rft.date=2015-11-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-3224&rft.volume=6&rft_id=info:doi/10.3389%2Ffimmu.2015.00554&rft_id=info%3Apmid%2F26579129&rft.externalDocID=PMC4630660 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |