A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure
For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, an...
Saved in:
Published in | Journal of the American Statistical Association Vol. 104; no. 486; pp. 816 - 831 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.06.2009
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market. |
---|---|
AbstractList | For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a firstorder Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market. For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market. For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters. we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market. [PUBLICATION ABSTRACT] |
Author | Bartolucci, Francesco Farcomeni, Alessio |
Author_xml | – sequence: 1 givenname: Francesco surname: Bartolucci fullname: Bartolucci, Francesco – sequence: 2 givenname: Alessio surname: Farcomeni fullname: Farcomeni, Alessio |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21515010$$DView record in Pascal Francis |
BookMark | eNp1kc1vVCEUxUlTk06r2-6aEBPdzcjH4_FY1rZak2lcqIk7cgd4lZGBCrzq-NfLZFoXTcqGwP2dk3vvOUaHMUWH0CklC0rV8G4NBRaMELUglMgDNKOCyzmT3fdDNCO0Z3PaCXWEjktZk3bkMMzQ33N8M4Xq7yF7qA5f_akuFp8iTiOuPxy-3EbYeIOX6dZXfJOsC3hMub1j-5isjxDwJVTA76E4i5sS8LJZxUZD_pnu8bWrLqdbF52vW_yl5snUKbuX6MUIobhXD_cJ-vbh6uvF9Xz5-eOni_Pl3Ag21DZAv2KDhBUBqijtBgrWWj4YK7mjY2eYE2rsSSdWAHxkVDLLjLBABF1xw_gJerv3vcvp1-RK1RtfjAsBoktT0VzSXkqpGvj6CbhOU27zFd222HOiVNegNw8QFANhzBCNL_ou-w3krWZUUNH237huz5mcSslu1MZXqG2zNYMPmhK9S03vUtO71PQutSZbPJE9Oj8rONsL1qWm_J_uiFCMMdHqal_3scW2gd8pB6srbEPKj83zZ7z_AS5TuZM |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1007_s00362_019_01146_3 crossref_primary_10_1016_j_csda_2024_108013 crossref_primary_10_1016_j_csda_2022_107482 crossref_primary_10_1007_s00477_017_1457_1 crossref_primary_10_1080_00949655_2017_1322593 crossref_primary_10_1007_s10588_024_09391_0 crossref_primary_10_1214_17_AOAS1049 crossref_primary_10_1002_jae_2882 crossref_primary_10_1111_rssc_12539 crossref_primary_10_1016_j_jretai_2013_04_001 crossref_primary_10_1111_biom_12224 crossref_primary_10_1007_s11634_020_00433_4 crossref_primary_10_1016_j_spasta_2021_100504 crossref_primary_10_1016_j_jeconom_2014_09_002 crossref_primary_10_1080_00273171_2021_1912583 crossref_primary_10_1080_10705511_2021_1993857 crossref_primary_10_1111_roiw_12716 crossref_primary_10_1002_sim_8051 crossref_primary_10_1007_s11425_020_1913_7 crossref_primary_10_2139_ssrn_3087201 crossref_primary_10_1007_s42081_025_00299_w crossref_primary_10_1177_0962280217748675 crossref_primary_10_1080_00273171_2017_1407233 crossref_primary_10_3102_1076998615622234 crossref_primary_10_1007_s11749_014_0381_7 crossref_primary_10_1002_hec_2962 crossref_primary_10_1016_j_csda_2016_05_024 crossref_primary_10_1007_s10260_010_0154_8 crossref_primary_10_2139_ssrn_3349118 crossref_primary_10_1111_biom_12536 crossref_primary_10_1002_hec_3939 crossref_primary_10_1093_jrsssc_qlad100 crossref_primary_10_1515_snde_2015_0118 crossref_primary_10_1016_j_csda_2014_10_017 crossref_primary_10_1016_j_csda_2021_107208 crossref_primary_10_1093_erae_jbu025 crossref_primary_10_1007_s10888_022_09554_6 crossref_primary_10_1007_s11749_024_00919_9 crossref_primary_10_2139_ssrn_3261090 crossref_primary_10_1177_1471082X221127732 crossref_primary_10_1016_j_jeconom_2012_03_004 crossref_primary_10_1214_13_AOAS672 crossref_primary_10_1111_rssa_12746 crossref_primary_10_2139_ssrn_3661266 crossref_primary_10_1080_13504851_2017_1366637 crossref_primary_10_1007_s11749_014_0390_6 crossref_primary_10_1002_bimj_201700007 crossref_primary_10_1007_s11749_014_0397_z crossref_primary_10_1007_s11222_023_10226_2 crossref_primary_10_1016_j_jhe_2016_03_002 crossref_primary_10_1016_j_jhealeco_2019_02_004 crossref_primary_10_1111_j_1467_9892_2009_00650_x crossref_primary_10_1080_01621459_2013_770307 crossref_primary_10_1080_00273171_2020_1865864 crossref_primary_10_1016_j_jempfin_2017_04_005 crossref_primary_10_1177_0962280220942802 crossref_primary_10_1111_rssc_12551 crossref_primary_10_1002_sim_8513 crossref_primary_10_1111_rssc_12312 crossref_primary_10_1007_s00477_015_1183_5 crossref_primary_10_1080_10618600_2015_1089776 crossref_primary_10_1002_bimj_202200016 crossref_primary_10_1111_jtsa_12178 crossref_primary_10_51387_24_NEJSDS68 crossref_primary_10_1007_s11222_010_9213_0 crossref_primary_10_1111_rssc_12030 crossref_primary_10_1111_rssa_12089 crossref_primary_10_2139_ssrn_1081146 crossref_primary_10_1080_07350015_2020_1840994 crossref_primary_10_1016_j_neucom_2013_12_058 crossref_primary_10_1080_07474938_2015_1060039 crossref_primary_10_1080_01621459_2014_998935 crossref_primary_10_1111_insr_12436 crossref_primary_10_2139_ssrn_1962688 crossref_primary_10_1111_sjos_12155 crossref_primary_10_1146_annurev_statistics_040220_091910 crossref_primary_10_1080_10705511_2017_1387860 crossref_primary_10_1177_0962280216678433 crossref_primary_10_1080_10705511_2017_1364968 crossref_primary_10_3389_fpubh_2017_00186 crossref_primary_10_1016_j_jeconom_2020_02_002 crossref_primary_10_1002_sim_7994 crossref_primary_10_1016_j_jmva_2016_09_001 crossref_primary_10_1017_S1744137420000247 crossref_primary_10_1002_hec_4495 crossref_primary_10_1007_s11222_014_9450_8 crossref_primary_10_1002_env_2326 crossref_primary_10_1111_rssa_12408 |
Cites_doi | 10.2307/1268779 10.2307/2669854 10.2307/2289719 10.1111/j.1467-985X.2006.00440.x 10.1093/biomet/88.4.1007 10.2307/1403361 10.2307/2290865 10.1016/j.csda.2006.11.030 10.1198/07350010152596637 10.1111/1468-0262.00080 10.1002/sim.2599 10.2307/1911491 10.1111/j.0006-341X.1999.00085.x 10.2307/2290866 10.3102/10769986024002179 10.1109/TIT.1967.1054010 10.1111/j.1467-9868.2006.00538.x 10.1093/biomet/83.1.15 |
ContentType | Journal Article |
Copyright | American Statistical Association and the American Society for Quality 2009 2009 American Statistical Association 2009 INIST-CNRS Copyright American Statistical Association Jun 2009 |
Copyright_xml | – notice: American Statistical Association and the American Society for Quality 2009 – notice: 2009 American Statistical Association – notice: 2009 INIST-CNRS – notice: Copyright American Statistical Association Jun 2009 |
DBID | AAYXX CITATION IQODW 8BJ FQK JBE K9. |
DOI | 10.1198/jasa.2009.0107 |
DatabaseName | CrossRef Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 831 |
ExternalDocumentID | 1742651441 21515010 10_1198_jasa_2009_0107 40592225 10710652 |
Genre | Research Article Feature |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGCQS AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UQL UT5 UU3 WH7 WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW AAYXX ABEFU ABJCF ABRLO ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CITATION CRFIH DMQIW DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT P-O PADUT PHGZM PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SJN TAQ TFMCV TOXWX UB9 UKHRP VH1 VOH WHG YXB ZCG ZGI ZUP ZXP IQODW PJZUB PPXIY PQGLB TASJS 8BJ ACTCW FQK JBE K9. |
ID | FETCH-LOGICAL-c528t-276b287ab0a1911481addd38cd73e1f4c2e59f6045baa3f2172d2c5da051b3c23 |
ISSN | 0162-1459 |
IngestDate | Tue Aug 05 10:49:28 EDT 2025 Wed Aug 13 06:25:33 EDT 2025 Mon Jul 21 09:17:21 EDT 2025 Tue Jul 01 03:15:11 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Thu May 29 08:44:08 EDT 2025 Wed Dec 25 09:04:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 486 |
Keywords | Parameter estimation Conditional distribution Vector distribution Labour market Multivariate analysis Covariate Stochastic method Parameterization Statistical simulation Markov chain Hypothesis test Heterogeneity Statistical test Panel data Marginal distribution Distribution function Logit model Sampling Dynamic model Data analysis Multivariate distribution Hidden Markov chains Statistical method Marginal link function Categorical data Maximum likelihood State dependence EM algorithm Application |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c528t-276b287ab0a1911481addd38cd73e1f4c2e59f6045baa3f2172d2c5da051b3c23 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 274630994 |
PQPubID | 41715 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_37167779 crossref_citationtrail_10_1198_jasa_2009_0107 crossref_primary_10_1198_jasa_2009_0107 informaworld_taylorfrancis_310_1198_jasa_2009_0107 proquest_journals_274630994 jstor_primary_40592225 pascalfrancis_primary_21515010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2009 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | p_16 p_27 p_17 p_18 p_29 p_1 Vermunt J. K. (p_28) 1999; 24 p_4 p_12 p_3 p_24 p_6 p_5 Dempster A. P. (p_8) 1977; 39 p_15 p_26 p_7 Molenberghs G. (p_23) 2004; 14 p_9 Glonek G. F. V. (p_10) 1995; 57 Bartolucci F. (p_2) 2007; 17 McCullagh P. (p_20) 1980; 42 p_22 |
References_xml | – ident: p_16 doi: 10.2307/1268779 – ident: p_7 doi: 10.2307/2669854 – volume: 39 start-page: 1 year: 1977 ident: p_8 publication-title: Journal of the Royal Statistical Society, Ser. B – ident: p_18 doi: 10.2307/2289719 – ident: p_4 doi: 10.1111/j.1467-985X.2006.00440.x – ident: p_6 doi: 10.1093/biomet/88.4.1007 – ident: p_24 doi: 10.2307/1403361 – ident: p_17 doi: 10.2307/2290865 – volume: 42 start-page: 109 year: 1980 ident: p_20 publication-title: Journal of the Royal Statistical Society,'' Series B – ident: p_3 doi: 10.1016/j.csda.2006.11.030 – ident: p_5 doi: 10.1198/07350010152596637 – ident: p_15 doi: 10.1111/1468-0262.00080 – ident: p_27 doi: 10.1002/sim.2599 – volume: 17 start-page: 691 year: 2007 ident: p_2 publication-title: Statistica Sinica – ident: p_12 doi: 10.2307/1911491 – ident: p_26 doi: 10.1111/j.0006-341X.1999.00085.x – ident: p_22 doi: 10.2307/2290866 – volume: 14 start-page: 989 year: 2004 ident: p_23 publication-title: Statistica Sinica – volume: 24 start-page: 179 year: 1999 ident: p_28 publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/10769986024002179 – ident: p_29 doi: 10.1109/TIT.1967.1054010 – ident: p_1 doi: 10.1111/j.1467-9868.2006.00538.x – ident: p_9 doi: 10.1093/biomet/83.1.15 – volume: 57 start-page: 533 year: 1995 ident: p_10 publication-title: Journal of the Royal Statistical Society, Ser. B |
SSID | ssj0000788 |
Score | 2.2817643 |
Snippet | For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal... |
SourceID | proquest pascalfrancis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 816 |
SubjectTerms | Algorithms Applications Children Datasets Dependence relationships Distribution theory Dynamic modeling Dynamic models EM algorithm Employment Exact sciences and technology Female labour General topics Hidden Markov chains Labour market Longitudinal studies Marginal link function Markov analysis Markov models Markovian processes Mathematical functions Mathematics Matrices Maximum likelihood estimators Modeling Multivariate analysis Panel data Parametric models Probability Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Standard error State dependence Statistical methods Statistics Theory and Methods |
Title | A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure |
URI | https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.0107 https://www.jstor.org/stable/40592225 https://www.proquest.com/docview/274630994 https://www.proquest.com/docview/37167779 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcukF8VURCsUHJA6rQOM4jnNcaFGFoBdaqbfIdhxpJZRUbLZC_Q38aGYcx5vQXfFxWe1mE8fye_HMOJ55hLzWArwOLXgsrNExVsDCRyqPRQ220vJCVwnmO385F2eX_NNVdjWb_RztWlp3-q253ZpX8j-owjHAFbNk_wHZ0CgcgO-AL3wCwvD5Vxgv5i5_9gbiXXAZ56c_3Hb03gNEh_Kkl5tHXd5l52TPXLYi_EaVonXlFLFOVKfm78GYVfjiQM0_Q1NN55J42hswSzDwLfTAorv-1VWb9UVItvi0ozwVpwzcuTLQW1jg1k6_dzA6xiwHBxqmLNMGQsETiNUhlj4NB3frTpYois1WqlFWwB_u65c3BYsT7muED_Nzr0_sicjleL6ViRib7t6g3LUKhXRqBCvlC5R6pd3fKm2D71pg-HuP3GcQdOCsmR6fb-x67lRMQx99CVBo_N206YmLMymAO2x6xR24agXDUPfqKXccAefdXDwkDzyEdNFz7BGZ2eYx2Q8juXpCbhd0TDYayEbbmgLu1JONOrJRRzYKfaJjslEkG3Vko3Cloj3ZaE82OiEbDWR7Si4_nl58OIu9cEdsMia7mOVCQySu9LFKCgy4E7CiVSpNBc9_UnPDbFbUAqIJrVRao0ZaxUxWKbAQOjUsPSB7TdvYZ4SmUhpZi8xqXXFmhVRwi6SqldCKJ7WOSDyMdWl8VXsUV_lWuui2kCVig2KrRYnYRORNOP-6r-ey80w2hq7s3AqaB6xMd1104AAObQ-cisjRBPFwArrcGVwakcOBAqWfYlYly7lIIYbjEXkV_oX5H1_qqca2a-hInog8z4vnu-58SPY3z-QLsgfY2ZfgSHf6yPH7F9x7z8Y |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heiiXfqOmtOBDpZ5CieM4sTjRAtq2y14KEodKlu3YB0BJxWZRxa9nxkm23SIuHKPYSeyMx2_s8XsAH61E1GGlSKV3NiUGLBpSZSoDzpVeKFtndN75ZCYnZ-L7eXG-BvvjWRhKq6QYOvREEdFX0-Cmxeh-hKvq84WZm4FqMqOT5E8KJUsy8nxv9tcNl1F0EiENTzNRqIGx8X79lRlpha90zFGkhEkzxz4LvdjFPb8dJ6Pj5_BrbEafg3K5u-jsrrv9j-Hxke18Ac8GkMoOeqt6CWu-eQUbhEt7WufXcHvA4tHdGwy1Ea2yoz8xE75tWBsYYkp22CvdM9Jy7hgprl0xbDJek0DSoiYxLnZoOsO-4DxaM6xp2BQf1WBpc33Z3rAJZeq0aOAeIwX2MxLdLq79Gzg7Pjr9OkkHGYfUFbzqUl5Ki3GZsXsGg0MMvzL0qXVeuRqtIQvCcV-oIBFbWmPyQIpZNXdFbdBf2NzxfBPWm7bxb4HlVeWqIAtvbS24l5XBV2R1MNIakQWbQDr-Su0GjnOS2rjSMdZRlaYuJelNpalLE_i0LP-7Z_d4sCT_1zJ0F9dTBnvQ-UOVNqP9LJ-N6FhRgJ3A9opBLQsQACuwagJbo4XpwanMNS-FzBHRiwR2lnfRG9AWj2l8u8APwfC3LEv17jGfuwNPJ6cnUz39NvuxBRv9vhmtN72HdfzH_gPCr85ux2F2B0hrLGU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqKlVc2tIWNaWAD5V6CiWO4yRHyrJaKF1VapGQerD8eQCUIDaLKn59Z2zvtgviwnEVOxvb4_GbZOY9Qj5pAahDC54LZ3SODFi4pepceDgrHW-1LbDe-ftUTM74yXl1nrIqZymtEmNoH4kigq_GzX1tfdzgbfPlQs1UYpossJD8ucAKSyzf2J_-88J10JwERMPygldtImx82H_lQFqhK12kKGK-pJrBlPmodfHAbYezaPyK_F6MIqagXO7NB71n7u4RPD5tmK_JywRR6UG0qQ3yzHVvyDqi0kjq_JbcHdBQuHsLgTZgVXr0J-TB9x3tPQVESUdR556ikvNAUW_tisKI4TfKI80tSnHRkRoU_QqnqKXQU9FTuFUHrdXNZX9LJ5in04N5O4gT6M9Aczu_ce_I2fjo1-EkTyIOualYM-SsFhqiMqX3FYSGEHwV4FFt2RgLtlB4bpirWg8rWGmlSo96WZaZyirwFro0rNwka13fufeElk1jGi8qp7XlzIlGwV8U1iuhFS-8zki-WElpEsM5Cm1cyRDptI3EKUXhzVbilGbk87L9deT2eLQl-98w5BDepiRzkOVjnTaD-SzvDdi4xfA6Izsr9rRsgPCrgq4Z2VoYmEwuZSZZzUUJeJ5nZHd5FXwBfuBRnevn8CAQ_NZ13X54yuPukhc_RmN5ejz9tkXW40czfNn0kazBErttwF6D3gmb7C-G2ysJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multivariate+Extension+of+the+Dynamic+Logit+Model+for+Longitudinal+Data+Based+on+a+Latent+Markov+Heterogeneity+Structure&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Bartolucci%2C+Francesco&rft.au=Farcomeni%2C+Alessio&rft.date=2009-06-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=104&rft.issue=486&rft.spage=816&rft.epage=831&rft_id=info:doi/10.1198%2Fjasa.2009.0107&rft.externalDocID=40592225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |