A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure

For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, an...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 104; no. 486; pp. 816 - 831
Main Authors Bartolucci, Francesco, Farcomeni, Alessio
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.06.2009
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market.
AbstractList For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a firstorder Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market.
For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters, we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market.
For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal parameterization of the conditional distribution of each vector of response variables given the covariates, the lagged response variables, and a set of subject-specific parameters for the unobserved heterogeneity. The latter ones are assumed to follow a first-order Markov chain. For the maximum likelihood estimation of the model parameters. we outline an EM algorithm. The data analysis approach based on the proposed model is illustrated by a simulation study and an application to a dataset, which derives from the Panel Study on Income Dynamics and concerns fertility and female participation to the labor market. [PUBLICATION ABSTRACT]
Author Bartolucci, Francesco
Farcomeni, Alessio
Author_xml – sequence: 1
  givenname: Francesco
  surname: Bartolucci
  fullname: Bartolucci, Francesco
– sequence: 2
  givenname: Alessio
  surname: Farcomeni
  fullname: Farcomeni, Alessio
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21515010$$DView record in Pascal Francis
BookMark eNp1kc1vVCEUxUlTk06r2-6aEBPdzcjH4_FY1rZak2lcqIk7cgd4lZGBCrzq-NfLZFoXTcqGwP2dk3vvOUaHMUWH0CklC0rV8G4NBRaMELUglMgDNKOCyzmT3fdDNCO0Z3PaCXWEjktZk3bkMMzQ33N8M4Xq7yF7qA5f_akuFp8iTiOuPxy-3EbYeIOX6dZXfJOsC3hMub1j-5isjxDwJVTA76E4i5sS8LJZxUZD_pnu8bWrLqdbF52vW_yl5snUKbuX6MUIobhXD_cJ-vbh6uvF9Xz5-eOni_Pl3Ag21DZAv2KDhBUBqijtBgrWWj4YK7mjY2eYE2rsSSdWAHxkVDLLjLBABF1xw_gJerv3vcvp1-RK1RtfjAsBoktT0VzSXkqpGvj6CbhOU27zFd222HOiVNegNw8QFANhzBCNL_ou-w3krWZUUNH237huz5mcSslu1MZXqG2zNYMPmhK9S03vUtO71PQutSZbPJE9Oj8rONsL1qWm_J_uiFCMMdHqal_3scW2gd8pB6srbEPKj83zZ7z_AS5TuZM
CODEN JSTNAL
CitedBy_id crossref_primary_10_1007_s00362_019_01146_3
crossref_primary_10_1016_j_csda_2024_108013
crossref_primary_10_1016_j_csda_2022_107482
crossref_primary_10_1007_s00477_017_1457_1
crossref_primary_10_1080_00949655_2017_1322593
crossref_primary_10_1007_s10588_024_09391_0
crossref_primary_10_1214_17_AOAS1049
crossref_primary_10_1002_jae_2882
crossref_primary_10_1111_rssc_12539
crossref_primary_10_1016_j_jretai_2013_04_001
crossref_primary_10_1111_biom_12224
crossref_primary_10_1007_s11634_020_00433_4
crossref_primary_10_1016_j_spasta_2021_100504
crossref_primary_10_1016_j_jeconom_2014_09_002
crossref_primary_10_1080_00273171_2021_1912583
crossref_primary_10_1080_10705511_2021_1993857
crossref_primary_10_1111_roiw_12716
crossref_primary_10_1002_sim_8051
crossref_primary_10_1007_s11425_020_1913_7
crossref_primary_10_2139_ssrn_3087201
crossref_primary_10_1007_s42081_025_00299_w
crossref_primary_10_1177_0962280217748675
crossref_primary_10_1080_00273171_2017_1407233
crossref_primary_10_3102_1076998615622234
crossref_primary_10_1007_s11749_014_0381_7
crossref_primary_10_1002_hec_2962
crossref_primary_10_1016_j_csda_2016_05_024
crossref_primary_10_1007_s10260_010_0154_8
crossref_primary_10_2139_ssrn_3349118
crossref_primary_10_1111_biom_12536
crossref_primary_10_1002_hec_3939
crossref_primary_10_1093_jrsssc_qlad100
crossref_primary_10_1515_snde_2015_0118
crossref_primary_10_1016_j_csda_2014_10_017
crossref_primary_10_1016_j_csda_2021_107208
crossref_primary_10_1093_erae_jbu025
crossref_primary_10_1007_s10888_022_09554_6
crossref_primary_10_1007_s11749_024_00919_9
crossref_primary_10_2139_ssrn_3261090
crossref_primary_10_1177_1471082X221127732
crossref_primary_10_1016_j_jeconom_2012_03_004
crossref_primary_10_1214_13_AOAS672
crossref_primary_10_1111_rssa_12746
crossref_primary_10_2139_ssrn_3661266
crossref_primary_10_1080_13504851_2017_1366637
crossref_primary_10_1007_s11749_014_0390_6
crossref_primary_10_1002_bimj_201700007
crossref_primary_10_1007_s11749_014_0397_z
crossref_primary_10_1007_s11222_023_10226_2
crossref_primary_10_1016_j_jhe_2016_03_002
crossref_primary_10_1016_j_jhealeco_2019_02_004
crossref_primary_10_1111_j_1467_9892_2009_00650_x
crossref_primary_10_1080_01621459_2013_770307
crossref_primary_10_1080_00273171_2020_1865864
crossref_primary_10_1016_j_jempfin_2017_04_005
crossref_primary_10_1177_0962280220942802
crossref_primary_10_1111_rssc_12551
crossref_primary_10_1002_sim_8513
crossref_primary_10_1111_rssc_12312
crossref_primary_10_1007_s00477_015_1183_5
crossref_primary_10_1080_10618600_2015_1089776
crossref_primary_10_1002_bimj_202200016
crossref_primary_10_1111_jtsa_12178
crossref_primary_10_51387_24_NEJSDS68
crossref_primary_10_1007_s11222_010_9213_0
crossref_primary_10_1111_rssc_12030
crossref_primary_10_1111_rssa_12089
crossref_primary_10_2139_ssrn_1081146
crossref_primary_10_1080_07350015_2020_1840994
crossref_primary_10_1016_j_neucom_2013_12_058
crossref_primary_10_1080_07474938_2015_1060039
crossref_primary_10_1080_01621459_2014_998935
crossref_primary_10_1111_insr_12436
crossref_primary_10_2139_ssrn_1962688
crossref_primary_10_1111_sjos_12155
crossref_primary_10_1146_annurev_statistics_040220_091910
crossref_primary_10_1080_10705511_2017_1387860
crossref_primary_10_1177_0962280216678433
crossref_primary_10_1080_10705511_2017_1364968
crossref_primary_10_3389_fpubh_2017_00186
crossref_primary_10_1016_j_jeconom_2020_02_002
crossref_primary_10_1002_sim_7994
crossref_primary_10_1016_j_jmva_2016_09_001
crossref_primary_10_1017_S1744137420000247
crossref_primary_10_1002_hec_4495
crossref_primary_10_1007_s11222_014_9450_8
crossref_primary_10_1002_env_2326
crossref_primary_10_1111_rssa_12408
Cites_doi 10.2307/1268779
10.2307/2669854
10.2307/2289719
10.1111/j.1467-985X.2006.00440.x
10.1093/biomet/88.4.1007
10.2307/1403361
10.2307/2290865
10.1016/j.csda.2006.11.030
10.1198/07350010152596637
10.1111/1468-0262.00080
10.1002/sim.2599
10.2307/1911491
10.1111/j.0006-341X.1999.00085.x
10.2307/2290866
10.3102/10769986024002179
10.1109/TIT.1967.1054010
10.1111/j.1467-9868.2006.00538.x
10.1093/biomet/83.1.15
ContentType Journal Article
Copyright American Statistical Association and the American Society for Quality 2009
2009 American Statistical Association
2009 INIST-CNRS
Copyright American Statistical Association Jun 2009
Copyright_xml – notice: American Statistical Association and the American Society for Quality 2009
– notice: 2009 American Statistical Association
– notice: 2009 INIST-CNRS
– notice: Copyright American Statistical Association Jun 2009
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/jasa.2009.0107
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 831
ExternalDocumentID 1742651441
21515010
10_1198_jasa_2009_0107
40592225
10710652
Genre Research Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
TOXWX
UB9
UKHRP
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
IQODW
PJZUB
PPXIY
PQGLB
TASJS
8BJ
ACTCW
FQK
JBE
K9.
ID FETCH-LOGICAL-c528t-276b287ab0a1911481addd38cd73e1f4c2e59f6045baa3f2172d2c5da051b3c23
ISSN 0162-1459
IngestDate Tue Aug 05 10:49:28 EDT 2025
Wed Aug 13 06:25:33 EDT 2025
Mon Jul 21 09:17:21 EDT 2025
Tue Jul 01 03:15:11 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Thu May 29 08:44:08 EDT 2025
Wed Dec 25 09:04:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 486
Keywords Parameter estimation
Conditional distribution
Vector distribution
Labour market
Multivariate analysis
Covariate
Stochastic method
Parameterization
Statistical simulation
Markov chain
Hypothesis test
Heterogeneity
Statistical test
Panel data
Marginal distribution
Distribution function
Logit model
Sampling
Dynamic model
Data analysis
Multivariate distribution
Hidden Markov chains
Statistical method
Marginal link function
Categorical data
Maximum likelihood
State dependence
EM algorithm
Application
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c528t-276b287ab0a1911481addd38cd73e1f4c2e59f6045baa3f2172d2c5da051b3c23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274630994
PQPubID 41715
PageCount 16
ParticipantIDs proquest_miscellaneous_37167779
crossref_citationtrail_10_1198_jasa_2009_0107
crossref_primary_10_1198_jasa_2009_0107
informaworld_taylorfrancis_310_1198_jasa_2009_0107
proquest_journals_274630994
jstor_primary_40592225
pascalfrancis_primary_21515010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2009
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_16
p_27
p_17
p_18
p_29
p_1
Vermunt J. K. (p_28) 1999; 24
p_4
p_12
p_3
p_24
p_6
p_5
Dempster A. P. (p_8) 1977; 39
p_15
p_26
p_7
Molenberghs G. (p_23) 2004; 14
p_9
Glonek G. F. V. (p_10) 1995; 57
Bartolucci F. (p_2) 2007; 17
McCullagh P. (p_20) 1980; 42
p_22
References_xml – ident: p_16
  doi: 10.2307/1268779
– ident: p_7
  doi: 10.2307/2669854
– volume: 39
  start-page: 1
  year: 1977
  ident: p_8
  publication-title: Journal of the Royal Statistical Society, Ser. B
– ident: p_18
  doi: 10.2307/2289719
– ident: p_4
  doi: 10.1111/j.1467-985X.2006.00440.x
– ident: p_6
  doi: 10.1093/biomet/88.4.1007
– ident: p_24
  doi: 10.2307/1403361
– ident: p_17
  doi: 10.2307/2290865
– volume: 42
  start-page: 109
  year: 1980
  ident: p_20
  publication-title: Journal of the Royal Statistical Society,'' Series B
– ident: p_3
  doi: 10.1016/j.csda.2006.11.030
– ident: p_5
  doi: 10.1198/07350010152596637
– ident: p_15
  doi: 10.1111/1468-0262.00080
– ident: p_27
  doi: 10.1002/sim.2599
– volume: 17
  start-page: 691
  year: 2007
  ident: p_2
  publication-title: Statistica Sinica
– ident: p_12
  doi: 10.2307/1911491
– ident: p_26
  doi: 10.1111/j.0006-341X.1999.00085.x
– ident: p_22
  doi: 10.2307/2290866
– volume: 14
  start-page: 989
  year: 2004
  ident: p_23
  publication-title: Statistica Sinica
– volume: 24
  start-page: 179
  year: 1999
  ident: p_28
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986024002179
– ident: p_29
  doi: 10.1109/TIT.1967.1054010
– ident: p_1
  doi: 10.1111/j.1467-9868.2006.00538.x
– ident: p_9
  doi: 10.1093/biomet/83.1.15
– volume: 57
  start-page: 533
  year: 1995
  ident: p_10
  publication-title: Journal of the Royal Statistical Society, Ser. B
SSID ssj0000788
Score 2.2817643
Snippet For the analysis of multivariate categorical longitudinal data, we propose an extension of the dynamic logit model. The resulting model is based on a marginal...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 816
SubjectTerms Algorithms
Applications
Children
Datasets
Dependence relationships
Distribution theory
Dynamic modeling
Dynamic models
EM algorithm
Employment
Exact sciences and technology
Female labour
General topics
Hidden Markov chains
Labour market
Longitudinal studies
Marginal link function
Markov analysis
Markov models
Markovian processes
Mathematical functions
Mathematics
Matrices
Maximum likelihood estimators
Modeling
Multivariate analysis
Panel data
Parametric models
Probability
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Standard error
State dependence
Statistical methods
Statistics
Theory and Methods
Title A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.0107
https://www.jstor.org/stable/40592225
https://www.proquest.com/docview/274630994
https://www.proquest.com/docview/37167779
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcukF8VURCsUHJA6rQOM4jnNcaFGFoBdaqbfIdhxpJZRUbLZC_Q38aGYcx5vQXfFxWe1mE8fye_HMOJ55hLzWArwOLXgsrNExVsDCRyqPRQ220vJCVwnmO385F2eX_NNVdjWb_RztWlp3-q253ZpX8j-owjHAFbNk_wHZ0CgcgO-AL3wCwvD5Vxgv5i5_9gbiXXAZ56c_3Hb03gNEh_Kkl5tHXd5l52TPXLYi_EaVonXlFLFOVKfm78GYVfjiQM0_Q1NN55J42hswSzDwLfTAorv-1VWb9UVItvi0ozwVpwzcuTLQW1jg1k6_dzA6xiwHBxqmLNMGQsETiNUhlj4NB3frTpYois1WqlFWwB_u65c3BYsT7muED_Nzr0_sicjleL6ViRib7t6g3LUKhXRqBCvlC5R6pd3fKm2D71pg-HuP3GcQdOCsmR6fb-x67lRMQx99CVBo_N206YmLMymAO2x6xR24agXDUPfqKXccAefdXDwkDzyEdNFz7BGZ2eYx2Q8juXpCbhd0TDYayEbbmgLu1JONOrJRRzYKfaJjslEkG3Vko3Cloj3ZaE82OiEbDWR7Si4_nl58OIu9cEdsMia7mOVCQySu9LFKCgy4E7CiVSpNBc9_UnPDbFbUAqIJrVRao0ZaxUxWKbAQOjUsPSB7TdvYZ4SmUhpZi8xqXXFmhVRwi6SqldCKJ7WOSDyMdWl8VXsUV_lWuui2kCVig2KrRYnYRORNOP-6r-ey80w2hq7s3AqaB6xMd1104AAObQ-cisjRBPFwArrcGVwakcOBAqWfYlYly7lIIYbjEXkV_oX5H1_qqca2a-hInog8z4vnu-58SPY3z-QLsgfY2ZfgSHf6yPH7F9x7z8Y
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heiiXfqOmtOBDpZ5CieM4sTjRAtq2y14KEodKlu3YB0BJxWZRxa9nxkm23SIuHKPYSeyMx2_s8XsAH61E1GGlSKV3NiUGLBpSZSoDzpVeKFtndN75ZCYnZ-L7eXG-BvvjWRhKq6QYOvREEdFX0-Cmxeh-hKvq84WZm4FqMqOT5E8KJUsy8nxv9tcNl1F0EiENTzNRqIGx8X79lRlpha90zFGkhEkzxz4LvdjFPb8dJ6Pj5_BrbEafg3K5u-jsrrv9j-Hxke18Ac8GkMoOeqt6CWu-eQUbhEt7WufXcHvA4tHdGwy1Ea2yoz8xE75tWBsYYkp22CvdM9Jy7hgprl0xbDJek0DSoiYxLnZoOsO-4DxaM6xp2BQf1WBpc33Z3rAJZeq0aOAeIwX2MxLdLq79Gzg7Pjr9OkkHGYfUFbzqUl5Ki3GZsXsGg0MMvzL0qXVeuRqtIQvCcV-oIBFbWmPyQIpZNXdFbdBf2NzxfBPWm7bxb4HlVeWqIAtvbS24l5XBV2R1MNIakQWbQDr-Su0GjnOS2rjSMdZRlaYuJelNpalLE_i0LP-7Z_d4sCT_1zJ0F9dTBnvQ-UOVNqP9LJ-N6FhRgJ3A9opBLQsQACuwagJbo4XpwanMNS-FzBHRiwR2lnfRG9AWj2l8u8APwfC3LEv17jGfuwNPJ6cnUz39NvuxBRv9vhmtN72HdfzH_gPCr85ux2F2B0hrLGU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqKlVc2tIWNaWAD5V6CiWO4yRHyrJaKF1VapGQerD8eQCUIDaLKn59Z2zvtgviwnEVOxvb4_GbZOY9Qj5pAahDC54LZ3SODFi4pepceDgrHW-1LbDe-ftUTM74yXl1nrIqZymtEmNoH4kigq_GzX1tfdzgbfPlQs1UYpossJD8ucAKSyzf2J_-88J10JwERMPygldtImx82H_lQFqhK12kKGK-pJrBlPmodfHAbYezaPyK_F6MIqagXO7NB71n7u4RPD5tmK_JywRR6UG0qQ3yzHVvyDqi0kjq_JbcHdBQuHsLgTZgVXr0J-TB9x3tPQVESUdR556ikvNAUW_tisKI4TfKI80tSnHRkRoU_QqnqKXQU9FTuFUHrdXNZX9LJ5in04N5O4gT6M9Aczu_ce_I2fjo1-EkTyIOualYM-SsFhqiMqX3FYSGEHwV4FFt2RgLtlB4bpirWg8rWGmlSo96WZaZyirwFro0rNwka13fufeElk1jGi8qp7XlzIlGwV8U1iuhFS-8zki-WElpEsM5Cm1cyRDptI3EKUXhzVbilGbk87L9deT2eLQl-98w5BDepiRzkOVjnTaD-SzvDdi4xfA6Izsr9rRsgPCrgq4Z2VoYmEwuZSZZzUUJeJ5nZHd5FXwBfuBRnevn8CAQ_NZ13X54yuPukhc_RmN5ejz9tkXW40czfNn0kazBErttwF6D3gmb7C-G2ysJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multivariate+Extension+of+the+Dynamic+Logit+Model+for+Longitudinal+Data+Based+on+a+Latent+Markov+Heterogeneity+Structure&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Bartolucci%2C+Francesco&rft.au=Farcomeni%2C+Alessio&rft.date=2009-06-01&rft.pub=American+Statistical+Association&rft.issn=0162-1459&rft.volume=104&rft.issue=486&rft.spage=816&rft.epage=831&rft_id=info:doi/10.1198%2Fjasa.2009.0107&rft.externalDocID=40592225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon