Animal models for Ebola and Marburg virus infections

Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Llov...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 4; p. 267
Main Authors Nakayama, Eri, Saijo, Masayuki
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
AbstractList Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
Author Nakayama, Eri
Saijo, Masayuki
AuthorAffiliation Department of Virology 1, National Institute of Infectious Diseases Tokyo, Japan
AuthorAffiliation_xml – name: Department of Virology 1, National Institute of Infectious Diseases Tokyo, Japan
Author_xml – sequence: 1
  givenname: Eri
  surname: Nakayama
  fullname: Nakayama, Eri
– sequence: 2
  givenname: Masayuki
  surname: Saijo
  fullname: Saijo, Masayuki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24046765$$D View this record in MEDLINE/PubMed
BookMark eNp1kctLXDEUxkOx1Efdu5K77GbGk5vHnWwKIlYFSzctdBfynEZyE5vcK_jfNzOjogWzSA7J9_3OId8h2ks5OYROMCwJWYkzPwajlz1gsgTo-fABHWDO6YJA_3vvVb2Pjmu9g7Yo9G3_hPZ7CpQPnB0gep7CqGI3Zuti7Xwu3aXOUXUq2e67Knou6-4hlLl2IXlnppBT_Yw-ehWrO346j9Cvb5c_L64Xtz-ubi7ObxeG9atp0RPOnOXc4oET4elKEE3BakwpDH7lDRuUcJwwIRhjYAjVBHMLjgismpYcoZsd12Z1J-9Lm7Q8yqyC3F7kspaqTMFEJ3tqsCXaci8YxVYrpoUzAyhmB8y8bayvO9b9rEdnjUtTUfEN9O1LCn_kOj9I0obHgjXAlydAyX9nVyc5hmpcjCq5PFeJGQUMXABp0tPXvV6aPH97E8BOYEqutTj_IsEgN-HKbbhyE67chtss_D-LCZPaxNGmDfF94z8QbaiT
CitedBy_id crossref_primary_10_36233_0507_4088_47
crossref_primary_10_21055_0370_1069_2018_3_8_15
crossref_primary_10_3389_fimmu_2021_709772
crossref_primary_10_1038_emi_2017_31
crossref_primary_10_3109_07388551_2015_1114465
crossref_primary_10_12980_APJTB_4_201414B419
crossref_primary_10_1080_15265161_2018_1513584
crossref_primary_10_1021_mp5006454
crossref_primary_10_1016_j_jmb_2016_05_008
crossref_primary_10_2217_fvl_14_96
crossref_primary_10_3390_vaccines5030030
crossref_primary_10_3390_pathogens11121400
crossref_primary_10_54393_pbmj_v6i12_982
crossref_primary_10_1128_AAC_03442_14
crossref_primary_10_1016_j_jobb_2023_05_001
crossref_primary_10_1134_S002689331504007X
crossref_primary_10_1089_apb_21_919637
crossref_primary_10_2217_fvl_2016_0113
crossref_primary_10_1080_21645515_2017_1383575
crossref_primary_10_1093_infdis_jiw145
crossref_primary_10_3389_fviro_2021_665473
crossref_primary_10_1016_S1261_694X_14_70705_9
crossref_primary_10_1517_13543784_2015_1052403
crossref_primary_10_1038_srep39214
crossref_primary_10_1093_infdis_jiv203
crossref_primary_10_1371_journal_pmed_1001997
crossref_primary_10_1371_journal_ppat_1005263
crossref_primary_10_3390_v6041654
crossref_primary_10_1093_infdis_jiy295
crossref_primary_10_1177_1535676020919637
crossref_primary_10_1007_s12250_016_3850_1
crossref_primary_10_1093_infdis_jiy455
crossref_primary_10_3390_v9110319
crossref_primary_10_1093_infdis_jiv101
crossref_primary_10_1093_infdis_jiy457
crossref_primary_10_1186_s12941_015_0089_x
crossref_primary_10_1371_journal_ppat_1012065
crossref_primary_10_37349_ei_2024_00139
crossref_primary_10_1146_annurev_virology_092818_015708
crossref_primary_10_1016_j_antiviral_2014_12_005
crossref_primary_10_1093_infdis_jiv215
crossref_primary_10_1056_NEJMoa1410345
crossref_primary_10_1111_jmp_12689
crossref_primary_10_1038_s41598_018_19638_x
crossref_primary_10_3390_v10120683
crossref_primary_10_1080_21645515_2015_1039757
crossref_primary_10_3390_vaccines10091384
crossref_primary_10_1080_21645515_2017_1325050
crossref_primary_10_1128_JVI_01033_16
crossref_primary_10_3390_microorganisms9020213
crossref_primary_10_3390_v11100940
crossref_primary_10_1016_j_antiviral_2018_01_011
crossref_primary_10_1152_ajplung_00354_2014
crossref_primary_10_3390_microorganisms9030489
crossref_primary_10_1128_JVI_01239_16
crossref_primary_10_3390_pathogens10111510
crossref_primary_10_1002_med_21355
crossref_primary_10_1016_j_micinf_2014_12_004
crossref_primary_10_2174_1871526522666220510103618
crossref_primary_10_1038_s41572_020_0147_3
crossref_primary_10_3389_fcimb_2024_1340017
crossref_primary_10_1186_s12896_024_00873_2
crossref_primary_10_1038_s41598_017_15145_7
crossref_primary_10_1093_infdis_jiw209
crossref_primary_10_3389_fmicb_2014_00672
crossref_primary_10_1016_j_ymthe_2024_08_026
crossref_primary_10_1099_jgv_0_001024
crossref_primary_10_3390_v15010158
crossref_primary_10_2903_j_efsa_2017_4890
crossref_primary_10_1128_JVI_01643_14
crossref_primary_10_1021_acs_analchem_8b04623
crossref_primary_10_1038_s41577_018_0005_7
crossref_primary_10_3390_microorganisms8101473
crossref_primary_10_3389_fimmu_2021_703986
crossref_primary_10_1128_JVI_00649_15
crossref_primary_10_1016_j_tim_2014_04_002
crossref_primary_10_1093_infdis_jiab478
crossref_primary_10_1093_infdis_jiv371
crossref_primary_10_1080_14712598_2018_1404572
crossref_primary_10_1007_s00422_021_00867_9
crossref_primary_10_1016_j_virol_2015_07_024
crossref_primary_10_1128_genomeA_00639_15
crossref_primary_10_3390_v13071388
crossref_primary_10_3389_fimmu_2019_02329
crossref_primary_10_1038_nmicrobiol_2017_113
crossref_primary_10_1016_j_virs_2024_03_010
crossref_primary_10_1177_0194599814531907
crossref_primary_10_3390_computation11110234
crossref_primary_10_3390_v11020137
crossref_primary_10_1128_CMR_00014_15
crossref_primary_10_1038_srep24179
crossref_primary_10_1007_s00134_015_3736_y
crossref_primary_10_1093_infdis_jiad226
crossref_primary_10_2174_1389557523666230202111337
crossref_primary_10_1126_scitranslmed_aaq1016
crossref_primary_10_1093_infdis_jiv538
crossref_primary_10_4274_tao_2023_2023_5_16
crossref_primary_10_1517_17460441_2015_1035252
crossref_primary_10_1016_j_ejphar_2015_03_023
crossref_primary_10_1007_s00251_016_0921_2
crossref_primary_10_1080_14737159_2018_1491793
crossref_primary_10_1016_j_ymthe_2022_10_011
crossref_primary_10_1093_infdis_jiy268
crossref_primary_10_1111_imcb_12383
crossref_primary_10_21055_0370_1069_2022_3_53_60
crossref_primary_10_1093_infdis_jiy269
crossref_primary_10_3389_fpubh_2014_00292
crossref_primary_10_3390_vaccines9030190
crossref_primary_10_1021_acsinfecdis_7b00266
crossref_primary_10_3390_v12090923
crossref_primary_10_1016_j_mehy_2015_05_009
crossref_primary_10_1038_s41467_023_39627_7
crossref_primary_10_1128_JVI_01147_15
crossref_primary_10_1371_journal_pntd_0004475
crossref_primary_10_1111_ijcp_12593
crossref_primary_10_1002_hast_580
ContentType Journal Article
Copyright Copyright © 2013 Nakayama and Saijo. 2013
Copyright_xml – notice: Copyright © 2013 Nakayama and Saijo. 2013
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2013.00267
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_24c1d3bd6f9541dba5b9ec70a5d715fd
PMC3763195
24046765
10_3389_fmicb_2013_00267
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c528t-2365ed66d17639f4893b40db14407f8fc57a9e635995550c34b316d0e391a93b3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:30:03 EDT 2025
Thu Aug 21 18:07:21 EDT 2025
Fri Jul 11 13:09:33 EDT 2025
Mon Jul 21 05:48:07 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Tue Jul 01 03:54:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ebola virus
viral hemorrhagic fever
animal models
Marburg virus
filovirus
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-2365ed66d17639f4893b40db14407f8fc57a9e635995550c34b316d0e391a93b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Stefan Pöhlmann, German Primate Center, Germany; Takeo Ohsugi, Kumamoto University, Japan
Edited by: Akio Adachi, The University of Tokushima Graduate School, Japan
This article was submitted to Virology, a section of the journal Frontiers in Microbiology.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2013.00267
PMID 24046765
PQID 1540106903
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_24c1d3bd6f9541dba5b9ec70a5d715fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3763195
proquest_miscellaneous_1540106903
pubmed_primary_24046765
crossref_primary_10_3389_fmicb_2013_00267
crossref_citationtrail_10_3389_fmicb_2013_00267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-05
PublicationDateYYYYMMDD 2013-09-05
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-05
  day: 05
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2013
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 15784912 - J Gen Virol. 2005 Apr;86(Pt 4):1181-8
19307268 - BMJ. 2009 Mar 23;338:b1223
9427604 - Nat Med. 1998 Jan;4(1):37-42
11369881 - J Gen Virol. 2001 Jun;82(Pt 6):1365-73
11027311 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94
18986663 - Virology. 2009 Jan 5;383(1):12-21
9988185 - J Infect Dis. 1999 Feb;179 Suppl 1:S199-202
536744 - J Med Virol. 1979;4(3):239-40
8017061 - Vopr Virusol. 1994 Mar-Apr;39(2):82-4
20511019 - Lancet. 2010 May 29;375(9729):1896-905
65662 - Lancet. 1977 Mar 12;1(8011):571-3
8800792 - Arch Virol Suppl. 1996;11:101-14
17940979 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S421-9
106868 - Br J Exp Pathol. 1978 Dec;59(6):584-93
9278608 - Arch Pathol Lab Med. 1997 Aug;121(8):805-19
20660192 - J Virol. 2010 Oct;84(19):10386-94
102747 - J Pathol. 1978 Jul;125(3):131-8
21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9
19323614 - Vector Borne Zoonotic Dis. 2009 Dec;9(6):723-8
16650649 - Lancet. 2006 Apr 29;367(9520):1399-404
1441443 - Vopr Virusol. 1992 May-Jun;37(3):156-7
21281425 - Plant Biotechnol J. 2011 Sep;9(7):807-16
18216185 - Clin Vaccine Immunol. 2008 Mar;15(3):460-7
8551825 - Lancet. 1995 Dec 23-30;346(8991-8992):1669-71
15937495 - Nat Med. 2005 Jul;11(7):786-90
16848640 - PLoS Pathog. 2006 Jul;2(7):e73
23045629 - J Infect Dis. 2013 Jan 15;207(2):306-18
21858240 - PLoS Negl Trop Dis. 2011 Aug;5(8):e1275
20452380 - Antiviral Res. 2010 Aug;87(2):187-94
14726594 - Science. 2004 Jan 16;303(5656):387-90
1968529 - Lancet. 1990 Mar 3;335(8688):502-5
14633608 - Am J Pathol. 2003 Dec;163(6):2347-70
19211761 - J Virol. 2009 Apr;83(8):3810-5
21162622 - Expert Rev Vaccines. 2011 Jan;10(1):63-77
12857895 - J Virol. 2003 Aug;77(15):8263-71
9657001 - Virology. 1998 Jun 20;246(1):134-44
20129638 - Virology. 2010 Apr 10;399(2):290-8
11682540 - J Clin Microbiol. 2001 Nov;39(11):4125-30
1965845 - Microb Pathog. 1990 Oct;9(4):219-26
12904795 - Nature. 2003 Aug 7;424(6949):681-4
14639531 - J Infect Dis. 2003 Dec 1;188(11):1618-29
21994800 - Viruses. 2011 Sep;3(9):1634-49
4045253 - J Infect Dis. 1985 Nov;152(5):887-94
16988008 - Clin Vaccine Immunol. 2006 Nov;13(11):1267-77
20654661 - Virus Res. 2010 Oct;153(1):121-33
1785188 - Vopr Virusol. 1991 Nov-Dec;36(6):506-8
19440245 - PLoS One. 2009;4(5):e5547
7547435 - Int J Exp Pathol. 1995 Aug;76(4):227-36
17940973 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81
17940975 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S390-9
4067737 - J Pathol. 1985 Nov;147(3):199-209
18637412 - Arch Virol Suppl. 2008;20:13-360
21987781 - J Infect Dis. 2011 Nov;204 Suppl 3:S991-9
10714441 - Immunol Lett. 2000 Feb 1;71(2):131-40
12012728 - Exp Anim. 2002 Apr;51(2):173-9
16973570 - J Virol. 2006 Oct;80(19):9659-66
8686261 - Vopr Virusol. 1995 Nov-Dec;40(6):257-60
19925902 - Vaccine. 2010 Jan 22;28(4):950-7
17329340 - J Virol. 2007 May;81(9):4654-63
16415982 - PLoS Pathog. 2006 Jan;2(1):e1
23001720 - Arch Virol. 2013 Jan;158(1):301-11
10924796 - Vaccine. 2000 Aug 15;19(1):142-53
1803784 - Vopr Virusol. 1991 Sep-Oct;36(5):435-7
21987738 - J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31
1527410 - J Infect Dis. 1992 Oct;166(4):753-63
17428868 - J Virol. 2007 Jun;81(12):6379-88
11798241 - J Comp Pathol. 2001 Nov;125(4):243-53
23242370 - Viruses. 2012 Dec 14;4(12):3754-84
15778381 - J Immunol. 2005 Apr 1;174(7):4198-202
9988182 - J Infect Dis. 1999 Feb;179 Suppl 1:S177-87
9606228 - Pediatrics. 1998 Jun;101(6):1013-9
11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8
17238284 - PLoS Pathog. 2007 Jan;3(1):e2
16703508 - J Infect Dis. 2006 Jun 15;193(12):1650-7
9893381 - Curr Top Microbiol Immunol. 1999;235:97-116
8678836 - Arch Virol. 1996;141(5):909-21
1318446 - Lab Anim Sci. 1992 Apr;42(2):152-7
19223614 - Antimicrob Agents Chemother. 2009 May;53(5):2089-99
19010509 - Virology. 2009 Jan 20;383(2):348-61
12922144 - Vaccine. 2003 Sep 8;21(25-26):4071-80
10202932 - Nat Med. 1999 Apr;5(4):423-6
20587184 - Emerg Infect Dis. 2010 Jul;16(7):1119-22
9988174 - J Infect Dis. 1999 Feb;179 Suppl 1:S115-9
10680646 - Thromb Res. 2000 Feb 1;97(3):153-62
8800793 - Arch Virol Suppl. 1996;11:115-34
9988155 - J Infect Dis. 1999 Feb;179 Suppl 1:S1-7
16474134 - J Virol. 2006 Mar;80(5):2267-79
21334343 - J Immunol Methods. 2011 May 31;368(1-2):24-35
14673108 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94
16820184 - Virology. 2006 Sep 30;353(2):324-32
15367603 - J Virol. 2004 Oct;78(19):10370-7
418537 - Trans R Soc Trop Med Hyg. 1978;72(2):188-91
8712894 - Arch Pathol Lab Med. 1996 Feb;120(2):140-55
22039362 - PLoS Pathog. 2011 Oct;7(10):e1002304
21987746 - J Infect Dis. 2011 Nov;204 Suppl 3:S1090-7
17940964 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S296-304
9988156 - J Infect Dis. 1999 Feb;179 Suppl 1:S8-10
9005989 - J Clin Invest. 1997 Jan 15;99(2):209-19
4978540 - Trans R Soc Trop Med Hyg. 1969;63(3):303-9
16501083 - J Virol. 2006 Mar;80(6):2738-46
4997371 - Lab Invest. 1971 Apr;24(4):279-91
15047846 - J Virol. 2004 Apr;78(8):4330-41
6165800 - J Med Virol. 1980;6(2):129-38
8593345 - Biull Eksp Biol Med. 1995 Sep;120(9):302-4
20807825 - Vet Pathol. 2010 Sep;47(5):831-51
19386702 - J Virol. 2009 Jul;83(14):7296-304
17940980 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S430-7
11062045 - Virology. 2000 Nov 10;277(1):147-55
8717394 - J Biotechnol. 1996 Jan 26;44(1-3):111-8
10701687 - Lab Invest. 2000 Feb;80(2):171-86
19369350 - J Virol. 2009 Jul;83(13):6404-15
21987775 - J Infect Dis. 2011 Nov;204 Suppl 3:S953-6
17928350 - J Virol. 2007 Dec;81(24):13469-77
9813200 - Virology. 1998 Nov 10;251(1):28-37
21329775 - Vaccine. 2011 Apr 5;29(16):2968-77
19523489 - Antiviral Res. 2009 Sep;83(3):245-51
21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20
11996686 - Emerg Infect Dis. 2002 May;8(5):503-7
23170168 - Viruses. 2012 Sep;4(9):1477-508
18385248 - J Virol. 2008 Jun;82(11):5664-8
20658513 - Rev Med Virol. 2010 Nov;20(6):344-57
21866101 - Nature. 2011 Aug 24;477(7364):344-8
9988191 - J Infect Dis. 1999 Feb;179 Suppl 1:S248-58
6749685 - Infect Immun. 1982 Aug;37(2):771-8
22070137 - Biosecur Bioterror. 2011 Dec;9(4):361-71
11117750 - Nature. 2000 Nov 30;408(6812):605-9
19889762 - J Virol. 2010 Jan;84(2):1169-75
14683653 - Lancet. 2003 Dec 13;362(9400):1953-8
23185024 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6
14633609 - Am J Pathol. 2003 Dec;163(6):2371-82
23170176 - Viruses. 2012 Sep;4(9):1619-50
20729866 - Nat Med. 2010 Sep;16(9):991-4
9988186 - J Infect Dis. 1999 Feb;179 Suppl 1:S203-17
19132113 - Dis Model Mech. 2009 Jan-Feb;2(1-2):12-7
22383882 - PLoS Pathog. 2012 Feb;8(2):e1002550
8702027 - Am J Trop Med Hyg. 1996 Jul;55(1):81-8
18444889 - Expert Rev Vaccines. 2008 May;7(4):417-29
21325402 - J Virol. 2011 May;85(9):4222-33
5727750 - Br J Exp Pathol. 1968 Oct;49(5):458-64
1803779 - Vopr Virusol. 1991 Sep-Oct;36(5):421-3
References_xml – reference: 20129638 - Virology. 2010 Apr 10;399(2):290-8
– reference: 9988155 - J Infect Dis. 1999 Feb;179 Suppl 1:S1-7
– reference: 20658513 - Rev Med Virol. 2010 Nov;20(6):344-57
– reference: 19010509 - Virology. 2009 Jan 20;383(2):348-61
– reference: 10680646 - Thromb Res. 2000 Feb 1;97(3):153-62
– reference: 9427604 - Nat Med. 1998 Jan;4(1):37-42
– reference: 12012728 - Exp Anim. 2002 Apr;51(2):173-9
– reference: 65662 - Lancet. 1977 Mar 12;1(8011):571-3
– reference: 14683653 - Lancet. 2003 Dec 13;362(9400):1953-8
– reference: 10202932 - Nat Med. 1999 Apr;5(4):423-6
– reference: 1527410 - J Infect Dis. 1992 Oct;166(4):753-63
– reference: 9988191 - J Infect Dis. 1999 Feb;179 Suppl 1:S248-58
– reference: 23045629 - J Infect Dis. 2013 Jan 15;207(2):306-18
– reference: 21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20
– reference: 9988186 - J Infect Dis. 1999 Feb;179 Suppl 1:S203-17
– reference: 19211761 - J Virol. 2009 Apr;83(8):3810-5
– reference: 9606228 - Pediatrics. 1998 Jun;101(6):1013-9
– reference: 8593345 - Biull Eksp Biol Med. 1995 Sep;120(9):302-4
– reference: 17928350 - J Virol. 2007 Dec;81(24):13469-77
– reference: 17940975 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S390-9
– reference: 16703508 - J Infect Dis. 2006 Jun 15;193(12):1650-7
– reference: 8717394 - J Biotechnol. 1996 Jan 26;44(1-3):111-8
– reference: 20587184 - Emerg Infect Dis. 2010 Jul;16(7):1119-22
– reference: 9278608 - Arch Pathol Lab Med. 1997 Aug;121(8):805-19
– reference: 1803779 - Vopr Virusol. 1991 Sep-Oct;36(5):421-3
– reference: 18216185 - Clin Vaccine Immunol. 2008 Mar;15(3):460-7
– reference: 1785188 - Vopr Virusol. 1991 Nov-Dec;36(6):506-8
– reference: 11996686 - Emerg Infect Dis. 2002 May;8(5):503-7
– reference: 11682540 - J Clin Microbiol. 2001 Nov;39(11):4125-30
– reference: 11369881 - J Gen Virol. 2001 Jun;82(Pt 6):1365-73
– reference: 536744 - J Med Virol. 1979;4(3):239-40
– reference: 18444889 - Expert Rev Vaccines. 2008 May;7(4):417-29
– reference: 20660192 - J Virol. 2010 Oct;84(19):10386-94
– reference: 1318446 - Lab Anim Sci. 1992 Apr;42(2):152-7
– reference: 20654661 - Virus Res. 2010 Oct;153(1):121-33
– reference: 10924796 - Vaccine. 2000 Aug 15;19(1):142-53
– reference: 106868 - Br J Exp Pathol. 1978 Dec;59(6):584-93
– reference: 21987775 - J Infect Dis. 2011 Nov;204 Suppl 3:S953-6
– reference: 20729866 - Nat Med. 2010 Sep;16(9):991-4
– reference: 22070137 - Biosecur Bioterror. 2011 Dec;9(4):361-71
– reference: 8800792 - Arch Virol Suppl. 1996;11:101-14
– reference: 16501083 - J Virol. 2006 Mar;80(6):2738-46
– reference: 20452380 - Antiviral Res. 2010 Aug;87(2):187-94
– reference: 16474134 - J Virol. 2006 Mar;80(5):2267-79
– reference: 21334343 - J Immunol Methods. 2011 May 31;368(1-2):24-35
– reference: 9657001 - Virology. 1998 Jun 20;246(1):134-44
– reference: 17238284 - PLoS Pathog. 2007 Jan;3(1):e2
– reference: 6749685 - Infect Immun. 1982 Aug;37(2):771-8
– reference: 8800793 - Arch Virol Suppl. 1996;11:115-34
– reference: 21325402 - J Virol. 2011 May;85(9):4222-33
– reference: 15367603 - J Virol. 2004 Oct;78(19):10370-7
– reference: 8712894 - Arch Pathol Lab Med. 1996 Feb;120(2):140-55
– reference: 19223614 - Antimicrob Agents Chemother. 2009 May;53(5):2089-99
– reference: 21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9
– reference: 21281425 - Plant Biotechnol J. 2011 Sep;9(7):807-16
– reference: 16415982 - PLoS Pathog. 2006 Jan;2(1):e1
– reference: 14633609 - Am J Pathol. 2003 Dec;163(6):2371-82
– reference: 17329340 - J Virol. 2007 May;81(9):4654-63
– reference: 9988185 - J Infect Dis. 1999 Feb;179 Suppl 1:S199-202
– reference: 9893381 - Curr Top Microbiol Immunol. 1999;235:97-116
– reference: 15778381 - J Immunol. 2005 Apr 1;174(7):4198-202
– reference: 6165800 - J Med Virol. 1980;6(2):129-38
– reference: 18986663 - Virology. 2009 Jan 5;383(1):12-21
– reference: 19132113 - Dis Model Mech. 2009 Jan-Feb;2(1-2):12-7
– reference: 15047846 - J Virol. 2004 Apr;78(8):4330-41
– reference: 15937495 - Nat Med. 2005 Jul;11(7):786-90
– reference: 8702027 - Am J Trop Med Hyg. 1996 Jul;55(1):81-8
– reference: 19889762 - J Virol. 2010 Jan;84(2):1169-75
– reference: 17940964 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S296-304
– reference: 9988156 - J Infect Dis. 1999 Feb;179 Suppl 1:S8-10
– reference: 17940979 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S421-9
– reference: 1441443 - Vopr Virusol. 1992 May-Jun;37(3):156-7
– reference: 9005989 - J Clin Invest. 1997 Jan 15;99(2):209-19
– reference: 19386702 - J Virol. 2009 Jul;83(14):7296-304
– reference: 22383882 - PLoS Pathog. 2012 Feb;8(2):e1002550
– reference: 16820184 - Virology. 2006 Sep 30;353(2):324-32
– reference: 9813200 - Virology. 1998 Nov 10;251(1):28-37
– reference: 11027311 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94
– reference: 8551825 - Lancet. 1995 Dec 23-30;346(8991-8992):1669-71
– reference: 16973570 - J Virol. 2006 Oct;80(19):9659-66
– reference: 1968529 - Lancet. 1990 Mar 3;335(8688):502-5
– reference: 21866101 - Nature. 2011 Aug 24;477(7364):344-8
– reference: 21329775 - Vaccine. 2011 Apr 5;29(16):2968-77
– reference: 17940973 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81
– reference: 10701687 - Lab Invest. 2000 Feb;80(2):171-86
– reference: 15784912 - J Gen Virol. 2005 Apr;86(Pt 4):1181-8
– reference: 19307268 - BMJ. 2009 Mar 23;338:b1223
– reference: 418537 - Trans R Soc Trop Med Hyg. 1978;72(2):188-91
– reference: 12857895 - J Virol. 2003 Aug;77(15):8263-71
– reference: 14673108 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94
– reference: 19323614 - Vector Borne Zoonotic Dis. 2009 Dec;9(6):723-8
– reference: 11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8
– reference: 21162622 - Expert Rev Vaccines. 2011 Jan;10(1):63-77
– reference: 14633608 - Am J Pathol. 2003 Dec;163(6):2347-70
– reference: 19925902 - Vaccine. 2010 Jan 22;28(4):950-7
– reference: 19523489 - Antiviral Res. 2009 Sep;83(3):245-51
– reference: 21987746 - J Infect Dis. 2011 Nov;204 Suppl 3:S1090-7
– reference: 11062045 - Virology. 2000 Nov 10;277(1):147-55
– reference: 5727750 - Br J Exp Pathol. 1968 Oct;49(5):458-64
– reference: 8678836 - Arch Virol. 1996;141(5):909-21
– reference: 23185024 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6
– reference: 16988008 - Clin Vaccine Immunol. 2006 Nov;13(11):1267-77
– reference: 8686261 - Vopr Virusol. 1995 Nov-Dec;40(6):257-60
– reference: 11798241 - J Comp Pathol. 2001 Nov;125(4):243-53
– reference: 12922144 - Vaccine. 2003 Sep 8;21(25-26):4071-80
– reference: 1965845 - Microb Pathog. 1990 Oct;9(4):219-26
– reference: 20511019 - Lancet. 2010 May 29;375(9729):1896-905
– reference: 9988174 - J Infect Dis. 1999 Feb;179 Suppl 1:S115-9
– reference: 102747 - J Pathol. 1978 Jul;125(3):131-8
– reference: 21858240 - PLoS Negl Trop Dis. 2011 Aug;5(8):e1275
– reference: 19369350 - J Virol. 2009 Jul;83(13):6404-15
– reference: 12904795 - Nature. 2003 Aug 7;424(6949):681-4
– reference: 10714441 - Immunol Lett. 2000 Feb 1;71(2):131-40
– reference: 8017061 - Vopr Virusol. 1994 Mar-Apr;39(2):82-4
– reference: 16848640 - PLoS Pathog. 2006 Jul;2(7):e73
– reference: 4067737 - J Pathol. 1985 Nov;147(3):199-209
– reference: 18385248 - J Virol. 2008 Jun;82(11):5664-8
– reference: 7547435 - Int J Exp Pathol. 1995 Aug;76(4):227-36
– reference: 9988182 - J Infect Dis. 1999 Feb;179 Suppl 1:S177-87
– reference: 23242370 - Viruses. 2012 Dec 14;4(12):3754-84
– reference: 22039362 - PLoS Pathog. 2011 Oct;7(10):e1002304
– reference: 17428868 - J Virol. 2007 Jun;81(12):6379-88
– reference: 16650649 - Lancet. 2006 Apr 29;367(9520):1399-404
– reference: 11117750 - Nature. 2000 Nov 30;408(6812):605-9
– reference: 14639531 - J Infect Dis. 2003 Dec 1;188(11):1618-29
– reference: 4045253 - J Infect Dis. 1985 Nov;152(5):887-94
– reference: 18637412 - Arch Virol Suppl. 2008;20:13-360
– reference: 14726594 - Science. 2004 Jan 16;303(5656):387-90
– reference: 23170176 - Viruses. 2012 Sep;4(9):1619-50
– reference: 17940980 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S430-7
– reference: 21994800 - Viruses. 2011 Sep;3(9):1634-49
– reference: 23170168 - Viruses. 2012 Sep;4(9):1477-508
– reference: 23001720 - Arch Virol. 2013 Jan;158(1):301-11
– reference: 4978540 - Trans R Soc Trop Med Hyg. 1969;63(3):303-9
– reference: 19440245 - PLoS One. 2009;4(5):e5547
– reference: 21987738 - J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31
– reference: 21987781 - J Infect Dis. 2011 Nov;204 Suppl 3:S991-9
– reference: 1803784 - Vopr Virusol. 1991 Sep-Oct;36(5):435-7
– reference: 4997371 - Lab Invest. 1971 Apr;24(4):279-91
– reference: 20807825 - Vet Pathol. 2010 Sep;47(5):831-51
SSID ssj0000402000
Score 2.3811572
SecondaryResourceType review_article
Snippet Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus),...
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus),...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 267
SubjectTerms Animal Models
Ebola virus
filovirus
Marburg virus
Microbiology
viral hemorrhagic fever
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7Eb-sXFbx4KLZNpm2OKooIelLwFvKpC1rF3RX8986ku-uuiF68NikNb9rJe83whrHDUHFfcKgzaaXPRB181kATMu_rUIJpch_o18D1TXV5J67u4X6q1RfVhHX2wB1wx6WwhePGVUGCKJzRYKS3da7B1QUER9kX97wpMRVzMMmiPO_OJVGFSQxTzxoq5SJH0zK2lf_ah6Jd_08c83up5NTec7HMlkakMT3pFrvC5ny7yha6NpIfa0yctL1nHI9dbfop0tD03KBkTXXr0mtNuD2k7723YT8d1161_XV2d3F-e3aZjbohZBbKZpCVvALvqsoVmBJkINMYI3Jn6HS2Dk2wUGvpkT9ICSg7LBeGF5XLPZeFxrl8g823L63fYqnULhgXtBPBCGGlEQ7AlcTlUABxn7DjMTbKjqzCqWPFk0LJQGiqiKYiNFVEM2FHkzteO5uMX-aeEtyTeWRwHS9g2NUo7OqvsCfsYBwshR8EnXLo1r8M-wo5IelcmfOEbXbBmzwK6QtuDBUkrJ4J68xaZkfa3mM03aZEXEjY_o_F77DFMnbVkFkOu2x-8Db0e8htBmY_vsaf-Nj4Lw
  priority: 102
  providerName: Directory of Open Access Journals
Title Animal models for Ebola and Marburg virus infections
URI https://www.ncbi.nlm.nih.gov/pubmed/24046765
https://www.proquest.com/docview/1540106903
https://pubmed.ncbi.nlm.nih.gov/PMC3763195
https://doaj.org/article/24c1d3bd6f9541dba5b9ec70a5d715fd
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJsssAoSFw6BOH7FB4QWtMsKqZyo1Jvl51JpN4WmXbH_nhknLRRViEsOsRMn39iebzz2DCGvkmSRMqEq7XWsuEqxakWbqhhVaoRr65hwaWDyRZ5N-eeZmP0-Hj0C2O817TCf1HR58ebnj-v3MODfocUJ-hYkMPcOd2lhsNJGqpvkFuglhfkMJiPZz_Mymkr5TAqVEt0BzWzwW-59yY6eyuH893HQv7dS_qGbTu-RuyOpLI-HXnCf3IjdA3J7SDN5_ZDw425-CeU5601fAk0tTxz8d2m7UE4s4npeXs2X677c7M3q-kdkenry9eNZNWZLqLxo2lXVMClikDJQmDJ0wqAyjtfBofdWpTZ5oayOwC-0FmCWeMYdozLUkWlqoS57TA66RRefklLbkFxINvDkOPfa8SBEaJDrgYHEYkHebrAxfgwljhktLgyYFIimyWgaRNNkNAvyevvE9yGMxj_qfkC4t_UwAHa-sViem3E8mYZ7GpgLMmnBaXBWOB29qq0IiooUCvJyIywDAwa9ILaLi3VvgDOiHaxrVpAng_C2TQG9AcUhRUHUjlh3vmW3pJt_y0G5caKmWhz-R7vPyJ0mJ9XQVS2ek4PVch1fALVZuaO8JADXTzN6lHvvL1XB9-o
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Animal+models+for+Ebola+and+Marburg+virus+infections&rft.jtitle=Frontiers+in+microbiology&rft.au=Nakayama%2C+Eri&rft.au=Saijo%2C+Masayuki&rft.date=2013-09-05&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=4&rft.spage=267&rft_id=info:doi/10.3389%2Ffmicb.2013.00267&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon