Animal models for Ebola and Marburg virus infections
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Llov...
Saved in:
Published in | Frontiers in microbiology Vol. 4; p. 267 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
05.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. |
---|---|
AbstractList | Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. |
Author | Nakayama, Eri Saijo, Masayuki |
AuthorAffiliation | Department of Virology 1, National Institute of Infectious Diseases Tokyo, Japan |
AuthorAffiliation_xml | – name: Department of Virology 1, National Institute of Infectious Diseases Tokyo, Japan |
Author_xml | – sequence: 1 givenname: Eri surname: Nakayama fullname: Nakayama, Eri – sequence: 2 givenname: Masayuki surname: Saijo fullname: Saijo, Masayuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24046765$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctLXDEUxkOx1Efdu5K77GbGk5vHnWwKIlYFSzctdBfynEZyE5vcK_jfNzOjogWzSA7J9_3OId8h2ks5OYROMCwJWYkzPwajlz1gsgTo-fABHWDO6YJA_3vvVb2Pjmu9g7Yo9G3_hPZ7CpQPnB0gep7CqGI3Zuti7Xwu3aXOUXUq2e67Knou6-4hlLl2IXlnppBT_Yw-ehWrO346j9Cvb5c_L64Xtz-ubi7ObxeG9atp0RPOnOXc4oET4elKEE3BakwpDH7lDRuUcJwwIRhjYAjVBHMLjgismpYcoZsd12Z1J-9Lm7Q8yqyC3F7kspaqTMFEJ3tqsCXaci8YxVYrpoUzAyhmB8y8bayvO9b9rEdnjUtTUfEN9O1LCn_kOj9I0obHgjXAlydAyX9nVyc5hmpcjCq5PFeJGQUMXABp0tPXvV6aPH97E8BOYEqutTj_IsEgN-HKbbhyE67chtss_D-LCZPaxNGmDfF94z8QbaiT |
CitedBy_id | crossref_primary_10_36233_0507_4088_47 crossref_primary_10_21055_0370_1069_2018_3_8_15 crossref_primary_10_3389_fimmu_2021_709772 crossref_primary_10_1038_emi_2017_31 crossref_primary_10_3109_07388551_2015_1114465 crossref_primary_10_12980_APJTB_4_201414B419 crossref_primary_10_1080_15265161_2018_1513584 crossref_primary_10_1021_mp5006454 crossref_primary_10_1016_j_jmb_2016_05_008 crossref_primary_10_2217_fvl_14_96 crossref_primary_10_3390_vaccines5030030 crossref_primary_10_3390_pathogens11121400 crossref_primary_10_54393_pbmj_v6i12_982 crossref_primary_10_1128_AAC_03442_14 crossref_primary_10_1016_j_jobb_2023_05_001 crossref_primary_10_1134_S002689331504007X crossref_primary_10_1089_apb_21_919637 crossref_primary_10_2217_fvl_2016_0113 crossref_primary_10_1080_21645515_2017_1383575 crossref_primary_10_1093_infdis_jiw145 crossref_primary_10_3389_fviro_2021_665473 crossref_primary_10_1016_S1261_694X_14_70705_9 crossref_primary_10_1517_13543784_2015_1052403 crossref_primary_10_1038_srep39214 crossref_primary_10_1093_infdis_jiv203 crossref_primary_10_1371_journal_pmed_1001997 crossref_primary_10_1371_journal_ppat_1005263 crossref_primary_10_3390_v6041654 crossref_primary_10_1093_infdis_jiy295 crossref_primary_10_1177_1535676020919637 crossref_primary_10_1007_s12250_016_3850_1 crossref_primary_10_1093_infdis_jiy455 crossref_primary_10_3390_v9110319 crossref_primary_10_1093_infdis_jiv101 crossref_primary_10_1093_infdis_jiy457 crossref_primary_10_1186_s12941_015_0089_x crossref_primary_10_1371_journal_ppat_1012065 crossref_primary_10_37349_ei_2024_00139 crossref_primary_10_1146_annurev_virology_092818_015708 crossref_primary_10_1016_j_antiviral_2014_12_005 crossref_primary_10_1093_infdis_jiv215 crossref_primary_10_1056_NEJMoa1410345 crossref_primary_10_1111_jmp_12689 crossref_primary_10_1038_s41598_018_19638_x crossref_primary_10_3390_v10120683 crossref_primary_10_1080_21645515_2015_1039757 crossref_primary_10_3390_vaccines10091384 crossref_primary_10_1080_21645515_2017_1325050 crossref_primary_10_1128_JVI_01033_16 crossref_primary_10_3390_microorganisms9020213 crossref_primary_10_3390_v11100940 crossref_primary_10_1016_j_antiviral_2018_01_011 crossref_primary_10_1152_ajplung_00354_2014 crossref_primary_10_3390_microorganisms9030489 crossref_primary_10_1128_JVI_01239_16 crossref_primary_10_3390_pathogens10111510 crossref_primary_10_1002_med_21355 crossref_primary_10_1016_j_micinf_2014_12_004 crossref_primary_10_2174_1871526522666220510103618 crossref_primary_10_1038_s41572_020_0147_3 crossref_primary_10_3389_fcimb_2024_1340017 crossref_primary_10_1186_s12896_024_00873_2 crossref_primary_10_1038_s41598_017_15145_7 crossref_primary_10_1093_infdis_jiw209 crossref_primary_10_3389_fmicb_2014_00672 crossref_primary_10_1016_j_ymthe_2024_08_026 crossref_primary_10_1099_jgv_0_001024 crossref_primary_10_3390_v15010158 crossref_primary_10_2903_j_efsa_2017_4890 crossref_primary_10_1128_JVI_01643_14 crossref_primary_10_1021_acs_analchem_8b04623 crossref_primary_10_1038_s41577_018_0005_7 crossref_primary_10_3390_microorganisms8101473 crossref_primary_10_3389_fimmu_2021_703986 crossref_primary_10_1128_JVI_00649_15 crossref_primary_10_1016_j_tim_2014_04_002 crossref_primary_10_1093_infdis_jiab478 crossref_primary_10_1093_infdis_jiv371 crossref_primary_10_1080_14712598_2018_1404572 crossref_primary_10_1007_s00422_021_00867_9 crossref_primary_10_1016_j_virol_2015_07_024 crossref_primary_10_1128_genomeA_00639_15 crossref_primary_10_3390_v13071388 crossref_primary_10_3389_fimmu_2019_02329 crossref_primary_10_1038_nmicrobiol_2017_113 crossref_primary_10_1016_j_virs_2024_03_010 crossref_primary_10_1177_0194599814531907 crossref_primary_10_3390_computation11110234 crossref_primary_10_3390_v11020137 crossref_primary_10_1128_CMR_00014_15 crossref_primary_10_1038_srep24179 crossref_primary_10_1007_s00134_015_3736_y crossref_primary_10_1093_infdis_jiad226 crossref_primary_10_2174_1389557523666230202111337 crossref_primary_10_1126_scitranslmed_aaq1016 crossref_primary_10_1093_infdis_jiv538 crossref_primary_10_4274_tao_2023_2023_5_16 crossref_primary_10_1517_17460441_2015_1035252 crossref_primary_10_1016_j_ejphar_2015_03_023 crossref_primary_10_1007_s00251_016_0921_2 crossref_primary_10_1080_14737159_2018_1491793 crossref_primary_10_1016_j_ymthe_2022_10_011 crossref_primary_10_1093_infdis_jiy268 crossref_primary_10_1111_imcb_12383 crossref_primary_10_21055_0370_1069_2022_3_53_60 crossref_primary_10_1093_infdis_jiy269 crossref_primary_10_3389_fpubh_2014_00292 crossref_primary_10_3390_vaccines9030190 crossref_primary_10_1021_acsinfecdis_7b00266 crossref_primary_10_3390_v12090923 crossref_primary_10_1016_j_mehy_2015_05_009 crossref_primary_10_1038_s41467_023_39627_7 crossref_primary_10_1128_JVI_01147_15 crossref_primary_10_1371_journal_pntd_0004475 crossref_primary_10_1111_ijcp_12593 crossref_primary_10_1002_hast_580 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Nakayama and Saijo. 2013 |
Copyright_xml | – notice: Copyright © 2013 Nakayama and Saijo. 2013 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2013.00267 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_24c1d3bd6f9541dba5b9ec70a5d715fd PMC3763195 24046765 10_3389_fmicb_2013_00267 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 PGMZT RIG RNS RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-2365ed66d17639f4893b40db14407f8fc57a9e635995550c34b316d0e391a93b3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:30:03 EDT 2025 Thu Aug 21 18:07:21 EDT 2025 Fri Jul 11 13:09:33 EDT 2025 Mon Jul 21 05:48:07 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 03:54:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ebola virus viral hemorrhagic fever animal models Marburg virus filovirus |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-2365ed66d17639f4893b40db14407f8fc57a9e635995550c34b316d0e391a93b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Stefan Pöhlmann, German Primate Center, Germany; Takeo Ohsugi, Kumamoto University, Japan Edited by: Akio Adachi, The University of Tokushima Graduate School, Japan This article was submitted to Virology, a section of the journal Frontiers in Microbiology. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2013.00267 |
PMID | 24046765 |
PQID | 1540106903 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_24c1d3bd6f9541dba5b9ec70a5d715fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_3763195 proquest_miscellaneous_1540106903 pubmed_primary_24046765 crossref_primary_10_3389_fmicb_2013_00267 crossref_citationtrail_10_3389_fmicb_2013_00267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-05 |
PublicationDateYYYYMMDD | 2013-09-05 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2013 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | 15784912 - J Gen Virol. 2005 Apr;86(Pt 4):1181-8 19307268 - BMJ. 2009 Mar 23;338:b1223 9427604 - Nat Med. 1998 Jan;4(1):37-42 11369881 - J Gen Virol. 2001 Jun;82(Pt 6):1365-73 11027311 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94 18986663 - Virology. 2009 Jan 5;383(1):12-21 9988185 - J Infect Dis. 1999 Feb;179 Suppl 1:S199-202 536744 - J Med Virol. 1979;4(3):239-40 8017061 - Vopr Virusol. 1994 Mar-Apr;39(2):82-4 20511019 - Lancet. 2010 May 29;375(9729):1896-905 65662 - Lancet. 1977 Mar 12;1(8011):571-3 8800792 - Arch Virol Suppl. 1996;11:101-14 17940979 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S421-9 106868 - Br J Exp Pathol. 1978 Dec;59(6):584-93 9278608 - Arch Pathol Lab Med. 1997 Aug;121(8):805-19 20660192 - J Virol. 2010 Oct;84(19):10386-94 102747 - J Pathol. 1978 Jul;125(3):131-8 21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9 19323614 - Vector Borne Zoonotic Dis. 2009 Dec;9(6):723-8 16650649 - Lancet. 2006 Apr 29;367(9520):1399-404 1441443 - Vopr Virusol. 1992 May-Jun;37(3):156-7 21281425 - Plant Biotechnol J. 2011 Sep;9(7):807-16 18216185 - Clin Vaccine Immunol. 2008 Mar;15(3):460-7 8551825 - Lancet. 1995 Dec 23-30;346(8991-8992):1669-71 15937495 - Nat Med. 2005 Jul;11(7):786-90 16848640 - PLoS Pathog. 2006 Jul;2(7):e73 23045629 - J Infect Dis. 2013 Jan 15;207(2):306-18 21858240 - PLoS Negl Trop Dis. 2011 Aug;5(8):e1275 20452380 - Antiviral Res. 2010 Aug;87(2):187-94 14726594 - Science. 2004 Jan 16;303(5656):387-90 1968529 - Lancet. 1990 Mar 3;335(8688):502-5 14633608 - Am J Pathol. 2003 Dec;163(6):2347-70 19211761 - J Virol. 2009 Apr;83(8):3810-5 21162622 - Expert Rev Vaccines. 2011 Jan;10(1):63-77 12857895 - J Virol. 2003 Aug;77(15):8263-71 9657001 - Virology. 1998 Jun 20;246(1):134-44 20129638 - Virology. 2010 Apr 10;399(2):290-8 11682540 - J Clin Microbiol. 2001 Nov;39(11):4125-30 1965845 - Microb Pathog. 1990 Oct;9(4):219-26 12904795 - Nature. 2003 Aug 7;424(6949):681-4 14639531 - J Infect Dis. 2003 Dec 1;188(11):1618-29 21994800 - Viruses. 2011 Sep;3(9):1634-49 4045253 - J Infect Dis. 1985 Nov;152(5):887-94 16988008 - Clin Vaccine Immunol. 2006 Nov;13(11):1267-77 20654661 - Virus Res. 2010 Oct;153(1):121-33 1785188 - Vopr Virusol. 1991 Nov-Dec;36(6):506-8 19440245 - PLoS One. 2009;4(5):e5547 7547435 - Int J Exp Pathol. 1995 Aug;76(4):227-36 17940973 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 17940975 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S390-9 4067737 - J Pathol. 1985 Nov;147(3):199-209 18637412 - Arch Virol Suppl. 2008;20:13-360 21987781 - J Infect Dis. 2011 Nov;204 Suppl 3:S991-9 10714441 - Immunol Lett. 2000 Feb 1;71(2):131-40 12012728 - Exp Anim. 2002 Apr;51(2):173-9 16973570 - J Virol. 2006 Oct;80(19):9659-66 8686261 - Vopr Virusol. 1995 Nov-Dec;40(6):257-60 19925902 - Vaccine. 2010 Jan 22;28(4):950-7 17329340 - J Virol. 2007 May;81(9):4654-63 16415982 - PLoS Pathog. 2006 Jan;2(1):e1 23001720 - Arch Virol. 2013 Jan;158(1):301-11 10924796 - Vaccine. 2000 Aug 15;19(1):142-53 1803784 - Vopr Virusol. 1991 Sep-Oct;36(5):435-7 21987738 - J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31 1527410 - J Infect Dis. 1992 Oct;166(4):753-63 17428868 - J Virol. 2007 Jun;81(12):6379-88 11798241 - J Comp Pathol. 2001 Nov;125(4):243-53 23242370 - Viruses. 2012 Dec 14;4(12):3754-84 15778381 - J Immunol. 2005 Apr 1;174(7):4198-202 9988182 - J Infect Dis. 1999 Feb;179 Suppl 1:S177-87 9606228 - Pediatrics. 1998 Jun;101(6):1013-9 11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8 17238284 - PLoS Pathog. 2007 Jan;3(1):e2 16703508 - J Infect Dis. 2006 Jun 15;193(12):1650-7 9893381 - Curr Top Microbiol Immunol. 1999;235:97-116 8678836 - Arch Virol. 1996;141(5):909-21 1318446 - Lab Anim Sci. 1992 Apr;42(2):152-7 19223614 - Antimicrob Agents Chemother. 2009 May;53(5):2089-99 19010509 - Virology. 2009 Jan 20;383(2):348-61 12922144 - Vaccine. 2003 Sep 8;21(25-26):4071-80 10202932 - Nat Med. 1999 Apr;5(4):423-6 20587184 - Emerg Infect Dis. 2010 Jul;16(7):1119-22 9988174 - J Infect Dis. 1999 Feb;179 Suppl 1:S115-9 10680646 - Thromb Res. 2000 Feb 1;97(3):153-62 8800793 - Arch Virol Suppl. 1996;11:115-34 9988155 - J Infect Dis. 1999 Feb;179 Suppl 1:S1-7 16474134 - J Virol. 2006 Mar;80(5):2267-79 21334343 - J Immunol Methods. 2011 May 31;368(1-2):24-35 14673108 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94 16820184 - Virology. 2006 Sep 30;353(2):324-32 15367603 - J Virol. 2004 Oct;78(19):10370-7 418537 - Trans R Soc Trop Med Hyg. 1978;72(2):188-91 8712894 - Arch Pathol Lab Med. 1996 Feb;120(2):140-55 22039362 - PLoS Pathog. 2011 Oct;7(10):e1002304 21987746 - J Infect Dis. 2011 Nov;204 Suppl 3:S1090-7 17940964 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S296-304 9988156 - J Infect Dis. 1999 Feb;179 Suppl 1:S8-10 9005989 - J Clin Invest. 1997 Jan 15;99(2):209-19 4978540 - Trans R Soc Trop Med Hyg. 1969;63(3):303-9 16501083 - J Virol. 2006 Mar;80(6):2738-46 4997371 - Lab Invest. 1971 Apr;24(4):279-91 15047846 - J Virol. 2004 Apr;78(8):4330-41 6165800 - J Med Virol. 1980;6(2):129-38 8593345 - Biull Eksp Biol Med. 1995 Sep;120(9):302-4 20807825 - Vet Pathol. 2010 Sep;47(5):831-51 19386702 - J Virol. 2009 Jul;83(14):7296-304 17940980 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S430-7 11062045 - Virology. 2000 Nov 10;277(1):147-55 8717394 - J Biotechnol. 1996 Jan 26;44(1-3):111-8 10701687 - Lab Invest. 2000 Feb;80(2):171-86 19369350 - J Virol. 2009 Jul;83(13):6404-15 21987775 - J Infect Dis. 2011 Nov;204 Suppl 3:S953-6 17928350 - J Virol. 2007 Dec;81(24):13469-77 9813200 - Virology. 1998 Nov 10;251(1):28-37 21329775 - Vaccine. 2011 Apr 5;29(16):2968-77 19523489 - Antiviral Res. 2009 Sep;83(3):245-51 21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20 11996686 - Emerg Infect Dis. 2002 May;8(5):503-7 23170168 - Viruses. 2012 Sep;4(9):1477-508 18385248 - J Virol. 2008 Jun;82(11):5664-8 20658513 - Rev Med Virol. 2010 Nov;20(6):344-57 21866101 - Nature. 2011 Aug 24;477(7364):344-8 9988191 - J Infect Dis. 1999 Feb;179 Suppl 1:S248-58 6749685 - Infect Immun. 1982 Aug;37(2):771-8 22070137 - Biosecur Bioterror. 2011 Dec;9(4):361-71 11117750 - Nature. 2000 Nov 30;408(6812):605-9 19889762 - J Virol. 2010 Jan;84(2):1169-75 14683653 - Lancet. 2003 Dec 13;362(9400):1953-8 23185024 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6 14633609 - Am J Pathol. 2003 Dec;163(6):2371-82 23170176 - Viruses. 2012 Sep;4(9):1619-50 20729866 - Nat Med. 2010 Sep;16(9):991-4 9988186 - J Infect Dis. 1999 Feb;179 Suppl 1:S203-17 19132113 - Dis Model Mech. 2009 Jan-Feb;2(1-2):12-7 22383882 - PLoS Pathog. 2012 Feb;8(2):e1002550 8702027 - Am J Trop Med Hyg. 1996 Jul;55(1):81-8 18444889 - Expert Rev Vaccines. 2008 May;7(4):417-29 21325402 - J Virol. 2011 May;85(9):4222-33 5727750 - Br J Exp Pathol. 1968 Oct;49(5):458-64 1803779 - Vopr Virusol. 1991 Sep-Oct;36(5):421-3 |
References_xml | – reference: 20129638 - Virology. 2010 Apr 10;399(2):290-8 – reference: 9988155 - J Infect Dis. 1999 Feb;179 Suppl 1:S1-7 – reference: 20658513 - Rev Med Virol. 2010 Nov;20(6):344-57 – reference: 19010509 - Virology. 2009 Jan 20;383(2):348-61 – reference: 10680646 - Thromb Res. 2000 Feb 1;97(3):153-62 – reference: 9427604 - Nat Med. 1998 Jan;4(1):37-42 – reference: 12012728 - Exp Anim. 2002 Apr;51(2):173-9 – reference: 65662 - Lancet. 1977 Mar 12;1(8011):571-3 – reference: 14683653 - Lancet. 2003 Dec 13;362(9400):1953-8 – reference: 10202932 - Nat Med. 1999 Apr;5(4):423-6 – reference: 1527410 - J Infect Dis. 1992 Oct;166(4):753-63 – reference: 9988191 - J Infect Dis. 1999 Feb;179 Suppl 1:S248-58 – reference: 23045629 - J Infect Dis. 2013 Jan 15;207(2):306-18 – reference: 21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20 – reference: 9988186 - J Infect Dis. 1999 Feb;179 Suppl 1:S203-17 – reference: 19211761 - J Virol. 2009 Apr;83(8):3810-5 – reference: 9606228 - Pediatrics. 1998 Jun;101(6):1013-9 – reference: 8593345 - Biull Eksp Biol Med. 1995 Sep;120(9):302-4 – reference: 17928350 - J Virol. 2007 Dec;81(24):13469-77 – reference: 17940975 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S390-9 – reference: 16703508 - J Infect Dis. 2006 Jun 15;193(12):1650-7 – reference: 8717394 - J Biotechnol. 1996 Jan 26;44(1-3):111-8 – reference: 20587184 - Emerg Infect Dis. 2010 Jul;16(7):1119-22 – reference: 9278608 - Arch Pathol Lab Med. 1997 Aug;121(8):805-19 – reference: 1803779 - Vopr Virusol. 1991 Sep-Oct;36(5):421-3 – reference: 18216185 - Clin Vaccine Immunol. 2008 Mar;15(3):460-7 – reference: 1785188 - Vopr Virusol. 1991 Nov-Dec;36(6):506-8 – reference: 11996686 - Emerg Infect Dis. 2002 May;8(5):503-7 – reference: 11682540 - J Clin Microbiol. 2001 Nov;39(11):4125-30 – reference: 11369881 - J Gen Virol. 2001 Jun;82(Pt 6):1365-73 – reference: 536744 - J Med Virol. 1979;4(3):239-40 – reference: 18444889 - Expert Rev Vaccines. 2008 May;7(4):417-29 – reference: 20660192 - J Virol. 2010 Oct;84(19):10386-94 – reference: 1318446 - Lab Anim Sci. 1992 Apr;42(2):152-7 – reference: 20654661 - Virus Res. 2010 Oct;153(1):121-33 – reference: 10924796 - Vaccine. 2000 Aug 15;19(1):142-53 – reference: 106868 - Br J Exp Pathol. 1978 Dec;59(6):584-93 – reference: 21987775 - J Infect Dis. 2011 Nov;204 Suppl 3:S953-6 – reference: 20729866 - Nat Med. 2010 Sep;16(9):991-4 – reference: 22070137 - Biosecur Bioterror. 2011 Dec;9(4):361-71 – reference: 8800792 - Arch Virol Suppl. 1996;11:101-14 – reference: 16501083 - J Virol. 2006 Mar;80(6):2738-46 – reference: 20452380 - Antiviral Res. 2010 Aug;87(2):187-94 – reference: 16474134 - J Virol. 2006 Mar;80(5):2267-79 – reference: 21334343 - J Immunol Methods. 2011 May 31;368(1-2):24-35 – reference: 9657001 - Virology. 1998 Jun 20;246(1):134-44 – reference: 17238284 - PLoS Pathog. 2007 Jan;3(1):e2 – reference: 6749685 - Infect Immun. 1982 Aug;37(2):771-8 – reference: 8800793 - Arch Virol Suppl. 1996;11:115-34 – reference: 21325402 - J Virol. 2011 May;85(9):4222-33 – reference: 15367603 - J Virol. 2004 Oct;78(19):10370-7 – reference: 8712894 - Arch Pathol Lab Med. 1996 Feb;120(2):140-55 – reference: 19223614 - Antimicrob Agents Chemother. 2009 May;53(5):2089-99 – reference: 21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9 – reference: 21281425 - Plant Biotechnol J. 2011 Sep;9(7):807-16 – reference: 16415982 - PLoS Pathog. 2006 Jan;2(1):e1 – reference: 14633609 - Am J Pathol. 2003 Dec;163(6):2371-82 – reference: 17329340 - J Virol. 2007 May;81(9):4654-63 – reference: 9988185 - J Infect Dis. 1999 Feb;179 Suppl 1:S199-202 – reference: 9893381 - Curr Top Microbiol Immunol. 1999;235:97-116 – reference: 15778381 - J Immunol. 2005 Apr 1;174(7):4198-202 – reference: 6165800 - J Med Virol. 1980;6(2):129-38 – reference: 18986663 - Virology. 2009 Jan 5;383(1):12-21 – reference: 19132113 - Dis Model Mech. 2009 Jan-Feb;2(1-2):12-7 – reference: 15047846 - J Virol. 2004 Apr;78(8):4330-41 – reference: 15937495 - Nat Med. 2005 Jul;11(7):786-90 – reference: 8702027 - Am J Trop Med Hyg. 1996 Jul;55(1):81-8 – reference: 19889762 - J Virol. 2010 Jan;84(2):1169-75 – reference: 17940964 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S296-304 – reference: 9988156 - J Infect Dis. 1999 Feb;179 Suppl 1:S8-10 – reference: 17940979 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S421-9 – reference: 1441443 - Vopr Virusol. 1992 May-Jun;37(3):156-7 – reference: 9005989 - J Clin Invest. 1997 Jan 15;99(2):209-19 – reference: 19386702 - J Virol. 2009 Jul;83(14):7296-304 – reference: 22383882 - PLoS Pathog. 2012 Feb;8(2):e1002550 – reference: 16820184 - Virology. 2006 Sep 30;353(2):324-32 – reference: 9813200 - Virology. 1998 Nov 10;251(1):28-37 – reference: 11027311 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94 – reference: 8551825 - Lancet. 1995 Dec 23-30;346(8991-8992):1669-71 – reference: 16973570 - J Virol. 2006 Oct;80(19):9659-66 – reference: 1968529 - Lancet. 1990 Mar 3;335(8688):502-5 – reference: 21866101 - Nature. 2011 Aug 24;477(7364):344-8 – reference: 21329775 - Vaccine. 2011 Apr 5;29(16):2968-77 – reference: 17940973 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 – reference: 10701687 - Lab Invest. 2000 Feb;80(2):171-86 – reference: 15784912 - J Gen Virol. 2005 Apr;86(Pt 4):1181-8 – reference: 19307268 - BMJ. 2009 Mar 23;338:b1223 – reference: 418537 - Trans R Soc Trop Med Hyg. 1978;72(2):188-91 – reference: 12857895 - J Virol. 2003 Aug;77(15):8263-71 – reference: 14673108 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15889-94 – reference: 19323614 - Vector Borne Zoonotic Dis. 2009 Dec;9(6):723-8 – reference: 11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8 – reference: 21162622 - Expert Rev Vaccines. 2011 Jan;10(1):63-77 – reference: 14633608 - Am J Pathol. 2003 Dec;163(6):2347-70 – reference: 19925902 - Vaccine. 2010 Jan 22;28(4):950-7 – reference: 19523489 - Antiviral Res. 2009 Sep;83(3):245-51 – reference: 21987746 - J Infect Dis. 2011 Nov;204 Suppl 3:S1090-7 – reference: 11062045 - Virology. 2000 Nov 10;277(1):147-55 – reference: 5727750 - Br J Exp Pathol. 1968 Oct;49(5):458-64 – reference: 8678836 - Arch Virol. 1996;141(5):909-21 – reference: 23185024 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6 – reference: 16988008 - Clin Vaccine Immunol. 2006 Nov;13(11):1267-77 – reference: 8686261 - Vopr Virusol. 1995 Nov-Dec;40(6):257-60 – reference: 11798241 - J Comp Pathol. 2001 Nov;125(4):243-53 – reference: 12922144 - Vaccine. 2003 Sep 8;21(25-26):4071-80 – reference: 1965845 - Microb Pathog. 1990 Oct;9(4):219-26 – reference: 20511019 - Lancet. 2010 May 29;375(9729):1896-905 – reference: 9988174 - J Infect Dis. 1999 Feb;179 Suppl 1:S115-9 – reference: 102747 - J Pathol. 1978 Jul;125(3):131-8 – reference: 21858240 - PLoS Negl Trop Dis. 2011 Aug;5(8):e1275 – reference: 19369350 - J Virol. 2009 Jul;83(13):6404-15 – reference: 12904795 - Nature. 2003 Aug 7;424(6949):681-4 – reference: 10714441 - Immunol Lett. 2000 Feb 1;71(2):131-40 – reference: 8017061 - Vopr Virusol. 1994 Mar-Apr;39(2):82-4 – reference: 16848640 - PLoS Pathog. 2006 Jul;2(7):e73 – reference: 4067737 - J Pathol. 1985 Nov;147(3):199-209 – reference: 18385248 - J Virol. 2008 Jun;82(11):5664-8 – reference: 7547435 - Int J Exp Pathol. 1995 Aug;76(4):227-36 – reference: 9988182 - J Infect Dis. 1999 Feb;179 Suppl 1:S177-87 – reference: 23242370 - Viruses. 2012 Dec 14;4(12):3754-84 – reference: 22039362 - PLoS Pathog. 2011 Oct;7(10):e1002304 – reference: 17428868 - J Virol. 2007 Jun;81(12):6379-88 – reference: 16650649 - Lancet. 2006 Apr 29;367(9520):1399-404 – reference: 11117750 - Nature. 2000 Nov 30;408(6812):605-9 – reference: 14639531 - J Infect Dis. 2003 Dec 1;188(11):1618-29 – reference: 4045253 - J Infect Dis. 1985 Nov;152(5):887-94 – reference: 18637412 - Arch Virol Suppl. 2008;20:13-360 – reference: 14726594 - Science. 2004 Jan 16;303(5656):387-90 – reference: 23170176 - Viruses. 2012 Sep;4(9):1619-50 – reference: 17940980 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S430-7 – reference: 21994800 - Viruses. 2011 Sep;3(9):1634-49 – reference: 23170168 - Viruses. 2012 Sep;4(9):1477-508 – reference: 23001720 - Arch Virol. 2013 Jan;158(1):301-11 – reference: 4978540 - Trans R Soc Trop Med Hyg. 1969;63(3):303-9 – reference: 19440245 - PLoS One. 2009;4(5):e5547 – reference: 21987738 - J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31 – reference: 21987781 - J Infect Dis. 2011 Nov;204 Suppl 3:S991-9 – reference: 1803784 - Vopr Virusol. 1991 Sep-Oct;36(5):435-7 – reference: 4997371 - Lab Invest. 1971 Apr;24(4):279-91 – reference: 20807825 - Vet Pathol. 2010 Sep;47(5):831-51 |
SSID | ssj0000402000 |
Score | 2.3811572 |
SecondaryResourceType | review_article |
Snippet | Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus),... Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus),... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 267 |
SubjectTerms | Animal Models Ebola virus filovirus Marburg virus Microbiology viral hemorrhagic fever |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7Eb-sXFbx4KLZNpm2OKooIelLwFvKpC1rF3RX8986ku-uuiF68NikNb9rJe83whrHDUHFfcKgzaaXPRB181kATMu_rUIJpch_o18D1TXV5J67u4X6q1RfVhHX2wB1wx6WwhePGVUGCKJzRYKS3da7B1QUER9kX97wpMRVzMMmiPO_OJVGFSQxTzxoq5SJH0zK2lf_ah6Jd_08c83up5NTec7HMlkakMT3pFrvC5ny7yha6NpIfa0yctL1nHI9dbfop0tD03KBkTXXr0mtNuD2k7723YT8d1161_XV2d3F-e3aZjbohZBbKZpCVvALvqsoVmBJkINMYI3Jn6HS2Dk2wUGvpkT9ICSg7LBeGF5XLPZeFxrl8g823L63fYqnULhgXtBPBCGGlEQ7AlcTlUABxn7DjMTbKjqzCqWPFk0LJQGiqiKYiNFVEM2FHkzteO5uMX-aeEtyTeWRwHS9g2NUo7OqvsCfsYBwshR8EnXLo1r8M-wo5IelcmfOEbXbBmzwK6QtuDBUkrJ4J68xaZkfa3mM03aZEXEjY_o_F77DFMnbVkFkOu2x-8Db0e8htBmY_vsaf-Nj4Lw priority: 102 providerName: Directory of Open Access Journals |
Title | Animal models for Ebola and Marburg virus infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24046765 https://www.proquest.com/docview/1540106903 https://pubmed.ncbi.nlm.nih.gov/PMC3763195 https://doaj.org/article/24c1d3bd6f9541dba5b9ec70a5d715fd |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJsssAoSFw6BOH7FB4QWtMsKqZyo1Jvl51JpN4WmXbH_nhknLRRViEsOsRMn39iebzz2DCGvkmSRMqEq7XWsuEqxakWbqhhVaoRr65hwaWDyRZ5N-eeZmP0-Hj0C2O817TCf1HR58ebnj-v3MODfocUJ-hYkMPcOd2lhsNJGqpvkFuglhfkMJiPZz_Mymkr5TAqVEt0BzWzwW-59yY6eyuH893HQv7dS_qGbTu-RuyOpLI-HXnCf3IjdA3J7SDN5_ZDw425-CeU5601fAk0tTxz8d2m7UE4s4npeXs2X677c7M3q-kdkenry9eNZNWZLqLxo2lXVMClikDJQmDJ0wqAyjtfBofdWpTZ5oayOwC-0FmCWeMYdozLUkWlqoS57TA66RRefklLbkFxINvDkOPfa8SBEaJDrgYHEYkHebrAxfgwljhktLgyYFIimyWgaRNNkNAvyevvE9yGMxj_qfkC4t_UwAHa-sViem3E8mYZ7GpgLMmnBaXBWOB29qq0IiooUCvJyIywDAwa9ILaLi3VvgDOiHaxrVpAng_C2TQG9AcUhRUHUjlh3vmW3pJt_y0G5caKmWhz-R7vPyJ0mJ9XQVS2ek4PVch1fALVZuaO8JADXTzN6lHvvL1XB9-o |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Animal+models+for+Ebola+and+Marburg+virus+infections&rft.jtitle=Frontiers+in+microbiology&rft.au=Nakayama%2C+Eri&rft.au=Saijo%2C+Masayuki&rft.date=2013-09-05&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=4&rft.spage=267&rft_id=info:doi/10.3389%2Ffmicb.2013.00267&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |