Methane steam reforming by microporous catalytic membrane reactors
Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a c...
Saved in:
Published in | AIChE journal Vol. 50; no. 11; pp. 2794 - 2805 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
American Institute of Chemical Engineers
01.11.2004
Wiley Subscription Services |
Subjects | |
Online Access | Get full text |
ISSN | 0001-1541 1547-5905 |
DOI | 10.1002/aic.10215 |
Cover
Loading…
Abstract | Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug‐flow–type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damköhler number (Da) and the permeation number (θ). Methane conversion, XCH4, has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni‐catalyst layer, were prepared. The permeability ratio of hydrogen over steam, α(H2/H2O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, α(He/H2). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30–100, with hydrogen permeances of 0.5–3 × 10−7 mol m−2 s−1 Pa−1, were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500°C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, XCH4, increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2794–2805, 2004 |
---|---|
AbstractList | Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug-flow-type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damkohler number (Da) and the permeation number (theta). Methane conversion, XCH4, has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni-catalyst layer, were prepared. The permeability ratio of hydrogen over steam, alpha(H2/H2O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, alpha(He/H2). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30-100, with hydrogen permeances of 0.5-3 x 10-7 mol m-2 s-1 Pa-1, were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500 degrees C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, XCH4, increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. [PUBLICATION ABSTRACT] Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug‐flow–type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damköhler number (Da) and the permeation number (θ). Methane conversion, X CH4 , has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni‐catalyst layer, were prepared. The permeability ratio of hydrogen over steam, α(H 2 /H 2 O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, α(He/H 2 ). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30–100, with hydrogen permeances of 0.5–3 × 10 −7 mol m −2 s −1 Pa −1 , were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500°C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, X CH4 , increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2794–2805, 2004 Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug‐flow–type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damköhler number (Da) and the permeation number (θ). Methane conversion, XCH4, has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni‐catalyst layer, were prepared. The permeability ratio of hydrogen over steam, α(H2/H2O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, α(He/H2). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30–100, with hydrogen permeances of 0.5–3 × 10−7 mol m−2 s−1 Pa−1, were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500°C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, XCH4, increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2794–2805, 2004 |
Author | Tsuru, Toshinori Yamaguchi, Koji Asaeda, Masashi Yoshioka, Tomohisa |
Author_xml | – sequence: 1 givenname: Toshinori surname: Tsuru fullname: Tsuru, Toshinori email: tsuru@hiroshima-u.ac.jp organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan – sequence: 2 givenname: Koji surname: Yamaguchi fullname: Yamaguchi, Koji organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan – sequence: 3 givenname: Tomohisa surname: Yoshioka fullname: Yoshioka, Tomohisa organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan – sequence: 4 givenname: Masashi surname: Asaeda fullname: Asaeda, Masashi organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16244811$$DView record in Pascal Francis |
BookMark | eNp9kUtvEzEUhS1UJNLCgn8wQgLEYqivH2N72URQKhVYAIKd5XE84DIzTm1HkH_PLQldVMDC8kPfOb73nmNyNKc5EPIY6EuglJ266PHAQN4jC5BCtdJQeUQWlFJo8QEekONSrvDGlGYLsnwb6jc3h6bU4KYmhyHlKc5fm37XTNHntEk5bUvjXXXjrkbfTGHq840iB-dryuUhuT-4sYRHh_2EfHr96uPqTXv5_vxidXbZesm0bPsAHvBXUDyAo66TzgxD13W9Ef0alw_Ma79mvdPU9KA0XQvjjB605GEt-Ql5vvfd5HS9DaXaKRYfxhGLwRKtEpxTrSlF8tl_SQaCagUdgk_ugFdpm2fswoIxvAOtGEJPD5Ar3o0DNu9jsZscJ5d3FjomhAZA7nTP4dRKwUlaH6urMc01uzhaoPYmIosR2d8RoeLFHcWt6V_Yg_uPOIbdv0F7drH6o2j3iojZ_rxVuPzddooraT-_O7cflkvBvwhuDf8FeJuvqg |
CODEN | AICEAC |
CitedBy_id | crossref_primary_10_1016_j_memsci_2012_03_059 crossref_primary_10_1016_j_memsci_2021_119914 crossref_primary_10_1016_j_seppur_2017_05_027 crossref_primary_10_1016_j_ijhydene_2011_09_149 crossref_primary_10_1016_j_ces_2016_12_046 crossref_primary_10_1016_j_memsci_2016_12_023 crossref_primary_10_1016_j_cej_2009_04_017 crossref_primary_10_1016_j_fuel_2022_125044 crossref_primary_10_1016_j_ijhydene_2012_05_132 crossref_primary_10_1016_j_tsf_2012_12_004 crossref_primary_10_1002_aic_12298 crossref_primary_10_1016_j_ijhydene_2021_10_181 crossref_primary_10_1016_j_coche_2015_04_003 crossref_primary_10_3795_KSME_B_2008_32_8_636 crossref_primary_10_1252_kakoronbunshu_48_42 crossref_primary_10_5360_membrane_36_104 crossref_primary_10_1252_kakoronbunshu_39_514 crossref_primary_10_1002_aic_16250 crossref_primary_10_1039_C6TA06484A crossref_primary_10_1016_j_jngse_2016_08_019 crossref_primary_10_1080_09593330_2013_795989 crossref_primary_10_14478_ace_2014_1011 crossref_primary_10_1007_s10934_015_9936_6 crossref_primary_10_1016_j_cej_2021_132188 crossref_primary_10_1016_j_memsci_2021_120083 crossref_primary_10_1515_ijcre_2017_0066 crossref_primary_10_4236_wjet_2016_41011 crossref_primary_10_1016_j_ijhydene_2014_10_054 crossref_primary_10_1039_C8EE01393D crossref_primary_10_1016_j_memsci_2011_05_071 crossref_primary_10_1111_jace_12523 crossref_primary_10_7464_ksct_2014_20_4_425 crossref_primary_10_1016_j_memsci_2007_10_057 crossref_primary_10_1016_j_ijhydene_2015_07_124 crossref_primary_10_1016_j_memsci_2019_117780 crossref_primary_10_1039_C4RA00498A crossref_primary_10_1021_ie800507r crossref_primary_10_1002_aic_15942 crossref_primary_10_1016_j_jcis_2008_06_021 crossref_primary_10_1252_jcej_21we016 crossref_primary_10_1016_j_rser_2014_12_025 crossref_primary_10_1016_j_seppur_2013_10_035 crossref_primary_10_1016_j_apcata_2005_12_029 crossref_primary_10_1080_01496390802286611 crossref_primary_10_1002_cjce_22787 crossref_primary_10_1002_aic_12436 crossref_primary_10_1016_j_ijhydene_2018_09_184 crossref_primary_10_1007_s11814_016_0227_y crossref_primary_10_1016_j_memsci_2011_12_007 crossref_primary_10_1016_j_jhazmat_2007_08_095 crossref_primary_10_1016_j_cattod_2015_11_006 crossref_primary_10_1016_j_proeng_2012_08_749 crossref_primary_10_1016_j_memsci_2008_08_005 crossref_primary_10_1252_jcej_39_444 crossref_primary_10_1252_kakoronbunshu_35_232 crossref_primary_10_1016_S1003_9953_06_60011_X crossref_primary_10_1016_j_surfin_2020_100683 crossref_primary_10_1016_j_ijhydene_2013_12_001 crossref_primary_10_1016_j_memsci_2015_04_011 crossref_primary_10_1021_acs_iecr_1c00872 crossref_primary_10_1515_ijmr_2020_7886 crossref_primary_10_1039_C6RA12870J crossref_primary_10_1021_ie051345z crossref_primary_10_1016_j_memsci_2007_10_036 crossref_primary_10_1111_j_1551_2916_2008_02563_x crossref_primary_10_1016_j_memsci_2012_01_004 crossref_primary_10_1016_j_memsci_2014_01_003 crossref_primary_10_1007_s10971_008_1712_5 crossref_primary_10_1627_jpi_54_287 crossref_primary_10_1002_aic_11687 crossref_primary_10_5360_membrane_35_236 crossref_primary_10_1016_j_ijhydene_2012_06_005 crossref_primary_10_1016_j_ijhydene_2014_11_053 crossref_primary_10_1016_j_compchemeng_2019_106601 crossref_primary_10_1016_j_cattod_2005_11_095 crossref_primary_10_1111_jace_14010 crossref_primary_10_7464_ksct_2013_19_4_379 crossref_primary_10_1002_aic_12404 crossref_primary_10_1016_j_cattod_2020_02_010 crossref_primary_10_1016_j_fuproc_2010_01_006 crossref_primary_10_1252_jcej_07WE065 crossref_primary_10_3390_separations8110195 crossref_primary_10_1016_j_seppur_2021_119694 crossref_primary_10_1021_cr0501792 crossref_primary_10_1016_j_seppur_2020_116742 crossref_primary_10_5004_dwt_2010_1731 crossref_primary_10_1007_s11814_014_0359_x crossref_primary_10_2109_jcersj_114_929 crossref_primary_10_1016_j_memsci_2014_10_037 crossref_primary_10_1016_j_jtice_2010_03_020 crossref_primary_10_1016_j_cej_2024_153754 crossref_primary_10_1016_j_memsci_2009_09_009 crossref_primary_10_1016_j_cattod_2012_02_049 crossref_primary_10_1002_fuce_201300023 crossref_primary_10_1039_c2jm33914e crossref_primary_10_3390_membranes12121175 crossref_primary_10_1002_aic_14764 crossref_primary_10_14723_tmrsj_36_229 crossref_primary_10_1002_aic_13794 crossref_primary_10_1002_pi_2936 crossref_primary_10_1016_j_ces_2007_03_005 crossref_primary_10_1016_j_memsci_2008_12_044 crossref_primary_10_1016_j_desal_2005_08_019 crossref_primary_10_1016_j_cep_2022_108778 crossref_primary_10_1016_j_ijhydene_2012_06_031 crossref_primary_10_1627_jpi_54_277 crossref_primary_10_1252_kakoronbunshu_36_472 crossref_primary_10_1016_j_memsci_2009_03_040 |
Cites_doi | 10.1016/0376-7388(95)00006-X 10.1023/A:1022636606705 10.1016/S0926-860X(98)00027-1 10.1002/aic.690350109 10.1002/aic.690470916 10.1252/jcej.32.760 10.1080/01496399308019497 10.1002/cjce.5450690504 10.1016/S0920-5861(00)00519-8 10.1002/aic.690321219 10.1002/aic.690440324 10.1002/aic.690490516 10.1016/S1383-5866(01)00099-5 10.1252/kakoronbunshu.27.657 10.1016/0926-860X(94)80199-1 10.1016/S0166-9834(00)84445-0 10.1002/aic.690460315 10.1021/ie970730o 10.1002/aic.690340911 10.1016/S0376-7388(00)00448-8 10.1016/S0376-7388(01)00540-3 10.1016/S0376-7388(00)00449-X 10.1081/SS-100108358 10.1252/kakoronbunshu.27.106 |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Institute of Chemical Engineers (AIChE) 2005 INIST-CNRS Copyright American Institute of Chemical Engineers Nov 2004 |
Copyright_xml | – notice: Copyright © 2004 American Institute of Chemical Engineers (AIChE) – notice: 2005 INIST-CNRS – notice: Copyright American Institute of Chemical Engineers Nov 2004 |
DBID | BSCLL AAYXX CITATION IQODW 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.10215 |
DatabaseName | Istex CrossRef Pascal-Francis Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database Solid State and Superconductivity Abstracts CrossRef Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Chemistry |
EISSN | 1547-5905 |
EndPage | 2805 |
ExternalDocumentID | 856709101 16244811 10_1002_aic_10215 AIC10215 ark_67375_WNG_SBB43X43_9 |
Genre | article Feature |
GrantInformation_xml | – fundername: R&D Project for High Efficiency Hydrogen Production/Separation System using Ceramic Membranes Funded by NEDO, Japan |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAIHA AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABJIA ACRPL ACYXJ ADMLS ADNMO AEFGJ AEUYN AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ PHGZM PHGZT PQGLB AAYXX CITATION IQODW 7ST 7U5 8FD C1K L7M SOI |
ID | FETCH-LOGICAL-c5285-be1c1127173e1a0a65a9ff666b94bd94bce2c8cd2ba809b1780d49a98f853ed53 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Thu Jul 10 23:46:12 EDT 2025 Fri Jul 11 06:30:57 EDT 2025 Fri Jul 25 10:55:08 EDT 2025 Mon Jul 21 09:16:03 EDT 2025 Tue Jul 01 01:40:19 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Wed Aug 20 07:26:25 EDT 2025 Wed Oct 30 09:55:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Correlation Porous membrane Permeation Purity Catalytic reactor Cocurrent flow Permeability Water vapor Operating conditions Plug flow Membrane reactor Microporosity Correlation analysis Permeance Steam reforming Catalyst Hydrogen production |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5285-be1c1127173e1a0a65a9ff666b94bd94bce2c8cd2ba809b1780d49a98f853ed53 |
Notes | ark:/67375/WNG-SBB43X43-9 R&D Project for High Efficiency Hydrogen Production/Separation System using Ceramic Membranes Funded by NEDO, Japan ArticleID:AIC10215 istex:0347399D796A2A325238947F2DD33AB433B5B05F SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 199361872 |
PQPubID | 7879 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_743308800 proquest_miscellaneous_21408716 proquest_journals_199361872 pascalfrancis_primary_16244811 crossref_citationtrail_10_1002_aic_10215 crossref_primary_10_1002_aic_10215 wiley_primary_10_1002_aic_10215_AIC10215 istex_primary_ark_67375_WNG_SBB43X43_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2004 |
PublicationDateYYYYMMDD | 2004-11-01 |
PublicationDate_xml | – month: 11 year: 2004 text: November 2004 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Hoboken, NJ |
PublicationTitle | AIChE journal |
PublicationTitleAlternate | AIChE J |
PublicationYear | 2004 |
Publisher | American Institute of Chemical Engineers Wiley Subscription Services |
Publisher_xml | – name: American Institute of Chemical Engineers – name: Wiley Subscription Services |
References | Chai, M., M. Machida, K. Eguchi, and H. Arai, "Promotion of Hydrogen Permeation on Metal-Dispersed Alumina Membranes and Its Application to a Membrane Reactor for Methane Steam Reforming," Appl. Catal. A Gen., 110, 239 (1994). Hwang, G.-H., and K. Onuki, "Simulation Study on the Catalytic Decomposition of Hydrogen Iodide in a Membrane Reactor with a Silica Membrane for the Thermochemical Water-Splitting IS Process," J. Membr. Sci., 194, 207 (2001). Sanches, J. G., and T. T. Tsotsis, Catalytic Membranes and Membrane Reactors, Wiley-VCH, New York (2002). Hsieh, H. P., Inorganic Membranes for Separation and Reaction, Elsevier Science, Amsterdam (1996). Sea, B. K., E. Soewito, M. Watanabe, K. Kusakabe, S. Morooka, and S. S. Kim, "Hydrogen Recovery from a H2-H2O-HBr Mixture Utilizing Silica-Based Membranes at Elevated Temperatures. 1. Preparation of H2O- and H2-Selective Membranes," Ind. Eng. Res., 37, 2502 (1998). Oklany, J. S., K. Hou, and R. Hughes, "A Simulative Comparison of Dense and Microporous Membrane Rectors for the Steam Reforming of Methane," Appl. Catal. A Gen., 170, 13 (1998). Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "An Application of Silica-Zirconia Membrane for Hydrogen Separation to Membrane Reactor," Kagaku Kogaku Ronbunshu, 27, 657 (2001a). Chen, Z., Y. Yan, and S. S. E. H. Elnashaie, "Modeling and Optimization of a Novel Membrane Reformer for Higher Hydrocarbon," AIChE J., 49, 1250 (2003). Tsuru, T., H. Takezoe, and M. Asaeda, "Ion Separation by Porous Silica-Zirconia Nanofiltration Membranes," AIChE J., 44, 765 (1998). Mohan, K., and R. Govind, "Analysis of Equilibrium Shift in Isothermal Reactors with a Permselective Wall," AIChE J., 34, 1493 (1988). Kim, J. H., B. S. Choi, and J. Yi, "Modified Simulation of Methane Steam Reforming in Pd-Membrane/Packed-Bed Type Reactor," J. Chem. Eng. Jpn., 32, 760 (1999). Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda. "Development of Silica-Zirconia Membrane for Hydrogen Separation at High Temperature and Effect of Zirconia Content on Hydrogen Permeation," Kagaku Kogaku Ronbunshu, 27, 106 (2001b). Kurugot, S., T. Yamaguchi, and S. Nakao, "Rh/Gamma-Al2O3 Catalytic Layer Integrated with Sol-Gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications," Catal. Lett., 86, 273 (2003). Yoshioka, T., E. Nakanishi, T. Tsuru, and M. Asaeda, "Experimental Study of Gas Permeation through Microporous Silica Membranes," AIChE J., 47, 2052 (2001). Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "Hydrothermal Stability and Performance of Silica-Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions," J. Chem. Eng. Jpn., 27, 657 (2001c). Asaeda, M., and S. Yamasaki, "Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes," Sep. Pur. Technol., 25, 151 (2001). Prabhu, A. K., and T. Oyama, "Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases," J. Membr. Sci., 176, 233 (2000a). Mohan, K., and R. Govind, "Analysis of a Cocurrent Membrane Reactor," AIChE J., 32, 2083 (1986). Grace, J. R., X. Li, and C. J. Lim, "Equilibrium Modeling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition," Catal. Today, 64, 141 (2001). Uemiya, S., N. Sato, H. Ando, T. Matsuda, and E. Kikuchi, "Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor," Appl. Catal., 67, 223 (1991). Ito, N., Y. Shindo, K. Haraya, K. Obata, T. Hakuta, and H. Yoshitome, "Simulation of a Reaction Process with a Membrane Separation," Kagaku Kogaku Ronbunshu, 9, 572 (1983). Tsotsis, T. T., A. M. Champaginie, S. P. Vasileiadis, Z. D. Ziaka, and R. G. Minet, "The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactor," Sep. Sci. Technol., 28, 397 (1993). Adris, A. M., S. S. E. H. Elnashaie, and R. Hughes, "A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane," Can. J. Chem. Eng., 69, 1061 (1991). Tsuru, T., S. Izumi, T. Yoshioka, and M. Asaeda, "Effect of Temperature on Transport Performance of Neutral Solutes through Inorganic Nanofiltration Membranes," AIChE J., 46, 565 (2000). Tsuru, T., T. Tsuge, S. Kubota, K. Yoshida, T. Yoshioka, and M. Asaeda, "Catalytic Membrane Reaction for Methane Steam Reforming Using Porous Silica Membranes," Sep. Sci. Technol., 36, 3721 (2001). Prabhu, A. K., A. Liu, L. G. Lovell, and T. Oyama, "Modeling of the Methane Reforming Reaction in Hydrogen Selective Membrane Reactors," J. Membr. Sci., 177, 83 (2000b). Yogeshwar, V., V. Gokhale, R. D. Noble, and J. F. Falconer, "Effect of Reactant Loss and Membrane Selectivity on a Dehydrogenation Reaction in a Membrane-Enclosed Catalytic Reactor," J. Membr. Sci., 103, 235 (1995). Xu, J., and G. F. Froment, "Methane Steam Reforming, Methananation and Water-Gas Shift. 1. Kinetics," AIChE J., 35, 88 (1989). 1994; 110 1993; 28 1986; 32 2000; 46 2000a; 176 1997 1996 1988; 34 2000b; 177 1983; 9 2001b; 27 2002 2001; 25 2001; 47 2001a; 27 1998; 44 2001; 64 1998; 37 1998; 170 2001c; 27 2001; 194 1991; 69 1991; 67 2003; 49 1999; 32 1995; 103 1989; 35 2001; 36 2003; 86 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Sanches J. G. (e_1_2_7_18_1) 2002 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 Ito N. (e_1_2_7_10_1) 1983; 9 e_1_2_7_28_1 Yoshida K. (e_1_2_7_29_1) 2001; 27 Hsieh H. P. (e_1_2_7_8_1) 1996 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – reference: Yoshioka, T., E. Nakanishi, T. Tsuru, and M. Asaeda, "Experimental Study of Gas Permeation through Microporous Silica Membranes," AIChE J., 47, 2052 (2001). – reference: Grace, J. R., X. Li, and C. J. Lim, "Equilibrium Modeling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition," Catal. Today, 64, 141 (2001). – reference: Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "Hydrothermal Stability and Performance of Silica-Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions," J. Chem. Eng. Jpn., 27, 657 (2001c). – reference: Mohan, K., and R. Govind, "Analysis of Equilibrium Shift in Isothermal Reactors with a Permselective Wall," AIChE J., 34, 1493 (1988). – reference: Prabhu, A. K., A. Liu, L. G. Lovell, and T. Oyama, "Modeling of the Methane Reforming Reaction in Hydrogen Selective Membrane Reactors," J. Membr. Sci., 177, 83 (2000b). – reference: Sanches, J. G., and T. T. Tsotsis, Catalytic Membranes and Membrane Reactors, Wiley-VCH, New York (2002). – reference: Ito, N., Y. Shindo, K. Haraya, K. Obata, T. Hakuta, and H. Yoshitome, "Simulation of a Reaction Process with a Membrane Separation," Kagaku Kogaku Ronbunshu, 9, 572 (1983). – reference: Uemiya, S., N. Sato, H. Ando, T. Matsuda, and E. Kikuchi, "Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor," Appl. Catal., 67, 223 (1991). – reference: Kurugot, S., T. Yamaguchi, and S. Nakao, "Rh/Gamma-Al2O3 Catalytic Layer Integrated with Sol-Gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications," Catal. Lett., 86, 273 (2003). – reference: Chai, M., M. Machida, K. Eguchi, and H. Arai, "Promotion of Hydrogen Permeation on Metal-Dispersed Alumina Membranes and Its Application to a Membrane Reactor for Methane Steam Reforming," Appl. Catal. A Gen., 110, 239 (1994). – reference: Asaeda, M., and S. Yamasaki, "Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes," Sep. Pur. Technol., 25, 151 (2001). – reference: Tsuru, T., H. Takezoe, and M. Asaeda, "Ion Separation by Porous Silica-Zirconia Nanofiltration Membranes," AIChE J., 44, 765 (1998). – reference: Hsieh, H. P., Inorganic Membranes for Separation and Reaction, Elsevier Science, Amsterdam (1996). – reference: Tsotsis, T. T., A. M. Champaginie, S. P. Vasileiadis, Z. D. Ziaka, and R. G. Minet, "The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactor," Sep. Sci. Technol., 28, 397 (1993). – reference: Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "An Application of Silica-Zirconia Membrane for Hydrogen Separation to Membrane Reactor," Kagaku Kogaku Ronbunshu, 27, 657 (2001a). – reference: Hwang, G.-H., and K. Onuki, "Simulation Study on the Catalytic Decomposition of Hydrogen Iodide in a Membrane Reactor with a Silica Membrane for the Thermochemical Water-Splitting IS Process," J. Membr. Sci., 194, 207 (2001). – reference: Xu, J., and G. F. Froment, "Methane Steam Reforming, Methananation and Water-Gas Shift. 1. Kinetics," AIChE J., 35, 88 (1989). – reference: Chen, Z., Y. Yan, and S. S. E. H. Elnashaie, "Modeling and Optimization of a Novel Membrane Reformer for Higher Hydrocarbon," AIChE J., 49, 1250 (2003). – reference: Mohan, K., and R. Govind, "Analysis of a Cocurrent Membrane Reactor," AIChE J., 32, 2083 (1986). – reference: Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda. "Development of Silica-Zirconia Membrane for Hydrogen Separation at High Temperature and Effect of Zirconia Content on Hydrogen Permeation," Kagaku Kogaku Ronbunshu, 27, 106 (2001b). – reference: Adris, A. M., S. S. E. H. Elnashaie, and R. Hughes, "A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane," Can. J. Chem. Eng., 69, 1061 (1991). – reference: Prabhu, A. K., and T. Oyama, "Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases," J. Membr. Sci., 176, 233 (2000a). – reference: Tsuru, T., T. Tsuge, S. Kubota, K. Yoshida, T. Yoshioka, and M. Asaeda, "Catalytic Membrane Reaction for Methane Steam Reforming Using Porous Silica Membranes," Sep. Sci. Technol., 36, 3721 (2001). – reference: Tsuru, T., S. Izumi, T. Yoshioka, and M. Asaeda, "Effect of Temperature on Transport Performance of Neutral Solutes through Inorganic Nanofiltration Membranes," AIChE J., 46, 565 (2000). – reference: Kim, J. H., B. S. Choi, and J. Yi, "Modified Simulation of Methane Steam Reforming in Pd-Membrane/Packed-Bed Type Reactor," J. Chem. Eng. Jpn., 32, 760 (1999). – reference: Oklany, J. S., K. Hou, and R. Hughes, "A Simulative Comparison of Dense and Microporous Membrane Rectors for the Steam Reforming of Methane," Appl. Catal. A Gen., 170, 13 (1998). – reference: Yogeshwar, V., V. Gokhale, R. D. Noble, and J. F. Falconer, "Effect of Reactant Loss and Membrane Selectivity on a Dehydrogenation Reaction in a Membrane-Enclosed Catalytic Reactor," J. Membr. Sci., 103, 235 (1995). – reference: Sea, B. K., E. Soewito, M. Watanabe, K. Kusakabe, S. Morooka, and S. S. Kim, "Hydrogen Recovery from a H2-H2O-HBr Mixture Utilizing Silica-Based Membranes at Elevated Temperatures. 1. Preparation of H2O- and H2-Selective Membranes," Ind. Eng. Res., 37, 2502 (1998). – volume: 103 start-page: 235 year: 1995 article-title: Effect of Reactant Loss and Membrane Selectivity on a Dehydrogenation Reaction in a Membrane‐Enclosed Catalytic Reactor publication-title: J. Membr. Sci. – volume: 47 start-page: 2052 year: 2001 article-title: Experimental Study of Gas Permeation through Microporous Silica Membranes publication-title: AIChE J. – volume: 46 start-page: 565 year: 2000 article-title: Effect of Temperature on Transport Performance of Neutral Solutes through Inorganic Nanofiltration Membranes publication-title: AIChE J. – volume: 25 start-page: 151 year: 2001 article-title: Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes publication-title: Sep. Pur. Technol. – year: 1996 – volume: 28 start-page: 397 year: 1993 article-title: The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactor publication-title: Sep. Sci. Technol. – volume: 86 start-page: 273 year: 2003 article-title: Rh/Gamma‐Al O Catalytic Layer Integrated with Sol–Gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications publication-title: Catal. Lett. – volume: 49 start-page: 1250 year: 2003 article-title: Modeling and Optimization of a Novel Membrane Reformer for Higher Hydrocarbon publication-title: AIChE J. – volume: 32 start-page: 760 year: 1999 article-title: Modified Simulation of Methane Steam Reforming in Pd‐Membrane/Packed‐Bed Type Reactor publication-title: J. Chem. Eng. Jpn. – volume: 34 start-page: 1493 year: 1988 article-title: Analysis of Equilibrium Shift in Isothermal Reactors with a Permselective Wall publication-title: AIChE J. – volume: 36 start-page: 3721 year: 2001 article-title: Catalytic Membrane Reaction for Methane Steam Reforming Using Porous Silica Membranes publication-title: Sep. Sci. Technol. – volume: 32 start-page: 2083 year: 1986 article-title: Analysis of a Cocurrent Membrane Reactor publication-title: AIChE J. – volume: 176 start-page: 233 year: 2000a article-title: Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases publication-title: J. Membr. Sci. – volume: 27 start-page: 657 year: 2001c article-title: Hydrothermal Stability and Performance of Silica–Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions publication-title: J. Chem. Eng. Jpn. – volume: 194 start-page: 207 year: 2001 article-title: Simulation Study on the Catalytic Decomposition of Hydrogen Iodide in a Membrane Reactor with a Silica Membrane for the Thermochemical Water‐Splitting IS Process publication-title: J. Membr. Sci. – volume: 177 start-page: 83 year: 2000b article-title: Modeling of the Methane Reforming Reaction in Hydrogen Selective Membrane Reactors publication-title: J. Membr. Sci. – volume: 110 start-page: 239 year: 1994 article-title: Promotion of Hydrogen Permeation on Metal‐Dispersed Alumina Membranes and Its Application to a Membrane Reactor for Methane Steam Reforming publication-title: Appl. Catal. A Gen. – year: 2002 – volume: 64 start-page: 141 year: 2001 article-title: Equilibrium Modeling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition publication-title: Catal. Today – year: 1997 – volume: 27 start-page: 657 year: 2001a article-title: An Application of Silica–Zirconia Membrane for Hydrogen Separation to Membrane Reactor publication-title: Kagaku Kogaku Ronbunshu – volume: 9 start-page: 572 year: 1983 article-title: Simulation of a Reaction Process with a Membrane Separation publication-title: Kagaku Kogaku Ronbunshu – volume: 44 start-page: 765 year: 1998 article-title: Ion Separation by Porous Silica–Zirconia Nanofiltration Membranes publication-title: AIChE J. – volume: 27 start-page: 106 year: 2001b article-title: Development of Silica–Zirconia Membrane for Hydrogen Separation at High Temperature and Effect of Zirconia Content on Hydrogen Permeation publication-title: Kagaku Kogaku Ronbunshu – volume: 37 start-page: 2502 year: 1998 article-title: Hydrogen Recovery from a H –H O–HBr Mixture Utilizing Silica‐Based Membranes at Elevated Temperatures. 1. Preparation of H O‐ and H ‐Selective Membranes publication-title: Ind. Eng. Res. – volume: 67 start-page: 223 year: 1991 article-title: Steam Reforming of Methane in a Hydrogen‐Permeable Membrane Reactor publication-title: Appl. Catal. – volume: 69 start-page: 1061 year: 1991 article-title: A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane publication-title: Can. J. Chem. Eng. – volume: 170 start-page: 13 year: 1998 article-title: A Simulative Comparison of Dense and Microporous Membrane Rectors for the Steam Reforming of Methane publication-title: Appl. Catal. A Gen. – volume: 35 start-page: 88 year: 1989 article-title: Methane Steam Reforming, Methananation and Water‐Gas Shift. 1. Kinetics publication-title: AIChE J. – ident: e_1_2_7_26_1 doi: 10.1016/0376-7388(95)00006-X – ident: e_1_2_7_12_1 doi: 10.1023/A:1022636606705 – ident: e_1_2_7_15_1 doi: 10.1016/S0926-860X(98)00027-1 – ident: e_1_2_7_25_1 doi: 10.1002/aic.690350109 – ident: e_1_2_7_3_1 – ident: e_1_2_7_30_1 doi: 10.1002/aic.690470916 – volume: 27 start-page: 657 year: 2001 ident: e_1_2_7_29_1 article-title: Hydrothermal Stability and Performance of Silica–Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions publication-title: J. Chem. Eng. Jpn. – ident: e_1_2_7_11_1 doi: 10.1252/jcej.32.760 – ident: e_1_2_7_20_1 doi: 10.1080/01496399308019497 – volume-title: Catalytic Membranes and Membrane Reactors year: 2002 ident: e_1_2_7_18_1 – ident: e_1_2_7_2_1 doi: 10.1002/cjce.5450690504 – ident: e_1_2_7_7_1 doi: 10.1016/S0920-5861(00)00519-8 – ident: e_1_2_7_13_1 doi: 10.1002/aic.690321219 – ident: e_1_2_7_22_1 doi: 10.1002/aic.690440324 – ident: e_1_2_7_6_1 doi: 10.1002/aic.690490516 – ident: e_1_2_7_4_1 doi: 10.1016/S1383-5866(01)00099-5 – ident: e_1_2_7_27_1 doi: 10.1252/kakoronbunshu.27.657 – ident: e_1_2_7_5_1 doi: 10.1016/0926-860X(94)80199-1 – volume: 9 start-page: 572 year: 1983 ident: e_1_2_7_10_1 article-title: Simulation of a Reaction Process with a Membrane Separation publication-title: Kagaku Kogaku Ronbunshu – volume-title: Inorganic Membranes for Separation and Reaction year: 1996 ident: e_1_2_7_8_1 – ident: e_1_2_7_24_1 doi: 10.1016/S0166-9834(00)84445-0 – ident: e_1_2_7_21_1 doi: 10.1002/aic.690460315 – ident: e_1_2_7_19_1 doi: 10.1021/ie970730o – ident: e_1_2_7_14_1 doi: 10.1002/aic.690340911 – ident: e_1_2_7_17_1 doi: 10.1016/S0376-7388(00)00448-8 – ident: e_1_2_7_9_1 doi: 10.1016/S0376-7388(01)00540-3 – ident: e_1_2_7_16_1 doi: 10.1016/S0376-7388(00)00449-X – ident: e_1_2_7_23_1 doi: 10.1081/SS-100108358 – ident: e_1_2_7_28_1 doi: 10.1252/kakoronbunshu.27.106 |
SSID | ssj0012782 |
Score | 2.168846 |
Snippet | Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2794 |
SubjectTerms | Applied sciences autothermal Catalysis catalytic membrane reactor Catalytic reactions Chemical engineering Chemical reactors Chemistry Exact sciences and technology General and physical chemistry Helium Hydrogen Hydrogen production Membranes Methane methane steam reforming Nitrogen Permeability Porosity porous silica membranes Reactors Silica simulation Steam Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
Title | Methane steam reforming by microporous catalytic membrane reactors |
URI | https://api.istex.fr/ark:/67375/WNG-SBB43X43-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.10215 https://www.proquest.com/docview/199361872 https://www.proquest.com/docview/21408716 https://www.proquest.com/docview/743308800 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEB5K-6IPVq3itlqDiPiy7Sa7yWbxqVesVWgfqsV7EEKSzZbS3p307sD21zuTvd32xIL4sLCwk5BMMtlvJpMvAG-5K4VVtUqFU3lahIpMqglpwYNzgZdBSTrvfHSsDk-LL0M5XIEP3VmYlh-iD7iRZcT1mgzcuunuLWmoPffEOxAPmFOuFgGik546iotSt0zh6C4jTOAdq1AmdvuSS_-iNVLrL8qNtFNUT9Pea7EEPO_C1_j_OViHH13L27STi535zO34mz9IHf-za4_h0QKXsr12Ij2BlTB-Cg_vsBVuwOAoUJw9MJoYI4bdmVAizRlz12xEeX0I5SfzKYsRoWush43CCJuBJRCZxmt9nsHpwcdv-4fp4gqG1EuhZYrD5RGR0VZ94DazStqqadDlcVXhanx8EF77Wjirs8rxUmd1UdlKNwgDQi3z57A6nozDC2Aiz4V2vihVk5HTamvpbMO9tA2W0CKB991gGL_gJ6drMi5Ny6wsDKrFRLUk8KYX_dmScvxN6F0c0V7CXl1QFlspzffjT-brYFDkwyI3VQLbS0N-W6VC7KM5T2CrmwNmYeFTQ4mPiusS2_26_4qmSfstqFhUtxHovJI_mgC7RwLhW47LfJZh5-OEuL87Zu_zfnzZ_HfRLXjQ8lJSxOglrM6u5uEVYqiZ247G8hvhTxZ_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5N2wPwwG9ENtgihBAv2WIndhyJl3UwOlj7AJvoC7Jsx0Foa4vWVmL89dw5TbYiJiEeIkXKObLPvuS78_k7gJfMFtzISibcyizJfUkmVfskZ95azwovBZ13Hgxl_zT_MBKjNXjTnoVp-CG6gBtZRvhek4FTQHrvijXUfHdEPEAnzDeoojfVL3j7qSOPYrxQDVc4OswIFFjLK5Tyva7pyt9ogxT7k7IjzQwVVDeVLVag53UAG_5Ah_fga9v3JvHkbHcxt7vu1x-0jv87uPtwdwlN4_1mLT2ANT95CHeuERY-gt7AU6jdx7Q2xjGOZ0q5NN9iexmPKbUP0fx0MYtDUOgS3xOP_Rj7gS0QnIbKPo_h9PDdyUE_WVZhSJzgSiQ4Yw5BGe3We2ZSI4Up6xq9HlvmtsLLee6Uq7g1Ki0tK1Ra5aUpVY1IwFciewLrk-nEP4WYZxlX1uWFrFPyW00lrKmZE6bGFopH8LqdDe2WFOVUKeNcN-TKXKNadFBLBC860R8NL8ffhF6FKe0kzMUZJbIVQn8Zvtefe708G-WZLiPYXpnzq1dKhD-KsQi22kWgl0Y-05T7KJkqsN873VO0TtpyQcWiujVH_5Vc0gjiGyQQwWX4pU9THHxYETcPR-8fHYSbzX8X3YFb_ZPBsT4-Gn7cgtsNTSUFkJ7B-vxi4Z8jpJrb7WA5vwEzBRqZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5KC6IPWn_hWtsuIuLLtptsks3iU6_1bNUeohbvQQhJNitS76707sD613dm93bbEwviw8LCTkIymdl8k0y-ALxgLudWlSrhTmWJCAW5VBUSwYJzgeVBSTrvfDxQhyfi3VAOV-B1exam4YfoFtzIM-r_NTn4WVntXpGG2h-eeAfogPmaUOgshIg-ddxRjOe6oQrHeBlxAmtphVK-2xVdmozWSK-_KDnSTlE_VXOxxRLyvI5f6wmofw--tU1v8k5Od-Yzt-N__8Hq-J99W4e7C2Aa7zWWdB9WwvgB3LlGV_gQeseBFtpDTJYxirE7E8qk-R67i3hEiX2I5SfzaVwvCV1gPfEojLAZWAKhaX2vzyM46b_5sn-YLO5gSLzkWiY4Xh4hGe3VB2ZTq6QtqgpjHlcIV-LjA_fal9xZnRaO5TotRWELXSEOCKXMHsPqeDIOTyDmWca18yJXVUpRqy2lsxXz0lZYQvMIXrWDYfyCoJzuyfhpGmplblAtplZLBM870bOGleNvQi_rEe0k7PkppbHl0nwdvDWfez2RDUVmigi2lob8qkqF4EczFsFGawNm4eJTQ5mPiukc273dfUXfpA0XVCyq23CMXikgjSC-QQLxW4amm6bY-dogbu6O2Tvar1-e_rvoNtz6eNA3H44G7zfgdsNRSatHz2B1dj4Pm4inZm6r9ptL7gEZUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+steam+reforming+by+microporous+catalytic+membrane+reactors&rft.jtitle=AIChE+journal&rft.au=Tsuru%2C+Toshinori&rft.au=Yamaguchi%2C+Koji&rft.au=Yoshioka%2C+Tomohisa&rft.au=Asaeda%2C+Masashi&rft.date=2004-11-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=50&rft.issue=11&rft.spage=2794&rft.epage=2805&rft_id=info:doi/10.1002%2Faic.10215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_10215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |