Methane steam reforming by microporous catalytic membrane reactors

Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a c...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 50; no. 11; pp. 2794 - 2805
Main Authors Tsuru, Toshinori, Yamaguchi, Koji, Yoshioka, Tomohisa, Asaeda, Masashi
Format Journal Article
LanguageEnglish
Published New York American Institute of Chemical Engineers 01.11.2004
Wiley Subscription Services
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.10215

Cover

Loading…
Abstract Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug‐flow–type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damköhler number (Da) and the permeation number (θ). Methane conversion, XCH4, has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni‐catalyst layer, were prepared. The permeability ratio of hydrogen over steam, α(H2/H2O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, α(He/H2). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30–100, with hydrogen permeances of 0.5–3 × 10−7 mol m−2 s−1 Pa−1, were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500°C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, XCH4, increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2794–2805, 2004
AbstractList Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug-flow-type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damkohler number (Da) and the permeation number (theta). Methane conversion, XCH4, has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni-catalyst layer, were prepared. The permeability ratio of hydrogen over steam, alpha(H2/H2O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, alpha(He/H2). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30-100, with hydrogen permeances of 0.5-3 x 10-7 mol m-2 s-1 Pa-1, were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500 degrees C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, XCH4, increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. [PUBLICATION ABSTRACT]
Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug‐flow–type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damköhler number (Da) and the permeation number (θ). Methane conversion, X CH4 , has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni‐catalyst layer, were prepared. The permeability ratio of hydrogen over steam, α(H 2 /H 2 O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, α(He/H 2 ). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30–100, with hydrogen permeances of 0.5–3 × 10 −7 mol m −2 s −1 Pa −1 , were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500°C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, X CH4 , increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2794–2805, 2004
Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the permeation of hydrogen as well as other gases in reactants and products. A simulation of catalytic membrane reactors was carried out for a cocurrent, isothermal, and plug‐flow–type membrane reactor with the selective permeation of hydrogen through microporous membranes. The effect of operating conditions on the conversion of methane and hydrogen production is discussed with the aid of two dimensionless numbers, the Damköhler number (Da) and the permeation number (θ). Methane conversion, XCH4, has approximately the same dependency on permeation number in terms of the permeability ratios of hydrogen over nitrogen, whereas the purity of hydrogen in the permeate increased with increasing hydrogen selectivity. Catalytic membrane reactors, consisting of a silica microporous layer and a Ni‐catalyst layer, were prepared. The permeability ratio of hydrogen over steam, α(H2/H2O), which ranged from 1 to 20, showed a relatively good correlation with that for helium over hydrogen, α(He/H2). Catalytic membrane reactors showing a hydrogen selectivity over nitrogen of 30–100, with hydrogen permeances of 0.5–3 × 10−7 mol m−2 s−1 Pa−1, were applied to the steam reforming of methane with and without the addition of oxygen. The reaction was carried out at 500°C, and the feed and permeate pressure were maintained at 100 and 20 kPa, respectively. Methane conversion, XCH4, increased up to approximately 0.8 beyond the equilibrium conversion of 0.44 by extracting hydrogen in permeate stream. © 2004 American Institute of Chemical Engineers AIChE J, 50: 2794–2805, 2004
Author Tsuru, Toshinori
Yamaguchi, Koji
Asaeda, Masashi
Yoshioka, Tomohisa
Author_xml – sequence: 1
  givenname: Toshinori
  surname: Tsuru
  fullname: Tsuru, Toshinori
  email: tsuru@hiroshima-u.ac.jp
  organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
– sequence: 2
  givenname: Koji
  surname: Yamaguchi
  fullname: Yamaguchi, Koji
  organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
– sequence: 3
  givenname: Tomohisa
  surname: Yoshioka
  fullname: Yoshioka, Tomohisa
  organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
– sequence: 4
  givenname: Masashi
  surname: Asaeda
  fullname: Asaeda, Masashi
  organization: Dept. of Chemical Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16244811$$DView record in Pascal Francis
BookMark eNp9kUtvEzEUhS1UJNLCgn8wQgLEYqivH2N72URQKhVYAIKd5XE84DIzTm1HkH_PLQldVMDC8kPfOb73nmNyNKc5EPIY6EuglJ266PHAQN4jC5BCtdJQeUQWlFJo8QEekONSrvDGlGYLsnwb6jc3h6bU4KYmhyHlKc5fm37XTNHntEk5bUvjXXXjrkbfTGHq840iB-dryuUhuT-4sYRHh_2EfHr96uPqTXv5_vxidXbZesm0bPsAHvBXUDyAo66TzgxD13W9Ef0alw_Ma79mvdPU9KA0XQvjjB605GEt-Ql5vvfd5HS9DaXaKRYfxhGLwRKtEpxTrSlF8tl_SQaCagUdgk_ugFdpm2fswoIxvAOtGEJPD5Ar3o0DNu9jsZscJ5d3FjomhAZA7nTP4dRKwUlaH6urMc01uzhaoPYmIosR2d8RoeLFHcWt6V_Yg_uPOIbdv0F7drH6o2j3iojZ_rxVuPzddooraT-_O7cflkvBvwhuDf8FeJuvqg
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_memsci_2012_03_059
crossref_primary_10_1016_j_memsci_2021_119914
crossref_primary_10_1016_j_seppur_2017_05_027
crossref_primary_10_1016_j_ijhydene_2011_09_149
crossref_primary_10_1016_j_ces_2016_12_046
crossref_primary_10_1016_j_memsci_2016_12_023
crossref_primary_10_1016_j_cej_2009_04_017
crossref_primary_10_1016_j_fuel_2022_125044
crossref_primary_10_1016_j_ijhydene_2012_05_132
crossref_primary_10_1016_j_tsf_2012_12_004
crossref_primary_10_1002_aic_12298
crossref_primary_10_1016_j_ijhydene_2021_10_181
crossref_primary_10_1016_j_coche_2015_04_003
crossref_primary_10_3795_KSME_B_2008_32_8_636
crossref_primary_10_1252_kakoronbunshu_48_42
crossref_primary_10_5360_membrane_36_104
crossref_primary_10_1252_kakoronbunshu_39_514
crossref_primary_10_1002_aic_16250
crossref_primary_10_1039_C6TA06484A
crossref_primary_10_1016_j_jngse_2016_08_019
crossref_primary_10_1080_09593330_2013_795989
crossref_primary_10_14478_ace_2014_1011
crossref_primary_10_1007_s10934_015_9936_6
crossref_primary_10_1016_j_cej_2021_132188
crossref_primary_10_1016_j_memsci_2021_120083
crossref_primary_10_1515_ijcre_2017_0066
crossref_primary_10_4236_wjet_2016_41011
crossref_primary_10_1016_j_ijhydene_2014_10_054
crossref_primary_10_1039_C8EE01393D
crossref_primary_10_1016_j_memsci_2011_05_071
crossref_primary_10_1111_jace_12523
crossref_primary_10_7464_ksct_2014_20_4_425
crossref_primary_10_1016_j_memsci_2007_10_057
crossref_primary_10_1016_j_ijhydene_2015_07_124
crossref_primary_10_1016_j_memsci_2019_117780
crossref_primary_10_1039_C4RA00498A
crossref_primary_10_1021_ie800507r
crossref_primary_10_1002_aic_15942
crossref_primary_10_1016_j_jcis_2008_06_021
crossref_primary_10_1252_jcej_21we016
crossref_primary_10_1016_j_rser_2014_12_025
crossref_primary_10_1016_j_seppur_2013_10_035
crossref_primary_10_1016_j_apcata_2005_12_029
crossref_primary_10_1080_01496390802286611
crossref_primary_10_1002_cjce_22787
crossref_primary_10_1002_aic_12436
crossref_primary_10_1016_j_ijhydene_2018_09_184
crossref_primary_10_1007_s11814_016_0227_y
crossref_primary_10_1016_j_memsci_2011_12_007
crossref_primary_10_1016_j_jhazmat_2007_08_095
crossref_primary_10_1016_j_cattod_2015_11_006
crossref_primary_10_1016_j_proeng_2012_08_749
crossref_primary_10_1016_j_memsci_2008_08_005
crossref_primary_10_1252_jcej_39_444
crossref_primary_10_1252_kakoronbunshu_35_232
crossref_primary_10_1016_S1003_9953_06_60011_X
crossref_primary_10_1016_j_surfin_2020_100683
crossref_primary_10_1016_j_ijhydene_2013_12_001
crossref_primary_10_1016_j_memsci_2015_04_011
crossref_primary_10_1021_acs_iecr_1c00872
crossref_primary_10_1515_ijmr_2020_7886
crossref_primary_10_1039_C6RA12870J
crossref_primary_10_1021_ie051345z
crossref_primary_10_1016_j_memsci_2007_10_036
crossref_primary_10_1111_j_1551_2916_2008_02563_x
crossref_primary_10_1016_j_memsci_2012_01_004
crossref_primary_10_1016_j_memsci_2014_01_003
crossref_primary_10_1007_s10971_008_1712_5
crossref_primary_10_1627_jpi_54_287
crossref_primary_10_1002_aic_11687
crossref_primary_10_5360_membrane_35_236
crossref_primary_10_1016_j_ijhydene_2012_06_005
crossref_primary_10_1016_j_ijhydene_2014_11_053
crossref_primary_10_1016_j_compchemeng_2019_106601
crossref_primary_10_1016_j_cattod_2005_11_095
crossref_primary_10_1111_jace_14010
crossref_primary_10_7464_ksct_2013_19_4_379
crossref_primary_10_1002_aic_12404
crossref_primary_10_1016_j_cattod_2020_02_010
crossref_primary_10_1016_j_fuproc_2010_01_006
crossref_primary_10_1252_jcej_07WE065
crossref_primary_10_3390_separations8110195
crossref_primary_10_1016_j_seppur_2021_119694
crossref_primary_10_1021_cr0501792
crossref_primary_10_1016_j_seppur_2020_116742
crossref_primary_10_5004_dwt_2010_1731
crossref_primary_10_1007_s11814_014_0359_x
crossref_primary_10_2109_jcersj_114_929
crossref_primary_10_1016_j_memsci_2014_10_037
crossref_primary_10_1016_j_jtice_2010_03_020
crossref_primary_10_1016_j_cej_2024_153754
crossref_primary_10_1016_j_memsci_2009_09_009
crossref_primary_10_1016_j_cattod_2012_02_049
crossref_primary_10_1002_fuce_201300023
crossref_primary_10_1039_c2jm33914e
crossref_primary_10_3390_membranes12121175
crossref_primary_10_1002_aic_14764
crossref_primary_10_14723_tmrsj_36_229
crossref_primary_10_1002_aic_13794
crossref_primary_10_1002_pi_2936
crossref_primary_10_1016_j_ces_2007_03_005
crossref_primary_10_1016_j_memsci_2008_12_044
crossref_primary_10_1016_j_desal_2005_08_019
crossref_primary_10_1016_j_cep_2022_108778
crossref_primary_10_1016_j_ijhydene_2012_06_031
crossref_primary_10_1627_jpi_54_277
crossref_primary_10_1252_kakoronbunshu_36_472
crossref_primary_10_1016_j_memsci_2009_03_040
Cites_doi 10.1016/0376-7388(95)00006-X
10.1023/A:1022636606705
10.1016/S0926-860X(98)00027-1
10.1002/aic.690350109
10.1002/aic.690470916
10.1252/jcej.32.760
10.1080/01496399308019497
10.1002/cjce.5450690504
10.1016/S0920-5861(00)00519-8
10.1002/aic.690321219
10.1002/aic.690440324
10.1002/aic.690490516
10.1016/S1383-5866(01)00099-5
10.1252/kakoronbunshu.27.657
10.1016/0926-860X(94)80199-1
10.1016/S0166-9834(00)84445-0
10.1002/aic.690460315
10.1021/ie970730o
10.1002/aic.690340911
10.1016/S0376-7388(00)00448-8
10.1016/S0376-7388(01)00540-3
10.1016/S0376-7388(00)00449-X
10.1081/SS-100108358
10.1252/kakoronbunshu.27.106
ContentType Journal Article
Copyright Copyright © 2004 American Institute of Chemical Engineers (AIChE)
2005 INIST-CNRS
Copyright American Institute of Chemical Engineers Nov 2004
Copyright_xml – notice: Copyright © 2004 American Institute of Chemical Engineers (AIChE)
– notice: 2005 INIST-CNRS
– notice: Copyright American Institute of Chemical Engineers Nov 2004
DBID BSCLL
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.10215
DatabaseName Istex
CrossRef
Pascal-Francis
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database
Solid State and Superconductivity Abstracts
CrossRef

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Chemistry
EISSN 1547-5905
EndPage 2805
ExternalDocumentID 856709101
16244811
10_1002_aic_10215
AIC10215
ark_67375_WNG_SBB43X43_9
Genre article
Feature
GrantInformation_xml – fundername: R&D Project for High Efficiency Hydrogen Production/Separation System using Ceramic Membranes Funded by NEDO, Japan
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABJIA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEUYN
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
PHGZM
PHGZT
PQGLB
AAYXX
CITATION
IQODW
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c5285-be1c1127173e1a0a65a9ff666b94bd94bce2c8cd2ba809b1780d49a98f853ed53
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Thu Jul 10 23:46:12 EDT 2025
Fri Jul 11 06:30:57 EDT 2025
Fri Jul 25 10:55:08 EDT 2025
Mon Jul 21 09:16:03 EDT 2025
Tue Jul 01 01:40:19 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Wed Aug 20 07:26:25 EDT 2025
Wed Oct 30 09:55:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Correlation
Porous membrane
Permeation
Purity
Catalytic reactor
Cocurrent flow
Permeability
Water vapor
Operating conditions
Plug flow
Membrane reactor
Microporosity
Correlation analysis
Permeance
Steam reforming
Catalyst
Hydrogen production
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5285-be1c1127173e1a0a65a9ff666b94bd94bce2c8cd2ba809b1780d49a98f853ed53
Notes ark:/67375/WNG-SBB43X43-9
R&D Project for High Efficiency Hydrogen Production/Separation System using Ceramic Membranes Funded by NEDO, Japan
ArticleID:AIC10215
istex:0347399D796A2A325238947F2DD33AB433B5B05F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 199361872
PQPubID 7879
PageCount 12
ParticipantIDs proquest_miscellaneous_743308800
proquest_miscellaneous_21408716
proquest_journals_199361872
pascalfrancis_primary_16244811
crossref_citationtrail_10_1002_aic_10215
crossref_primary_10_1002_aic_10215
wiley_primary_10_1002_aic_10215_AIC10215
istex_primary_ark_67375_WNG_SBB43X43_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2004
PublicationDateYYYYMMDD 2004-11-01
PublicationDate_xml – month: 11
  year: 2004
  text: November 2004
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken, NJ
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2004
Publisher American Institute of Chemical Engineers
Wiley Subscription Services
Publisher_xml – name: American Institute of Chemical Engineers
– name: Wiley Subscription Services
References Chai, M., M. Machida, K. Eguchi, and H. Arai, "Promotion of Hydrogen Permeation on Metal-Dispersed Alumina Membranes and Its Application to a Membrane Reactor for Methane Steam Reforming," Appl. Catal. A Gen., 110, 239 (1994).
Hwang, G.-H., and K. Onuki, "Simulation Study on the Catalytic Decomposition of Hydrogen Iodide in a Membrane Reactor with a Silica Membrane for the Thermochemical Water-Splitting IS Process," J. Membr. Sci., 194, 207 (2001).
Sanches, J. G., and T. T. Tsotsis, Catalytic Membranes and Membrane Reactors, Wiley-VCH, New York (2002).
Hsieh, H. P., Inorganic Membranes for Separation and Reaction, Elsevier Science, Amsterdam (1996).
Sea, B. K., E. Soewito, M. Watanabe, K. Kusakabe, S. Morooka, and S. S. Kim, "Hydrogen Recovery from a H2-H2O-HBr Mixture Utilizing Silica-Based Membranes at Elevated Temperatures. 1. Preparation of H2O- and H2-Selective Membranes," Ind. Eng. Res., 37, 2502 (1998).
Oklany, J. S., K. Hou, and R. Hughes, "A Simulative Comparison of Dense and Microporous Membrane Rectors for the Steam Reforming of Methane," Appl. Catal. A Gen., 170, 13 (1998).
Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "An Application of Silica-Zirconia Membrane for Hydrogen Separation to Membrane Reactor," Kagaku Kogaku Ronbunshu, 27, 657 (2001a).
Chen, Z., Y. Yan, and S. S. E. H. Elnashaie, "Modeling and Optimization of a Novel Membrane Reformer for Higher Hydrocarbon," AIChE J., 49, 1250 (2003).
Tsuru, T., H. Takezoe, and M. Asaeda, "Ion Separation by Porous Silica-Zirconia Nanofiltration Membranes," AIChE J., 44, 765 (1998).
Mohan, K., and R. Govind, "Analysis of Equilibrium Shift in Isothermal Reactors with a Permselective Wall," AIChE J., 34, 1493 (1988).
Kim, J. H., B. S. Choi, and J. Yi, "Modified Simulation of Methane Steam Reforming in Pd-Membrane/Packed-Bed Type Reactor," J. Chem. Eng. Jpn., 32, 760 (1999).
Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda. "Development of Silica-Zirconia Membrane for Hydrogen Separation at High Temperature and Effect of Zirconia Content on Hydrogen Permeation," Kagaku Kogaku Ronbunshu, 27, 106 (2001b).
Kurugot, S., T. Yamaguchi, and S. Nakao, "Rh/Gamma-Al2O3 Catalytic Layer Integrated with Sol-Gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications," Catal. Lett., 86, 273 (2003).
Yoshioka, T., E. Nakanishi, T. Tsuru, and M. Asaeda, "Experimental Study of Gas Permeation through Microporous Silica Membranes," AIChE J., 47, 2052 (2001).
Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "Hydrothermal Stability and Performance of Silica-Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions," J. Chem. Eng. Jpn., 27, 657 (2001c).
Asaeda, M., and S. Yamasaki, "Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes," Sep. Pur. Technol., 25, 151 (2001).
Prabhu, A. K., and T. Oyama, "Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases," J. Membr. Sci., 176, 233 (2000a).
Mohan, K., and R. Govind, "Analysis of a Cocurrent Membrane Reactor," AIChE J., 32, 2083 (1986).
Grace, J. R., X. Li, and C. J. Lim, "Equilibrium Modeling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition," Catal. Today, 64, 141 (2001).
Uemiya, S., N. Sato, H. Ando, T. Matsuda, and E. Kikuchi, "Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor," Appl. Catal., 67, 223 (1991).
Ito, N., Y. Shindo, K. Haraya, K. Obata, T. Hakuta, and H. Yoshitome, "Simulation of a Reaction Process with a Membrane Separation," Kagaku Kogaku Ronbunshu, 9, 572 (1983).
Tsotsis, T. T., A. M. Champaginie, S. P. Vasileiadis, Z. D. Ziaka, and R. G. Minet, "The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactor," Sep. Sci. Technol., 28, 397 (1993).
Adris, A. M., S. S. E. H. Elnashaie, and R. Hughes, "A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane," Can. J. Chem. Eng., 69, 1061 (1991).
Tsuru, T., S. Izumi, T. Yoshioka, and M. Asaeda, "Effect of Temperature on Transport Performance of Neutral Solutes through Inorganic Nanofiltration Membranes," AIChE J., 46, 565 (2000).
Tsuru, T., T. Tsuge, S. Kubota, K. Yoshida, T. Yoshioka, and M. Asaeda, "Catalytic Membrane Reaction for Methane Steam Reforming Using Porous Silica Membranes," Sep. Sci. Technol., 36, 3721 (2001).
Prabhu, A. K., A. Liu, L. G. Lovell, and T. Oyama, "Modeling of the Methane Reforming Reaction in Hydrogen Selective Membrane Reactors," J. Membr. Sci., 177, 83 (2000b).
Yogeshwar, V., V. Gokhale, R. D. Noble, and J. F. Falconer, "Effect of Reactant Loss and Membrane Selectivity on a Dehydrogenation Reaction in a Membrane-Enclosed Catalytic Reactor," J. Membr. Sci., 103, 235 (1995).
Xu, J., and G. F. Froment, "Methane Steam Reforming, Methananation and Water-Gas Shift. 1. Kinetics," AIChE J., 35, 88 (1989).
1994; 110
1993; 28
1986; 32
2000; 46
2000a; 176
1997
1996
1988; 34
2000b; 177
1983; 9
2001b; 27
2002
2001; 25
2001; 47
2001a; 27
1998; 44
2001; 64
1998; 37
1998; 170
2001c; 27
2001; 194
1991; 69
1991; 67
2003; 49
1999; 32
1995; 103
1989; 35
2001; 36
2003; 86
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Sanches J. G. (e_1_2_7_18_1) 2002
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
Ito N. (e_1_2_7_10_1) 1983; 9
e_1_2_7_28_1
Yoshida K. (e_1_2_7_29_1) 2001; 27
Hsieh H. P. (e_1_2_7_8_1) 1996
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Yoshioka, T., E. Nakanishi, T. Tsuru, and M. Asaeda, "Experimental Study of Gas Permeation through Microporous Silica Membranes," AIChE J., 47, 2052 (2001).
– reference: Grace, J. R., X. Li, and C. J. Lim, "Equilibrium Modeling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition," Catal. Today, 64, 141 (2001).
– reference: Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "Hydrothermal Stability and Performance of Silica-Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions," J. Chem. Eng. Jpn., 27, 657 (2001c).
– reference: Mohan, K., and R. Govind, "Analysis of Equilibrium Shift in Isothermal Reactors with a Permselective Wall," AIChE J., 34, 1493 (1988).
– reference: Prabhu, A. K., A. Liu, L. G. Lovell, and T. Oyama, "Modeling of the Methane Reforming Reaction in Hydrogen Selective Membrane Reactors," J. Membr. Sci., 177, 83 (2000b).
– reference: Sanches, J. G., and T. T. Tsotsis, Catalytic Membranes and Membrane Reactors, Wiley-VCH, New York (2002).
– reference: Ito, N., Y. Shindo, K. Haraya, K. Obata, T. Hakuta, and H. Yoshitome, "Simulation of a Reaction Process with a Membrane Separation," Kagaku Kogaku Ronbunshu, 9, 572 (1983).
– reference: Uemiya, S., N. Sato, H. Ando, T. Matsuda, and E. Kikuchi, "Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor," Appl. Catal., 67, 223 (1991).
– reference: Kurugot, S., T. Yamaguchi, and S. Nakao, "Rh/Gamma-Al2O3 Catalytic Layer Integrated with Sol-Gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications," Catal. Lett., 86, 273 (2003).
– reference: Chai, M., M. Machida, K. Eguchi, and H. Arai, "Promotion of Hydrogen Permeation on Metal-Dispersed Alumina Membranes and Its Application to a Membrane Reactor for Methane Steam Reforming," Appl. Catal. A Gen., 110, 239 (1994).
– reference: Asaeda, M., and S. Yamasaki, "Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes," Sep. Pur. Technol., 25, 151 (2001).
– reference: Tsuru, T., H. Takezoe, and M. Asaeda, "Ion Separation by Porous Silica-Zirconia Nanofiltration Membranes," AIChE J., 44, 765 (1998).
– reference: Hsieh, H. P., Inorganic Membranes for Separation and Reaction, Elsevier Science, Amsterdam (1996).
– reference: Tsotsis, T. T., A. M. Champaginie, S. P. Vasileiadis, Z. D. Ziaka, and R. G. Minet, "The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactor," Sep. Sci. Technol., 28, 397 (1993).
– reference: Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda, "An Application of Silica-Zirconia Membrane for Hydrogen Separation to Membrane Reactor," Kagaku Kogaku Ronbunshu, 27, 657 (2001a).
– reference: Hwang, G.-H., and K. Onuki, "Simulation Study on the Catalytic Decomposition of Hydrogen Iodide in a Membrane Reactor with a Silica Membrane for the Thermochemical Water-Splitting IS Process," J. Membr. Sci., 194, 207 (2001).
– reference: Xu, J., and G. F. Froment, "Methane Steam Reforming, Methananation and Water-Gas Shift. 1. Kinetics," AIChE J., 35, 88 (1989).
– reference: Chen, Z., Y. Yan, and S. S. E. H. Elnashaie, "Modeling and Optimization of a Novel Membrane Reformer for Higher Hydrocarbon," AIChE J., 49, 1250 (2003).
– reference: Mohan, K., and R. Govind, "Analysis of a Cocurrent Membrane Reactor," AIChE J., 32, 2083 (1986).
– reference: Yoshida, K., Y. Hirano, H. Fujii, T. Tsuru, and M. Asaeda. "Development of Silica-Zirconia Membrane for Hydrogen Separation at High Temperature and Effect of Zirconia Content on Hydrogen Permeation," Kagaku Kogaku Ronbunshu, 27, 106 (2001b).
– reference: Adris, A. M., S. S. E. H. Elnashaie, and R. Hughes, "A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane," Can. J. Chem. Eng., 69, 1061 (1991).
– reference: Prabhu, A. K., and T. Oyama, "Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases," J. Membr. Sci., 176, 233 (2000a).
– reference: Tsuru, T., T. Tsuge, S. Kubota, K. Yoshida, T. Yoshioka, and M. Asaeda, "Catalytic Membrane Reaction for Methane Steam Reforming Using Porous Silica Membranes," Sep. Sci. Technol., 36, 3721 (2001).
– reference: Tsuru, T., S. Izumi, T. Yoshioka, and M. Asaeda, "Effect of Temperature on Transport Performance of Neutral Solutes through Inorganic Nanofiltration Membranes," AIChE J., 46, 565 (2000).
– reference: Kim, J. H., B. S. Choi, and J. Yi, "Modified Simulation of Methane Steam Reforming in Pd-Membrane/Packed-Bed Type Reactor," J. Chem. Eng. Jpn., 32, 760 (1999).
– reference: Oklany, J. S., K. Hou, and R. Hughes, "A Simulative Comparison of Dense and Microporous Membrane Rectors for the Steam Reforming of Methane," Appl. Catal. A Gen., 170, 13 (1998).
– reference: Yogeshwar, V., V. Gokhale, R. D. Noble, and J. F. Falconer, "Effect of Reactant Loss and Membrane Selectivity on a Dehydrogenation Reaction in a Membrane-Enclosed Catalytic Reactor," J. Membr. Sci., 103, 235 (1995).
– reference: Sea, B. K., E. Soewito, M. Watanabe, K. Kusakabe, S. Morooka, and S. S. Kim, "Hydrogen Recovery from a H2-H2O-HBr Mixture Utilizing Silica-Based Membranes at Elevated Temperatures. 1. Preparation of H2O- and H2-Selective Membranes," Ind. Eng. Res., 37, 2502 (1998).
– volume: 103
  start-page: 235
  year: 1995
  article-title: Effect of Reactant Loss and Membrane Selectivity on a Dehydrogenation Reaction in a Membrane‐Enclosed Catalytic Reactor
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 2052
  year: 2001
  article-title: Experimental Study of Gas Permeation through Microporous Silica Membranes
  publication-title: AIChE J.
– volume: 46
  start-page: 565
  year: 2000
  article-title: Effect of Temperature on Transport Performance of Neutral Solutes through Inorganic Nanofiltration Membranes
  publication-title: AIChE J.
– volume: 25
  start-page: 151
  year: 2001
  article-title: Separation of Inorganic/Organic Gas Mixtures by Porous Silica Membranes
  publication-title: Sep. Pur. Technol.
– year: 1996
– volume: 28
  start-page: 397
  year: 1993
  article-title: The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactor
  publication-title: Sep. Sci. Technol.
– volume: 86
  start-page: 273
  year: 2003
  article-title: Rh/Gamma‐Al O Catalytic Layer Integrated with Sol–Gel Synthesized Microporous Silica Membrane for Compact Membrane Reactor Applications
  publication-title: Catal. Lett.
– volume: 49
  start-page: 1250
  year: 2003
  article-title: Modeling and Optimization of a Novel Membrane Reformer for Higher Hydrocarbon
  publication-title: AIChE J.
– volume: 32
  start-page: 760
  year: 1999
  article-title: Modified Simulation of Methane Steam Reforming in Pd‐Membrane/Packed‐Bed Type Reactor
  publication-title: J. Chem. Eng. Jpn.
– volume: 34
  start-page: 1493
  year: 1988
  article-title: Analysis of Equilibrium Shift in Isothermal Reactors with a Permselective Wall
  publication-title: AIChE J.
– volume: 36
  start-page: 3721
  year: 2001
  article-title: Catalytic Membrane Reaction for Methane Steam Reforming Using Porous Silica Membranes
  publication-title: Sep. Sci. Technol.
– volume: 32
  start-page: 2083
  year: 1986
  article-title: Analysis of a Cocurrent Membrane Reactor
  publication-title: AIChE J.
– volume: 176
  start-page: 233
  year: 2000a
  article-title: Highly Hydrogen Selective Ceramic Membranes: Application to the Transformation of Greenhouse Gases
  publication-title: J. Membr. Sci.
– volume: 27
  start-page: 657
  year: 2001c
  article-title: Hydrothermal Stability and Performance of Silica–Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions
  publication-title: J. Chem. Eng. Jpn.
– volume: 194
  start-page: 207
  year: 2001
  article-title: Simulation Study on the Catalytic Decomposition of Hydrogen Iodide in a Membrane Reactor with a Silica Membrane for the Thermochemical Water‐Splitting IS Process
  publication-title: J. Membr. Sci.
– volume: 177
  start-page: 83
  year: 2000b
  article-title: Modeling of the Methane Reforming Reaction in Hydrogen Selective Membrane Reactors
  publication-title: J. Membr. Sci.
– volume: 110
  start-page: 239
  year: 1994
  article-title: Promotion of Hydrogen Permeation on Metal‐Dispersed Alumina Membranes and Its Application to a Membrane Reactor for Methane Steam Reforming
  publication-title: Appl. Catal. A Gen.
– year: 2002
– volume: 64
  start-page: 141
  year: 2001
  article-title: Equilibrium Modeling of Catalytic Steam Reforming of Methane in Membrane Reactors with Oxygen Addition
  publication-title: Catal. Today
– year: 1997
– volume: 27
  start-page: 657
  year: 2001a
  article-title: An Application of Silica–Zirconia Membrane for Hydrogen Separation to Membrane Reactor
  publication-title: Kagaku Kogaku Ronbunshu
– volume: 9
  start-page: 572
  year: 1983
  article-title: Simulation of a Reaction Process with a Membrane Separation
  publication-title: Kagaku Kogaku Ronbunshu
– volume: 44
  start-page: 765
  year: 1998
  article-title: Ion Separation by Porous Silica–Zirconia Nanofiltration Membranes
  publication-title: AIChE J.
– volume: 27
  start-page: 106
  year: 2001b
  article-title: Development of Silica–Zirconia Membrane for Hydrogen Separation at High Temperature and Effect of Zirconia Content on Hydrogen Permeation
  publication-title: Kagaku Kogaku Ronbunshu
– volume: 37
  start-page: 2502
  year: 1998
  article-title: Hydrogen Recovery from a H –H O–HBr Mixture Utilizing Silica‐Based Membranes at Elevated Temperatures. 1. Preparation of H O‐ and H ‐Selective Membranes
  publication-title: Ind. Eng. Res.
– volume: 67
  start-page: 223
  year: 1991
  article-title: Steam Reforming of Methane in a Hydrogen‐Permeable Membrane Reactor
  publication-title: Appl. Catal.
– volume: 69
  start-page: 1061
  year: 1991
  article-title: A Fluidized Bed Membrane Reactor for the Steam Reforming of Methane
  publication-title: Can. J. Chem. Eng.
– volume: 170
  start-page: 13
  year: 1998
  article-title: A Simulative Comparison of Dense and Microporous Membrane Rectors for the Steam Reforming of Methane
  publication-title: Appl. Catal. A Gen.
– volume: 35
  start-page: 88
  year: 1989
  article-title: Methane Steam Reforming, Methananation and Water‐Gas Shift. 1. Kinetics
  publication-title: AIChE J.
– ident: e_1_2_7_26_1
  doi: 10.1016/0376-7388(95)00006-X
– ident: e_1_2_7_12_1
  doi: 10.1023/A:1022636606705
– ident: e_1_2_7_15_1
  doi: 10.1016/S0926-860X(98)00027-1
– ident: e_1_2_7_25_1
  doi: 10.1002/aic.690350109
– ident: e_1_2_7_3_1
– ident: e_1_2_7_30_1
  doi: 10.1002/aic.690470916
– volume: 27
  start-page: 657
  year: 2001
  ident: e_1_2_7_29_1
  article-title: Hydrothermal Stability and Performance of Silica–Zirconia Membranes for Hydrogen Separation in Hydrothermal Conditions
  publication-title: J. Chem. Eng. Jpn.
– ident: e_1_2_7_11_1
  doi: 10.1252/jcej.32.760
– ident: e_1_2_7_20_1
  doi: 10.1080/01496399308019497
– volume-title: Catalytic Membranes and Membrane Reactors
  year: 2002
  ident: e_1_2_7_18_1
– ident: e_1_2_7_2_1
  doi: 10.1002/cjce.5450690504
– ident: e_1_2_7_7_1
  doi: 10.1016/S0920-5861(00)00519-8
– ident: e_1_2_7_13_1
  doi: 10.1002/aic.690321219
– ident: e_1_2_7_22_1
  doi: 10.1002/aic.690440324
– ident: e_1_2_7_6_1
  doi: 10.1002/aic.690490516
– ident: e_1_2_7_4_1
  doi: 10.1016/S1383-5866(01)00099-5
– ident: e_1_2_7_27_1
  doi: 10.1252/kakoronbunshu.27.657
– ident: e_1_2_7_5_1
  doi: 10.1016/0926-860X(94)80199-1
– volume: 9
  start-page: 572
  year: 1983
  ident: e_1_2_7_10_1
  article-title: Simulation of a Reaction Process with a Membrane Separation
  publication-title: Kagaku Kogaku Ronbunshu
– volume-title: Inorganic Membranes for Separation and Reaction
  year: 1996
  ident: e_1_2_7_8_1
– ident: e_1_2_7_24_1
  doi: 10.1016/S0166-9834(00)84445-0
– ident: e_1_2_7_21_1
  doi: 10.1002/aic.690460315
– ident: e_1_2_7_19_1
  doi: 10.1021/ie970730o
– ident: e_1_2_7_14_1
  doi: 10.1002/aic.690340911
– ident: e_1_2_7_17_1
  doi: 10.1016/S0376-7388(00)00448-8
– ident: e_1_2_7_9_1
  doi: 10.1016/S0376-7388(01)00540-3
– ident: e_1_2_7_16_1
  doi: 10.1016/S0376-7388(00)00449-X
– ident: e_1_2_7_23_1
  doi: 10.1081/SS-100108358
– ident: e_1_2_7_28_1
  doi: 10.1252/kakoronbunshu.27.106
SSID ssj0012782
Score 2.168846
Snippet Methane steam reforming, with and without added oxygen, was theoretically and experimentally investigated using microporous silica membranes, thus allowing the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2794
SubjectTerms Applied sciences
autothermal
Catalysis
catalytic membrane reactor
Catalytic reactions
Chemical engineering
Chemical reactors
Chemistry
Exact sciences and technology
General and physical chemistry
Helium
Hydrogen
Hydrogen production
Membranes
Methane
methane steam reforming
Nitrogen
Permeability
Porosity
porous silica membranes
Reactors
Silica
simulation
Steam
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title Methane steam reforming by microporous catalytic membrane reactors
URI https://api.istex.fr/ark:/67375/WNG-SBB43X43-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.10215
https://www.proquest.com/docview/199361872
https://www.proquest.com/docview/21408716
https://www.proquest.com/docview/743308800
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEB5K-6IPVq3itlqDiPiy7Sa7yWbxqVesVWgfqsV7EEKSzZbS3p307sD21zuTvd32xIL4sLCwk5BMMtlvJpMvAG-5K4VVtUqFU3lahIpMqglpwYNzgZdBSTrvfHSsDk-LL0M5XIEP3VmYlh-iD7iRZcT1mgzcuunuLWmoPffEOxAPmFOuFgGik546iotSt0zh6C4jTOAdq1AmdvuSS_-iNVLrL8qNtFNUT9Pea7EEPO_C1_j_OViHH13L27STi535zO34mz9IHf-za4_h0QKXsr12Ij2BlTB-Cg_vsBVuwOAoUJw9MJoYI4bdmVAizRlz12xEeX0I5SfzKYsRoWush43CCJuBJRCZxmt9nsHpwcdv-4fp4gqG1EuhZYrD5RGR0VZ94DazStqqadDlcVXhanx8EF77Wjirs8rxUmd1UdlKNwgDQi3z57A6nozDC2Aiz4V2vihVk5HTamvpbMO9tA2W0CKB991gGL_gJ6drMi5Ny6wsDKrFRLUk8KYX_dmScvxN6F0c0V7CXl1QFlspzffjT-brYFDkwyI3VQLbS0N-W6VC7KM5T2CrmwNmYeFTQ4mPiusS2_26_4qmSfstqFhUtxHovJI_mgC7RwLhW47LfJZh5-OEuL87Zu_zfnzZ_HfRLXjQ8lJSxOglrM6u5uEVYqiZ247G8hvhTxZ_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5N2wPwwG9ENtgihBAv2WIndhyJl3UwOlj7AJvoC7Jsx0Foa4vWVmL89dw5TbYiJiEeIkXKObLPvuS78_k7gJfMFtzISibcyizJfUkmVfskZ95azwovBZ13Hgxl_zT_MBKjNXjTnoVp-CG6gBtZRvhek4FTQHrvijXUfHdEPEAnzDeoojfVL3j7qSOPYrxQDVc4OswIFFjLK5Tyva7pyt9ogxT7k7IjzQwVVDeVLVag53UAG_5Ah_fga9v3JvHkbHcxt7vu1x-0jv87uPtwdwlN4_1mLT2ANT95CHeuERY-gt7AU6jdx7Q2xjGOZ0q5NN9iexmPKbUP0fx0MYtDUOgS3xOP_Rj7gS0QnIbKPo_h9PDdyUE_WVZhSJzgSiQ4Yw5BGe3We2ZSI4Up6xq9HlvmtsLLee6Uq7g1Ki0tK1Ra5aUpVY1IwFciewLrk-nEP4WYZxlX1uWFrFPyW00lrKmZE6bGFopH8LqdDe2WFOVUKeNcN-TKXKNadFBLBC860R8NL8ffhF6FKe0kzMUZJbIVQn8Zvtefe708G-WZLiPYXpnzq1dKhD-KsQi22kWgl0Y-05T7KJkqsN873VO0TtpyQcWiujVH_5Vc0gjiGyQQwWX4pU9THHxYETcPR-8fHYSbzX8X3YFb_ZPBsT4-Gn7cgtsNTSUFkJ7B-vxi4Z8jpJrb7WA5vwEzBRqZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5KC6IPWn_hWtsuIuLLtptsks3iU6_1bNUeohbvQQhJNitS76707sD613dm93bbEwviw8LCTkIymdl8k0y-ALxgLudWlSrhTmWJCAW5VBUSwYJzgeVBSTrvfDxQhyfi3VAOV-B1exam4YfoFtzIM-r_NTn4WVntXpGG2h-eeAfogPmaUOgshIg-ddxRjOe6oQrHeBlxAmtphVK-2xVdmozWSK-_KDnSTlE_VXOxxRLyvI5f6wmofw--tU1v8k5Od-Yzt-N__8Hq-J99W4e7C2Aa7zWWdB9WwvgB3LlGV_gQeseBFtpDTJYxirE7E8qk-R67i3hEiX2I5SfzaVwvCV1gPfEojLAZWAKhaX2vzyM46b_5sn-YLO5gSLzkWiY4Xh4hGe3VB2ZTq6QtqgpjHlcIV-LjA_fal9xZnRaO5TotRWELXSEOCKXMHsPqeDIOTyDmWca18yJXVUpRqy2lsxXz0lZYQvMIXrWDYfyCoJzuyfhpGmplblAtplZLBM870bOGleNvQi_rEe0k7PkppbHl0nwdvDWfez2RDUVmigi2lob8qkqF4EczFsFGawNm4eJTQ5mPiukc273dfUXfpA0XVCyq23CMXikgjSC-QQLxW4amm6bY-dogbu6O2Tvar1-e_rvoNtz6eNA3H44G7zfgdsNRSatHz2B1dj4Pm4inZm6r9ptL7gEZUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+steam+reforming+by+microporous+catalytic+membrane+reactors&rft.jtitle=AIChE+journal&rft.au=Tsuru%2C+Toshinori&rft.au=Yamaguchi%2C+Koji&rft.au=Yoshioka%2C+Tomohisa&rft.au=Asaeda%2C+Masashi&rft.date=2004-11-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=50&rft.issue=11&rft.spage=2794&rft.epage=2805&rft_id=info:doi/10.1002%2Faic.10215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_10215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon