Regression modelling of correlated data in ecology: subject-specific and population averaged response patterns

1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of applied ecology Vol. 46; no. 5; pp. 1018 - 1025
Main Authors Fieberg, John, Rieger, Randall H., Zicus, Michael C., Schildcrout, Jonathan S.
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2009
Blackwell Publishing
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor-outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models. 4. Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural.
AbstractList 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor—outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models. 4. Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural.
Summary 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual’s covariates [i.e. a subject‐specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor–outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population‐averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3‐year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among‐subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear‐mixed models. 4. Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural.
1.  Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual’s covariates [i.e. a subject‐specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2.  An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor–outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population‐averaged (PA) interpretation]. 3.  We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3‐year study of mallard ( Anas platyrhynchos ) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among‐subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived ( post hoc ) from fitted generalized and nonlinear‐mixed models. 4.   Synthesis and applications . Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural.
Summary1.Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender).2.An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor-outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation].3.We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models.4.Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural.
Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor-outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation]. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural.
Author Fieberg, John
Zicus, Michael C.
Rieger, Randall H.
Schildcrout, Jonathan S.
Author_xml – sequence: 1
  givenname: John
  surname: Fieberg
  fullname: Fieberg, John
– sequence: 2
  givenname: Randall H.
  surname: Rieger
  fullname: Rieger, Randall H.
– sequence: 3
  givenname: Michael C.
  surname: Zicus
  fullname: Zicus, Michael C.
– sequence: 4
  givenname: Jonathan S.
  surname: Schildcrout
  fullname: Schildcrout, Jonathan S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22013879$$DView record in Pascal Francis
BookMark eNqNkt1r1TAYxotM8Gz6J4hB0LvWfDRpIziQsfnBQFF3Hd6mySGlJ6lJj-7890vXMWE3LjcJvL_nCU-eHBdHPnhTFIjgiuT1bqgIE7ykQtQVxVhWmAhJq-snxeZ-cFRsMKakbCUmz4rjlAacSc7YpvA_zDaalFzwaBd6M47Ob1GwSIcYzQiz6VEPMyDnkdFhDNvDe5T23WD0XKbJaGedRuB7NIVpn_nFCP6YCNuszM5T8MmgCebZRJ-eF08tjMm8uNtPiquL819nn8vLb5--nH28LDWnLS25qbumtVpaYbnsdAtd11nbNETUEoOkEmpRN0ZSxvNum4xDK4D0VmeKsZPi7eo7xfB7b9Ksdi7pnA68CfuksprWoq3_C1KCG0E5z-DrB-AQ9tHnEIoyVhNJWJOhN3cQJA2jjeC1S2qKbgfxoCjFhLWNzFy7cjqGlKKx9wjBaqlVDWppTy3tqaVWdVurus7S0wdS7ebbZ58juPExBh9Wg79uNIdHX6y-fj9fTln_ctUPaQ7xXzYuKMPtMn-1zi0EBduY81_9XIJno5bz_O1uAKRQ0cE
CODEN JAPEAI
CitedBy_id crossref_primary_10_1038_s41598_020_68151_7
crossref_primary_10_1002_eap_2952
crossref_primary_10_1111_j_1365_2656_2010_01670_x
crossref_primary_10_1007_s11121_021_01228_5
crossref_primary_10_1017_S0030605318001187
crossref_primary_10_1371_journal_pone_0169779
crossref_primary_10_1002_ece3_997
crossref_primary_10_1111_j_1939_7445_2012_00124_x
crossref_primary_10_1007_s42991_024_00400_y
crossref_primary_10_1098_rstb_2010_0079
crossref_primary_10_1371_journal_pone_0065368
crossref_primary_10_1121_10_0020910
crossref_primary_10_1111_2041_210X_12623
crossref_primary_10_1007_s40300_015_0072_5
crossref_primary_10_7717_peerj_9089
crossref_primary_10_1111_2041_210X_14321
crossref_primary_10_1111_csp2_119
crossref_primary_10_1002_eap_2470
crossref_primary_10_1093_beheco_arz215
crossref_primary_10_7717_peerj_12590
crossref_primary_10_1038_nclimate1465
crossref_primary_10_1016_j_biocon_2012_08_025
crossref_primary_10_1111_ecog_06058
crossref_primary_10_1371_journal_pone_0063931
crossref_primary_10_1016_j_jembe_2013_10_011
crossref_primary_10_1016_j_jenvman_2019_109504
crossref_primary_10_1111_1365_2664_12554
crossref_primary_10_1007_s00442_013_2749_x
crossref_primary_10_3102_10769986211017480
crossref_primary_10_1093_icb_ics074
crossref_primary_10_1016_j_ecoinf_2017_10_006
crossref_primary_10_1111_1365_2656_13087
crossref_primary_10_1890_13_1088_1
crossref_primary_10_2981_wlb_00726
crossref_primary_10_1111_1365_2656_13441
crossref_primary_10_1371_journal_pone_0088597
crossref_primary_10_1002_sim_9126
crossref_primary_10_1002_ece3_617
crossref_primary_10_1016_j_biocon_2012_03_029
crossref_primary_10_1016_j_foreco_2010_08_021
crossref_primary_10_1016_j_ijppaw_2017_07_003
crossref_primary_10_3354_meps13371
crossref_primary_10_1111_j_1748_7692_2011_00552_x
crossref_primary_10_1002_wics_1506
crossref_primary_10_1093_beheco_arac041
crossref_primary_10_1007_s00267_016_0745_8
crossref_primary_10_1016_j_funbio_2013_11_010
crossref_primary_10_1098_rstb_2010_0083
crossref_primary_10_1093_icesjms_fsac159
crossref_primary_10_1080_00949655_2020_1777293
crossref_primary_10_1186_s40462_015_0032_y
crossref_primary_10_1002_jwmg_962
crossref_primary_10_1098_rspb_2023_1377
crossref_primary_10_1186_s40462_021_00260_y
crossref_primary_10_1080_13658816_2013_847444
crossref_primary_10_1186_s40462_024_00502_9
crossref_primary_10_1111_2041_210X_13308
crossref_primary_10_1002_jwmg_22182
crossref_primary_10_1002_wsb_1135
crossref_primary_10_1002_ecs2_2782
crossref_primary_10_1139_cjfr_2014_0449
crossref_primary_10_3354_esr00825
Cites_doi 10.1093/aje/kwh216
10.1080/02664760120108421
10.1086/426002
10.1111/j.2007.0906-7590.05171.x
10.2307/1403425
10.1177/0962280206071931
10.2307/2531147
10.1111/j.1541-0420.2006.00680.x
10.1016/j.tree.2008.10.008
10.1086/343873
10.2307/1403572
10.1093/aje/kwg169
10.1111/j.2007.0906-7590.05236.x
10.1093/biomet/88.4.973
10.1093/biomet/73.1.13
10.1080/01621459.1999.10473862
10.1080/01621459.1998.10474097
10.2307/2531734
10.1111/j.0006-341X.1999.00688.x
10.1890/04-0702
10.1007/978-1-4419-0318-1
10.1093/aje/kwh217
10.1093/aje/kwi017
10.2193/0022-541X(2006)70[1325:IOLUOM]2.0.CO;2
10.1214/088342304000000305
10.1676/03-064
10.1111/j.1365-2664.2008.01466.x
10.1191/0962280204sm368ra
10.1093/biomet/80.3.517
10.2307/2986113
10.1186/1471-2288-2-15
10.1111/j.1365-2435.2008.01408.x
10.1080/01621459.1995.10476493
10.1111/j.1365-2656.2006.01106.x
10.1111/j.1541-0420.2005.00377.x
ContentType Journal Article
Copyright Copyright 2009 British Ecological Society
2009 The Authors. Journal compilation © 2009 British Ecological Society
2009 INIST-CNRS
Copyright Blackwell Publishing Ltd. Oct 2009
Copyright_xml – notice: Copyright 2009 British Ecological Society
– notice: 2009 The Authors. Journal compilation © 2009 British Ecological Society
– notice: 2009 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Oct 2009
DBID FBQ
AAYXX
CITATION
IQODW
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
F1W
H95
L.G
7S9
L.6
DOI 10.1111/j.1365-2664.2009.01692.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Entomology Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Ecology
EISSN 1365-2664
EndPage 1025
ExternalDocumentID 1872687031
22013879
10_1111_j_1365_2664_2009_01692_x
JPE1692
25623082
US201301685595
Genre article
Feature
GeographicLocations Minnesota
GeographicLocations_xml – name: Minnesota
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29J
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPLY
ABPPZ
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
VH1
VOH
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YQT
YYP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ABXSQ
ACHIC
ADMHG
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
AAYXX
AGHNM
CITATION
IQODW
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
F1W
H95
L.G
7S9
L.6
ID FETCH-LOGICAL-c5282-5e4b78fc9f6f59bc8abbbff7716490a929a4647e9235647f74b7a86a1dfcf7733
IEDL.DBID DR2
ISSN 0021-8901
IngestDate Fri Jul 11 03:50:52 EDT 2025
Fri Jul 11 11:51:49 EDT 2025
Fri Jul 25 10:54:44 EDT 2025
Mon Jul 21 09:14:40 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
Tue Jul 01 02:58:31 EDT 2025
Wed Jan 22 16:41:15 EST 2025
Thu Jul 03 21:07:04 EDT 2025
Wed Dec 27 19:19:21 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords random effects
Generalized linear model
generalized estimating equations
Regression
mixed effects
conditional model
Ecology
Estimating equation
Modeling
generalized linear-mixed models
marginal model
sandwich estimators
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5282-5e4b78fc9f6f59bc8abbbff7716490a929a4647e9235647f74b7a86a1dfcf7733
Notes http://dx.doi.org/10.1111/j.1365-2664.2009.01692.x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2664.2009.01692.x
PQID 233419137
PQPubID 37791
PageCount 8
ParticipantIDs proquest_miscellaneous_46424684
proquest_miscellaneous_21076255
proquest_journals_233419137
pascalfrancis_primary_22013879
crossref_primary_10_1111_j_1365_2664_2009_01692_x
crossref_citationtrail_10_1111_j_1365_2664_2009_01692_x
wiley_primary_10_1111_j_1365_2664_2009_01692_x_JPE1692
jstor_primary_25623082
fao_agris_US201301685595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle The Journal of applied ecology
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell Publishing Ltd
– name: Blackwell
References 2006; 70
1984; 40
2009; 24
2004; 164
2006; 75
1986; 73
1991; 59
1995; 90
2006; 16
2004; 160
2008
2002; 2
2007
1994
2005
2008; 31
2005; 61
2007; 30
2002
2001; 88
2003; 115
2003; 158
2007; 16
2002; 160
2005; 161
2002; 29
2004; 19
2000
2004; 13
1988; 44
1999; 55
2008; 45
1993; 80
2008; 22
1998; 93
1999; 94
2007; 63
2005; 15
1996; 64
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_22_1
Rabe‐Hesketh S. (e_1_2_5_32_1) 2008
e_1_2_5_29_1
Højsgaard S. (e_1_2_5_19_1) 2005; 15
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_18_1
Rubin D.B. (e_1_2_5_35_1) 2002
e_1_2_5_30_1
e_1_2_5_31_1
Molenberghs G. (e_1_2_5_24_1) 2005
References_xml – volume: 115
  start-page: 409
  year: 2003
  end-page: 413
  article-title: Does mallard clutch size vary with landscape composition: a different view
  publication-title: Wilson Bulletin
– volume: 30
  start-page: 609
  year: 2007
  end-page: 628
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
  publication-title: Ecography
– volume: 161
  start-page: 81
  year: 2005
  end-page: 88
  article-title: Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression
  publication-title: American Journal of Epidemiology
– volume: 16
  start-page: 167
  year: 2007
  end-page: 184
  article-title: Comparison of subject‐specific and population averaged models for count data from cluster‐unit intervention trials
  publication-title: Statistical Methods in Medical Research
– year: 2005
– volume: 55
  start-page: 688
  year: 1999
  end-page: 698
  article-title: Marginally specified logistic‐normal models for longitudinal binary data
  publication-title: Biometrics
– volume: 88
  start-page: 973
  year: 2001
  end-page: 985
  article-title: Misspecified maximum likelihood estimates and generalised linear mixed models
  publication-title: Biometrika
– volume: 22
  start-page: 393
  year: 2008
  end-page: 406
  article-title: Measuring senescence in wild animal populations: towards a longitudinal approach
  publication-title: Functional Ecology
– volume: 158
  start-page: 495
  year: 2003
  end-page: 501
  article-title: Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data
  publication-title: American Journal of Epidemiology
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression‐models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
– volume: 160
  start-page: 506
  year: 2004
  end-page: 507
  article-title: The first author replies
  publication-title: American Journal of Epidemiology
– volume: 80
  start-page: 517
  year: 1993
  end-page: 526
  article-title: Modelling multivariate binary data with alternating logistic regressions
  publication-title: Biometrika
– year: 2007
– volume: 16
  start-page: 20
  year: 2006
  end-page: 32
  article-title: Statistics for correlated data: phylogenies, space, and time
  publication-title: Ecological Applications
– volume: 59
  start-page: 25
  year: 1991
  end-page: 35
  article-title: A comparison of cluster‐specific and population‐averaged approaches for analyzing correlated data
  publication-title: International Statistical Review
– volume: 94
  start-page: 1096
  year: 1999
  end-page: 1146
  article-title: Adjusting for non‐ignorable drop‐out using semiparametric non‐response models (with discussion)
  publication-title: Journal of the American Statistical Association
– year: 2000
– volume: 93
  start-page: 150
  year: 1998
  end-page: 162
  article-title: Lorelogram: a regression approach to exploring dependence in longitudinal categorical responses
  publication-title: Journal of the American Statistical Association
– volume: 164
  start-page: 683
  year: 2004
  end-page: 695
  article-title: Phylogenetic comparative analyses: a modeling approach for adaptive evolution
  publication-title: The American Naturalist
– volume: 160
  start-page: 505
  year: 2004
  end-page: 506
  article-title: RE: “detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data”
  publication-title: American Journal of Epidemiology
– volume: 15
  start-page: 1
  year: 2005
  end-page: 11
  article-title: The R package geepack for generalized estimating equations
  publication-title: Journal of Statistical Software
– volume: 2
  start-page: 15
  year: 2002
  article-title: Choosing marginal or random‐effects models for longitudinal binary responses: application to self‐reported disability among older persons
  publication-title: BMC Medical Research Technology
– volume: 70
  start-page: 1325
  year: 2006
  end-page: 1333
  article-title: Influence of land use on mallard nest‐structure occupancy
  publication-title: Journal of Wildlife Management
– year: 1994
– volume: 44
  start-page: 1049
  year: 1988
  end-page: 1060
  article-title: Models for longitudinal data: a generalized estimating equation approach
  publication-title: Biometrics
– volume: 19
  start-page: 219
  year: 2004
  end-page: 238
  article-title: Conditional and marginal models: another view
  publication-title: Statistical Science
– volume: 13
  start-page: 309
  year: 2004
  end-page: 323
  article-title: Equivalence of conditional and marginal regression models for clustered and longitudinal data
  publication-title: Statistical Methods in Medical Research
– year: 2002
– year: 2008
– volume: 160
  start-page: 712
  year: 2002
  end-page: 726
  article-title: Phylogenetic analysis and comparative data: a test and review of evidence
  publication-title: The American Naturalist
– volume: 29
  start-page: 19
  year: 2002
  end-page: 48
  article-title: Occam’s shadow: levels of analysis in evolutionary ecology – where to next?
  publication-title: Journal of Applied Statistics
– volume: 75
  start-page: 887
  year: 2006
  end-page: 898
  article-title: Application of random effects to the study of resource selection by animals
  publication-title: Journal of Animal Ecology
– volume: 31
  start-page: 140
  year: 2008
  end-page: 160
  article-title: Estimating space‐use and habitat preference from wildlife telemetry data
  publication-title: Ecography
– volume: 24
  start-page: 127
  year: 2009
  end-page: 135
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends in Ecology and Evolution
– volume: 64
  start-page: 89
  year: 1996
  end-page: 118
  article-title: A survey of methods for analyzing clustered binary response data
  publication-title: International Statistical Review
– volume: 40
  start-page: 961
  year: 1984
  end-page: 971
  article-title: Random‐effects models for serial observations with binary response
  publication-title: Biometrics
– volume: 61
  start-page: 962
  year: 2005
  end-page: 972
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 45
  start-page: 834
  year: 2008
  end-page: 844
  article-title: Modelling wildlife‐human relationships for social species with mixed‐effects resource selection models
  publication-title: Journal of Applied Ecology
– volume: 63
  start-page: 322
  year: 2007
  end-page: 331
  article-title: Marginalized models for moderate to long series of longitudinal binary response data
  publication-title: Biometrics
– ident: e_1_2_5_9_1
  doi: 10.1093/aje/kwh216
– ident: e_1_2_5_10_1
  doi: 10.1080/02664760120108421
– ident: e_1_2_5_6_1
  doi: 10.1086/426002
– ident: e_1_2_5_12_1
  doi: 10.1111/j.2007.0906-7590.05171.x
– ident: e_1_2_5_27_1
  doi: 10.2307/1403425
– ident: e_1_2_5_39_1
  doi: 10.1177/0962280206071931
– ident: e_1_2_5_31_1
– ident: e_1_2_5_38_1
  doi: 10.2307/2531147
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1541-0420.2006.00680.x
– ident: e_1_2_5_4_1
  doi: 10.1016/j.tree.2008.10.008
– ident: e_1_2_5_13_1
  doi: 10.1086/343873
– ident: e_1_2_5_25_1
  doi: 10.2307/1403572
– ident: e_1_2_5_30_1
  doi: 10.1093/aje/kwg169
– ident: e_1_2_5_2_1
  doi: 10.1111/j.2007.0906-7590.05236.x
– ident: e_1_2_5_16_1
  doi: 10.1093/biomet/88.4.973
– ident: e_1_2_5_23_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_5_36_1
  doi: 10.1080/01621459.1999.10473862
– ident: e_1_2_5_17_1
  doi: 10.1080/01621459.1998.10474097
– ident: e_1_2_5_40_1
  doi: 10.2307/2531734
– ident: e_1_2_5_15_1
  doi: 10.1111/j.0006-341X.1999.00688.x
– ident: e_1_2_5_20_1
  doi: 10.1890/04-0702
– ident: e_1_2_5_28_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_5_29_1
  doi: 10.1093/aje/kwh217
– ident: e_1_2_5_21_1
  doi: 10.1093/aje/kwi017
– ident: e_1_2_5_42_1
  doi: 10.2193/0022-541X(2006)70[1325:IOLUOM]2.0.CO;2
– ident: e_1_2_5_22_1
  doi: 10.1214/088342304000000305
– ident: e_1_2_5_41_1
  doi: 10.1676/03-064
– ident: e_1_2_5_5_1
– ident: e_1_2_5_18_1
  doi: 10.1111/j.1365-2664.2008.01466.x
– volume-title: Models for Discrete Longitudinal Data
  year: 2005
  ident: e_1_2_5_24_1
– volume-title: Multilevel and Longitudinal Modeling Using Stata
  year: 2008
  ident: e_1_2_5_32_1
– ident: e_1_2_5_33_1
  doi: 10.1191/0962280204sm368ra
– ident: e_1_2_5_7_1
  doi: 10.1093/biomet/80.3.517
– ident: e_1_2_5_11_1
  doi: 10.2307/2986113
– ident: e_1_2_5_8_1
  doi: 10.1186/1471-2288-2-15
– ident: e_1_2_5_26_1
  doi: 10.1111/j.1365-2435.2008.01408.x
– ident: e_1_2_5_34_1
  doi: 10.1080/01621459.1995.10476493
– ident: e_1_2_5_14_1
  doi: 10.1111/j.1365-2656.2006.01106.x
– volume: 15
  start-page: 1
  year: 2005
  ident: e_1_2_5_19_1
  article-title: The R package geepack for generalized estimating equations
  publication-title: Journal of Statistical Software
– volume-title: Statistical Analysis with Missing Data
  year: 2002
  ident: e_1_2_5_35_1
– ident: e_1_2_5_3_1
  doi: 10.1111/j.1541-0420.2005.00377.x
SSID ssj0009533
Score 2.2167933
Snippet 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are...
Summary 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which...
1.  Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are...
Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are...
Summary1.Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1018
SubjectTerms Anas platyrhynchos
Animal nesting
Animal populations
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
case studies
Clutch size
conditional model
Conservation biology
Data models
Ecological modeling
Ecological research
Ecology
equations
estimation
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
generalized estimating equations
generalized linear‐mixed models
Heterogeneity
marginal model
Methods and techniques (sampling, tagging, trapping, modelling...)
Minnesota
mixed effects
Modeling
Models in Management
Multilevel models
nesting sites
Parametric models
population dynamics
Population ecology
random effects
Regression analysis
sandwich estimators
Statistical methods
statistical models
Wetlands
wild birds
Wildfowl
Wildlife management
Title Regression modelling of correlated data in ecology: subject-specific and population averaged response patterns
URI https://www.jstor.org/stable/25623082
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2664.2009.01692.x
https://www.proquest.com/docview/233419137
https://www.proquest.com/docview/21076255
https://www.proquest.com/docview/46424684
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA46EPTBH9OxOp158LWXmzZJE9-GbIyBItMLeytJkwzZ6L3c3gvOJ_8E_0b_Es9JeuutKAzxqYWeFHJ6knyn-fIdQl6rwKRjRufO8QYSFNPkOjiVW1a4qS2VMw4TxXfv5emMn12Ii57_hGdhkj7E8MMNR0acr3GAG9uNB3liaEney04yqYsJ4kl8gPjovNjS301V5ZGRoGANHJN6_vii0Up1N5j5hrKI_EnTgQtDqn0xAqfbEDeuUSePyNWmd4macjVZr-yk-fqb8OP_6f5j8rCHsvQoxd4Tcse3u-TB0eWyl_Pwu-ReKnV585Qszv1loty2NFbfwWPwdB5og-VBrgHxOopsVfq5pT4qad-8od3a4m-iH9--44FQJDVR0zq6GIqOUQMjEWZER5eJ6-vpIgqGtt0zMjs5_vT2NO-rPeSNgLwvF57bSoVGBxmEto0y1toQKkzo9NQAjDNc8soDIhVwDRWYGyUNc6EBq7LcIzvtvPX7hPpSaMc0t4xbzv3UGlUZLwouykZq4TJSbb5s3fRS6FiR47reSonAuzV6Fwt16jp6t_6SETa0XCQ5kFu02YfgqQ24v6tnHwvcK2ZSQSonMrIXI2p4V4FwFFBZRg5HIfbLAJurSmfkYBNzdT_rdHVRojofK6uMvBqewnSBe0Cm9fM1mEC6Dymv-LsFOLngUvGMyBh_t-5nffbhGO-e_2vDA3I_7tVFquQLsrNarv1LgHwrexgH8090NUba
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgCAEHPgpVl0LrA9eNsru21-ZWoVahtBUqjdSbZa_tqiLaRNlEoj31J_Ab-SXMeDchQSBViFMiZbzSTmbsGfv5PULeyZAJlxmVOscqaFBMlargZGqz3PVtIZ1x2CienIrBkB1d8ItODgjvwrT8EMsNN8yMOF9jguOG9HqWtxAtwTreyUyovAcF5QMU-I791Vm-wsDb6sojJkHCKrgO6_njk9bWqvvBjBegRURQmgacGFr1i7XydLXIjavU4TMyWrxfC0752pvPbK-6-Y368T854Dl52lWzdL8Nvxfknq83yZP9y2nH6OE3ycNW7fL6JZmc-csWdVvTKMCDN-HpONAKFUJGUPQ6ioBVelVTH8m0r9_TZm5xp-jH7Xe8E4q4JmpqRydL3TFqIBlhUnR02sJ9PZ1EztC6eUWGhwfnHwZpJ_iQVhxav5R7ZksZKhVE4MpW0lhrQyixp1N9A5WcYYKVHopSDp-hBHMjhclcqMCqKLbIRj2u_TahvuDKZYrZjFnGfN8aWRrPc8aLSijuElIu_lpddWzoKMox0itdEXhXo3dRq1Pp6F39LSHZcuSkZQS5w5htiB5twP2NHn7J8bg4ExK6OZ6QrRhSy2flWJFCYZaQ3bUY-2WAw2WpErKzCDrdTTyNzgsk6MuKMiF7y19hxsBjIFP78RxMoOOHrpf_3QKcnDMhWUJEDMA7v6c--nyA317_68A98mhwfnKsjz-eftohj-PRXUROviEbs-ncv4UKcGZ3Y2b_BNTHSvU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgCAQHPgpVl0LrA9eNsru21-ZW0UalQFUVIvVm2Wu7Qq02UTaRKCd-Ar-RX8KMd7MkCKQKcUqkjFfyZMZ-s35-Q8grGTLhMqNS51gFBYqpUhWcTG2Wu6EtpDMOC8UPJ-JozI7P-XnHf8K7MK0-RP_CDTMjrteY4FMX1pO8ZWgJ1slOZkLlA8CTd5gYSozwg7N8RYC3bSuPlAQJm-A6q-ePT1rbqm4HM1lyFpFAaRrwYWibX6yh01WMGzep0SNyuZxey025HCzmdlB9_U358f_M_zF52GFZut8G3xNyy9eb5MH-xazT8_Cb5G7b6_L6KZme-YuWc1vT2H4H78HTSaAV9ge5AsjrKNJV6eea-iilff2aNguL74l-fPuON0KR1URN7ei07zpGDaQiLImOzlqyr6fTqBhaN8_IeHT46c1R2rV7SCsOhV_KPbOlDJUKInBlK2mstSGUWNGpoQEcZ5hgpQdIyuEzlGBupDCZCxVYFcUW2agntd8m1BdcuUwxmzHLmB9aI0vjec54UQnFXULK5T-rq04LHVtyXOmVmgi8q9G72KlT6ehd_SUhWT9y2uqB3GDMNgSPNuD-Ro8_5nhYnAkJtRxPyFaMqP5ZOeJRgGUJ2V0LsV8GOFyWKiE7y5jT3bLT6LxAeb6sKBOy1_8K6wUeApnaTxZgAvU-1Lz87xbg5JwJyRIiYvzdeJ76-PQQvz3_14F75N7pwUi_f3vybofcj-d2kTb5gmzMZwv_EuDf3O7GvP4JxnhJrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+Modelling+of+Correlated+Data+in+Ecology%3A+Subject-Specific+and+Population+Averaged+Response+Patterns&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Fieberg%2C+John&rft.au=Rieger%2C+Randall+H.&rft.au=Zicus%2C+Michael+C.&rft.au=Schildcrout%2C+Jonathan+S.&rft.date=2009-10-01&rft.pub=Blackwell+Publishing&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=46&rft.issue=5&rft.spage=1018&rft.epage=1025&rft_id=info:doi/10.1111%2Fj.1365-2664.2009.01692.x&rft.externalDocID=25623082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon