Regression modelling of correlated data in ecology: subject-specific and population averaged response patterns
1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved...
Saved in:
Published in | The Journal of applied ecology Vol. 46; no. 5; pp. 1018 - 1025 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2009
Blackwell Publishing Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor-outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models. 4. Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural. |
---|---|
AbstractList | 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor—outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models. 4. Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural. Summary 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual’s covariates [i.e. a subject‐specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor–outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population‐averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3‐year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among‐subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear‐mixed models. 4. Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural. 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual’s covariates [i.e. a subject‐specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). 2. An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor–outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population‐averaged (PA) interpretation]. 3. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3‐year study of mallard ( Anas platyrhynchos ) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among‐subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived ( post hoc ) from fitted generalized and nonlinear‐mixed models. 4. Synthesis and applications . Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural. Summary1.Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender).2.An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor-outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation].3.We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models.4.Synthesis and applications. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are ubiquitous in applied ecological research. Mixed effects models offer a potential solution and rely on the assumption that latent or unobserved characteristics of individuals (i.e. random effects) induce correlation among repeated measurements. However, careful consideration must be given to the interpretation of parameters when using a nonlinear link function (e.g. logit). Mixed model regression parameters reflect the change in the expected response within an individual associated with a change in that individual's covariates [i.e. a subject-specific (SS) interpretation], which may not address a relevant scientific question. In particular, a SS interpretation is not natural for covariates that do not vary within individuals (e.g. gender). An alternative approach combines the solution to an unbiased estimating equation with robust measures of uncertainty to make inferences regarding predictor-outcome relationships. Regression parameters describe changes in the average response among groups of individuals differing in their covariates [i.e. a population-averaged (PA) interpretation]. We compare these two approaches [mixed models and generalized estimating equations (GEE)] with illustrative examples from a 3-year study of mallard (Anas platyrhynchos) nest structures. We observe that PA and SS responses differ when modelling binary data, with PA parameters behaving like attenuated versions of SS parameters. Differences between SS and PA parameters increase with the size of among-subject heterogeneity captured by the random effects variance component. Lastly, we illustrate how PA inferences can be derived (post hoc) from fitted generalized and nonlinear-mixed models. Mixed effects models and GEE offer two viable approaches to modelling correlated data. The preferred method should depend primarily on the research question (i.e. desired parameter interpretation), although operating characteristics of the associated estimation procedures should also be considered. Many applied questions in ecology, wildlife management and conservation biology (including the current illustrative examples) focus on population performance measures (e.g. mean survival or nest success rates) as a function of general landscape features, for which the PA model interpretation, not the more commonly used SS model interpretation may be more natural. |
Author | Fieberg, John Zicus, Michael C. Rieger, Randall H. Schildcrout, Jonathan S. |
Author_xml | – sequence: 1 givenname: John surname: Fieberg fullname: Fieberg, John – sequence: 2 givenname: Randall H. surname: Rieger fullname: Rieger, Randall H. – sequence: 3 givenname: Michael C. surname: Zicus fullname: Zicus, Michael C. – sequence: 4 givenname: Jonathan S. surname: Schildcrout fullname: Schildcrout, Jonathan S. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22013879$$DView record in Pascal Francis |
BookMark | eNqNkt1r1TAYxotM8Gz6J4hB0LvWfDRpIziQsfnBQFF3Hd6mySGlJ6lJj-7890vXMWE3LjcJvL_nCU-eHBdHPnhTFIjgiuT1bqgIE7ykQtQVxVhWmAhJq-snxeZ-cFRsMKakbCUmz4rjlAacSc7YpvA_zDaalFzwaBd6M47Ob1GwSIcYzQiz6VEPMyDnkdFhDNvDe5T23WD0XKbJaGedRuB7NIVpn_nFCP6YCNuszM5T8MmgCebZRJ-eF08tjMm8uNtPiquL819nn8vLb5--nH28LDWnLS25qbumtVpaYbnsdAtd11nbNETUEoOkEmpRN0ZSxvNum4xDK4D0VmeKsZPi7eo7xfB7b9Ksdi7pnA68CfuksprWoq3_C1KCG0E5z-DrB-AQ9tHnEIoyVhNJWJOhN3cQJA2jjeC1S2qKbgfxoCjFhLWNzFy7cjqGlKKx9wjBaqlVDWppTy3tqaVWdVurus7S0wdS7ebbZ58juPExBh9Wg79uNIdHX6y-fj9fTln_ctUPaQ7xXzYuKMPtMn-1zi0EBduY81_9XIJno5bz_O1uAKRQ0cE |
CODEN | JAPEAI |
CitedBy_id | crossref_primary_10_1038_s41598_020_68151_7 crossref_primary_10_1002_eap_2952 crossref_primary_10_1111_j_1365_2656_2010_01670_x crossref_primary_10_1007_s11121_021_01228_5 crossref_primary_10_1017_S0030605318001187 crossref_primary_10_1371_journal_pone_0169779 crossref_primary_10_1002_ece3_997 crossref_primary_10_1111_j_1939_7445_2012_00124_x crossref_primary_10_1007_s42991_024_00400_y crossref_primary_10_1098_rstb_2010_0079 crossref_primary_10_1371_journal_pone_0065368 crossref_primary_10_1121_10_0020910 crossref_primary_10_1111_2041_210X_12623 crossref_primary_10_1007_s40300_015_0072_5 crossref_primary_10_7717_peerj_9089 crossref_primary_10_1111_2041_210X_14321 crossref_primary_10_1111_csp2_119 crossref_primary_10_1002_eap_2470 crossref_primary_10_1093_beheco_arz215 crossref_primary_10_7717_peerj_12590 crossref_primary_10_1038_nclimate1465 crossref_primary_10_1016_j_biocon_2012_08_025 crossref_primary_10_1111_ecog_06058 crossref_primary_10_1371_journal_pone_0063931 crossref_primary_10_1016_j_jembe_2013_10_011 crossref_primary_10_1016_j_jenvman_2019_109504 crossref_primary_10_1111_1365_2664_12554 crossref_primary_10_1007_s00442_013_2749_x crossref_primary_10_3102_10769986211017480 crossref_primary_10_1093_icb_ics074 crossref_primary_10_1016_j_ecoinf_2017_10_006 crossref_primary_10_1111_1365_2656_13087 crossref_primary_10_1890_13_1088_1 crossref_primary_10_2981_wlb_00726 crossref_primary_10_1111_1365_2656_13441 crossref_primary_10_1371_journal_pone_0088597 crossref_primary_10_1002_sim_9126 crossref_primary_10_1002_ece3_617 crossref_primary_10_1016_j_biocon_2012_03_029 crossref_primary_10_1016_j_foreco_2010_08_021 crossref_primary_10_1016_j_ijppaw_2017_07_003 crossref_primary_10_3354_meps13371 crossref_primary_10_1111_j_1748_7692_2011_00552_x crossref_primary_10_1002_wics_1506 crossref_primary_10_1093_beheco_arac041 crossref_primary_10_1007_s00267_016_0745_8 crossref_primary_10_1016_j_funbio_2013_11_010 crossref_primary_10_1098_rstb_2010_0083 crossref_primary_10_1093_icesjms_fsac159 crossref_primary_10_1080_00949655_2020_1777293 crossref_primary_10_1186_s40462_015_0032_y crossref_primary_10_1002_jwmg_962 crossref_primary_10_1098_rspb_2023_1377 crossref_primary_10_1186_s40462_021_00260_y crossref_primary_10_1080_13658816_2013_847444 crossref_primary_10_1186_s40462_024_00502_9 crossref_primary_10_1111_2041_210X_13308 crossref_primary_10_1002_jwmg_22182 crossref_primary_10_1002_wsb_1135 crossref_primary_10_1002_ecs2_2782 crossref_primary_10_1139_cjfr_2014_0449 crossref_primary_10_3354_esr00825 |
Cites_doi | 10.1093/aje/kwh216 10.1080/02664760120108421 10.1086/426002 10.1111/j.2007.0906-7590.05171.x 10.2307/1403425 10.1177/0962280206071931 10.2307/2531147 10.1111/j.1541-0420.2006.00680.x 10.1016/j.tree.2008.10.008 10.1086/343873 10.2307/1403572 10.1093/aje/kwg169 10.1111/j.2007.0906-7590.05236.x 10.1093/biomet/88.4.973 10.1093/biomet/73.1.13 10.1080/01621459.1999.10473862 10.1080/01621459.1998.10474097 10.2307/2531734 10.1111/j.0006-341X.1999.00688.x 10.1890/04-0702 10.1007/978-1-4419-0318-1 10.1093/aje/kwh217 10.1093/aje/kwi017 10.2193/0022-541X(2006)70[1325:IOLUOM]2.0.CO;2 10.1214/088342304000000305 10.1676/03-064 10.1111/j.1365-2664.2008.01466.x 10.1191/0962280204sm368ra 10.1093/biomet/80.3.517 10.2307/2986113 10.1186/1471-2288-2-15 10.1111/j.1365-2435.2008.01408.x 10.1080/01621459.1995.10476493 10.1111/j.1365-2656.2006.01106.x 10.1111/j.1541-0420.2005.00377.x |
ContentType | Journal Article |
Copyright | Copyright 2009 British Ecological Society 2009 The Authors. Journal compilation © 2009 British Ecological Society 2009 INIST-CNRS Copyright Blackwell Publishing Ltd. Oct 2009 |
Copyright_xml | – notice: Copyright 2009 British Ecological Society – notice: 2009 The Authors. Journal compilation © 2009 British Ecological Society – notice: 2009 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Oct 2009 |
DBID | FBQ AAYXX CITATION IQODW 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7ST 7U6 F1W H95 L.G 7S9 L.6 |
DOI | 10.1111/j.1365-2664.2009.01692.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1365-2664 |
EndPage | 1025 |
ExternalDocumentID | 1872687031 22013879 10_1111_j_1365_2664_2009_01692_x JPE1692 25623082 US201301685595 |
Genre | article Feature |
GeographicLocations | Minnesota |
GeographicLocations_xml | – name: Minnesota |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29J 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYJJ AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPLY ABPPZ ABPTK ABPVW ABTAH ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU E3Z EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 VH1 VOH W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YQT YYP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AAYCA ABSQW ABXSQ ACHIC ADMHG AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG AAYXX AGHNM CITATION IQODW 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7ST 7U6 F1W H95 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c5282-5e4b78fc9f6f59bc8abbbff7716490a929a4647e9235647f74b7a86a1dfcf7733 |
IEDL.DBID | DR2 |
ISSN | 0021-8901 |
IngestDate | Fri Jul 11 03:50:52 EDT 2025 Fri Jul 11 11:51:49 EDT 2025 Fri Jul 25 10:54:44 EDT 2025 Mon Jul 21 09:14:40 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 Tue Jul 01 02:58:31 EDT 2025 Wed Jan 22 16:41:15 EST 2025 Thu Jul 03 21:07:04 EDT 2025 Wed Dec 27 19:19:21 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | random effects Generalized linear model generalized estimating equations Regression mixed effects conditional model Ecology Estimating equation Modeling generalized linear-mixed models marginal model sandwich estimators |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5282-5e4b78fc9f6f59bc8abbbff7716490a929a4647e9235647f74b7a86a1dfcf7733 |
Notes | http://dx.doi.org/10.1111/j.1365-2664.2009.01692.x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2664.2009.01692.x |
PQID | 233419137 |
PQPubID | 37791 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_46424684 proquest_miscellaneous_21076255 proquest_journals_233419137 pascalfrancis_primary_22013879 crossref_primary_10_1111_j_1365_2664_2009_01692_x crossref_citationtrail_10_1111_j_1365_2664_2009_01692_x wiley_primary_10_1111_j_1365_2664_2009_01692_x_JPE1692 jstor_primary_25623082 fao_agris_US201301685595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2009 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: October 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | The Journal of applied ecology |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2006; 70 1984; 40 2009; 24 2004; 164 2006; 75 1986; 73 1991; 59 1995; 90 2006; 16 2004; 160 2008 2002; 2 2007 1994 2005 2008; 31 2005; 61 2007; 30 2002 2001; 88 2003; 115 2003; 158 2007; 16 2002; 160 2005; 161 2002; 29 2004; 19 2000 2004; 13 1988; 44 1999; 55 2008; 45 1993; 80 2008; 22 1998; 93 1999; 94 2007; 63 2005; 15 1996; 64 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_22_1 Rabe‐Hesketh S. (e_1_2_5_32_1) 2008 e_1_2_5_29_1 Højsgaard S. (e_1_2_5_19_1) 2005; 15 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_18_1 Rubin D.B. (e_1_2_5_35_1) 2002 e_1_2_5_30_1 e_1_2_5_31_1 Molenberghs G. (e_1_2_5_24_1) 2005 |
References_xml | – volume: 115 start-page: 409 year: 2003 end-page: 413 article-title: Does mallard clutch size vary with landscape composition: a different view publication-title: Wilson Bulletin – volume: 30 start-page: 609 year: 2007 end-page: 628 article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review publication-title: Ecography – volume: 161 start-page: 81 year: 2005 end-page: 88 article-title: Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression publication-title: American Journal of Epidemiology – volume: 16 start-page: 167 year: 2007 end-page: 184 article-title: Comparison of subject‐specific and population averaged models for count data from cluster‐unit intervention trials publication-title: Statistical Methods in Medical Research – year: 2005 – volume: 55 start-page: 688 year: 1999 end-page: 698 article-title: Marginally specified logistic‐normal models for longitudinal binary data publication-title: Biometrics – volume: 88 start-page: 973 year: 2001 end-page: 985 article-title: Misspecified maximum likelihood estimates and generalised linear mixed models publication-title: Biometrika – volume: 22 start-page: 393 year: 2008 end-page: 406 article-title: Measuring senescence in wild animal populations: towards a longitudinal approach publication-title: Functional Ecology – volume: 158 start-page: 495 year: 2003 end-page: 501 article-title: Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data publication-title: American Journal of Epidemiology – volume: 90 start-page: 106 year: 1995 end-page: 121 article-title: Analysis of semiparametric regression‐models for repeated outcomes in the presence of missing data publication-title: Journal of the American Statistical Association – volume: 160 start-page: 506 year: 2004 end-page: 507 article-title: The first author replies publication-title: American Journal of Epidemiology – volume: 80 start-page: 517 year: 1993 end-page: 526 article-title: Modelling multivariate binary data with alternating logistic regressions publication-title: Biometrika – year: 2007 – volume: 16 start-page: 20 year: 2006 end-page: 32 article-title: Statistics for correlated data: phylogenies, space, and time publication-title: Ecological Applications – volume: 59 start-page: 25 year: 1991 end-page: 35 article-title: A comparison of cluster‐specific and population‐averaged approaches for analyzing correlated data publication-title: International Statistical Review – volume: 94 start-page: 1096 year: 1999 end-page: 1146 article-title: Adjusting for non‐ignorable drop‐out using semiparametric non‐response models (with discussion) publication-title: Journal of the American Statistical Association – year: 2000 – volume: 93 start-page: 150 year: 1998 end-page: 162 article-title: Lorelogram: a regression approach to exploring dependence in longitudinal categorical responses publication-title: Journal of the American Statistical Association – volume: 164 start-page: 683 year: 2004 end-page: 695 article-title: Phylogenetic comparative analyses: a modeling approach for adaptive evolution publication-title: The American Naturalist – volume: 160 start-page: 505 year: 2004 end-page: 506 article-title: RE: “detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data” publication-title: American Journal of Epidemiology – volume: 15 start-page: 1 year: 2005 end-page: 11 article-title: The R package geepack for generalized estimating equations publication-title: Journal of Statistical Software – volume: 2 start-page: 15 year: 2002 article-title: Choosing marginal or random‐effects models for longitudinal binary responses: application to self‐reported disability among older persons publication-title: BMC Medical Research Technology – volume: 70 start-page: 1325 year: 2006 end-page: 1333 article-title: Influence of land use on mallard nest‐structure occupancy publication-title: Journal of Wildlife Management – year: 1994 – volume: 44 start-page: 1049 year: 1988 end-page: 1060 article-title: Models for longitudinal data: a generalized estimating equation approach publication-title: Biometrics – volume: 19 start-page: 219 year: 2004 end-page: 238 article-title: Conditional and marginal models: another view publication-title: Statistical Science – volume: 13 start-page: 309 year: 2004 end-page: 323 article-title: Equivalence of conditional and marginal regression models for clustered and longitudinal data publication-title: Statistical Methods in Medical Research – year: 2002 – year: 2008 – volume: 160 start-page: 712 year: 2002 end-page: 726 article-title: Phylogenetic analysis and comparative data: a test and review of evidence publication-title: The American Naturalist – volume: 29 start-page: 19 year: 2002 end-page: 48 article-title: Occam’s shadow: levels of analysis in evolutionary ecology – where to next? publication-title: Journal of Applied Statistics – volume: 75 start-page: 887 year: 2006 end-page: 898 article-title: Application of random effects to the study of resource selection by animals publication-title: Journal of Animal Ecology – volume: 31 start-page: 140 year: 2008 end-page: 160 article-title: Estimating space‐use and habitat preference from wildlife telemetry data publication-title: Ecography – volume: 24 start-page: 127 year: 2009 end-page: 135 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology and Evolution – volume: 64 start-page: 89 year: 1996 end-page: 118 article-title: A survey of methods for analyzing clustered binary response data publication-title: International Statistical Review – volume: 40 start-page: 961 year: 1984 end-page: 971 article-title: Random‐effects models for serial observations with binary response publication-title: Biometrics – volume: 61 start-page: 962 year: 2005 end-page: 972 article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 45 start-page: 834 year: 2008 end-page: 844 article-title: Modelling wildlife‐human relationships for social species with mixed‐effects resource selection models publication-title: Journal of Applied Ecology – volume: 63 start-page: 322 year: 2007 end-page: 331 article-title: Marginalized models for moderate to long series of longitudinal binary response data publication-title: Biometrics – ident: e_1_2_5_9_1 doi: 10.1093/aje/kwh216 – ident: e_1_2_5_10_1 doi: 10.1080/02664760120108421 – ident: e_1_2_5_6_1 doi: 10.1086/426002 – ident: e_1_2_5_12_1 doi: 10.1111/j.2007.0906-7590.05171.x – ident: e_1_2_5_27_1 doi: 10.2307/1403425 – ident: e_1_2_5_39_1 doi: 10.1177/0962280206071931 – ident: e_1_2_5_31_1 – ident: e_1_2_5_38_1 doi: 10.2307/2531147 – ident: e_1_2_5_37_1 doi: 10.1111/j.1541-0420.2006.00680.x – ident: e_1_2_5_4_1 doi: 10.1016/j.tree.2008.10.008 – ident: e_1_2_5_13_1 doi: 10.1086/343873 – ident: e_1_2_5_25_1 doi: 10.2307/1403572 – ident: e_1_2_5_30_1 doi: 10.1093/aje/kwg169 – ident: e_1_2_5_2_1 doi: 10.1111/j.2007.0906-7590.05236.x – ident: e_1_2_5_16_1 doi: 10.1093/biomet/88.4.973 – ident: e_1_2_5_23_1 doi: 10.1093/biomet/73.1.13 – ident: e_1_2_5_36_1 doi: 10.1080/01621459.1999.10473862 – ident: e_1_2_5_17_1 doi: 10.1080/01621459.1998.10474097 – ident: e_1_2_5_40_1 doi: 10.2307/2531734 – ident: e_1_2_5_15_1 doi: 10.1111/j.0006-341X.1999.00688.x – ident: e_1_2_5_20_1 doi: 10.1890/04-0702 – ident: e_1_2_5_28_1 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_5_29_1 doi: 10.1093/aje/kwh217 – ident: e_1_2_5_21_1 doi: 10.1093/aje/kwi017 – ident: e_1_2_5_42_1 doi: 10.2193/0022-541X(2006)70[1325:IOLUOM]2.0.CO;2 – ident: e_1_2_5_22_1 doi: 10.1214/088342304000000305 – ident: e_1_2_5_41_1 doi: 10.1676/03-064 – ident: e_1_2_5_5_1 – ident: e_1_2_5_18_1 doi: 10.1111/j.1365-2664.2008.01466.x – volume-title: Models for Discrete Longitudinal Data year: 2005 ident: e_1_2_5_24_1 – volume-title: Multilevel and Longitudinal Modeling Using Stata year: 2008 ident: e_1_2_5_32_1 – ident: e_1_2_5_33_1 doi: 10.1191/0962280204sm368ra – ident: e_1_2_5_7_1 doi: 10.1093/biomet/80.3.517 – ident: e_1_2_5_11_1 doi: 10.2307/2986113 – ident: e_1_2_5_8_1 doi: 10.1186/1471-2288-2-15 – ident: e_1_2_5_26_1 doi: 10.1111/j.1365-2435.2008.01408.x – ident: e_1_2_5_34_1 doi: 10.1080/01621459.1995.10476493 – ident: e_1_2_5_14_1 doi: 10.1111/j.1365-2656.2006.01106.x – volume: 15 start-page: 1 year: 2005 ident: e_1_2_5_19_1 article-title: The R package geepack for generalized estimating equations publication-title: Journal of Statistical Software – volume-title: Statistical Analysis with Missing Data year: 2002 ident: e_1_2_5_35_1 – ident: e_1_2_5_3_1 doi: 10.1111/j.1541-0420.2005.00377.x |
SSID | ssj0009533 |
Score | 2.2167933 |
Snippet | 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are... Summary 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which... 1. Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are... Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which are... Summary1.Statistical methods that assume independence among observations result in optimistic estimates of uncertainty when applied to correlated data, which... |
SourceID | proquest pascalfrancis crossref wiley jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1018 |
SubjectTerms | Anas platyrhynchos Animal nesting Animal populations Animal, plant and microbial ecology Applied ecology Biological and medical sciences case studies Clutch size conditional model Conservation biology Data models Ecological modeling Ecological research Ecology equations estimation Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques generalized estimating equations generalized linear‐mixed models Heterogeneity marginal model Methods and techniques (sampling, tagging, trapping, modelling...) Minnesota mixed effects Modeling Models in Management Multilevel models nesting sites Parametric models population dynamics Population ecology random effects Regression analysis sandwich estimators Statistical methods statistical models Wetlands wild birds Wildfowl Wildlife management |
Title | Regression modelling of correlated data in ecology: subject-specific and population averaged response patterns |
URI | https://www.jstor.org/stable/25623082 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2664.2009.01692.x https://www.proquest.com/docview/233419137 https://www.proquest.com/docview/21076255 https://www.proquest.com/docview/46424684 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA46EPTBH9OxOp158LWXmzZJE9-GbIyBItMLeytJkwzZ6L3c3gvOJ_8E_0b_Es9JeuutKAzxqYWeFHJ6knyn-fIdQl6rwKRjRufO8QYSFNPkOjiVW1a4qS2VMw4TxXfv5emMn12Ii57_hGdhkj7E8MMNR0acr3GAG9uNB3liaEney04yqYsJ4kl8gPjovNjS301V5ZGRoGANHJN6_vii0Up1N5j5hrKI_EnTgQtDqn0xAqfbEDeuUSePyNWmd4macjVZr-yk-fqb8OP_6f5j8rCHsvQoxd4Tcse3u-TB0eWyl_Pwu-ReKnV585Qszv1loty2NFbfwWPwdB5og-VBrgHxOopsVfq5pT4qad-8od3a4m-iH9--44FQJDVR0zq6GIqOUQMjEWZER5eJ6-vpIgqGtt0zMjs5_vT2NO-rPeSNgLwvF57bSoVGBxmEto0y1toQKkzo9NQAjDNc8soDIhVwDRWYGyUNc6EBq7LcIzvtvPX7hPpSaMc0t4xbzv3UGlUZLwouykZq4TJSbb5s3fRS6FiR47reSonAuzV6Fwt16jp6t_6SETa0XCQ5kFu02YfgqQ24v6tnHwvcK2ZSQSonMrIXI2p4V4FwFFBZRg5HIfbLAJurSmfkYBNzdT_rdHVRojofK6uMvBqewnSBe0Cm9fM1mEC6Dymv-LsFOLngUvGMyBh_t-5nffbhGO-e_2vDA3I_7tVFquQLsrNarv1LgHwrexgH8090NUba |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgCAEHPgpVl0LrA9eNsru21-ZWoVahtBUqjdSbZa_tqiLaRNlEoj31J_Ab-SXMeDchQSBViFMiZbzSTmbsGfv5PULeyZAJlxmVOscqaFBMlargZGqz3PVtIZ1x2CienIrBkB1d8ItODgjvwrT8EMsNN8yMOF9jguOG9HqWtxAtwTreyUyovAcF5QMU-I791Vm-wsDb6sojJkHCKrgO6_njk9bWqvvBjBegRURQmgacGFr1i7XydLXIjavU4TMyWrxfC0752pvPbK-6-Y368T854Dl52lWzdL8Nvxfknq83yZP9y2nH6OE3ycNW7fL6JZmc-csWdVvTKMCDN-HpONAKFUJGUPQ6ioBVelVTH8m0r9_TZm5xp-jH7Xe8E4q4JmpqRydL3TFqIBlhUnR02sJ9PZ1EztC6eUWGhwfnHwZpJ_iQVhxav5R7ZksZKhVE4MpW0lhrQyixp1N9A5WcYYKVHopSDp-hBHMjhclcqMCqKLbIRj2u_TahvuDKZYrZjFnGfN8aWRrPc8aLSijuElIu_lpddWzoKMox0itdEXhXo3dRq1Pp6F39LSHZcuSkZQS5w5htiB5twP2NHn7J8bg4ExK6OZ6QrRhSy2flWJFCYZaQ3bUY-2WAw2WpErKzCDrdTTyNzgsk6MuKMiF7y19hxsBjIFP78RxMoOOHrpf_3QKcnDMhWUJEDMA7v6c--nyA317_68A98mhwfnKsjz-eftohj-PRXUROviEbs-ncv4UKcGZ3Y2b_BNTHSvU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgCAQHPgpVl0LrA9eNsru21-ZW0UalQFUVIvVm2Wu7Qq02UTaRKCd-Ar-RX8KMd7MkCKQKcUqkjFfyZMZ-s35-Q8grGTLhMqNS51gFBYqpUhWcTG2Wu6EtpDMOC8UPJ-JozI7P-XnHf8K7MK0-RP_CDTMjrteY4FMX1pO8ZWgJ1slOZkLlA8CTd5gYSozwg7N8RYC3bSuPlAQJm-A6q-ePT1rbqm4HM1lyFpFAaRrwYWibX6yh01WMGzep0SNyuZxey025HCzmdlB9_U358f_M_zF52GFZut8G3xNyy9eb5MH-xazT8_Cb5G7b6_L6KZme-YuWc1vT2H4H78HTSaAV9ge5AsjrKNJV6eea-iilff2aNguL74l-fPuON0KR1URN7ei07zpGDaQiLImOzlqyr6fTqBhaN8_IeHT46c1R2rV7SCsOhV_KPbOlDJUKInBlK2mstSGUWNGpoQEcZ5hgpQdIyuEzlGBupDCZCxVYFcUW2agntd8m1BdcuUwxmzHLmB9aI0vjec54UQnFXULK5T-rq04LHVtyXOmVmgi8q9G72KlT6ehd_SUhWT9y2uqB3GDMNgSPNuD-Ro8_5nhYnAkJtRxPyFaMqP5ZOeJRgGUJ2V0LsV8GOFyWKiE7y5jT3bLT6LxAeb6sKBOy1_8K6wUeApnaTxZgAvU-1Lz87xbg5JwJyRIiYvzdeJ76-PQQvz3_14F75N7pwUi_f3vybofcj-d2kTb5gmzMZwv_EuDf3O7GvP4JxnhJrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+Modelling+of+Correlated+Data+in+Ecology%3A+Subject-Specific+and+Population+Averaged+Response+Patterns&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Fieberg%2C+John&rft.au=Rieger%2C+Randall+H.&rft.au=Zicus%2C+Michael+C.&rft.au=Schildcrout%2C+Jonathan+S.&rft.date=2009-10-01&rft.pub=Blackwell+Publishing&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=46&rft.issue=5&rft.spage=1018&rft.epage=1025&rft_id=info:doi/10.1111%2Fj.1365-2664.2009.01692.x&rft.externalDocID=25623082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon |