Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing
Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the rea...
Saved in:
Published in | Advanced science Vol. 3; no. 11; pp. 1600137 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.11.2016
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications.
Room‐temperature high‐quality factor whispering‐gallery‐mode lasing is demonstrated (Q ≈ 1210) from patterned lead halide perovskite microplatelets arrays on silicon substrate. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through the patterning. |
---|---|
AbstractList | Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room-temperature high-quality factor whispering-gallery-mode lasing (
≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom-up scalable strategy to realize high-quality periodic perovskite arrays with variable cavity sizes for large-area light-emitting and optical gain applications. Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing ( Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications. Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications. Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications. Room‐temperature high‐quality factor whispering‐gallery‐mode lasing is demonstrated (Q ≈ 1210) from patterned lead halide perovskite microplatelets arrays on silicon substrate. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through the patterning. Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room-temperature high-quality factor whispering-gallery-mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom-up scalable strategy to realize high-quality periodic perovskite arrays with variable cavity sizes for large-area light-emitting and optical gain applications.Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room-temperature high-quality factor whispering-gallery-mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom-up scalable strategy to realize high-quality periodic perovskite arrays with variable cavity sizes for large-area light-emitting and optical gain applications. |
Author | Wu, Chunyang Niu, Lin Fu, Wei Sum, Tze Chien Cong, Chunxiao Fu, Qundong He, Haiyong Wang, Hong Jin, Chuanhong Liu, Xinfeng Liu, Zheng Zeng, Qingsheng Yu, Ting |
AuthorAffiliation | 2 Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore 1 CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P.R. China 3 Center for Programmable Materials School of Materials Science & Engineering Nanyang Technological University Singapore 639798 Singapore 5 NOVITAS Nanoelectronics Centre of Excellence School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore 4 State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China 6 Energy Research Institute @ NTU (ERI@N) Nanyang Technological University 50 Nanyang Drive Singapore 637553 Singapore |
AuthorAffiliation_xml | – name: 6 Energy Research Institute @ NTU (ERI@N) Nanyang Technological University 50 Nanyang Drive Singapore 637553 Singapore – name: 5 NOVITAS Nanoelectronics Centre of Excellence School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore – name: 1 CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P.R. China – name: 3 Center for Programmable Materials School of Materials Science & Engineering Nanyang Technological University Singapore 639798 Singapore – name: 2 Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore – name: 4 State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China |
Author_xml | – sequence: 1 givenname: Xinfeng surname: Liu fullname: Liu, Xinfeng email: liuxf@nanoctr.cn organization: Nanyang Technological University – sequence: 2 givenname: Lin surname: Niu fullname: Niu, Lin organization: Nanyang Technological University – sequence: 3 givenname: Chunyang surname: Wu fullname: Wu, Chunyang organization: Zhejiang University – sequence: 4 givenname: Chunxiao surname: Cong fullname: Cong, Chunxiao organization: Nanyang Technological University – sequence: 5 givenname: Hong surname: Wang fullname: Wang, Hong organization: Nanyang Technological University – sequence: 6 givenname: Qingsheng surname: Zeng fullname: Zeng, Qingsheng organization: Nanyang Technological University – sequence: 7 givenname: Haiyong surname: He fullname: He, Haiyong organization: Nanyang Technological University – sequence: 8 givenname: Qundong surname: Fu fullname: Fu, Qundong organization: Nanyang Technological University – sequence: 9 givenname: Wei surname: Fu fullname: Fu, Wei organization: Nanyang Technological University – sequence: 10 givenname: Ting surname: Yu fullname: Yu, Ting organization: Nanyang Technological University – sequence: 11 givenname: Chuanhong surname: Jin fullname: Jin, Chuanhong organization: Zhejiang University – sequence: 12 givenname: Zheng surname: Liu fullname: Liu, Zheng email: liu.z@ntu.edu.sg organization: Nanyang Technological University – sequence: 13 givenname: Tze Chien surname: Sum fullname: Sum, Tze Chien email: tzechien@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27980989$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi3UipbQLUtkiU03SX2bGXuDFJVCKwUV0cLW8ng8wcVjB3smVXZ9BCTesE-CRylRqYRYnSOf7z8X_y_Ang_eAPAKoxlGiJyoZp1mBOESIUyrZ-CQYMGnlDO29yg_AEcp3aDMFLRimD8HB6QSHAkuDsHtJxNtaKyGl3GpvNX3d78ufNjm8Fw52xiYmbBO321v4EerY1g51RtnejiPUW0SDB5eWWf1GIc69TGXE2xDhJ9D6O7vfl6bbmXy6xANXKhk_fIl2G-VS-boIU7Al_dn16fn08Xlh4vT-WKqC8LRVNWMYqSx0KolLaZMGVo0WpSNpo0hVckZrXWDKUKiZZmqcwkzgsuC0aJq6QS83fZdDXVnGm183s7JVbSdihsZlJV_V7z9JpdhLQuMSFkWucHxQ4MYfgwm9bKzSRvnlDdhSBLzgpRcjA5MwJsn6E0Yos_nSUIEKgThRGTq9eONdqv88SQDsy2QfzqlaNodgpEcfZej73LnexawJwJte9XbMF5k3b9ldCu7tc5s_jNEzt99vcIVor8Bg3HFGQ |
CitedBy_id | crossref_primary_10_1021_acsami_0c04131 crossref_primary_10_1002_adfm_201805553 crossref_primary_10_1016_j_matt_2023_05_007 crossref_primary_10_1021_acs_nanolett_7b00722 crossref_primary_10_1038_s41377_021_00471_3 crossref_primary_10_1002_adom_202200534 crossref_primary_10_1021_acs_nanolett_1c01423 crossref_primary_10_1021_acs_nanolett_3c04797 crossref_primary_10_1039_C8NR09634A crossref_primary_10_1016_j_cej_2020_126066 crossref_primary_10_1021_acs_jpcc_2c03174 crossref_primary_10_1088_1361_6463_ac0463 crossref_primary_10_1088_1361_6463_abd0ad crossref_primary_10_1002_adfm_202422003 crossref_primary_10_1039_D0EE02902E crossref_primary_10_1021_acs_jpclett_0c02560 crossref_primary_10_1021_acsphotonics_2c01658 crossref_primary_10_1002_smtd_201800110 crossref_primary_10_1021_acsnano_7b04496 crossref_primary_10_1007_s12274_019_2454_0 crossref_primary_10_1002_adma_202305260 crossref_primary_10_1021_acs_nanolett_0c03593 crossref_primary_10_1039_C8CS00212F crossref_primary_10_1021_acs_jpcc_0c10892 crossref_primary_10_1039_D3CP04415G crossref_primary_10_1002_adom_201700809 crossref_primary_10_1039_C8TC03543A crossref_primary_10_1002_lpor_202200189 crossref_primary_10_1088_1674_1056_27_11_114209 crossref_primary_10_1002_adom_202200087 crossref_primary_10_1016_j_optmat_2020_110120 crossref_primary_10_1002_adom_202102777 crossref_primary_10_1063_5_0200465 crossref_primary_10_1016_j_optmat_2022_112068 crossref_primary_10_1021_acsnano_3c03605 crossref_primary_10_1002_adom_202400141 crossref_primary_10_1111_jmi_13000 crossref_primary_10_1186_s40580_020_00236_5 crossref_primary_10_1002_adfm_202208841 crossref_primary_10_1002_adma_202413559 crossref_primary_10_1002_smtd_201600018 crossref_primary_10_1016_j_surfcoat_2017_05_011 crossref_primary_10_1002_advs_202102258 crossref_primary_10_1021_acsami_2c22691 crossref_primary_10_1039_C8TC06576D crossref_primary_10_1103_PhysRevA_103_L031503 crossref_primary_10_1002_smll_201900730 crossref_primary_10_1002_admt_202200275 crossref_primary_10_1126_sciadv_ado0873 crossref_primary_10_1039_D0TC01839B crossref_primary_10_1016_j_ceramint_2021_11_313 crossref_primary_10_1002_admt_202000513 crossref_primary_10_1038_s41467_023_41471_8 crossref_primary_10_1002_adma_202000306 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1002_adfm_202006283 crossref_primary_10_1515_nanoph_2019_0572 crossref_primary_10_1002_adma_202001999 crossref_primary_10_1007_s12274_021_3508_7 crossref_primary_10_1016_j_isci_2022_103753 crossref_primary_10_1007_s10853_019_03397_9 crossref_primary_10_1021_acs_chemmater_3c00755 crossref_primary_10_1364_PRJ_403030 crossref_primary_10_1016_j_matt_2023_05_043 crossref_primary_10_3390_mi13101647 crossref_primary_10_1002_cey2_318 crossref_primary_10_1002_lpor_201700234 crossref_primary_10_1021_acsphotonics_2c00484 crossref_primary_10_3390_app11041453 crossref_primary_10_1126_sciadv_abc4959 crossref_primary_10_1002_adom_201701302 crossref_primary_10_1021_acsnano_9b08553 crossref_primary_10_1021_acs_nanolett_4c03651 crossref_primary_10_1002_adfm_202400594 crossref_primary_10_1002_adom_201800346 crossref_primary_10_1007_s12274_021_3700_9 crossref_primary_10_1021_acsami_0c07718 crossref_primary_10_1002_adfm_202005230 crossref_primary_10_1002_smll_201603217 crossref_primary_10_1039_C8NR02303D crossref_primary_10_1002_adfm_201807275 crossref_primary_10_1021_acsami_0c07186 crossref_primary_10_1002_lpor_202401663 crossref_primary_10_1002_adom_201800278 crossref_primary_10_1016_j_physrep_2019_01_005 crossref_primary_10_1021_acs_chemmater_8b00945 crossref_primary_10_3390_ma12233845 crossref_primary_10_1021_acsanm_3c01253 crossref_primary_10_1002_adom_201900080 crossref_primary_10_1007_s40843_020_1300_2 crossref_primary_10_1021_acs_chemrev_1c00181 crossref_primary_10_1039_C9CS00598F crossref_primary_10_1016_j_mattod_2017_03_021 crossref_primary_10_1039_D0RA07228A crossref_primary_10_1002_adma_201702905 crossref_primary_10_3390_ma12060859 crossref_primary_10_1002_lpor_202000428 crossref_primary_10_1002_smtd_201700163 crossref_primary_10_1038_s41378_021_00334_2 crossref_primary_10_1002_adma_202000597 crossref_primary_10_1103_PhysRevLett_134_116607 crossref_primary_10_1021_acs_jpclett_1c03984 crossref_primary_10_1039_D1TA04527J crossref_primary_10_1117_1_AP_3_3_034002 crossref_primary_10_1002_adma_201908006 crossref_primary_10_3390_app9214591 crossref_primary_10_3390_condmat6010001 crossref_primary_10_1002_adpr_202400033 crossref_primary_10_1021_acs_nanolett_6b04019 crossref_primary_10_1002_adma_201801481 crossref_primary_10_1360_TB_2022_0505 crossref_primary_10_1002_adom_201900099 crossref_primary_10_1002_adom_202302782 crossref_primary_10_1007_s12274_022_4205_x |
Cites_doi | 10.1016/0038-1098(75)90996-5 10.1002/jrs.1250130206 10.1038/nmat4271 10.1038/ncomms6404 10.1038/nature05427 10.1038/nnano.2014.181 10.1038/nnano.2014.167 10.1021/nn504856g 10.1021/nl1022139 10.1021/acs.nanolett.5b01166 10.1021/jz502615e 10.1364/AO.39.003071 10.1002/adma.201503367 10.1038/nnano.2013.100 10.1126/science.1243982 10.1021/nl503057g 10.1126/science.1243167 10.1126/science.aad1818 10.1021/nl504432d 10.1063/1.2245219 10.1063/1.4751981 10.1038/nphoton.2013.342 10.1038/nnano.2014.64 10.1103/PhysRevA.44.657 10.1364/OL.35.001242 10.1021/nl1040308 10.1126/sciadv.1500613 10.1039/C5EE02194D 10.1126/science.aaa9272 10.1126/science.1254050 10.1038/nmat3911 10.1063/1.1567803 10.1021/ja809598r 10.1021/nn5061207 10.1063/1.321311 10.1063/1.2965797 10.1002/adom.201400106 10.1063/1.2961025 10.1038/nnano.2014.149 10.1038/nature12340 10.1021/cm990561t 10.1021/nl402836x 10.1126/science.1194975 10.1038/nature08364 10.1021/acs.jpcc.6b00612 10.1021/nn9018174 10.1002/adfm.201402020 10.1038/ncomms7142 10.1002/adma.201402271 10.1021/nl401011x 10.1038/ncomms8383 10.1038/ncomms8586 10.1002/adma.201403751 10.1021/acs.nanolett.5b00678 10.1021/jz5005285 10.1038/nnano.2010.172 |
ContentType | Journal Article |
Copyright | 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1002/advs.201600137 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | PMC5102665 27980989 10_1002_advs_201600137 ADVS170 |
Genre | article Journal Article |
GeographicLocations | China Singapore |
GeographicLocations_xml | – name: Singapore – name: China |
GrantInformation_xml | – fundername: NTU funderid: M4081137.070 – fundername: National Basic Research Program of China funderid: 2014CB932500; 2015CB921000 – fundername: Nanyang Technological University funderid: M4080514 – fundername: Singapore Ministry of Education (MOE) funderid: RG101/15; MOE2013‐T2‐1‐081; MOE2014‐T2‐1‐044 – fundername: National Science Foundation of China funderid: 51222202; 51472215; 51410305074 – fundername: Singapore Ministry of Education (MOE) grantid: RG101/15; MOE2013‐T2‐1‐081; MOE2014‐T2‐1‐044 – fundername: National Basic Research Program of China grantid: 2014CB932500; 2015CB921000 – fundername: NTU grantid: M4081137.070 – fundername: Nanyang Technological University grantid: M4080514 – fundername: National Science Foundation of China grantid: 51222202; 51472215; 51410305074 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION IGS PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c5280-ab4310c19caf2f134ae35dc96dc3de276843bcd13009f49cab96d1421654357f3 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Thu Aug 21 13:51:03 EDT 2025 Thu Jul 10 19:31:37 EDT 2025 Mon Jul 14 10:36:44 EDT 2025 Thu Apr 03 07:06:53 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Tue Jul 01 04:05:02 EDT 2025 Wed Jan 22 16:48:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | whispering‐gallery‐mode lead halide perovskite BN array single mode laser |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5280-ab4310c19caf2f134ae35dc96dc3de276843bcd13009f49cab96d1421654357f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2290592829?pq-origsite=%requestingapplication% |
PMID | 27980989 |
PQID | 2290592829 |
PQPubID | 4365299 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5102665 proquest_miscellaneous_1852689001 proquest_journals_2290592829 pubmed_primary_27980989 crossref_primary_10_1002_advs_201600137 crossref_citationtrail_10_1002_advs_201600137 wiley_primary_10_1002_advs_201600137_ADVS170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2015; 1 1982; 13 2015; 15 2010; 10 2015; 14 2015; 6 2012; 101 2010; 35 1975; 17 2013; 342 2011; 11 2014; 24 2009; 131 2015; 348 2003; 93 2013; 8 2015; 9 2008; 93 2016; 120 2011; 331 2015; 350 2014; 5 2015; 27 2014; 2 2000; 39 2006; 89 2013; 13 1991; 44 1975; 46 2013; 499 1999; 11 2014; 14 2014; 13 2009; 461 2014; 9 2014; 8 2010; 5 2010; 4 2014; 345 2016; 9 2006; 444 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nano – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 5 start-page: 722 year: 2010 publication-title: Nat. Nano – volume: 39 start-page: 3071 year: 2000 publication-title: Appl. Opt. – volume: 2 start-page: 838 year: 2014 publication-title: Adv. Opt. Mater. – volume: 44 start-page: 657 year: 1991 publication-title: Phys. Rev. A – volume: 6 start-page: 446 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 7586 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 391 year: 2014 publication-title: Nat. Nano – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 8 start-page: 10947 year: 2014 publication-title: ACS Nano – volume: 444 start-page: 913 year: 2006 publication-title: Nature – volume: 15 start-page: 1259 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nano – volume: 27 start-page: 41 year: 2015 publication-title: Adv. Mater. – volume: 13 start-page: 127 year: 1982 publication-title: J. Raman Spectrosc. – volume: 9 start-page: 682 year: 2014 publication-title: Nat. Nano – volume: 93 start-page: 051101 year: 2008 publication-title: Appl. Phys. Lett. – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 11 start-page: 1122 year: 2011 publication-title: Nano Lett. – volume: 14 start-page: 636 year: 2015 publication-title: Nat. Mater. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 46 start-page: 5194 year: 1975 publication-title: J. Appl. Phys. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1421 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: e1500613 year: 2015 publication-title: Sci. Adv. – volume: 120 start-page: 3077 year: 2016 publication-title: J. Phys. Chem. C – volume: 35 start-page: 1242 year: 2010 publication-title: Opt. Lett. – volume: 9 start-page: 12 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 start-page: 7383 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 927 year: 2014 publication-title: Nat. Nano – volume: 13 start-page: 476 year: 2014 publication-title: Nat. Mater. – volume: 11 start-page: 3028 year: 1999 publication-title: Chem. Mater. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 6 start-page: 6142 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 3270 year: 2010 publication-title: ACS Nano – volume: 17 start-page: 1561 year: 1975 publication-title: Solid State Commun. – volume: 13 start-page: 2782 year: 2013 publication-title: Nano Lett. – volume: 5 start-page: 5404 year: 2014 publication-title: Nat. Commun. – volume: 461 start-page: 629 year: 2009 publication-title: Nature – volume: 14 start-page: 5995 year: 2014 publication-title: Nano Lett. – volume: 27 start-page: 1248 year: 2015 publication-title: Adv. Mater. – volume: 89 start-page: 053125 year: 2006 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 5336 year: 2013 publication-title: Nano Lett. – volume: 331 start-page: 568 year: 2011 publication-title: Science – volume: 8 start-page: 133 year: 2014 publication-title: Nat. Photonics – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 93 start-page: 5978 year: 2003 publication-title: J. Appl. Phys. – volume: 93 start-page: 081105 year: 2008 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 4935 year: 2015 publication-title: Nano Lett. – volume: 9 start-page: 687 year: 2015 publication-title: ACS Nano – volume: 27 start-page: 7800 year: 2015 publication-title: Adv. Mater. – volume: 15 start-page: 4571 year: 2015 publication-title: Nano Lett. – volume: 24 start-page: 7373 year: 2014 publication-title: Adv. Funct. Mater. – volume: 101 start-page: 113103 year: 2012 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 3209 year: 2010 publication-title: Nano Lett. – ident: e_1_2_6_38_1 doi: 10.1016/0038-1098(75)90996-5 – ident: e_1_2_6_39_1 doi: 10.1002/jrs.1250130206 – ident: e_1_2_6_26_1 doi: 10.1038/nmat4271 – ident: e_1_2_6_7_1 doi: 10.1038/ncomms6404 – ident: e_1_2_6_34_1 doi: 10.1038/nature05427 – ident: e_1_2_6_4_1 doi: 10.1038/nnano.2014.181 – ident: e_1_2_6_36_1 doi: 10.1038/nnano.2014.167 – ident: e_1_2_6_23_1 doi: 10.1021/nn504856g – ident: e_1_2_6_31_1 doi: 10.1021/nl1022139 – ident: e_1_2_6_22_1 doi: 10.1021/acs.nanolett.5b01166 – ident: e_1_2_6_47_1 doi: 10.1021/jz502615e – ident: e_1_2_6_45_1 doi: 10.1364/AO.39.003071 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201503367 – ident: e_1_2_6_32_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_6_11_1 doi: 10.1126/science.1243982 – ident: e_1_2_6_21_1 doi: 10.1021/nl503057g – ident: e_1_2_6_10_1 doi: 10.1126/science.1243167 – ident: e_1_2_6_18_1 doi: 10.1126/science.aad1818 – ident: e_1_2_6_49_1 doi: 10.1021/nl504432d – ident: e_1_2_6_50_1 doi: 10.1063/1.2245219 – ident: e_1_2_6_52_1 doi: 10.1063/1.4751981 – ident: e_1_2_6_6_1 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_6_33_1 doi: 10.1038/nnano.2014.64 – ident: e_1_2_6_48_1 doi: 10.1103/PhysRevA.44.657 – ident: e_1_2_6_53_1 doi: 10.1364/OL.35.001242 – ident: e_1_2_6_54_1 doi: 10.1021/nl1040308 – ident: e_1_2_6_27_1 doi: 10.1126/sciadv.1500613 – ident: e_1_2_6_8_1 doi: 10.1039/C5EE02194D – ident: e_1_2_6_9_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_6_12_1 doi: 10.1126/science.1254050 – ident: e_1_2_6_20_1 doi: 10.1038/nmat3911 – ident: e_1_2_6_44_1 doi: 10.1063/1.1567803 – ident: e_1_2_6_1_1 doi: 10.1021/ja809598r – ident: e_1_2_6_40_1 doi: 10.1021/nn5061207 – ident: e_1_2_6_42_1 doi: 10.1063/1.321311 – ident: e_1_2_6_55_1 doi: 10.1063/1.2965797 – ident: e_1_2_6_37_1 doi: 10.1002/adom.201400106 – ident: e_1_2_6_51_1 doi: 10.1063/1.2961025 – ident: e_1_2_6_14_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_6_2_1 doi: 10.1038/nature12340 – ident: e_1_2_6_13_1 doi: 10.1021/cm990561t – ident: e_1_2_6_41_1 doi: 10.1021/nl402836x – ident: e_1_2_6_29_1 doi: 10.1126/science.1194975 – ident: e_1_2_6_43_1 doi: 10.1038/nature08364 – ident: e_1_2_6_46_1 doi: 10.1021/acs.jpcc.6b00612 – ident: e_1_2_6_56_1 doi: 10.1021/nn9018174 – ident: e_1_2_6_15_1 doi: 10.1002/adfm.201402020 – ident: e_1_2_6_3_1 doi: 10.1038/ncomms7142 – ident: e_1_2_6_17_1 doi: 10.1002/adma.201402271 – ident: e_1_2_6_35_1 doi: 10.1021/nl401011x – ident: e_1_2_6_16_1 doi: 10.1038/ncomms8383 – ident: e_1_2_6_5_1 doi: 10.1038/ncomms8586 – ident: e_1_2_6_19_1 doi: 10.1002/adma.201403751 – ident: e_1_2_6_25_1 doi: 10.1021/acs.nanolett.5b00678 – ident: e_1_2_6_24_1 doi: 10.1021/jz5005285 – ident: e_1_2_6_30_1 doi: 10.1038/nnano.2010.172 |
SSID | ssj0001537418 |
Score | 2.399442 |
Snippet | Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a... Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1600137 |
SubjectTerms | array Chemical vapor deposition Lasers lead halide perovskite Light Nanoparticles Nanowires Optical properties Quality single mode laser whispering‐gallery‐mode |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB60vvgi1mtslRUEFQxN9pJNHkUsR7FSbAt9C3sLPXBIStMLvvUnCP7D_hJnsjlpD0XEp5DMsAmZmd1vL_MNwBvRNNzqKk-tDSaVoQgpFSnEWy-8krJxQ5LYzvdidiC_HqrDG1n8kR9iWnCjyBj6awpwY_uta9JQ48-JbjsvBmrMu3CP8mvpUB-Xu9erLEoQPQtVmMPZdSpKKZfMjRnfWm1idWS6BTdvn5q8iWaH4Wj7ITwYcST7GA2_DndC-wjWx0jt2buRTvr9Y7jYRSfr_NyxmHfpri5_f2ljNSfHZojDfWCo0533tJLLduiI3vECMSiaFF9wYn72rGvZ3nyBXoNX7GoGStueIeBlPxB5X13-2g-IvyM_M_tmaAHiCRxsf97_NEvHcgupU7zMUmMRTGQur5xpeJMLaYJQ3lWFd8IHTjt2wjpP-19VI1HLoiiXnPKhhNKNeAprbdeG58BU6WVpMs1xCMb5n7EuWK2441qL0jYmgXT5q2s3cpFTSYxFHVmUeU2mqSfTJPB20j-OLBx_1dxcWq4eoxGlvEIUSXvGCbyexBhHtDli2tCd9TUlkRdlhY0k8CwaenoV11WZoQcnoFdcYFIgju5VSTs_Gri6sctDCKQS-DA4yz--vkYsspfr7MX_qW_AfXoWUyQ3Ye305Cy8RKx0al8N4fAHwUER2w priority: 102 providerName: Wiley-Blackwell |
Title | Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201600137 https://www.ncbi.nlm.nih.gov/pubmed/27980989 https://www.proquest.com/docview/2290592829 https://www.proquest.com/docview/1852689001 https://pubmed.ncbi.nlm.nih.gov/PMC5102665 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB7R5MIFUZ6GEi0SEiBh1d71-nFCBVoF1FRR00q9WevdtRopskPdh3rrT0DiH_aXMGNvDFEFnCJrx1knMzv7eWbnG4A3oix5kWShXxRW-ZGNrU9NCvHSCCOjqNRtkdjkIB4fR99O5IkLuDXuWOXKJ7aO2tSaYuTbxEsuM8r7fVx-96lrFGVXXQuNDRiiC07TAQw_7R5MD39HWaQgepYVW2PAt5W5JJbuMG4ZNdd3ozsQ8-5JyT8RbLsF7T2EBw47sp1O2Ztwz1aPYNOtzoa9cxTS7x_D1RQNqzZzzbpaS3178_Nr1XVw0myM2NtYhjL1ZUPRWzahY3nLBeJOVCNOcKauG1ZXbDZfoKXgJ7qXlsa2YQhy2SGi7dubH0cWMXfHycz2FQUdnsDx3u7R57HvWiz4WvI08FWBACLQYaZVyctQRMoKaXQWGy2M5ZSlE4U2lPPKygilChwKI041UEImpXgKg6qu7HNgMjVRqoKE47aL73yq0LZIJNc8SURalMoDf_VX59rxj1MbjEXeMSfznFST96rx4G0vv-yYN_4qubXSXO5WII729uLB634Y1w4lRFRl64smp8LxOM3wSzx41im6n4onWRqg1XqQrJlAL0C83Osj1fy05edGN4ewR3rwoTWW_zx9jvhjFibBi3__ipdwn27pyiC3YHB-dmFfIR46L0awwaPpCIY7Xyb7s5FbAqM2uvAL98ASbw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX1PI0LWWRQICEVXvXzwNCPFolNImqNpV6M-vdtYgU2aHuQ731JyDxP_hR_SWd8QuiCjj1ZFk7sR3PYz_v7HwD8EJkGU_D2LXT1EjbM4GxqUkhnmqhfc_LVFUkNhoH_QPvy6F_uAS_2loY2lbZxsQqUOtC0Rr5JvGS-zHl_d7Pv9vUNYqyq20Ljdosdsz5GX6yle8Gn1G_Lznf3pp86ttNVwFb-TxybJninOkoN1Yy45krPGmEr1UcaCW04ZSYEqnSlOaJMw-lUhxyPU5lP8IPM4HXvQXLnggc3oPlj1vj3b3fqzq-IDqYlh3S4ZtSnxIruBtUDJ6Ls981SHt9Z-afiLma8rZX4G6DVdmH2rhWYcnk92C1iQYle91QVr-5D2e7aMiFnipW13aqy4ufg7zuGKVYH7G-NgxlitOSVovZiLYBzmeIc9Fs8AZH8rxkRc72pzO0TDxiOKtoc0uGoJrtIbq_vPgxMYjxaw5oNpS0yPEADm7k5T-EXl7k5jEwP9JeJJ2Q4zSP35gyVSYNfa54GIoozaQFdvuqE9XwnVPbjVlSMzXzhFSTdKqx4FUnP6-ZPv4qud5qLmk8Hkc7-7TgeTeMvkoJGJmb4qRMqFA9iGK8iAWPakV3t-JhHDnoJRaECybQCRAP-OJIPv1W8YFjWEWY5VvwtjKW_zx9gnhn3w2dJ__-F8_gdn8yGibDwXhnDe7Qz-sSzHXoHR-dmKeIxY7TjcYBGHy9aZ-7ArFKSxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVEK8IMrVtMAigQAJK_aurw8IAW2U0DaKepH65q531yJSZKd1L-pbPwGJv-Fz-iXM-AZRBTz1KYp2Yjuey57d2TkD8EpkGU_D2LXT1EjbM4GxqUkhftVC-56XqapIbHscDPe9rwf-wRL8bGth6FhlGxOrQK0LRXvkfeIl92PK-_Wz5ljEZH3wcX5kUwcpyrS27TRqE9k0F-e4fCs_jNZR1685H2zsfRnaTYcBW_k8cmyZ4vzpKDdWMuOZKzxphK9VHGgltOGUpBKp0pTyiTMPpVIccj1OJUDCDzOB170FyyGtinqw_HljPNn5vcPjC6KGaZkiHd6X-owYwt2gYvNcnAmvwdvrpzT_RM_V9De4B3cb3Mo-1Ya2Aksmvw8rTWQo2duGvvrdAzifoFEXeqpYXeepri5_jPK6e5RiQ8T92jCUKc5K2jlm23QkcD5DzIsmhDc4lhclK3K2O52hleInhraKQrdkCLDZDiL9q8vvewbxfs0HzbYkbXg8hP0befmPoJcXuXkCzI-0F0kn5Djl43pTpsqkoc8VD0MRpZm0wG5fdaIa7nNqwTFLatZmnpBqkk41Frzp5Oc168dfJddazSWN9-NoZ6sWvOyG0W8pGSNzU5yWCRWtB1GMF7Hgca3o7lY8jCMHPcaCcMEEOgHiBF8cyaffKm5wDLEIuXwL3lfG8p-nTxD77Lqh8_Tf_-IF3EZfS7ZG481VuEO_rqsx16B3cnxqniEsO0mfN_bP4PCmXe4X4bNPRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+Organic%E2%80%93Inorganic+Halide+Perovskite+Microplatelet+Arrays+on+Silicon+Substrates+for+Room%E2%80%90Temperature+Lasing&rft.jtitle=Advanced+science&rft.au=Liu%2C+Xinfeng&rft.au=Niu%2C+Lin&rft.au=Wu%2C+Chunyang&rft.au=Cong%2C+Chunxiao&rft.date=2016-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=3&rft.issue=11&rft_id=info:doi/10.1002%2Fadvs.201600137&rft_id=info%3Apmid%2F27980989&rft.externalDocID=PMC5102665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |