Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing

Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the rea...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 3; no. 11; pp. 1600137 - n/a
Main Authors Liu, Xinfeng, Niu, Lin, Wu, Chunyang, Cong, Chunxiao, Wang, Hong, Zeng, Qingsheng, He, Haiyong, Fu, Qundong, Fu, Wei, Yu, Ting, Jin, Chuanhong, Liu, Zheng, Sum, Tze Chien
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.11.2016
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications. Room‐temperature high‐quality factor whispering‐gallery‐mode lasing is demonstrated (Q ≈ 1210) from patterned lead halide perovskite microplatelets arrays on silicon substrate. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through the patterning.
AbstractList Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room-temperature high-quality factor whispering-gallery-mode lasing ( ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom-up scalable strategy to realize high-quality periodic perovskite arrays with variable cavity sizes for large-area light-emitting and optical gain applications.
Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing ( Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications.
Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications.
Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room‐temperature high‐quality factor whispering‐gallery‐mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom‐up scalable strategy to realize high‐quality periodic perovskite arrays with variable cavity sizes for large‐area light‐emitting and optical gain applications. Room‐temperature high‐quality factor whispering‐gallery‐mode lasing is demonstrated (Q ≈ 1210) from patterned lead halide perovskite microplatelets arrays on silicon substrate. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through the patterning.
Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room-temperature high-quality factor whispering-gallery-mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom-up scalable strategy to realize high-quality periodic perovskite arrays with variable cavity sizes for large-area light-emitting and optical gain applications.Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a wide range of optoelectronic applications such as lasing, light emission, optical detectors, and even for radiation detection. Key to the realization of functional perovskite micro/nanosystems on the ubiquitous silicon optoelectronics platform is through sophisticated lithography. Despite the rapid progress made in halide perovskite lasing, direct lithographic patterning of perovskite films to form optical cavities on conventional substrates remains extremely challenging. This study realizes room-temperature high-quality factor whispering-gallery-mode lasing (Q ≈ 1210) from patterned lead halide perovskite microplatelets fabricated in periodic arrays on silicon substrate with micropatterned BN film as the buffer layer. By varying the size of the platelets, modal selectivity for single mode lasing can be achieved with different cavity sizes or by simply breaking the structural symmetry of the cavity through designing the pattern. Importantly, this work demonstrates a straightforward, versatile bottom-up scalable strategy to realize high-quality periodic perovskite arrays with variable cavity sizes for large-area light-emitting and optical gain applications.
Author Wu, Chunyang
Niu, Lin
Fu, Wei
Sum, Tze Chien
Cong, Chunxiao
Fu, Qundong
He, Haiyong
Wang, Hong
Jin, Chuanhong
Liu, Xinfeng
Liu, Zheng
Zeng, Qingsheng
Yu, Ting
AuthorAffiliation 2 Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
1 CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P.R. China
3 Center for Programmable Materials School of Materials Science & Engineering Nanyang Technological University Singapore 639798 Singapore
5 NOVITAS Nanoelectronics Centre of Excellence School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore
4 State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
6 Energy Research Institute @ NTU (ERI@N) Nanyang Technological University 50 Nanyang Drive Singapore 637553 Singapore
AuthorAffiliation_xml – name: 6 Energy Research Institute @ NTU (ERI@N) Nanyang Technological University 50 Nanyang Drive Singapore 637553 Singapore
– name: 5 NOVITAS Nanoelectronics Centre of Excellence School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore
– name: 1 CAS Center for Excellence in Nanoscience and CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P.R. China
– name: 3 Center for Programmable Materials School of Materials Science & Engineering Nanyang Technological University Singapore 639798 Singapore
– name: 2 Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
– name: 4 State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
Author_xml – sequence: 1
  givenname: Xinfeng
  surname: Liu
  fullname: Liu, Xinfeng
  email: liuxf@nanoctr.cn
  organization: Nanyang Technological University
– sequence: 2
  givenname: Lin
  surname: Niu
  fullname: Niu, Lin
  organization: Nanyang Technological University
– sequence: 3
  givenname: Chunyang
  surname: Wu
  fullname: Wu, Chunyang
  organization: Zhejiang University
– sequence: 4
  givenname: Chunxiao
  surname: Cong
  fullname: Cong, Chunxiao
  organization: Nanyang Technological University
– sequence: 5
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: Nanyang Technological University
– sequence: 6
  givenname: Qingsheng
  surname: Zeng
  fullname: Zeng, Qingsheng
  organization: Nanyang Technological University
– sequence: 7
  givenname: Haiyong
  surname: He
  fullname: He, Haiyong
  organization: Nanyang Technological University
– sequence: 8
  givenname: Qundong
  surname: Fu
  fullname: Fu, Qundong
  organization: Nanyang Technological University
– sequence: 9
  givenname: Wei
  surname: Fu
  fullname: Fu, Wei
  organization: Nanyang Technological University
– sequence: 10
  givenname: Ting
  surname: Yu
  fullname: Yu, Ting
  organization: Nanyang Technological University
– sequence: 11
  givenname: Chuanhong
  surname: Jin
  fullname: Jin, Chuanhong
  organization: Zhejiang University
– sequence: 12
  givenname: Zheng
  surname: Liu
  fullname: Liu, Zheng
  email: liu.z@ntu.edu.sg
  organization: Nanyang Technological University
– sequence: 13
  givenname: Tze Chien
  surname: Sum
  fullname: Sum, Tze Chien
  email: tzechien@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27980989$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi3UipbQLUtkiU03SX2bGXuDFJVCKwUV0cLW8ng8wcVjB3smVXZ9BCTesE-CRylRqYRYnSOf7z8X_y_Ang_eAPAKoxlGiJyoZp1mBOESIUyrZ-CQYMGnlDO29yg_AEcp3aDMFLRimD8HB6QSHAkuDsHtJxNtaKyGl3GpvNX3d78ufNjm8Fw52xiYmbBO321v4EerY1g51RtnejiPUW0SDB5eWWf1GIc69TGXE2xDhJ9D6O7vfl6bbmXy6xANXKhk_fIl2G-VS-boIU7Al_dn16fn08Xlh4vT-WKqC8LRVNWMYqSx0KolLaZMGVo0WpSNpo0hVckZrXWDKUKiZZmqcwkzgsuC0aJq6QS83fZdDXVnGm183s7JVbSdihsZlJV_V7z9JpdhLQuMSFkWucHxQ4MYfgwm9bKzSRvnlDdhSBLzgpRcjA5MwJsn6E0Yos_nSUIEKgThRGTq9eONdqv88SQDsy2QfzqlaNodgpEcfZej73LnexawJwJte9XbMF5k3b9ldCu7tc5s_jNEzt99vcIVor8Bg3HFGQ
CitedBy_id crossref_primary_10_1021_acsami_0c04131
crossref_primary_10_1002_adfm_201805553
crossref_primary_10_1016_j_matt_2023_05_007
crossref_primary_10_1021_acs_nanolett_7b00722
crossref_primary_10_1038_s41377_021_00471_3
crossref_primary_10_1002_adom_202200534
crossref_primary_10_1021_acs_nanolett_1c01423
crossref_primary_10_1021_acs_nanolett_3c04797
crossref_primary_10_1039_C8NR09634A
crossref_primary_10_1016_j_cej_2020_126066
crossref_primary_10_1021_acs_jpcc_2c03174
crossref_primary_10_1088_1361_6463_ac0463
crossref_primary_10_1088_1361_6463_abd0ad
crossref_primary_10_1002_adfm_202422003
crossref_primary_10_1039_D0EE02902E
crossref_primary_10_1021_acs_jpclett_0c02560
crossref_primary_10_1021_acsphotonics_2c01658
crossref_primary_10_1002_smtd_201800110
crossref_primary_10_1021_acsnano_7b04496
crossref_primary_10_1007_s12274_019_2454_0
crossref_primary_10_1002_adma_202305260
crossref_primary_10_1021_acs_nanolett_0c03593
crossref_primary_10_1039_C8CS00212F
crossref_primary_10_1021_acs_jpcc_0c10892
crossref_primary_10_1039_D3CP04415G
crossref_primary_10_1002_adom_201700809
crossref_primary_10_1039_C8TC03543A
crossref_primary_10_1002_lpor_202200189
crossref_primary_10_1088_1674_1056_27_11_114209
crossref_primary_10_1002_adom_202200087
crossref_primary_10_1016_j_optmat_2020_110120
crossref_primary_10_1002_adom_202102777
crossref_primary_10_1063_5_0200465
crossref_primary_10_1016_j_optmat_2022_112068
crossref_primary_10_1021_acsnano_3c03605
crossref_primary_10_1002_adom_202400141
crossref_primary_10_1111_jmi_13000
crossref_primary_10_1186_s40580_020_00236_5
crossref_primary_10_1002_adfm_202208841
crossref_primary_10_1002_adma_202413559
crossref_primary_10_1002_smtd_201600018
crossref_primary_10_1016_j_surfcoat_2017_05_011
crossref_primary_10_1002_advs_202102258
crossref_primary_10_1021_acsami_2c22691
crossref_primary_10_1039_C8TC06576D
crossref_primary_10_1103_PhysRevA_103_L031503
crossref_primary_10_1002_smll_201900730
crossref_primary_10_1002_admt_202200275
crossref_primary_10_1126_sciadv_ado0873
crossref_primary_10_1039_D0TC01839B
crossref_primary_10_1016_j_ceramint_2021_11_313
crossref_primary_10_1002_admt_202000513
crossref_primary_10_1038_s41467_023_41471_8
crossref_primary_10_1002_adma_202000306
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1002_adfm_202006283
crossref_primary_10_1515_nanoph_2019_0572
crossref_primary_10_1002_adma_202001999
crossref_primary_10_1007_s12274_021_3508_7
crossref_primary_10_1016_j_isci_2022_103753
crossref_primary_10_1007_s10853_019_03397_9
crossref_primary_10_1021_acs_chemmater_3c00755
crossref_primary_10_1364_PRJ_403030
crossref_primary_10_1016_j_matt_2023_05_043
crossref_primary_10_3390_mi13101647
crossref_primary_10_1002_cey2_318
crossref_primary_10_1002_lpor_201700234
crossref_primary_10_1021_acsphotonics_2c00484
crossref_primary_10_3390_app11041453
crossref_primary_10_1126_sciadv_abc4959
crossref_primary_10_1002_adom_201701302
crossref_primary_10_1021_acsnano_9b08553
crossref_primary_10_1021_acs_nanolett_4c03651
crossref_primary_10_1002_adfm_202400594
crossref_primary_10_1002_adom_201800346
crossref_primary_10_1007_s12274_021_3700_9
crossref_primary_10_1021_acsami_0c07718
crossref_primary_10_1002_adfm_202005230
crossref_primary_10_1002_smll_201603217
crossref_primary_10_1039_C8NR02303D
crossref_primary_10_1002_adfm_201807275
crossref_primary_10_1021_acsami_0c07186
crossref_primary_10_1002_lpor_202401663
crossref_primary_10_1002_adom_201800278
crossref_primary_10_1016_j_physrep_2019_01_005
crossref_primary_10_1021_acs_chemmater_8b00945
crossref_primary_10_3390_ma12233845
crossref_primary_10_1021_acsanm_3c01253
crossref_primary_10_1002_adom_201900080
crossref_primary_10_1007_s40843_020_1300_2
crossref_primary_10_1021_acs_chemrev_1c00181
crossref_primary_10_1039_C9CS00598F
crossref_primary_10_1016_j_mattod_2017_03_021
crossref_primary_10_1039_D0RA07228A
crossref_primary_10_1002_adma_201702905
crossref_primary_10_3390_ma12060859
crossref_primary_10_1002_lpor_202000428
crossref_primary_10_1002_smtd_201700163
crossref_primary_10_1038_s41378_021_00334_2
crossref_primary_10_1002_adma_202000597
crossref_primary_10_1103_PhysRevLett_134_116607
crossref_primary_10_1021_acs_jpclett_1c03984
crossref_primary_10_1039_D1TA04527J
crossref_primary_10_1117_1_AP_3_3_034002
crossref_primary_10_1002_adma_201908006
crossref_primary_10_3390_app9214591
crossref_primary_10_3390_condmat6010001
crossref_primary_10_1002_adpr_202400033
crossref_primary_10_1021_acs_nanolett_6b04019
crossref_primary_10_1002_adma_201801481
crossref_primary_10_1360_TB_2022_0505
crossref_primary_10_1002_adom_201900099
crossref_primary_10_1002_adom_202302782
crossref_primary_10_1007_s12274_022_4205_x
Cites_doi 10.1016/0038-1098(75)90996-5
10.1002/jrs.1250130206
10.1038/nmat4271
10.1038/ncomms6404
10.1038/nature05427
10.1038/nnano.2014.181
10.1038/nnano.2014.167
10.1021/nn504856g
10.1021/nl1022139
10.1021/acs.nanolett.5b01166
10.1021/jz502615e
10.1364/AO.39.003071
10.1002/adma.201503367
10.1038/nnano.2013.100
10.1126/science.1243982
10.1021/nl503057g
10.1126/science.1243167
10.1126/science.aad1818
10.1021/nl504432d
10.1063/1.2245219
10.1063/1.4751981
10.1038/nphoton.2013.342
10.1038/nnano.2014.64
10.1103/PhysRevA.44.657
10.1364/OL.35.001242
10.1021/nl1040308
10.1126/sciadv.1500613
10.1039/C5EE02194D
10.1126/science.aaa9272
10.1126/science.1254050
10.1038/nmat3911
10.1063/1.1567803
10.1021/ja809598r
10.1021/nn5061207
10.1063/1.321311
10.1063/1.2965797
10.1002/adom.201400106
10.1063/1.2961025
10.1038/nnano.2014.149
10.1038/nature12340
10.1021/cm990561t
10.1021/nl402836x
10.1126/science.1194975
10.1038/nature08364
10.1021/acs.jpcc.6b00612
10.1021/nn9018174
10.1002/adfm.201402020
10.1038/ncomms7142
10.1002/adma.201402271
10.1021/nl401011x
10.1038/ncomms8383
10.1038/ncomms8586
10.1002/adma.201403751
10.1021/acs.nanolett.5b00678
10.1021/jz5005285
10.1038/nnano.2010.172
ContentType Journal Article
Copyright 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1002/advs.201600137
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID PMC5102665
27980989
10_1002_advs_201600137
ADVS170
Genre article
Journal Article
GeographicLocations China
Singapore
GeographicLocations_xml – name: Singapore
– name: China
GrantInformation_xml – fundername: NTU
  funderid: M4081137.070
– fundername: National Basic Research Program of China
  funderid: 2014CB932500; 2015CB921000
– fundername: Nanyang Technological University
  funderid: M4080514
– fundername: Singapore Ministry of Education (MOE)
  funderid: RG101/15; MOE2013‐T2‐1‐081; MOE2014‐T2‐1‐044
– fundername: National Science Foundation of China
  funderid: 51222202; 51472215; 51410305074
– fundername: Singapore Ministry of Education (MOE)
  grantid: RG101/15; MOE2013‐T2‐1‐081; MOE2014‐T2‐1‐044
– fundername: National Basic Research Program of China
  grantid: 2014CB932500; 2015CB921000
– fundername: NTU
  grantid: M4081137.070
– fundername: Nanyang Technological University
  grantid: M4080514
– fundername: National Science Foundation of China
  grantid: 51222202; 51472215; 51410305074
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
EJD
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c5280-ab4310c19caf2f134ae35dc96dc3de276843bcd13009f49cab96d1421654357f3
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Thu Aug 21 13:51:03 EDT 2025
Thu Jul 10 19:31:37 EDT 2025
Mon Jul 14 10:36:44 EDT 2025
Thu Apr 03 07:06:53 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Tue Jul 01 04:05:02 EDT 2025
Wed Jan 22 16:48:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords whispering‐gallery‐mode
lead halide perovskite
BN
array
single mode laser
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5280-ab4310c19caf2f134ae35dc96dc3de276843bcd13009f49cab96d1421654357f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2290592829?pq-origsite=%requestingapplication%
PMID 27980989
PQID 2290592829
PQPubID 4365299
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5102665
proquest_miscellaneous_1852689001
proquest_journals_2290592829
pubmed_primary_27980989
crossref_primary_10_1002_advs_201600137
crossref_citationtrail_10_1002_advs_201600137
wiley_primary_10_1002_advs_201600137_ADVS170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2016
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2015; 1
1982; 13
2015; 15
2010; 10
2015; 14
2015; 6
2012; 101
2010; 35
1975; 17
2013; 342
2011; 11
2014; 24
2009; 131
2015; 348
2003; 93
2013; 8
2015; 9
2008; 93
2016; 120
2011; 331
2015; 350
2014; 5
2015; 27
2014; 2
2000; 39
2006; 89
2013; 13
1991; 44
1975; 46
2013; 499
1999; 11
2014; 14
2014; 13
2009; 461
2014; 9
2014; 8
2010; 5
2010; 4
2014; 345
2016; 9
2006; 444
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nano
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 5
  start-page: 722
  year: 2010
  publication-title: Nat. Nano
– volume: 39
  start-page: 3071
  year: 2000
  publication-title: Appl. Opt.
– volume: 2
  start-page: 838
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 44
  start-page: 657
  year: 1991
  publication-title: Phys. Rev. A
– volume: 6
  start-page: 446
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 7586
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 391
  year: 2014
  publication-title: Nat. Nano
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 8
  start-page: 10947
  year: 2014
  publication-title: ACS Nano
– volume: 444
  start-page: 913
  year: 2006
  publication-title: Nature
– volume: 15
  start-page: 1259
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nano
– volume: 27
  start-page: 41
  year: 2015
  publication-title: Adv. Mater.
– volume: 13
  start-page: 127
  year: 1982
  publication-title: J. Raman Spectrosc.
– volume: 9
  start-page: 682
  year: 2014
  publication-title: Nat. Nano
– volume: 93
  start-page: 051101
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 11
  start-page: 1122
  year: 2011
  publication-title: Nano Lett.
– volume: 14
  start-page: 636
  year: 2015
  publication-title: Nat. Mater.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 46
  start-page: 5194
  year: 1975
  publication-title: J. Appl. Phys.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1421
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: e1500613
  year: 2015
  publication-title: Sci. Adv.
– volume: 120
  start-page: 3077
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 35
  start-page: 1242
  year: 2010
  publication-title: Opt. Lett.
– volume: 9
  start-page: 12
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 7383
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 927
  year: 2014
  publication-title: Nat. Nano
– volume: 13
  start-page: 476
  year: 2014
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3028
  year: 1999
  publication-title: Chem. Mater.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 6
  start-page: 6142
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 3270
  year: 2010
  publication-title: ACS Nano
– volume: 17
  start-page: 1561
  year: 1975
  publication-title: Solid State Commun.
– volume: 13
  start-page: 2782
  year: 2013
  publication-title: Nano Lett.
– volume: 5
  start-page: 5404
  year: 2014
  publication-title: Nat. Commun.
– volume: 461
  start-page: 629
  year: 2009
  publication-title: Nature
– volume: 14
  start-page: 5995
  year: 2014
  publication-title: Nano Lett.
– volume: 27
  start-page: 1248
  year: 2015
  publication-title: Adv. Mater.
– volume: 89
  start-page: 053125
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 5336
  year: 2013
  publication-title: Nano Lett.
– volume: 331
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 8
  start-page: 133
  year: 2014
  publication-title: Nat. Photonics
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 93
  start-page: 5978
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 93
  start-page: 081105
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 4935
  year: 2015
  publication-title: Nano Lett.
– volume: 9
  start-page: 687
  year: 2015
  publication-title: ACS Nano
– volume: 27
  start-page: 7800
  year: 2015
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4571
  year: 2015
  publication-title: Nano Lett.
– volume: 24
  start-page: 7373
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 101
  start-page: 113103
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 3209
  year: 2010
  publication-title: Nano Lett.
– ident: e_1_2_6_38_1
  doi: 10.1016/0038-1098(75)90996-5
– ident: e_1_2_6_39_1
  doi: 10.1002/jrs.1250130206
– ident: e_1_2_6_26_1
  doi: 10.1038/nmat4271
– ident: e_1_2_6_7_1
  doi: 10.1038/ncomms6404
– ident: e_1_2_6_34_1
  doi: 10.1038/nature05427
– ident: e_1_2_6_4_1
  doi: 10.1038/nnano.2014.181
– ident: e_1_2_6_36_1
  doi: 10.1038/nnano.2014.167
– ident: e_1_2_6_23_1
  doi: 10.1021/nn504856g
– ident: e_1_2_6_31_1
  doi: 10.1021/nl1022139
– ident: e_1_2_6_22_1
  doi: 10.1021/acs.nanolett.5b01166
– ident: e_1_2_6_47_1
  doi: 10.1021/jz502615e
– ident: e_1_2_6_45_1
  doi: 10.1364/AO.39.003071
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201503367
– ident: e_1_2_6_32_1
  doi: 10.1038/nnano.2013.100
– ident: e_1_2_6_11_1
  doi: 10.1126/science.1243982
– ident: e_1_2_6_21_1
  doi: 10.1021/nl503057g
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1243167
– ident: e_1_2_6_18_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_6_49_1
  doi: 10.1021/nl504432d
– ident: e_1_2_6_50_1
  doi: 10.1063/1.2245219
– ident: e_1_2_6_52_1
  doi: 10.1063/1.4751981
– ident: e_1_2_6_6_1
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_6_33_1
  doi: 10.1038/nnano.2014.64
– ident: e_1_2_6_48_1
  doi: 10.1103/PhysRevA.44.657
– ident: e_1_2_6_53_1
  doi: 10.1364/OL.35.001242
– ident: e_1_2_6_54_1
  doi: 10.1021/nl1040308
– ident: e_1_2_6_27_1
  doi: 10.1126/sciadv.1500613
– ident: e_1_2_6_8_1
  doi: 10.1039/C5EE02194D
– ident: e_1_2_6_9_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1254050
– ident: e_1_2_6_20_1
  doi: 10.1038/nmat3911
– ident: e_1_2_6_44_1
  doi: 10.1063/1.1567803
– ident: e_1_2_6_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_6_40_1
  doi: 10.1021/nn5061207
– ident: e_1_2_6_42_1
  doi: 10.1063/1.321311
– ident: e_1_2_6_55_1
  doi: 10.1063/1.2965797
– ident: e_1_2_6_37_1
  doi: 10.1002/adom.201400106
– ident: e_1_2_6_51_1
  doi: 10.1063/1.2961025
– ident: e_1_2_6_14_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_6_2_1
  doi: 10.1038/nature12340
– ident: e_1_2_6_13_1
  doi: 10.1021/cm990561t
– ident: e_1_2_6_41_1
  doi: 10.1021/nl402836x
– ident: e_1_2_6_29_1
  doi: 10.1126/science.1194975
– ident: e_1_2_6_43_1
  doi: 10.1038/nature08364
– ident: e_1_2_6_46_1
  doi: 10.1021/acs.jpcc.6b00612
– ident: e_1_2_6_56_1
  doi: 10.1021/nn9018174
– ident: e_1_2_6_15_1
  doi: 10.1002/adfm.201402020
– ident: e_1_2_6_3_1
  doi: 10.1038/ncomms7142
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201402271
– ident: e_1_2_6_35_1
  doi: 10.1021/nl401011x
– ident: e_1_2_6_16_1
  doi: 10.1038/ncomms8383
– ident: e_1_2_6_5_1
  doi: 10.1038/ncomms8586
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201403751
– ident: e_1_2_6_25_1
  doi: 10.1021/acs.nanolett.5b00678
– ident: e_1_2_6_24_1
  doi: 10.1021/jz5005285
– ident: e_1_2_6_30_1
  doi: 10.1038/nnano.2010.172
SSID ssj0001537418
Score 2.399442
Snippet Organic–inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a...
Organic-inorganic metal halide perovskites have recently demonstrated outstanding efficiencies in photovoltaics as well as highly promising performances for a...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1600137
SubjectTerms array
Chemical vapor deposition
Lasers
lead halide perovskite
Light
Nanoparticles
Nanowires
Optical properties
Quality
single mode laser
whispering‐gallery‐mode
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB60vvgi1mtslRUEFQxN9pJNHkUsR7FSbAt9C3sLPXBIStMLvvUnCP7D_hJnsjlpD0XEp5DMsAmZmd1vL_MNwBvRNNzqKk-tDSaVoQgpFSnEWy-8krJxQ5LYzvdidiC_HqrDG1n8kR9iWnCjyBj6awpwY_uta9JQ48-JbjsvBmrMu3CP8mvpUB-Xu9erLEoQPQtVmMPZdSpKKZfMjRnfWm1idWS6BTdvn5q8iWaH4Wj7ITwYcST7GA2_DndC-wjWx0jt2buRTvr9Y7jYRSfr_NyxmHfpri5_f2ljNSfHZojDfWCo0533tJLLduiI3vECMSiaFF9wYn72rGvZ3nyBXoNX7GoGStueIeBlPxB5X13-2g-IvyM_M_tmaAHiCRxsf97_NEvHcgupU7zMUmMRTGQur5xpeJMLaYJQ3lWFd8IHTjt2wjpP-19VI1HLoiiXnPKhhNKNeAprbdeG58BU6WVpMs1xCMb5n7EuWK2441qL0jYmgXT5q2s3cpFTSYxFHVmUeU2mqSfTJPB20j-OLBx_1dxcWq4eoxGlvEIUSXvGCbyexBhHtDli2tCd9TUlkRdlhY0k8CwaenoV11WZoQcnoFdcYFIgju5VSTs_Gri6sctDCKQS-DA4yz--vkYsspfr7MX_qW_AfXoWUyQ3Ye305Cy8RKx0al8N4fAHwUER2w
  priority: 102
  providerName: Wiley-Blackwell
Title Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201600137
https://www.ncbi.nlm.nih.gov/pubmed/27980989
https://www.proquest.com/docview/2290592829
https://www.proquest.com/docview/1852689001
https://pubmed.ncbi.nlm.nih.gov/PMC5102665
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB7R5MIFUZ6GEi0SEiBh1d71-nFCBVoF1FRR00q9WevdtRopskPdh3rrT0DiH_aXMGNvDFEFnCJrx1knMzv7eWbnG4A3oix5kWShXxRW-ZGNrU9NCvHSCCOjqNRtkdjkIB4fR99O5IkLuDXuWOXKJ7aO2tSaYuTbxEsuM8r7fVx-96lrFGVXXQuNDRiiC07TAQw_7R5MD39HWaQgepYVW2PAt5W5JJbuMG4ZNdd3ozsQ8-5JyT8RbLsF7T2EBw47sp1O2Ztwz1aPYNOtzoa9cxTS7x_D1RQNqzZzzbpaS3178_Nr1XVw0myM2NtYhjL1ZUPRWzahY3nLBeJOVCNOcKauG1ZXbDZfoKXgJ7qXlsa2YQhy2SGi7dubH0cWMXfHycz2FQUdnsDx3u7R57HvWiz4WvI08FWBACLQYaZVyctQRMoKaXQWGy2M5ZSlE4U2lPPKygilChwKI041UEImpXgKg6qu7HNgMjVRqoKE47aL73yq0LZIJNc8SURalMoDf_VX59rxj1MbjEXeMSfznFST96rx4G0vv-yYN_4qubXSXO5WII729uLB634Y1w4lRFRl64smp8LxOM3wSzx41im6n4onWRqg1XqQrJlAL0C83Osj1fy05edGN4ewR3rwoTWW_zx9jvhjFibBi3__ipdwn27pyiC3YHB-dmFfIR46L0awwaPpCIY7Xyb7s5FbAqM2uvAL98ASbw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAX1PI0LWWRQICEVXvXzwNCPFolNImqNpV6M-vdtYgU2aHuQ731JyDxP_hR_SWd8QuiCjj1ZFk7sR3PYz_v7HwD8EJkGU_D2LXT1EjbM4GxqUkhnmqhfc_LVFUkNhoH_QPvy6F_uAS_2loY2lbZxsQqUOtC0Rr5JvGS-zHl_d7Pv9vUNYqyq20Ljdosdsz5GX6yle8Gn1G_Lznf3pp86ttNVwFb-TxybJninOkoN1Yy45krPGmEr1UcaCW04ZSYEqnSlOaJMw-lUhxyPU5lP8IPM4HXvQXLnggc3oPlj1vj3b3fqzq-IDqYlh3S4ZtSnxIruBtUDJ6Ls981SHt9Z-afiLma8rZX4G6DVdmH2rhWYcnk92C1iQYle91QVr-5D2e7aMiFnipW13aqy4ufg7zuGKVYH7G-NgxlitOSVovZiLYBzmeIc9Fs8AZH8rxkRc72pzO0TDxiOKtoc0uGoJrtIbq_vPgxMYjxaw5oNpS0yPEADm7k5T-EXl7k5jEwP9JeJJ2Q4zSP35gyVSYNfa54GIoozaQFdvuqE9XwnVPbjVlSMzXzhFSTdKqx4FUnP6-ZPv4qud5qLmk8Hkc7-7TgeTeMvkoJGJmb4qRMqFA9iGK8iAWPakV3t-JhHDnoJRaECybQCRAP-OJIPv1W8YFjWEWY5VvwtjKW_zx9gnhn3w2dJ__-F8_gdn8yGibDwXhnDe7Qz-sSzHXoHR-dmKeIxY7TjcYBGHy9aZ-7ArFKSxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVEK8IMrVtMAigQAJK_aurw8IAW2U0DaKepH65q531yJSZKd1L-pbPwGJv-Fz-iXM-AZRBTz1KYp2Yjuey57d2TkD8EpkGU_D2LXT1EjbM4GxqUkhftVC-56XqapIbHscDPe9rwf-wRL8bGth6FhlGxOrQK0LRXvkfeIl92PK-_Wz5ljEZH3wcX5kUwcpyrS27TRqE9k0F-e4fCs_jNZR1685H2zsfRnaTYcBW_k8cmyZ4vzpKDdWMuOZKzxphK9VHGgltOGUpBKp0pTyiTMPpVIccj1OJUDCDzOB170FyyGtinqw_HljPNn5vcPjC6KGaZkiHd6X-owYwt2gYvNcnAmvwdvrpzT_RM_V9De4B3cb3Mo-1Ya2Aksmvw8rTWQo2duGvvrdAzifoFEXeqpYXeepri5_jPK6e5RiQ8T92jCUKc5K2jlm23QkcD5DzIsmhDc4lhclK3K2O52hleInhraKQrdkCLDZDiL9q8vvewbxfs0HzbYkbXg8hP0befmPoJcXuXkCzI-0F0kn5Djl43pTpsqkoc8VD0MRpZm0wG5fdaIa7nNqwTFLatZmnpBqkk41Frzp5Oc168dfJddazSWN9-NoZ6sWvOyG0W8pGSNzU5yWCRWtB1GMF7Hgca3o7lY8jCMHPcaCcMEEOgHiBF8cyaffKm5wDLEIuXwL3lfG8p-nTxD77Lqh8_Tf_-IF3EZfS7ZG481VuEO_rqsx16B3cnxqniEsO0mfN_bP4PCmXe4X4bNPRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+Organic%E2%80%93Inorganic+Halide+Perovskite+Microplatelet+Arrays+on+Silicon+Substrates+for+Room%E2%80%90Temperature+Lasing&rft.jtitle=Advanced+science&rft.au=Liu%2C+Xinfeng&rft.au=Niu%2C+Lin&rft.au=Wu%2C+Chunyang&rft.au=Cong%2C+Chunxiao&rft.date=2016-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=3&rft.issue=11&rft_id=info:doi/10.1002%2Fadvs.201600137&rft_id=info%3Apmid%2F27980989&rft.externalDocID=PMC5102665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon