Hierarchical Models in the Brain

This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of a...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 4; no. 11; p. e1000211
Main Author Friston, Karl
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2008
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.
AbstractList This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. Models are essential to make sense of scientific data, but they may also play a central role in how we assimilate sensory information. In this paper, we introduce a general model that generates or predicts diverse sorts of data. As such, it subsumes many common models used in data analysis and statistical testing. We show that this model can be fitted to data using a single and generic procedure, which means we can place a large array of data analysis procedures within the same unifying framework. Critically, we then show that the brain has, in principle, the machinery to implement this scheme. This suggests that the brain has the capacity to analyse sensory input using the most sophisticated algorithms currently employed by scientists and possibly models that are even more elaborate. The implications of this work are that we can understand the structure and function of the brain as an inference machine. Furthermore, we can ascribe various aspects of brain anatomy and physiology to specific computational quantities, which may help understand both normal brain function and how aberrant inferences result from pathological processes associated with psychiatric disorders.
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. Author Summary Models are essential to make sense of scientific data, but they may also play a central role in how we assimilate sensory information. In this paper, we introduce a general model that generates or predicts diverse sorts of data. As such, it subsumes many common models used in data analysis and statistical testing. We show that this model can be fitted to data using a single and generic procedure, which means we can place a large array of data analysis procedures within the same unifying framework. Critically, we then show that the brain has, in principle, the machinery to implement this scheme. This suggests that the brain has the capacity to analyse sensory input using the most sophisticated algorithms currently employed by scientists and possibly models that are even more elaborate. The implications of this work are that we can understand the structure and function of the brain as an inference machine. Furthermore, we can ascribe various aspects of brain anatomy and physiology to specific computational quantities, which may help understand both normal brain function and how aberrant inferences result from pathological processes associated with psychiatric disorders.
  This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.
Author Friston, Karl
AuthorAffiliation The Wellcome Trust Centre of Neuroimaging, University College London, London, United Kingdom
Indiana University, United States of America
AuthorAffiliation_xml – name: The Wellcome Trust Centre of Neuroimaging, University College London, London, United Kingdom
– name: Indiana University, United States of America
Author_xml – sequence: 1
  givenname: Karl
  surname: Friston
  fullname: Friston, Karl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18989391$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEUtFAR_YB_gGBP3BL8_LG2OSCVCmilIi5wtmzv28aRsw72Bol_302zrVoOcPLInhmPn-eUHA15QEJeA10CV_B-nXdlcGm5DT4ugVLKAJ6RE5CSLxSX-ugRPianta4pnaBpX5Bj0EYbbuCENJcRiythFYNLzbfcYapNHJpxhc2n4uLwkjzvXar4al7PyM8vn39cXC6uv3-9uji_XgTJ1Ljome6E4RSpbnWHjmnhuTPoBXCPXrc9MCGoQAmiA6_ROe_7EFqFOAHkZ-TtwXebcrXz46oFDkIyCpxPjKsDo8tubbclblz5Y7OL9m4jlxvryhhDQku1otwI5QC5MCoY6Ci2upcdU71hfvL6ON-28xvsAg5jcemJ6dOTIa7sTf5tmVS0ZXIyeDcblPxrh3W0m1gDpuQGzLtqW6PUNG_2XyIY2WqhxUR88zjSQ5b7v5oIHw6EUHKtBXsb4ujGmPcJY7JA7b4Y97Oz-2LYuRiTWPwlfvD_l-wWBxO-wQ
CitedBy_id crossref_primary_10_1016_j_biopsych_2022_06_024
crossref_primary_10_1109_TNNLS_2021_3115698
crossref_primary_10_3390_philosophies3030023
crossref_primary_10_1016_j_schres_2014_06_011
crossref_primary_10_1371_journal_pcbi_1006711
crossref_primary_10_3389_fnhum_2016_00016
crossref_primary_10_1016_j_neucom_2013_02_044
crossref_primary_10_1016_j_neuroimage_2017_11_068
crossref_primary_10_3389_fncir_2023_1073537
crossref_primary_10_1093_schbul_sbq107
crossref_primary_10_1016_j_neunet_2022_02_003
crossref_primary_10_1017_S0140525X21002351
crossref_primary_10_1177_00048674231215030
crossref_primary_10_1017_S0140525X12000660
crossref_primary_10_1016_j_cpr_2024_102510
crossref_primary_10_3390_philosophies1010111
crossref_primary_10_1016_j_neubiorev_2018_11_019
crossref_primary_10_1523_JNEUROSCI_4255_12_2013
crossref_primary_10_3389_fpsyg_2014_01175
crossref_primary_10_1016_S2215_0366_15_00361_2
crossref_primary_10_1016_j_pneurobio_2020_101821
crossref_primary_10_1109_TNSRE_2018_2889719
crossref_primary_10_1016_j_plrev_2021_04_005
crossref_primary_10_1016_j_neubiorev_2021_11_016
crossref_primary_10_1016_j_neunet_2024_107075
crossref_primary_10_1016_j_neuron_2015_09_040
crossref_primary_10_1016_j_jmp_2020_102447
crossref_primary_10_1016_j_schres_2017_12_018
crossref_primary_10_1371_journal_pcbi_1004643
crossref_primary_10_1371_journal_pcbi_1011183
crossref_primary_10_1016_j_newideapsych_2013_01_004
crossref_primary_10_1016_j_bandc_2016_02_008
crossref_primary_10_1016_j_pneurobio_2012_05_003
crossref_primary_10_1016_j_neuroimage_2020_117212
crossref_primary_10_3390_e23101306
crossref_primary_10_1007_s10994_022_06266_w
crossref_primary_10_1016_j_neuron_2022_01_002
crossref_primary_10_7554_eLife_91475_3
crossref_primary_10_1162_imag_a_00410
crossref_primary_10_3389_frai_2020_509354
crossref_primary_10_1016_j_neuroimage_2010_12_039
crossref_primary_10_1126_sciadv_abq8657
crossref_primary_10_1016_j_neubiorev_2017_01_015
crossref_primary_10_5692_clinicalneurol_cn_001944
crossref_primary_10_1093_scan_nsab082
crossref_primary_10_1016_j_neuroimage_2016_01_037
crossref_primary_10_1007_s10803_018_3725_4
crossref_primary_10_1002_hbm_23035
crossref_primary_10_1016_j_ifacol_2018_09_206
crossref_primary_10_1016_j_neuroimage_2017_03_041
crossref_primary_10_1007_s12559_022_10081_9
crossref_primary_10_1073_pnas_2023473118
crossref_primary_10_1371_journal_pone_0016589
crossref_primary_10_3389_fpsyt_2020_00468
crossref_primary_10_1016_j_neuron_2011_10_018
crossref_primary_10_1038_s42003_022_03362_4
crossref_primary_10_1371_journal_pone_0225756
crossref_primary_10_3389_frobt_2022_819107
crossref_primary_10_1016_j_asoc_2023_110909
crossref_primary_10_1016_j_neuroimage_2014_12_015
crossref_primary_10_1104_pp_109_152413
crossref_primary_10_1371_journal_pone_0006421
crossref_primary_10_1016_j_nicl_2020_102239
crossref_primary_10_1371_journal_pcbi_1003219
crossref_primary_10_1523_JNEUROSCI_1677_17_2017
crossref_primary_10_1371_journal_pcbi_1006972
crossref_primary_10_3389_fnbeh_2021_658037
crossref_primary_10_1016_j_specom_2017_05_002
crossref_primary_10_1523_ENEURO_0382_20_2021
crossref_primary_10_1016_j_plrev_2018_05_006
crossref_primary_10_1016_j_neuroimage_2014_12_067
crossref_primary_10_3390_e19060266
crossref_primary_10_1007_s10539_020_09746_2
crossref_primary_10_1371_journal_pone_0144636
crossref_primary_10_1016_j_neuropsychologia_2014_09_033
crossref_primary_10_1162_jocn_a_01366
crossref_primary_10_3389_fncom_2023_1128694
crossref_primary_10_1038_s41467_022_32378_x
crossref_primary_10_3389_fpsyg_2021_782765
crossref_primary_10_1007_s10548_017_0571_1
crossref_primary_10_1016_j_plrev_2017_03_001
crossref_primary_10_1109_TAFFC_2018_2887385
crossref_primary_10_3389_fnsys_2021_688424
crossref_primary_10_1016_j_neuroimage_2024_120783
crossref_primary_10_3389_fpsyg_2014_01133
crossref_primary_10_3389_fnins_2022_827400
crossref_primary_10_1152_jn_00328_2022
crossref_primary_10_3390_e20090706
crossref_primary_10_1080_17588928_2012_691277
crossref_primary_10_3389_fnint_2014_00086
crossref_primary_10_1016_j_cortex_2015_05_001
crossref_primary_10_3389_fpsyg_2016_01792
crossref_primary_10_1016_j_neuroimage_2011_01_085
crossref_primary_10_1371_journal_pcbi_1002303
crossref_primary_10_1016_j_neunet_2014_09_001
crossref_primary_10_1038_ncomms14218
crossref_primary_10_1038_s41467_022_29632_7
crossref_primary_10_1016_j_tics_2009_04_005
crossref_primary_10_1038_s41598_021_94825_x
crossref_primary_10_1109_JBHI_2020_3034295
crossref_primary_10_1103_PhysRevE_87_042707
crossref_primary_10_1016_j_neuropsychologia_2017_08_003
crossref_primary_10_1016_j_future_2022_12_028
crossref_primary_10_1155_2012_937860
crossref_primary_10_1891_EMDR_2022_0009
crossref_primary_10_1016_j_neubiorev_2014_09_012
crossref_primary_10_1016_j_neuroimage_2017_11_001
crossref_primary_10_1016_j_cortex_2020_09_029
crossref_primary_10_1007_s10539_013_9385_z
crossref_primary_10_1080_00048402_2023_2293825
crossref_primary_10_1177_1088868318795730
crossref_primary_10_1093_cercor_bhu323
crossref_primary_10_1177_2394964320913758
crossref_primary_10_1098_rspa_2021_0518
crossref_primary_10_1109_TCDS_2023_3338491
crossref_primary_10_1016_j_neuroimage_2021_117916
crossref_primary_10_1007_s12124_022_09748_7
crossref_primary_10_1088_0957_4484_24_38_384004
crossref_primary_10_1371_journal_pone_0317693
crossref_primary_10_1098_rspb_2016_0475
crossref_primary_10_1002_hbm_23588
crossref_primary_10_1098_rstb_2011_0421
crossref_primary_10_1093_scan_nsad060
crossref_primary_10_3389_frsps_2024_1385819
crossref_primary_10_1038_s41746_025_01516_2
crossref_primary_10_1016_j_tics_2012_11_003
crossref_primary_10_3389_fpsyg_2014_01111
crossref_primary_10_1007_s11229_020_02548_9
crossref_primary_10_1162_jocn_a_00021
crossref_primary_10_1016_j_neunet_2021_08_037
crossref_primary_10_1016_j_neures_2021_12_003
crossref_primary_10_1016_j_neuroimage_2021_117805
crossref_primary_10_1371_journal_pcbi_1011280
crossref_primary_10_1371_journal_pcbi_1002327
crossref_primary_10_1007_s00422_014_0620_8
crossref_primary_10_1016_j_neuroimage_2014_11_027
crossref_primary_10_1523_JNEUROSCI_0135_23_2023
crossref_primary_10_3390_brainsci13010111
crossref_primary_10_1126_sciadv_abe6276
crossref_primary_10_1016_j_cobeha_2025_101509
crossref_primary_10_1038_nrn2787
crossref_primary_10_3389_fpsyt_2024_1386984
crossref_primary_10_1080_13546805_2019_1665994
crossref_primary_10_1016_j_neuropsychologia_2023_108694
crossref_primary_10_1016_j_tics_2016_06_003
crossref_primary_10_1016_j_neuron_2012_10_038
crossref_primary_10_1073_pnas_1514212112
crossref_primary_10_1016_j_conb_2010_04_013
crossref_primary_10_1016_j_neuroimage_2011_08_047
crossref_primary_10_1016_j_celrep_2023_112422
crossref_primary_10_1016_j_jmp_2015_11_003
crossref_primary_10_1360_TB_2023_0939
crossref_primary_10_1073_pnas_1524685113
crossref_primary_10_1371_journal_pcbi_1000328
crossref_primary_10_1007_s11097_021_09747_w
crossref_primary_10_1177_17456916231185343
crossref_primary_10_3390_e21030257
crossref_primary_10_3389_fnhum_2017_00075
crossref_primary_10_1016_j_neuroimage_2021_118446
crossref_primary_10_1098_rsif_2016_0555
crossref_primary_10_1523_JNEUROSCI_0601_21_2021
crossref_primary_10_1371_journal_pcbi_1009025
crossref_primary_10_1007_s11229_016_1180_3
crossref_primary_10_1038_s41380_018_0267_2
crossref_primary_10_1002_hbm_22784
crossref_primary_10_1051_medsci_20173311006
crossref_primary_10_1080_09515089_2025_2460502
crossref_primary_10_1016_j_bandc_2015_06_008
crossref_primary_10_1016_j_tics_2016_10_003
crossref_primary_10_1016_j_neuroimage_2014_12_081
crossref_primary_10_1016_j_cub_2010_12_009
crossref_primary_10_1093_cercor_bhae416
crossref_primary_10_3389_fnins_2017_00504
crossref_primary_10_1002_hbm_26817
crossref_primary_10_3390_e20070512
crossref_primary_10_3902_jnns_25_86
crossref_primary_10_1007_s42113_019_00032_3
crossref_primary_10_1093_schbul_sbaa117
crossref_primary_10_1007_s00422_017_0714_1
crossref_primary_10_1371_journal_pcbi_1000462
crossref_primary_10_1016_j_copsyc_2018_10_006
crossref_primary_10_1371_journal_pcbi_1000464
crossref_primary_10_3389_fpsyt_2016_00107
crossref_primary_10_1007_s13164_018_0416_1
crossref_primary_10_3389_fpsyg_2018_00269
crossref_primary_10_1016_j_celrep_2024_115088
crossref_primary_10_3389_fnhum_2019_00039
crossref_primary_10_1016_j_physrep_2020_08_003
crossref_primary_10_1371_journal_pcbi_1011595
crossref_primary_10_1038_srep11248
crossref_primary_10_1038_s41562_024_01838_3
crossref_primary_10_1093_cercor_bhad458
crossref_primary_10_1073_pnas_2115699119
crossref_primary_10_1162_neco_a_01497
crossref_primary_10_1162_neco_a_01378
crossref_primary_10_1016_j_intcom_2012_04_004
crossref_primary_10_1371_journal_pone_0047502
crossref_primary_10_1016_j_plrev_2020_01_004
crossref_primary_10_1002_jnr_23720
crossref_primary_10_1371_journal_pcbi_1000532
crossref_primary_10_1038_s41598_020_64758_y
crossref_primary_10_1016_j_neuroimage_2020_117267
crossref_primary_10_3758_s13414_016_1101_z
crossref_primary_10_1007_s00221_019_05558_3
crossref_primary_10_3758_s13423_015_0938_9
crossref_primary_10_1016_j_neubiorev_2022_104649
crossref_primary_10_3389_fpsyt_2020_00404
crossref_primary_10_1016_j_plrev_2023_05_012
crossref_primary_10_1109_TNNLS_2015_2492140
crossref_primary_10_1038_nrn2787_c2
crossref_primary_10_1371_journal_pcbi_1010579
crossref_primary_10_1111_tops_12138
crossref_primary_10_1109_TNNLS_2014_2360060
crossref_primary_10_2174_1570159X21666230314143803
crossref_primary_10_3389_fnsys_2019_00031
crossref_primary_10_1016_j_neuroimage_2015_11_015
crossref_primary_10_1002_hbm_23716
crossref_primary_10_1016_j_neubiorev_2022_104873
crossref_primary_10_3389_frobt_2018_00021
crossref_primary_10_1017_S0033291722002458
crossref_primary_10_1162_neco_a_01354
crossref_primary_10_1007_s00422_019_00792_y
crossref_primary_10_1152_jn_90291_2008
crossref_primary_10_3389_fncom_2016_00054
crossref_primary_10_3390_electronics11182969
crossref_primary_10_1103_PhysRevE_101_062301
crossref_primary_10_1162_neco_a_01115
crossref_primary_10_1162_neco_a_01239
crossref_primary_10_1109_MSP_2015_2482121
crossref_primary_10_3389_fnins_2021_640412
crossref_primary_10_1016_j_concog_2014_12_003
crossref_primary_10_1016_j_neuroimage_2022_118928
crossref_primary_10_3389_fnsys_2015_00164
crossref_primary_10_1038_s41598_024_85055_y
crossref_primary_10_1093_braincomms_fcab098
crossref_primary_10_1111_desc_12435
crossref_primary_10_3389_fpsyg_2022_789377
crossref_primary_10_7554_eLife_11476
crossref_primary_10_1016_j_dr_2014_04_001
crossref_primary_10_1080_15294145_2013_10773716
crossref_primary_10_1016_j_neubiorev_2013_01_029
crossref_primary_10_1016_j_neubiorev_2021_05_029
crossref_primary_10_1162_NETN_a_00018
crossref_primary_10_3390_quantum1010011
crossref_primary_10_1016_j_cortex_2020_02_002
crossref_primary_10_1162_neco_a_01345
crossref_primary_10_3389_fncir_2023_1254009
crossref_primary_10_1007_s11571_022_09863_6
crossref_primary_10_1016_S2215_0366_14_70275_5
crossref_primary_10_1017_S0140525X1200218X
crossref_primary_10_1007_s11097_022_09831_9
crossref_primary_10_1017_S0033291723002222
crossref_primary_10_1007_s10339_012_0519_z
crossref_primary_10_1038_s41598_022_23382_8
crossref_primary_10_1007_s00221_011_2712_1
crossref_primary_10_1016_j_neubiorev_2022_104655
crossref_primary_10_1016_j_neuron_2014_12_018
crossref_primary_10_1109_JPROC_2015_2455028
crossref_primary_10_3389_fncom_2021_590019
crossref_primary_10_1038_s41467_017_01958_7
crossref_primary_10_1016_j_neuroimage_2022_119524
crossref_primary_10_1162_neco_a_01458
crossref_primary_10_1007_s00422_012_0512_8
crossref_primary_10_1146_annurev_clinpsy_050718_095617
crossref_primary_10_1007_s11097_024_10028_5
crossref_primary_10_1038_s41467_024_47749_9
crossref_primary_10_1016_j_concog_2019_05_005
crossref_primary_10_1109_TCDS_2018_2871857
crossref_primary_10_1109_TCDS_2017_2788820
crossref_primary_10_3389_fpsyg_2022_943785
crossref_primary_10_1109_TCDS_2021_3102993
crossref_primary_10_1162_jocn_a_00886
crossref_primary_10_1007_s12559_008_9004_5
crossref_primary_10_1016_j_cognition_2020_104370
crossref_primary_10_3389_fnhum_2024_1357354
crossref_primary_10_1007_s00422_020_00828_8
crossref_primary_10_1016_j_bbr_2018_10_019
crossref_primary_10_1016_j_dcn_2017_01_009
crossref_primary_10_1109_JPROC_2014_2307023
crossref_primary_10_1177_17456916231188000
crossref_primary_10_1016_j_concog_2018_03_003
crossref_primary_10_1523_JNEUROSCI_0872_24_2024
crossref_primary_10_1016_j_conb_2017_08_012
crossref_primary_10_1016_j_cortex_2015_03_025
crossref_primary_10_1016_j_cub_2018_11_049
crossref_primary_10_1587_nolta_12_143
crossref_primary_10_1016_j_neubiorev_2021_06_021
crossref_primary_10_1162_neco_a_01315
crossref_primary_10_1007_s10339_013_0571_3
crossref_primary_10_1016_j_neubiorev_2020_04_014
crossref_primary_10_3390_info5010028
crossref_primary_10_1016_j_neuropsychologia_2023_108624
crossref_primary_10_7554_eLife_91475
crossref_primary_10_3902_jnns_25_123
crossref_primary_10_1371_journal_pcbi_1008480
crossref_primary_10_3389_fpsyg_2017_01659
crossref_primary_10_1007_s00422_021_00859_9
crossref_primary_10_1016_j_cognition_2020_104236
crossref_primary_10_1002_mpr_1946
crossref_primary_10_3390_e26090731
crossref_primary_10_1089_brain_2024_0013
crossref_primary_10_1371_journal_pcbi_1002809
crossref_primary_10_33166_AETiC_2019_03_001
crossref_primary_10_3389_fpsyg_2023_1043651
crossref_primary_10_1016_j_cortex_2015_11_024
crossref_primary_10_1007_s10548_013_0337_3
crossref_primary_10_1080_23273798_2015_1102299
crossref_primary_10_1002_hbm_20784
crossref_primary_10_1111_tops_12704
crossref_primary_10_1212_WNL_0000000000000798
crossref_primary_10_1038_s41598_022_24452_7
crossref_primary_10_1016_j_patter_2022_100639
crossref_primary_10_1371_journal_pcbi_1003094
crossref_primary_10_1177_26339137221133401
crossref_primary_10_1159_000484353
crossref_primary_10_1038_s44159_024_00315_y
crossref_primary_10_1007_s13164_015_0253_4
crossref_primary_10_1016_j_neubiorev_2016_10_002
crossref_primary_10_1016_j_neuroimage_2011_12_051
crossref_primary_10_1162_neco_a_01642
crossref_primary_10_1016_j_cobeha_2016_04_001
crossref_primary_10_1016_j_jmp_2014_04_003
crossref_primary_10_1098_rstb_2008_0300
crossref_primary_10_1016_j_neubiorev_2016_04_022
crossref_primary_10_3390_e26090759
crossref_primary_10_1111_ejn_14116
crossref_primary_10_1016_j_plrev_2015_04_023
crossref_primary_10_1016_j_neubiorev_2015_02_016
crossref_primary_10_1016_j_schres_2021_01_023
crossref_primary_10_1016_j_neunet_2023_02_039
crossref_primary_10_1016_j_bspc_2021_102556
crossref_primary_10_3389_fpsyg_2021_613587
crossref_primary_10_1016_j_jmp_2017_09_004
crossref_primary_10_1098_rsif_2018_0344
crossref_primary_10_1038_s41593_023_01514_1
crossref_primary_10_3389_fnins_2019_01292
crossref_primary_10_1016_j_neuroimage_2022_118895
crossref_primary_10_1016_j_visres_2023_108195
crossref_primary_10_1167_jov_21_7_5
crossref_primary_10_1136_bmj_m1668
crossref_primary_10_1109_JPROC_2014_2306251
crossref_primary_10_7554_eLife_44516
crossref_primary_10_1080_02699931_2023_2269828
crossref_primary_10_3389_fpsyg_2017_01695
crossref_primary_10_3758_s13423_024_02522_3
crossref_primary_10_1038_s41598_023_31696_4
crossref_primary_10_1016_j_neuroimage_2009_06_034
crossref_primary_10_1007_s00422_011_0424_z
crossref_primary_10_1016_j_neuroimage_2021_118693
crossref_primary_10_3389_fnins_2018_00793
crossref_primary_10_3389_fnins_2023_1218510
crossref_primary_10_1523_JNEUROSCI_4216_13_2014
crossref_primary_10_1088_2634_4386_aca7de
crossref_primary_10_1016_j_biosystems_2023_104925
crossref_primary_10_1111_nyas_13329
crossref_primary_10_3389_fpsyg_2016_00925
crossref_primary_10_1126_sciadv_add2976
crossref_primary_10_1093_cercor_bhad251
crossref_primary_10_1371_journal_pone_0035029
crossref_primary_10_1007_s11229_021_03304_3
crossref_primary_10_1016_j_neuroimage_2014_01_047
crossref_primary_10_1016_j_neuroimage_2016_05_065
crossref_primary_10_1016_j_tics_2017_04_003
crossref_primary_10_1038_s41598_022_19203_7
crossref_primary_10_1016_j_nicl_2022_103293
crossref_primary_10_1016_j_scog_2015_04_002
crossref_primary_10_7554_eLife_28295
crossref_primary_10_1162_jocn_a_00705
crossref_primary_10_1016_j_cortex_2017_04_008
crossref_primary_10_1016_j_neubiorev_2023_105262
crossref_primary_10_1038_s41593_018_0200_7
crossref_primary_10_1152_jn_00581_2012
crossref_primary_10_1371_journal_pcbi_1006316
crossref_primary_10_3390_su12176881
crossref_primary_10_1016_j_neunet_2009_07_023
crossref_primary_10_1007_s11097_016_9472_0
crossref_primary_10_1098_rsif_2024_0508
crossref_primary_10_3724_SP_J_1042_2020_00085
crossref_primary_10_1016_j_neuroimage_2020_117501
crossref_primary_10_1111_ejn_14263
crossref_primary_10_1093_texcom_tgab028
crossref_primary_10_3389_fnins_2024_1425861
crossref_primary_10_1038_s41467_023_39823_5
crossref_primary_10_1038_s44271_024_00120_6
crossref_primary_10_3390_e26090797
crossref_primary_10_1167_jov_22_12_1
crossref_primary_10_1371_journal_pcbi_1003157
crossref_primary_10_1523_JNEUROSCI_1520_15_2015
crossref_primary_10_1016_j_neuroimage_2017_05_068
crossref_primary_10_3390_brainsci12040447
crossref_primary_10_1016_j_pneurobio_2015_09_001
crossref_primary_10_3390_e26080642
crossref_primary_10_1016_j_plrev_2018_10_002
crossref_primary_10_1371_journal_pcbi_1003288
crossref_primary_10_1371_journal_pcbi_1002198
crossref_primary_10_1002_hbm_25019
crossref_primary_10_1177_09637214211029977
crossref_primary_10_1016_j_cortex_2017_01_016
crossref_primary_10_3389_frai_2019_00018
crossref_primary_10_3389_fncom_2022_1062678
crossref_primary_10_1016_j_bpsc_2017_12_004
crossref_primary_10_3389_fnhum_2015_00101
crossref_primary_10_1371_journal_pcbi_1010719
crossref_primary_10_1016_j_concog_2016_06_011
crossref_primary_10_1007_s00422_018_0785_7
crossref_primary_10_1016_j_eswa_2025_126904
crossref_primary_10_3758_s13428_023_02306_y
crossref_primary_10_1016_j_plrev_2022_07_007
crossref_primary_10_1016_j_neunet_2021_09_011
crossref_primary_10_1016_j_neuroimage_2011_03_005
crossref_primary_10_3758_s13415_019_00721_3
crossref_primary_10_1098_rstb_2014_0169
crossref_primary_10_1124_pharmrev_121_000508
crossref_primary_10_1016_j_infbeh_2019_02_001
crossref_primary_10_7554_eLife_73651
crossref_primary_10_1007_s11482_020_09854_x
crossref_primary_10_1073_pnas_2408791122
crossref_primary_10_1371_journal_pcbi_1008629
crossref_primary_10_1525_collabra_165
crossref_primary_10_1002_hbm_26251
crossref_primary_10_1007_s11517_021_02444_5
crossref_primary_10_1007_s12304_014_9210_3
crossref_primary_10_1038_s41380_021_01029_w
crossref_primary_10_1109_LRA_2020_2974451
crossref_primary_10_1098_rstb_2013_0522
crossref_primary_10_1098_rstb_2016_0007
crossref_primary_10_1007_s00213_022_06153_1
crossref_primary_10_1016_j_schres_2016_07_014
crossref_primary_10_1371_journal_pone_0258089
crossref_primary_10_1038_srep28991
crossref_primary_10_1016_j_neuroimage_2012_06_068
crossref_primary_10_1007_s10339_020_01009_y
crossref_primary_10_1016_j_neubiorev_2018_04_017
crossref_primary_10_1371_journal_pbio_1002400
crossref_primary_10_1111_j_1468_0017_2011_01418_x
crossref_primary_10_1162_jocn_a_01085
crossref_primary_10_1155_2010_621670
crossref_primary_10_1007_s13164_020_00481_x
crossref_primary_10_1371_journal_pcbi_1004463
crossref_primary_10_1016_j_neubiorev_2021_09_009
crossref_primary_10_3389_fpsyt_2016_00190
crossref_primary_10_1007_s10994_021_06092_6
crossref_primary_10_1162_jocn_a_02181
crossref_primary_10_3390_e26010041
crossref_primary_10_1016_j_neubiorev_2023_105473
crossref_primary_10_3389_fnhum_2014_00666
crossref_primary_10_1016_j_jmp_2021_102503
crossref_primary_10_3389_fnins_2017_00290
crossref_primary_10_3389_fpsyg_2014_01417
crossref_primary_10_1016_j_neuroimage_2018_11_037
crossref_primary_10_1038_s41537_024_00459_z
crossref_primary_10_1038_s41598_024_56811_x
crossref_primary_10_1016_j_neuroimage_2018_05_042
crossref_primary_10_1016_j_neuropsychologia_2012_07_023
crossref_primary_10_3389_fnins_2023_1270556
crossref_primary_10_1038_s41467_020_20505_5
crossref_primary_10_1007_s11023_017_9441_6
crossref_primary_10_1111_cogs_12146
crossref_primary_10_1038_srep31943
crossref_primary_10_1093_cercor_bhae057
crossref_primary_10_3389_fpsyg_2015_01515
crossref_primary_10_1016_j_neubiorev_2023_105363
crossref_primary_10_1523_ENEURO_0467_18_2019
crossref_primary_10_3389_fnhum_2014_00457
crossref_primary_10_3389_fpsyg_2022_869894
crossref_primary_10_1093_cercor_bhad085
crossref_primary_10_1007_s00221_023_06573_1
crossref_primary_10_1016_j_tics_2018_10_006
crossref_primary_10_1007_s00422_010_0364_z
crossref_primary_10_3389_fnhum_2016_00550
crossref_primary_10_3390_app7090922
crossref_primary_10_1016_j_neuron_2022_05_011
crossref_primary_10_1093_cercor_bhx307
crossref_primary_10_1016_j_neubiorev_2024_105533
crossref_primary_10_1093_brain_awt257
crossref_primary_10_1002_jnr_24240
crossref_primary_10_3389_fnhum_2016_00303
crossref_primary_10_3389_fnhum_2022_955903
crossref_primary_10_1098_rsos_220226
crossref_primary_10_1016_j_jtbi_2017_05_032
crossref_primary_10_1016_j_neuroimage_2011_03_058
crossref_primary_10_1016_j_neuroimage_2011_03_056
crossref_primary_10_3758_s13423_017_1393_6
crossref_primary_10_1162_NECO_a_00863
crossref_primary_10_1162_NECO_a_00862
Cites_doi 10.1023/A:1024130211265
10.1016/j.visres.2008.02.019
10.2741/A634
10.1016/j.physd.2007.07.020
10.1093/brain/121.6.1013
10.1126/science.177.4052.850
10.1162/089976699300016674
10.1523/JNEUROSCI.22-19-08633.2002
10.1088/0954-898X_4_4_001
10.1146/annurev.ne.18.030195.001205
10.1038/335311a0
10.1016/j.neuroimage.2005.10.037
10.1126/science.287.5456.1269
10.1098/rstb.2000.0554
10.1016/S0306-4522(02)00026-X
10.1038/382539a0
10.1523/JNEUROSCI.03-12-02563.1983
10.1038/29537
10.1115/1.3662552
10.1038/329727a0
10.1111/j.2517-6161.1977.tb01600.x
10.1007/978-3-540-28650-9_5
10.1016/j.neunet.2007.12.011
10.1016/j.neuroimage.2008.02.054
10.1038/4580
10.1016/j.neuroimage.2006.08.035
10.1088/1741-2560/5/1/001
10.1162/neco.1995.7.5.889
10.1016/0896-6273(93)90304-A
10.1364/JOSAA.20.001434
10.1098/rstb.2005.1622
10.1016/j.jphysparis.2006.10.001
10.1146/annurev.neuro.23.1.649
10.1111/1467-9868.00196
10.1073/pnas.93.24.13494
10.1016/0006-8993(92)90110-U
10.1523/JNEUROSCI.0318-07.2007
10.1080/01621459.1977.10480998
10.1002/cne.903350307
10.1093/cercor/1.1.1
10.1007/BF00198477
10.1016/j.neuroimage.2008.03.017
10.1016/0306-4522(94)90592-4
10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
10.1016/0006-8993(79)90485-2
10.1146/annurev.neuro.21.1.149
10.1080/01621459.1989.10478825
10.1073/pnas.95.12.7121
10.1006/nimg.2001.1044
10.1016/j.brainres.2008.04.024
10.1038/363345a0
10.1098/rstb.2008.0300
10.1016/j.neuron.2005.04.026
10.1109/TCS.1983.1085397
10.1038/34584
10.1146/annurev.neuro.28.061604.135722
10.1146/annurev.neuro.28.061604.135703
10.1111/j.1751-5823.2004.tb00241.x
10.1038/377725a0
10.1016/j.cub.2004.04.028
10.1038/306021a0
10.1038/381607a0
10.1523/JNEUROSCI.1021-04.2004
10.1016/S0167-8760(03)00053-9
10.1111/j.1467-9868.2006.00552.x
10.1016/j.neunet.2003.06.005
10.1162/neco.1995.7.6.1129
ContentType Journal Article
Copyright Karl Friston. 2008
2008 Karl Friston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Friston K (2008) Hierarchical Models in the Brain. PLoS Comput Biol 4(11): e1000211. doi:10.1371/journal.pcbi.1000211
Copyright_xml – notice: Karl Friston. 2008
– notice: 2008 Karl Friston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Friston K (2008) Hierarchical Models in the Brain. PLoS Comput Biol 4(11): e1000211. doi:10.1371/journal.pcbi.1000211
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1000211
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Genetics Abstracts


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Anatomy & Physiology
DocumentTitleAlternate Hierarchical Models
EISSN 1553-7358
EndPage e1000211
ExternalDocumentID 1314520133
oai_doaj_org_article_08703947a1e3497c91d0e68f5d27f92b
PMC2570625
18989391
10_1371_journal_pcbi_1000211
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 088130
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
CGR
CUY
CVF
ECM
EIF
M0N
M~E
NPM
PGMZT
PV9
RZL
WOQ
7TK
8FD
FR3
P64
PPXIY
PQGLB
RC3
7X8
5PM
PJZUB
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c527t-f28d4930e0868dea284b3a9eb413beb86f124404e514d1b8eaabbfcc67eebbfe3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:30 EDT 2023
Wed Aug 27 01:09:08 EDT 2025
Thu Aug 21 13:42:53 EDT 2025
Fri Jul 11 03:57:44 EDT 2025
Fri Jul 11 01:43:45 EDT 2025
Wed Feb 19 02:30:57 EST 2025
Tue Jul 01 04:23:33 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mental Processes
Brain
Algorithms
Animals
Humans
Nerve Net
Probability
Linear Models
Models, Neurological
Nonlinear Dynamics
Neural Networks (Computer)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-f28d4930e0868dea284b3a9eb413beb86f124404e514d1b8eaabbfcc67eebbfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: KJF. Performed the experiments: KJF. Analyzed the data: KJF. Contributed reagents/materials/analysis tools: KJF. Wrote the paper: KJF.
OpenAccessLink https://doaj.org/article/08703947a1e3497c91d0e68f5d27f92b
PMID 18989391
PQID 19568484
PQPubID 23462
ParticipantIDs plos_journals_1314520133
doaj_primary_oai_doaj_org_article_08703947a1e3497c91d0e68f5d27f92b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570625
proquest_miscellaneous_69770032
proquest_miscellaneous_19568484
pubmed_primary_18989391
crossref_citationtrail_10_1371_journal_pcbi_1000211
crossref_primary_10_1371_journal_pcbi_1000211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2008
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DR Cox (ref10) 1965
B Wang (ref31) 2004
DV Buonomano (ref56) 1998; 21
U Neisser (ref89) 1967
M Fliess (ref23) 1983; 30
K Friston (ref5) 2006; 100(1–3)
GE Hinton (ref12) 1993
ER John (ref77) 1972; 177(4052)
AM Rosier (ref48) 1993; 335
S Grossberg (ref52) 2008; 1218
HJ Kappen (ref76) 2008
JC Martinez-Trujillo (ref59) 2004; 14
KS Rockland (ref42) 1979; 179
M Chait (ref53) 2007; 27(19)
JM Hupe (ref47) 1998; 394
DJ Felleman (ref40) 1991; 1
W Schultz (ref70) 2007; 30
CE Rasmussen (ref28) 1996
C Archambeau (ref75) 2007
AJ Yu (ref63) 2005; 46
J Mattout (ref25) 2006; 30
BD Ripley (ref27) 1994
RM Neal (ref14) 1998
MJ Beal (ref16) 2003
T Chen (ref22) 1995; 6(4)
KJ Friston (ref4) 2005; 360
S Grossberg (ref51) 2008; 48
M London (ref55) 2005; 28
G Evensen (ref80) 2000; 128(6)
AJ Bell (ref36) 1995; 7
SM Sherman (ref44) 1998; 95
H-C Kim (ref29) 2006; 28(12)
ME Tipping (ref35) 1999; 61(3)
KJ Friston (ref3) 2003; 16
KJ Friston (ref83) 2009
H Sørensen (ref32) 2004; 72(3)
K Friston (ref15) 2007; 34
F Crick (ref54) 1998; 391(6664)
A Beskos (ref79) 2006; 68
DE Rumelhart (ref21) 1986; Vol. 1
H Helmholtz (ref87) 1860
RL Stratonovich (ref6) 1967
RE Kass (ref8) 1989; 407
WJ Freeman (ref78) 2008; 21(2–3)
KJ Friston (ref24) 2002; 16(2)
JM Restrepo (ref82) 2008; 237(1)
Y Niv (ref71) 2005; 4
DJC MacKay (ref13) 1995; 31
SJ Schiff (ref81) 2008; 5(1)
BA Olshausen (ref37) 1996; 381
R Desimone (ref61) 1996; 93(24)
S Brocher (ref66) 1992; 573
KY Tseng (ref65) 2004; 24
P Dayan (ref91) 1995; 7
RP Rao (ref64) 1998; 2
ME Tipping (ref26) 2001; 1
K Friston (ref34) 2000; 355(1393)
R Kalman (ref30) 1960; 82(1)
PR Montague (ref69) 1995; 377(6551)
R Henson (ref84) 2000; 287
L Chelazzi (ref60) 1993; 363
TS Lee (ref86) 2003; 20
M Kawato (ref72) 1993; 4
A Angelucci (ref45) 2002; 22
J DeFelipe (ref46) 2002; 31
AP Dempster (ref17) 1977; 39
S Zeki (ref39) 1988; 335
KJ Friston (ref68) 1994; 59(2)
S Treue (ref58) 1996; 382
DH Ballard (ref90) 1983; 306
S Roweis (ref20) 1999; 11(2)
PC Murphy (ref43) 1987; 329
Z Ghahramani (ref33) 2004
MM Mesulam (ref41) 1998; 121
HB Barlow (ref88) 1961
LF Abbott (ref74) 1997; 275(5297)
RP Feynman (ref11) 1972
B Efron (ref9) 1973; 68
JH Maunsell (ref38) 1983; 3
SJ Martin (ref57) 2000; 23
DA Harville (ref18) 1977; 72
R Desimone (ref73) 1995; 18
KJ Friston (ref1) 2008; 41(3)
AH Jazwinski (ref7) 1970
T Ozaki (ref19) 1992; 2
D Mumford (ref49) 1992; 66
CE Schroeder (ref62) 2001; 6
GM Edelman (ref50) 1993; 10
KJ Friston (ref2) 2008; 41(3)
Q Gu (ref67) 2002; 111
R Näätänen (ref85) 2003; 48
References_xml – volume: 31
  start-page: 299
  year: 2002
  ident: ref46
  article-title: Microstructure of the neocortex: comparative aspects.
  publication-title: J Neurocytol
  doi: 10.1023/A:1024130211265
– volume: 48
  start-page: 1345
  year: 2008
  ident: ref51
  article-title: Temporal dynamics of decision-making during motion perception in the visual cortex.
  publication-title: Vis Res
  doi: 10.1016/j.visres.2008.02.019
– volume: 6
  start-page: D672
  year: 2001
  ident: ref62
  article-title: Determinants and mechanisms of attentional modulation of neural processing.
  publication-title: Front Biosci
  doi: 10.2741/A634
– volume: 237(1)
  start-page: 14
  year: 2008
  ident: ref82
  article-title: A path integral method for data assimilation.
  publication-title: Physica D
  doi: 10.1016/j.physd.2007.07.020
– volume: 121
  start-page: 1013
  year: 1998
  ident: ref41
  article-title: From sensation to cognition.
  publication-title: Brain
  doi: 10.1093/brain/121.6.1013
– volume: 177(4052)
  start-page: 850
  year: 1972
  ident: ref77
  article-title: Switchboard versus statistical theories of learning and memory.
  publication-title: Science
  doi: 10.1126/science.177.4052.850
– volume: 11(2)
  start-page: 305
  year: 1999
  ident: ref20
  article-title: A unifying review of linear Gaussian models.
  publication-title: Neural Comput
  doi: 10.1162/089976699300016674
– volume: 22
  start-page: 8633
  year: 2002
  ident: ref45
  article-title: Circuits for local and global signal integration in primary visual cortex.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-19-08633.2002
– volume: 4
  start-page: 415
  year: 1993
  ident: ref72
  article-title: A forward-inverse optics model of reciprocal connections between visual cortical areas.
  publication-title: Network
  doi: 10.1088/0954-898X_4_4_001
– volume: 18
  start-page: 193
  year: 1995
  ident: ref73
  article-title: Neural mechanisms of selective visual attention.
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.ne.18.030195.001205
– year: 2008
  ident: ref76
  article-title: An introduction to stochastic control theory, path integrals and reinforcement learning.
– volume: 335
  start-page: 311
  year: 1988
  ident: ref39
  article-title: The functional logic of cortical connections.
  publication-title: Nature
  doi: 10.1038/335311a0
– volume: 30
  start-page: 753
  year: 2006
  ident: ref25
  article-title: MEG source localization under multiple constraints: an extended Bayesian framework.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.10.037
– volume: 287
  start-page: 1269
  year: 2000
  ident: ref84
  article-title: Neuroimaging evidence for dissociable forms of repetition priming.
  publication-title: Science
  doi: 10.1126/science.287.5456.1269
– volume: 355(1393)
  start-page: 135
  year: 2000
  ident: ref34
  article-title: Nonlinear PCA: characterizing interactions between modes of brain activity.
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2000.0554
– volume: 111
  start-page: 815
  year: 2002
  ident: ref67
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity.
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00026-X
– volume: 382
  start-page: 539
  year: 1996
  ident: ref58
  article-title: Attentional modulation of visual motion processing in cortical areas MT and MST.
  publication-title: Nature
  doi: 10.1038/382539a0
– start-page: 5
  year: 1993
  ident: ref12
  article-title: Keeping neural networks simple by minimising the description length of weights.
– volume: 3
  start-page: 2563
  year: 1983
  ident: ref38
  article-title: The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.03-12-02563.1983
– volume: 394
  start-page: 784
  year: 1998
  ident: ref47
  article-title: Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons.
  publication-title: Nature
  doi: 10.1038/29537
– year: 2003
  ident: ref16
  article-title: The variational Bayesian EM algorithm for incomplete Data: with application to scoring graphical model structures.
– volume: 4
  start-page: 1
  year: 2005
  ident: ref71
  article-title: Dopamine, uncertainty and TD learning.
  publication-title: Behav Brain Funct
– volume: 82(1)
  start-page: 35
  year: 1960
  ident: ref30
  article-title: A new approach to linear filtering and prediction problems.
  publication-title: ASME Trans J Basic Eng
  doi: 10.1115/1.3662552
– volume: 329
  start-page: 727
  year: 1987
  ident: ref43
  article-title: Corticofugal feedback influences the generation of length tuning in the visual pathway.
  publication-title: Nature
  doi: 10.1038/329727a0
– year: 1965
  ident: ref10
  article-title: The theory of stochastic processes.
– volume: 39
  start-page: 1
  year: 1977
  ident: ref17
  article-title: Maximum likelihood from incomplete data via the EM algorithm.
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– year: 2004
  ident: ref33
  article-title: Unsupervised Learning.
  doi: 10.1007/978-3-540-28650-9_5
– volume: 21(2–3)
  start-page: 257
  year: 2008
  ident: ref78
  article-title: A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics.
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2007.12.011
– volume: 2
  start-page: 113
  year: 1992
  ident: ref19
  article-title: A bridge between nonlinear time-series models and nonlinear stochastic dynamical systems: A local linearization approach.
  publication-title: Stat Sin
– volume: 41(3)
  start-page: 849
  year: 2008
  ident: ref2
  article-title: DEM: a variational treatment of dynamic systems.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.054
– volume: 2
  start-page: 79
  year: 1998
  ident: ref64
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects.
  publication-title: Nat Neurosci
  doi: 10.1038/4580
– volume: 34
  start-page: 220
  year: 2007
  ident: ref15
  article-title: Variational Bayes and the Laplace approximation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.035
– volume: 5(1)
  start-page: 1
  year: 2008
  ident: ref81
  article-title: Kalman filter control of a model of spatiotemporal cortical dynamics.
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/5/1/001
– volume: 7
  start-page: 889
  year: 1995
  ident: ref91
  article-title: The Helmholtz machine.
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.5.889
– volume: 10
  start-page: 115
  year: 1993
  ident: ref50
  article-title: Neural Darwinism: selection and reentrant signaling in higher brain function.
  publication-title: Neuron
  doi: 10.1016/0896-6273(93)90304-A
– volume: 20
  start-page: 1434
  year: 2003
  ident: ref86
  article-title: Hierarchical Bayesian inference in the visual cortex.
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.20.001434
– volume: 360
  start-page: 815
  year: 2005
  ident: ref4
  article-title: A theory of cortical responses.
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1622
– volume: 100(1–3)
  start-page: 70
  year: 2006
  ident: ref5
  article-title: A free energy principle for the brain.
  publication-title: J Physiol Paris
  doi: 10.1016/j.jphysparis.2006.10.001
– volume: 23
  start-page: 649
  year: 2000
  ident: ref57
  article-title: Synaptic plasticity and memory: an evaluation of the hypothesis.
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.23.1.649
– volume: 61(3)
  start-page: 611
  year: 1999
  ident: ref35
  article-title: Probabilistic principal component analysis.
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.00196
– volume: 93(24)
  start-page: 13494
  year: 1996
  ident: ref61
  article-title: Neural mechanisms for visual memory and their role in attention.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.24.13494
– start-page: 1
  year: 2007
  ident: ref75
  article-title: Gaussian process approximations of stochastic differential equations.
– volume: 573
  start-page: 27
  year: 1992
  ident: ref66
  article-title: Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex.
  publication-title: Brain Res
  doi: 10.1016/0006-8993(92)90110-U
– volume: 68
  start-page: 117
  year: 1973
  ident: ref9
  article-title: Stein's estimation rule and its competitors – an empirical Bayes approach.
  publication-title: J Am Stats Assoc
– volume: 275(5297)
  start-page: 220
  year: 1997
  ident: ref74
  article-title: Synaptic depression and cortical gain control.
  publication-title: Science
– volume: 27(19)
  start-page: 5207
  year: 2007
  ident: ref53
  article-title: Processing asymmetry of transitions between order and disorder in human auditory cortex.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0318-07.2007
– year: 1967
  ident: ref6
  article-title: Topics in the Theory of Random Noise
– year: 1972
  ident: ref11
  article-title: Statistical mechanics
– volume: 72
  start-page: 320
  year: 1977
  ident: ref18
  article-title: Maximum likelihood approaches to variance component estimation and to related problems.
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1977.10480998
– volume: 6(4)
  start-page: 918
  year: 1995
  ident: ref22
  article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems.
  publication-title: IEEE Trans Neural Netw
– volume: 335
  start-page: 369
  year: 1993
  ident: ref48
  article-title: Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding.
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903350307
– volume: 1
  start-page: 1
  year: 1991
  ident: ref40
  article-title: Distributed hierarchical processing in the primate cerebral cortex.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 66
  start-page: 241
  year: 1992
  ident: ref49
  article-title: On the computational architecture of the neocortex. II. The role of cortico-cortical loops.
  publication-title: Biol Cybern
  doi: 10.1007/BF00198477
– volume: 41(3)
  start-page: 747
  year: 2008
  ident: ref1
  article-title: Variational filtering.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.017
– volume: 59(2)
  start-page: 229
  year: 1994
  ident: ref68
  article-title: Value-dependent selection in the brain: simulation in a synthetic neural model.
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)90592-4
– volume: 128(6)
  start-page: 1852
  year: 2000
  ident: ref80
  article-title: An ensemble Kalman smoother for nonlinear dynamics.
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
– volume: 179
  start-page: 3
  year: 1979
  ident: ref42
  article-title: Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey.
  publication-title: Brain Res
  doi: 10.1016/0006-8993(79)90485-2
– volume: 21
  start-page: 149
  year: 1998
  ident: ref56
  article-title: Cortical plasticity: from synapses to maps.
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.21.1.149
– volume: 31
  start-page: 445
  year: 1995
  ident: ref13
  article-title: Free-energy minimisation algorithm for decoding and cryptoanalysis.
  publication-title: Electron Lett
– year: 1998
  ident: ref14
  article-title: A view of the EM algorithm that justifies incremental sparse and other variants.
– year: 1967
  ident: ref89
  article-title: Cognitive psychology
– volume: 407
  start-page: 717
  year: 1989
  ident: ref8
  article-title: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models).
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478825
– volume: Vol. 1
  start-page: 318
  year: 1986
  ident: ref21
  article-title: Learning internal representations by error propagations.
– start-page: 105
  year: 1994
  ident: ref27
  article-title: Flexible Nonlinear Approaches to Classification.
– volume: 95
  start-page: 7121
  year: 1998
  ident: ref44
  article-title: On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.12.7121
– volume: 16(2)
  start-page: 513
  year: 2002
  ident: ref24
  article-title: Bayesian estimation of dynamical systems: an application to fMRI.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.1044
– volume: 1218
  start-page: 278
  year: 2008
  ident: ref52
  article-title: Spikes, synchrony, and attentive learning by laminar thalamocortical circuits.
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2008.04.024
– volume: 363
  start-page: 345
  year: 1993
  ident: ref60
  article-title: A neural basis for visual search in inferior temporal cortex.
  publication-title: Nature
  doi: 10.1038/363345a0
– year: 2009
  ident: ref83
  article-title: Predictive coding under the free energy principle.
  doi: 10.1098/rstb.2008.0300
– volume: 46
  start-page: 681
  year: 2005
  ident: ref63
  article-title: Uncertainty, neuromodulation and attention.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.04.026
– volume: 30
  start-page: 554
  year: 1983
  ident: ref23
  article-title: An algebraic approach to nonlinear functional expansions.
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/TCS.1983.1085397
– year: 2004
  ident: ref31
  article-title: Variational Bayesian inference for partially observed diffusions. Technical Report 04-4, University of Glasgow.
– year: 1860
  ident: ref87
  article-title: Handbuch der Physiologischen Optik. English translation.
– volume: 391(6664)
  start-page: 245
  year: 1998
  ident: ref54
  article-title: Constraints on cortical and thalamic projections: the no-strong-loops hypothesis.
  publication-title: Nature
  doi: 10.1038/34584
– volume: 30
  start-page: 259
  year: 2007
  ident: ref70
  article-title: Multiple dopamine functions at different time courses.
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.28.061604.135722
– volume: 28
  start-page: 503
  year: 2005
  ident: ref55
  article-title: Dendritic computation.
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.28.061604.135703
– volume: 72(3)
  start-page: 337
  year: 2004
  ident: ref32
  article-title: Parametric inference for diffusion processes observed at discrete points in time: a survey.
  publication-title: Int Stat Rev
  doi: 10.1111/j.1751-5823.2004.tb00241.x
– volume: 377(6551)
  start-page: 725
  year: 1995
  ident: ref69
  article-title: Bee foraging in uncertain environments using predictive Hebbian learning.
  publication-title: Nature
  doi: 10.1038/377725a0
– volume: 14
  start-page: 744
  year: 2004
  ident: ref59
  article-title: Feature-based attention increases the selectivity of population responses in primate visual cortex.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.04.028
– volume: 1
  start-page: 211
  year: 2001
  ident: ref26
  article-title: Sparse Bayesian learning and the Relevance Vector Machine.
  publication-title: J Mach Learn Res
– volume: 306
  start-page: 21
  year: 1983
  ident: ref90
  article-title: Parallel visual computation.
  publication-title: Nature
  doi: 10.1038/306021a0
– volume: 381
  start-page: 607
  year: 1996
  ident: ref37
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 24
  start-page: 5131
  year: 2004
  ident: ref65
  article-title: Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1021-04.2004
– start-page: 122
  year: 1970
  ident: ref7
  article-title: Stochastic Processes and Filtering Theory
– volume: 48
  start-page: 179
  year: 2003
  ident: ref85
  article-title: Mismatch negativity: clinical research and possible applications.
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(03)00053-9
– volume: 68
  start-page: 333
  year: 2006
  ident: ref79
  article-title: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion).
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2006.00552.x
– volume: 16
  start-page: 1325
  year: 2003
  ident: ref3
  article-title: Learning and inference in the brain.
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2003.06.005
– volume: 28(12)
  start-page: 1948
  year: 2006
  ident: ref29
  article-title: Bayesian Gaussian process classification with the EM-EP algorithm.
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 1996
  ident: ref28
  article-title: Evaluation of Gaussian Processes and Other Methods for Nonlinear Regression [PhD thesis]. Toronto, Canada: Department of Computer Science, University of Toronto.
– volume: 7
  start-page: 1129
  year: 1995
  ident: ref36
  article-title: An information maximisation approach to blind separation and blind de-convolution.
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– year: 1961
  ident: ref88
  article-title: Possible principles underlying the transformation of sensory messages.
SSID ssj0035896
Score 2.4802072
Snippet This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic...
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic...
  This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000211
SubjectTerms Algorithms
Anatomy & physiology
Animals
Brain - anatomy & histology
Brain - physiology
Economic models
Humans
Linear Models
Mathematics/Statistics
Mental Processes - physiology
Models, Neurological
Nerve Net - anatomy & histology
Nerve Net - physiology
Neural Networks, Computer
Neuroscience
Neuroscience/Theoretical Neuroscience
Nonlinear Dynamics
Probability
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyI36ufPXiNa5u0aY4qjiHoycFuJUlTLIxuuO3gf-97aTtXUXbxVtq06Xsvyfs98vJ-hNwKkyfgBnNqipBT5LCmiktBhZEqN4xz7ZLHX16T0Zg_T-LJBtUX5oTV5YFrxQ0CGFBMcqFCy-AjRoZ5YJO0iPNIFDLSuPqCz2uDqXoNZnHqmLmQFIcKxifNoTkmwkFjo7u50SXmCICTCztOydXux1qn09niN9z5M31ywx8ND8h-AyT9-1qAQ7JjqyOyW1NLfh4Tf1Ti0WLHdDL1Hd_Nwi8rH_Cer5EW4oSMh09vjyPasCFQE0diSYsozblkgYUgJM2tAr-imZJWgxvSVqdJga464BYgUB7q1CqldWFMIqyFC8tOSa-aVbZPfAk4C4BUIRKluEkTFQWR5KEwALU5xGseYa06MtOUCkfGimnm9r8EhAy1kBkqMWuU6BG6fmtel8rY0v4BNb1ui4Wu3Q0wf9aYP9tmfo_00U5tBwvoLoQRB8CWeeSmtV0GcwY3QlRlZytog2ckecr_bpEALIZhFHnkrLb1t0TIt8kk_L3ojIKOGN0nVfnu6nYjYSCEm-f_IfcF2XOZK-5U5CXpLT9W9grg0VJfu5nwBc0kCtI
  priority: 102
  providerName: Directory of Open Access Journals
Title Hierarchical Models in the Brain
URI https://www.ncbi.nlm.nih.gov/pubmed/18989391
https://www.proquest.com/docview/19568484
https://www.proquest.com/docview/69770032
https://pubmed.ncbi.nlm.nih.gov/PMC2570625
https://doaj.org/article/08703947a1e3497c91d0e68f5d27f92b
http://dx.doi.org/10.1371/journal.pcbi.1000211
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Ra9swED66lsFeyrpui7c188NeVWxLsaSHMZq1WRi0lLJA3owky1sgOF2SQvvvdyfb6VJa-pLEjhxZp7vcdz7pPoAv0pU5usGSuSoVjDismRFaMum0KR0XwobF4-cX-Xgifk4H0x3oOFtbAa4eDe2IT2qynB_f_r37hgb_NbA2yLS76Pja2Rll_dFtYTy0h75Jkqmei01egQ9UYOwishwm8ajdTPfUr2w5q1DTn2qgzherx_Dow2WV__mp0WvYbwFmfNJoxAHs-PoNvGwoJ-8OIR7PaMtxYECZx4EHZxXP6hhxYGyJLuItTEZnv76PWcuSwNwgk2tWZaoUmicegxNVeoP-xnKjvUX3ZL1VeUUuPBEeoVGZWuWNsbZyLpfe4wfP38Fuvah9D2KN-AsBViVzY4RTucmSTKMUHUJwgXFcBLwTR-HaEuLEZDEvQl5MYijRDLIgIRatECNgm6uumxIaz7QfkqQ3bakAdjixWP4uWnsqEvyf4VpIk3qOuuV0WiY-V9WgzGSlMxtBj-ap62CF3aWoiQh4eQSfu7kr0JYoQWJqv7jBNrR3UijxdIsc4TKqURbB-2au70dEPJxc493LLS3YGsb2N_XsT6jnTUSCGIZ-eLbXj_AqLFcJWyE_we56eeOPEBOtbR9eyKnEVzX60Ye9k-HpcITvw7OLy6t-eM7QD4bwD3zOEDM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+models+in+the+brain&rft.jtitle=PLoS+computational+biology&rft.au=Friston%2C+Karl&rft.date=2008-11-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=4&rft.issue=11&rft.spage=e1000211&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon