Hierarchical Models in the Brain
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of a...
Saved in:
Published in | PLoS computational biology Vol. 4; no. 11; p. e1000211 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.11.2008
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. |
---|---|
AbstractList | This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. Models are essential to make sense of scientific data, but they may also play a central role in how we assimilate sensory information. In this paper, we introduce a general model that generates or predicts diverse sorts of data. As such, it subsumes many common models used in data analysis and statistical testing. We show that this model can be fitted to data using a single and generic procedure, which means we can place a large array of data analysis procedures within the same unifying framework. Critically, we then show that the brain has, in principle, the machinery to implement this scheme. This suggests that the brain has the capacity to analyse sensory input using the most sophisticated algorithms currently employed by scientists and possibly models that are even more elaborate. The implications of this work are that we can understand the structure and function of the brain as an inference machine. Furthermore, we can ascribe various aspects of brain anatomy and physiology to specific computational quantities, which may help understand both normal brain function and how aberrant inferences result from pathological processes associated with psychiatric disorders. This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. Author Summary Models are essential to make sense of scientific data, but they may also play a central role in how we assimilate sensory information. In this paper, we introduce a general model that generates or predicts diverse sorts of data. As such, it subsumes many common models used in data analysis and statistical testing. We show that this model can be fitted to data using a single and generic procedure, which means we can place a large array of data analysis procedures within the same unifying framework. Critically, we then show that the brain has, in principle, the machinery to implement this scheme. This suggests that the brain has the capacity to analyse sensory input using the most sophisticated algorithms currently employed by scientists and possibly models that are even more elaborate. The implications of this work are that we can understand the structure and function of the brain as an inference machine. Furthermore, we can ascribe various aspects of brain anatomy and physiology to specific computational quantities, which may help understand both normal brain function and how aberrant inferences result from pathological processes associated with psychiatric disorders. This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain. |
Author | Friston, Karl |
AuthorAffiliation | The Wellcome Trust Centre of Neuroimaging, University College London, London, United Kingdom Indiana University, United States of America |
AuthorAffiliation_xml | – name: The Wellcome Trust Centre of Neuroimaging, University College London, London, United Kingdom – name: Indiana University, United States of America |
Author_xml | – sequence: 1 givenname: Karl surname: Friston fullname: Friston, Karl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18989391$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEUtFAR_YB_gGBP3BL8_LG2OSCVCmilIi5wtmzv28aRsw72Bol_302zrVoOcPLInhmPn-eUHA15QEJeA10CV_B-nXdlcGm5DT4ugVLKAJ6RE5CSLxSX-ugRPianta4pnaBpX5Bj0EYbbuCENJcRiythFYNLzbfcYapNHJpxhc2n4uLwkjzvXar4al7PyM8vn39cXC6uv3-9uji_XgTJ1Ljome6E4RSpbnWHjmnhuTPoBXCPXrc9MCGoQAmiA6_ROe_7EFqFOAHkZ-TtwXebcrXz46oFDkIyCpxPjKsDo8tubbclblz5Y7OL9m4jlxvryhhDQku1otwI5QC5MCoY6Ci2upcdU71hfvL6ON-28xvsAg5jcemJ6dOTIa7sTf5tmVS0ZXIyeDcblPxrh3W0m1gDpuQGzLtqW6PUNG_2XyIY2WqhxUR88zjSQ5b7v5oIHw6EUHKtBXsb4ujGmPcJY7JA7b4Y97Oz-2LYuRiTWPwlfvD_l-wWBxO-wQ |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2022_06_024 crossref_primary_10_1109_TNNLS_2021_3115698 crossref_primary_10_3390_philosophies3030023 crossref_primary_10_1016_j_schres_2014_06_011 crossref_primary_10_1371_journal_pcbi_1006711 crossref_primary_10_3389_fnhum_2016_00016 crossref_primary_10_1016_j_neucom_2013_02_044 crossref_primary_10_1016_j_neuroimage_2017_11_068 crossref_primary_10_3389_fncir_2023_1073537 crossref_primary_10_1093_schbul_sbq107 crossref_primary_10_1016_j_neunet_2022_02_003 crossref_primary_10_1017_S0140525X21002351 crossref_primary_10_1177_00048674231215030 crossref_primary_10_1017_S0140525X12000660 crossref_primary_10_1016_j_cpr_2024_102510 crossref_primary_10_3390_philosophies1010111 crossref_primary_10_1016_j_neubiorev_2018_11_019 crossref_primary_10_1523_JNEUROSCI_4255_12_2013 crossref_primary_10_3389_fpsyg_2014_01175 crossref_primary_10_1016_S2215_0366_15_00361_2 crossref_primary_10_1016_j_pneurobio_2020_101821 crossref_primary_10_1109_TNSRE_2018_2889719 crossref_primary_10_1016_j_plrev_2021_04_005 crossref_primary_10_1016_j_neubiorev_2021_11_016 crossref_primary_10_1016_j_neunet_2024_107075 crossref_primary_10_1016_j_neuron_2015_09_040 crossref_primary_10_1016_j_jmp_2020_102447 crossref_primary_10_1016_j_schres_2017_12_018 crossref_primary_10_1371_journal_pcbi_1004643 crossref_primary_10_1371_journal_pcbi_1011183 crossref_primary_10_1016_j_newideapsych_2013_01_004 crossref_primary_10_1016_j_bandc_2016_02_008 crossref_primary_10_1016_j_pneurobio_2012_05_003 crossref_primary_10_1016_j_neuroimage_2020_117212 crossref_primary_10_3390_e23101306 crossref_primary_10_1007_s10994_022_06266_w crossref_primary_10_1016_j_neuron_2022_01_002 crossref_primary_10_7554_eLife_91475_3 crossref_primary_10_1162_imag_a_00410 crossref_primary_10_3389_frai_2020_509354 crossref_primary_10_1016_j_neuroimage_2010_12_039 crossref_primary_10_1126_sciadv_abq8657 crossref_primary_10_1016_j_neubiorev_2017_01_015 crossref_primary_10_5692_clinicalneurol_cn_001944 crossref_primary_10_1093_scan_nsab082 crossref_primary_10_1016_j_neuroimage_2016_01_037 crossref_primary_10_1007_s10803_018_3725_4 crossref_primary_10_1002_hbm_23035 crossref_primary_10_1016_j_ifacol_2018_09_206 crossref_primary_10_1016_j_neuroimage_2017_03_041 crossref_primary_10_1007_s12559_022_10081_9 crossref_primary_10_1073_pnas_2023473118 crossref_primary_10_1371_journal_pone_0016589 crossref_primary_10_3389_fpsyt_2020_00468 crossref_primary_10_1016_j_neuron_2011_10_018 crossref_primary_10_1038_s42003_022_03362_4 crossref_primary_10_1371_journal_pone_0225756 crossref_primary_10_3389_frobt_2022_819107 crossref_primary_10_1016_j_asoc_2023_110909 crossref_primary_10_1016_j_neuroimage_2014_12_015 crossref_primary_10_1104_pp_109_152413 crossref_primary_10_1371_journal_pone_0006421 crossref_primary_10_1016_j_nicl_2020_102239 crossref_primary_10_1371_journal_pcbi_1003219 crossref_primary_10_1523_JNEUROSCI_1677_17_2017 crossref_primary_10_1371_journal_pcbi_1006972 crossref_primary_10_3389_fnbeh_2021_658037 crossref_primary_10_1016_j_specom_2017_05_002 crossref_primary_10_1523_ENEURO_0382_20_2021 crossref_primary_10_1016_j_plrev_2018_05_006 crossref_primary_10_1016_j_neuroimage_2014_12_067 crossref_primary_10_3390_e19060266 crossref_primary_10_1007_s10539_020_09746_2 crossref_primary_10_1371_journal_pone_0144636 crossref_primary_10_1016_j_neuropsychologia_2014_09_033 crossref_primary_10_1162_jocn_a_01366 crossref_primary_10_3389_fncom_2023_1128694 crossref_primary_10_1038_s41467_022_32378_x crossref_primary_10_3389_fpsyg_2021_782765 crossref_primary_10_1007_s10548_017_0571_1 crossref_primary_10_1016_j_plrev_2017_03_001 crossref_primary_10_1109_TAFFC_2018_2887385 crossref_primary_10_3389_fnsys_2021_688424 crossref_primary_10_1016_j_neuroimage_2024_120783 crossref_primary_10_3389_fpsyg_2014_01133 crossref_primary_10_3389_fnins_2022_827400 crossref_primary_10_1152_jn_00328_2022 crossref_primary_10_3390_e20090706 crossref_primary_10_1080_17588928_2012_691277 crossref_primary_10_3389_fnint_2014_00086 crossref_primary_10_1016_j_cortex_2015_05_001 crossref_primary_10_3389_fpsyg_2016_01792 crossref_primary_10_1016_j_neuroimage_2011_01_085 crossref_primary_10_1371_journal_pcbi_1002303 crossref_primary_10_1016_j_neunet_2014_09_001 crossref_primary_10_1038_ncomms14218 crossref_primary_10_1038_s41467_022_29632_7 crossref_primary_10_1016_j_tics_2009_04_005 crossref_primary_10_1038_s41598_021_94825_x crossref_primary_10_1109_JBHI_2020_3034295 crossref_primary_10_1103_PhysRevE_87_042707 crossref_primary_10_1016_j_neuropsychologia_2017_08_003 crossref_primary_10_1016_j_future_2022_12_028 crossref_primary_10_1155_2012_937860 crossref_primary_10_1891_EMDR_2022_0009 crossref_primary_10_1016_j_neubiorev_2014_09_012 crossref_primary_10_1016_j_neuroimage_2017_11_001 crossref_primary_10_1016_j_cortex_2020_09_029 crossref_primary_10_1007_s10539_013_9385_z crossref_primary_10_1080_00048402_2023_2293825 crossref_primary_10_1177_1088868318795730 crossref_primary_10_1093_cercor_bhu323 crossref_primary_10_1177_2394964320913758 crossref_primary_10_1098_rspa_2021_0518 crossref_primary_10_1109_TCDS_2023_3338491 crossref_primary_10_1016_j_neuroimage_2021_117916 crossref_primary_10_1007_s12124_022_09748_7 crossref_primary_10_1088_0957_4484_24_38_384004 crossref_primary_10_1371_journal_pone_0317693 crossref_primary_10_1098_rspb_2016_0475 crossref_primary_10_1002_hbm_23588 crossref_primary_10_1098_rstb_2011_0421 crossref_primary_10_1093_scan_nsad060 crossref_primary_10_3389_frsps_2024_1385819 crossref_primary_10_1038_s41746_025_01516_2 crossref_primary_10_1016_j_tics_2012_11_003 crossref_primary_10_3389_fpsyg_2014_01111 crossref_primary_10_1007_s11229_020_02548_9 crossref_primary_10_1162_jocn_a_00021 crossref_primary_10_1016_j_neunet_2021_08_037 crossref_primary_10_1016_j_neures_2021_12_003 crossref_primary_10_1016_j_neuroimage_2021_117805 crossref_primary_10_1371_journal_pcbi_1011280 crossref_primary_10_1371_journal_pcbi_1002327 crossref_primary_10_1007_s00422_014_0620_8 crossref_primary_10_1016_j_neuroimage_2014_11_027 crossref_primary_10_1523_JNEUROSCI_0135_23_2023 crossref_primary_10_3390_brainsci13010111 crossref_primary_10_1126_sciadv_abe6276 crossref_primary_10_1016_j_cobeha_2025_101509 crossref_primary_10_1038_nrn2787 crossref_primary_10_3389_fpsyt_2024_1386984 crossref_primary_10_1080_13546805_2019_1665994 crossref_primary_10_1016_j_neuropsychologia_2023_108694 crossref_primary_10_1016_j_tics_2016_06_003 crossref_primary_10_1016_j_neuron_2012_10_038 crossref_primary_10_1073_pnas_1514212112 crossref_primary_10_1016_j_conb_2010_04_013 crossref_primary_10_1016_j_neuroimage_2011_08_047 crossref_primary_10_1016_j_celrep_2023_112422 crossref_primary_10_1016_j_jmp_2015_11_003 crossref_primary_10_1360_TB_2023_0939 crossref_primary_10_1073_pnas_1524685113 crossref_primary_10_1371_journal_pcbi_1000328 crossref_primary_10_1007_s11097_021_09747_w crossref_primary_10_1177_17456916231185343 crossref_primary_10_3390_e21030257 crossref_primary_10_3389_fnhum_2017_00075 crossref_primary_10_1016_j_neuroimage_2021_118446 crossref_primary_10_1098_rsif_2016_0555 crossref_primary_10_1523_JNEUROSCI_0601_21_2021 crossref_primary_10_1371_journal_pcbi_1009025 crossref_primary_10_1007_s11229_016_1180_3 crossref_primary_10_1038_s41380_018_0267_2 crossref_primary_10_1002_hbm_22784 crossref_primary_10_1051_medsci_20173311006 crossref_primary_10_1080_09515089_2025_2460502 crossref_primary_10_1016_j_bandc_2015_06_008 crossref_primary_10_1016_j_tics_2016_10_003 crossref_primary_10_1016_j_neuroimage_2014_12_081 crossref_primary_10_1016_j_cub_2010_12_009 crossref_primary_10_1093_cercor_bhae416 crossref_primary_10_3389_fnins_2017_00504 crossref_primary_10_1002_hbm_26817 crossref_primary_10_3390_e20070512 crossref_primary_10_3902_jnns_25_86 crossref_primary_10_1007_s42113_019_00032_3 crossref_primary_10_1093_schbul_sbaa117 crossref_primary_10_1007_s00422_017_0714_1 crossref_primary_10_1371_journal_pcbi_1000462 crossref_primary_10_1016_j_copsyc_2018_10_006 crossref_primary_10_1371_journal_pcbi_1000464 crossref_primary_10_3389_fpsyt_2016_00107 crossref_primary_10_1007_s13164_018_0416_1 crossref_primary_10_3389_fpsyg_2018_00269 crossref_primary_10_1016_j_celrep_2024_115088 crossref_primary_10_3389_fnhum_2019_00039 crossref_primary_10_1016_j_physrep_2020_08_003 crossref_primary_10_1371_journal_pcbi_1011595 crossref_primary_10_1038_srep11248 crossref_primary_10_1038_s41562_024_01838_3 crossref_primary_10_1093_cercor_bhad458 crossref_primary_10_1073_pnas_2115699119 crossref_primary_10_1162_neco_a_01497 crossref_primary_10_1162_neco_a_01378 crossref_primary_10_1016_j_intcom_2012_04_004 crossref_primary_10_1371_journal_pone_0047502 crossref_primary_10_1016_j_plrev_2020_01_004 crossref_primary_10_1002_jnr_23720 crossref_primary_10_1371_journal_pcbi_1000532 crossref_primary_10_1038_s41598_020_64758_y crossref_primary_10_1016_j_neuroimage_2020_117267 crossref_primary_10_3758_s13414_016_1101_z crossref_primary_10_1007_s00221_019_05558_3 crossref_primary_10_3758_s13423_015_0938_9 crossref_primary_10_1016_j_neubiorev_2022_104649 crossref_primary_10_3389_fpsyt_2020_00404 crossref_primary_10_1016_j_plrev_2023_05_012 crossref_primary_10_1109_TNNLS_2015_2492140 crossref_primary_10_1038_nrn2787_c2 crossref_primary_10_1371_journal_pcbi_1010579 crossref_primary_10_1111_tops_12138 crossref_primary_10_1109_TNNLS_2014_2360060 crossref_primary_10_2174_1570159X21666230314143803 crossref_primary_10_3389_fnsys_2019_00031 crossref_primary_10_1016_j_neuroimage_2015_11_015 crossref_primary_10_1002_hbm_23716 crossref_primary_10_1016_j_neubiorev_2022_104873 crossref_primary_10_3389_frobt_2018_00021 crossref_primary_10_1017_S0033291722002458 crossref_primary_10_1162_neco_a_01354 crossref_primary_10_1007_s00422_019_00792_y crossref_primary_10_1152_jn_90291_2008 crossref_primary_10_3389_fncom_2016_00054 crossref_primary_10_3390_electronics11182969 crossref_primary_10_1103_PhysRevE_101_062301 crossref_primary_10_1162_neco_a_01115 crossref_primary_10_1162_neco_a_01239 crossref_primary_10_1109_MSP_2015_2482121 crossref_primary_10_3389_fnins_2021_640412 crossref_primary_10_1016_j_concog_2014_12_003 crossref_primary_10_1016_j_neuroimage_2022_118928 crossref_primary_10_3389_fnsys_2015_00164 crossref_primary_10_1038_s41598_024_85055_y crossref_primary_10_1093_braincomms_fcab098 crossref_primary_10_1111_desc_12435 crossref_primary_10_3389_fpsyg_2022_789377 crossref_primary_10_7554_eLife_11476 crossref_primary_10_1016_j_dr_2014_04_001 crossref_primary_10_1080_15294145_2013_10773716 crossref_primary_10_1016_j_neubiorev_2013_01_029 crossref_primary_10_1016_j_neubiorev_2021_05_029 crossref_primary_10_1162_NETN_a_00018 crossref_primary_10_3390_quantum1010011 crossref_primary_10_1016_j_cortex_2020_02_002 crossref_primary_10_1162_neco_a_01345 crossref_primary_10_3389_fncir_2023_1254009 crossref_primary_10_1007_s11571_022_09863_6 crossref_primary_10_1016_S2215_0366_14_70275_5 crossref_primary_10_1017_S0140525X1200218X crossref_primary_10_1007_s11097_022_09831_9 crossref_primary_10_1017_S0033291723002222 crossref_primary_10_1007_s10339_012_0519_z crossref_primary_10_1038_s41598_022_23382_8 crossref_primary_10_1007_s00221_011_2712_1 crossref_primary_10_1016_j_neubiorev_2022_104655 crossref_primary_10_1016_j_neuron_2014_12_018 crossref_primary_10_1109_JPROC_2015_2455028 crossref_primary_10_3389_fncom_2021_590019 crossref_primary_10_1038_s41467_017_01958_7 crossref_primary_10_1016_j_neuroimage_2022_119524 crossref_primary_10_1162_neco_a_01458 crossref_primary_10_1007_s00422_012_0512_8 crossref_primary_10_1146_annurev_clinpsy_050718_095617 crossref_primary_10_1007_s11097_024_10028_5 crossref_primary_10_1038_s41467_024_47749_9 crossref_primary_10_1016_j_concog_2019_05_005 crossref_primary_10_1109_TCDS_2018_2871857 crossref_primary_10_1109_TCDS_2017_2788820 crossref_primary_10_3389_fpsyg_2022_943785 crossref_primary_10_1109_TCDS_2021_3102993 crossref_primary_10_1162_jocn_a_00886 crossref_primary_10_1007_s12559_008_9004_5 crossref_primary_10_1016_j_cognition_2020_104370 crossref_primary_10_3389_fnhum_2024_1357354 crossref_primary_10_1007_s00422_020_00828_8 crossref_primary_10_1016_j_bbr_2018_10_019 crossref_primary_10_1016_j_dcn_2017_01_009 crossref_primary_10_1109_JPROC_2014_2307023 crossref_primary_10_1177_17456916231188000 crossref_primary_10_1016_j_concog_2018_03_003 crossref_primary_10_1523_JNEUROSCI_0872_24_2024 crossref_primary_10_1016_j_conb_2017_08_012 crossref_primary_10_1016_j_cortex_2015_03_025 crossref_primary_10_1016_j_cub_2018_11_049 crossref_primary_10_1587_nolta_12_143 crossref_primary_10_1016_j_neubiorev_2021_06_021 crossref_primary_10_1162_neco_a_01315 crossref_primary_10_1007_s10339_013_0571_3 crossref_primary_10_1016_j_neubiorev_2020_04_014 crossref_primary_10_3390_info5010028 crossref_primary_10_1016_j_neuropsychologia_2023_108624 crossref_primary_10_7554_eLife_91475 crossref_primary_10_3902_jnns_25_123 crossref_primary_10_1371_journal_pcbi_1008480 crossref_primary_10_3389_fpsyg_2017_01659 crossref_primary_10_1007_s00422_021_00859_9 crossref_primary_10_1016_j_cognition_2020_104236 crossref_primary_10_1002_mpr_1946 crossref_primary_10_3390_e26090731 crossref_primary_10_1089_brain_2024_0013 crossref_primary_10_1371_journal_pcbi_1002809 crossref_primary_10_33166_AETiC_2019_03_001 crossref_primary_10_3389_fpsyg_2023_1043651 crossref_primary_10_1016_j_cortex_2015_11_024 crossref_primary_10_1007_s10548_013_0337_3 crossref_primary_10_1080_23273798_2015_1102299 crossref_primary_10_1002_hbm_20784 crossref_primary_10_1111_tops_12704 crossref_primary_10_1212_WNL_0000000000000798 crossref_primary_10_1038_s41598_022_24452_7 crossref_primary_10_1016_j_patter_2022_100639 crossref_primary_10_1371_journal_pcbi_1003094 crossref_primary_10_1177_26339137221133401 crossref_primary_10_1159_000484353 crossref_primary_10_1038_s44159_024_00315_y crossref_primary_10_1007_s13164_015_0253_4 crossref_primary_10_1016_j_neubiorev_2016_10_002 crossref_primary_10_1016_j_neuroimage_2011_12_051 crossref_primary_10_1162_neco_a_01642 crossref_primary_10_1016_j_cobeha_2016_04_001 crossref_primary_10_1016_j_jmp_2014_04_003 crossref_primary_10_1098_rstb_2008_0300 crossref_primary_10_1016_j_neubiorev_2016_04_022 crossref_primary_10_3390_e26090759 crossref_primary_10_1111_ejn_14116 crossref_primary_10_1016_j_plrev_2015_04_023 crossref_primary_10_1016_j_neubiorev_2015_02_016 crossref_primary_10_1016_j_schres_2021_01_023 crossref_primary_10_1016_j_neunet_2023_02_039 crossref_primary_10_1016_j_bspc_2021_102556 crossref_primary_10_3389_fpsyg_2021_613587 crossref_primary_10_1016_j_jmp_2017_09_004 crossref_primary_10_1098_rsif_2018_0344 crossref_primary_10_1038_s41593_023_01514_1 crossref_primary_10_3389_fnins_2019_01292 crossref_primary_10_1016_j_neuroimage_2022_118895 crossref_primary_10_1016_j_visres_2023_108195 crossref_primary_10_1167_jov_21_7_5 crossref_primary_10_1136_bmj_m1668 crossref_primary_10_1109_JPROC_2014_2306251 crossref_primary_10_7554_eLife_44516 crossref_primary_10_1080_02699931_2023_2269828 crossref_primary_10_3389_fpsyg_2017_01695 crossref_primary_10_3758_s13423_024_02522_3 crossref_primary_10_1038_s41598_023_31696_4 crossref_primary_10_1016_j_neuroimage_2009_06_034 crossref_primary_10_1007_s00422_011_0424_z crossref_primary_10_1016_j_neuroimage_2021_118693 crossref_primary_10_3389_fnins_2018_00793 crossref_primary_10_3389_fnins_2023_1218510 crossref_primary_10_1523_JNEUROSCI_4216_13_2014 crossref_primary_10_1088_2634_4386_aca7de crossref_primary_10_1016_j_biosystems_2023_104925 crossref_primary_10_1111_nyas_13329 crossref_primary_10_3389_fpsyg_2016_00925 crossref_primary_10_1126_sciadv_add2976 crossref_primary_10_1093_cercor_bhad251 crossref_primary_10_1371_journal_pone_0035029 crossref_primary_10_1007_s11229_021_03304_3 crossref_primary_10_1016_j_neuroimage_2014_01_047 crossref_primary_10_1016_j_neuroimage_2016_05_065 crossref_primary_10_1016_j_tics_2017_04_003 crossref_primary_10_1038_s41598_022_19203_7 crossref_primary_10_1016_j_nicl_2022_103293 crossref_primary_10_1016_j_scog_2015_04_002 crossref_primary_10_7554_eLife_28295 crossref_primary_10_1162_jocn_a_00705 crossref_primary_10_1016_j_cortex_2017_04_008 crossref_primary_10_1016_j_neubiorev_2023_105262 crossref_primary_10_1038_s41593_018_0200_7 crossref_primary_10_1152_jn_00581_2012 crossref_primary_10_1371_journal_pcbi_1006316 crossref_primary_10_3390_su12176881 crossref_primary_10_1016_j_neunet_2009_07_023 crossref_primary_10_1007_s11097_016_9472_0 crossref_primary_10_1098_rsif_2024_0508 crossref_primary_10_3724_SP_J_1042_2020_00085 crossref_primary_10_1016_j_neuroimage_2020_117501 crossref_primary_10_1111_ejn_14263 crossref_primary_10_1093_texcom_tgab028 crossref_primary_10_3389_fnins_2024_1425861 crossref_primary_10_1038_s41467_023_39823_5 crossref_primary_10_1038_s44271_024_00120_6 crossref_primary_10_3390_e26090797 crossref_primary_10_1167_jov_22_12_1 crossref_primary_10_1371_journal_pcbi_1003157 crossref_primary_10_1523_JNEUROSCI_1520_15_2015 crossref_primary_10_1016_j_neuroimage_2017_05_068 crossref_primary_10_3390_brainsci12040447 crossref_primary_10_1016_j_pneurobio_2015_09_001 crossref_primary_10_3390_e26080642 crossref_primary_10_1016_j_plrev_2018_10_002 crossref_primary_10_1371_journal_pcbi_1003288 crossref_primary_10_1371_journal_pcbi_1002198 crossref_primary_10_1002_hbm_25019 crossref_primary_10_1177_09637214211029977 crossref_primary_10_1016_j_cortex_2017_01_016 crossref_primary_10_3389_frai_2019_00018 crossref_primary_10_3389_fncom_2022_1062678 crossref_primary_10_1016_j_bpsc_2017_12_004 crossref_primary_10_3389_fnhum_2015_00101 crossref_primary_10_1371_journal_pcbi_1010719 crossref_primary_10_1016_j_concog_2016_06_011 crossref_primary_10_1007_s00422_018_0785_7 crossref_primary_10_1016_j_eswa_2025_126904 crossref_primary_10_3758_s13428_023_02306_y crossref_primary_10_1016_j_plrev_2022_07_007 crossref_primary_10_1016_j_neunet_2021_09_011 crossref_primary_10_1016_j_neuroimage_2011_03_005 crossref_primary_10_3758_s13415_019_00721_3 crossref_primary_10_1098_rstb_2014_0169 crossref_primary_10_1124_pharmrev_121_000508 crossref_primary_10_1016_j_infbeh_2019_02_001 crossref_primary_10_7554_eLife_73651 crossref_primary_10_1007_s11482_020_09854_x crossref_primary_10_1073_pnas_2408791122 crossref_primary_10_1371_journal_pcbi_1008629 crossref_primary_10_1525_collabra_165 crossref_primary_10_1002_hbm_26251 crossref_primary_10_1007_s11517_021_02444_5 crossref_primary_10_1007_s12304_014_9210_3 crossref_primary_10_1038_s41380_021_01029_w crossref_primary_10_1109_LRA_2020_2974451 crossref_primary_10_1098_rstb_2013_0522 crossref_primary_10_1098_rstb_2016_0007 crossref_primary_10_1007_s00213_022_06153_1 crossref_primary_10_1016_j_schres_2016_07_014 crossref_primary_10_1371_journal_pone_0258089 crossref_primary_10_1038_srep28991 crossref_primary_10_1016_j_neuroimage_2012_06_068 crossref_primary_10_1007_s10339_020_01009_y crossref_primary_10_1016_j_neubiorev_2018_04_017 crossref_primary_10_1371_journal_pbio_1002400 crossref_primary_10_1111_j_1468_0017_2011_01418_x crossref_primary_10_1162_jocn_a_01085 crossref_primary_10_1155_2010_621670 crossref_primary_10_1007_s13164_020_00481_x crossref_primary_10_1371_journal_pcbi_1004463 crossref_primary_10_1016_j_neubiorev_2021_09_009 crossref_primary_10_3389_fpsyt_2016_00190 crossref_primary_10_1007_s10994_021_06092_6 crossref_primary_10_1162_jocn_a_02181 crossref_primary_10_3390_e26010041 crossref_primary_10_1016_j_neubiorev_2023_105473 crossref_primary_10_3389_fnhum_2014_00666 crossref_primary_10_1016_j_jmp_2021_102503 crossref_primary_10_3389_fnins_2017_00290 crossref_primary_10_3389_fpsyg_2014_01417 crossref_primary_10_1016_j_neuroimage_2018_11_037 crossref_primary_10_1038_s41537_024_00459_z crossref_primary_10_1038_s41598_024_56811_x crossref_primary_10_1016_j_neuroimage_2018_05_042 crossref_primary_10_1016_j_neuropsychologia_2012_07_023 crossref_primary_10_3389_fnins_2023_1270556 crossref_primary_10_1038_s41467_020_20505_5 crossref_primary_10_1007_s11023_017_9441_6 crossref_primary_10_1111_cogs_12146 crossref_primary_10_1038_srep31943 crossref_primary_10_1093_cercor_bhae057 crossref_primary_10_3389_fpsyg_2015_01515 crossref_primary_10_1016_j_neubiorev_2023_105363 crossref_primary_10_1523_ENEURO_0467_18_2019 crossref_primary_10_3389_fnhum_2014_00457 crossref_primary_10_3389_fpsyg_2022_869894 crossref_primary_10_1093_cercor_bhad085 crossref_primary_10_1007_s00221_023_06573_1 crossref_primary_10_1016_j_tics_2018_10_006 crossref_primary_10_1007_s00422_010_0364_z crossref_primary_10_3389_fnhum_2016_00550 crossref_primary_10_3390_app7090922 crossref_primary_10_1016_j_neuron_2022_05_011 crossref_primary_10_1093_cercor_bhx307 crossref_primary_10_1016_j_neubiorev_2024_105533 crossref_primary_10_1093_brain_awt257 crossref_primary_10_1002_jnr_24240 crossref_primary_10_3389_fnhum_2016_00303 crossref_primary_10_3389_fnhum_2022_955903 crossref_primary_10_1098_rsos_220226 crossref_primary_10_1016_j_jtbi_2017_05_032 crossref_primary_10_1016_j_neuroimage_2011_03_058 crossref_primary_10_1016_j_neuroimage_2011_03_056 crossref_primary_10_3758_s13423_017_1393_6 crossref_primary_10_1162_NECO_a_00863 crossref_primary_10_1162_NECO_a_00862 |
Cites_doi | 10.1023/A:1024130211265 10.1016/j.visres.2008.02.019 10.2741/A634 10.1016/j.physd.2007.07.020 10.1093/brain/121.6.1013 10.1126/science.177.4052.850 10.1162/089976699300016674 10.1523/JNEUROSCI.22-19-08633.2002 10.1088/0954-898X_4_4_001 10.1146/annurev.ne.18.030195.001205 10.1038/335311a0 10.1016/j.neuroimage.2005.10.037 10.1126/science.287.5456.1269 10.1098/rstb.2000.0554 10.1016/S0306-4522(02)00026-X 10.1038/382539a0 10.1523/JNEUROSCI.03-12-02563.1983 10.1038/29537 10.1115/1.3662552 10.1038/329727a0 10.1111/j.2517-6161.1977.tb01600.x 10.1007/978-3-540-28650-9_5 10.1016/j.neunet.2007.12.011 10.1016/j.neuroimage.2008.02.054 10.1038/4580 10.1016/j.neuroimage.2006.08.035 10.1088/1741-2560/5/1/001 10.1162/neco.1995.7.5.889 10.1016/0896-6273(93)90304-A 10.1364/JOSAA.20.001434 10.1098/rstb.2005.1622 10.1016/j.jphysparis.2006.10.001 10.1146/annurev.neuro.23.1.649 10.1111/1467-9868.00196 10.1073/pnas.93.24.13494 10.1016/0006-8993(92)90110-U 10.1523/JNEUROSCI.0318-07.2007 10.1080/01621459.1977.10480998 10.1002/cne.903350307 10.1093/cercor/1.1.1 10.1007/BF00198477 10.1016/j.neuroimage.2008.03.017 10.1016/0306-4522(94)90592-4 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2 10.1016/0006-8993(79)90485-2 10.1146/annurev.neuro.21.1.149 10.1080/01621459.1989.10478825 10.1073/pnas.95.12.7121 10.1006/nimg.2001.1044 10.1016/j.brainres.2008.04.024 10.1038/363345a0 10.1098/rstb.2008.0300 10.1016/j.neuron.2005.04.026 10.1109/TCS.1983.1085397 10.1038/34584 10.1146/annurev.neuro.28.061604.135722 10.1146/annurev.neuro.28.061604.135703 10.1111/j.1751-5823.2004.tb00241.x 10.1038/377725a0 10.1016/j.cub.2004.04.028 10.1038/306021a0 10.1038/381607a0 10.1523/JNEUROSCI.1021-04.2004 10.1016/S0167-8760(03)00053-9 10.1111/j.1467-9868.2006.00552.x 10.1016/j.neunet.2003.06.005 10.1162/neco.1995.7.6.1129 |
ContentType | Journal Article |
Copyright | Karl Friston. 2008 2008 Karl Friston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Friston K (2008) Hierarchical Models in the Brain. PLoS Comput Biol 4(11): e1000211. doi:10.1371/journal.pcbi.1000211 |
Copyright_xml | – notice: Karl Friston. 2008 – notice: 2008 Karl Friston. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Friston K (2008) Hierarchical Models in the Brain. PLoS Comput Biol 4(11): e1000211. doi:10.1371/journal.pcbi.1000211 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1000211 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Anatomy & Physiology |
DocumentTitleAlternate | Hierarchical Models |
EISSN | 1553-7358 |
EndPage | e1000211 |
ExternalDocumentID | 1314520133 oai_doaj_org_article_08703947a1e3497c91d0e68f5d27f92b PMC2570625 18989391 10_1371_journal_pcbi_1000211 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 088130 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS INH INR IPNFZ ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. CGR CUY CVF ECM EIF M0N M~E NPM PGMZT PV9 RZL WOQ 7TK 8FD FR3 P64 PPXIY PQGLB RC3 7X8 5PM PJZUB PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c527t-f28d4930e0868dea284b3a9eb413beb86f124404e514d1b8eaabbfcc67eebbfe3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Sun Oct 01 00:20:30 EDT 2023 Wed Aug 27 01:09:08 EDT 2025 Thu Aug 21 13:42:53 EDT 2025 Fri Jul 11 03:57:44 EDT 2025 Fri Jul 11 01:43:45 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 04:23:33 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Mental Processes Brain Algorithms Animals Humans Nerve Net Probability Linear Models Models, Neurological Nonlinear Dynamics Neural Networks (Computer) |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-f28d4930e0868dea284b3a9eb413beb86f124404e514d1b8eaabbfcc67eebbfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: KJF. Performed the experiments: KJF. Analyzed the data: KJF. Contributed reagents/materials/analysis tools: KJF. Wrote the paper: KJF. |
OpenAccessLink | https://doaj.org/article/08703947a1e3497c91d0e68f5d27f92b |
PMID | 18989391 |
PQID | 19568484 |
PQPubID | 23462 |
ParticipantIDs | plos_journals_1314520133 doaj_primary_oai_doaj_org_article_08703947a1e3497c91d0e68f5d27f92b pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570625 proquest_miscellaneous_69770032 proquest_miscellaneous_19568484 pubmed_primary_18989391 crossref_citationtrail_10_1371_journal_pcbi_1000211 crossref_primary_10_1371_journal_pcbi_1000211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-11-01 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2008 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | DR Cox (ref10) 1965 B Wang (ref31) 2004 DV Buonomano (ref56) 1998; 21 U Neisser (ref89) 1967 M Fliess (ref23) 1983; 30 K Friston (ref5) 2006; 100(1–3) GE Hinton (ref12) 1993 ER John (ref77) 1972; 177(4052) AM Rosier (ref48) 1993; 335 S Grossberg (ref52) 2008; 1218 HJ Kappen (ref76) 2008 JC Martinez-Trujillo (ref59) 2004; 14 KS Rockland (ref42) 1979; 179 M Chait (ref53) 2007; 27(19) JM Hupe (ref47) 1998; 394 DJ Felleman (ref40) 1991; 1 W Schultz (ref70) 2007; 30 CE Rasmussen (ref28) 1996 C Archambeau (ref75) 2007 AJ Yu (ref63) 2005; 46 J Mattout (ref25) 2006; 30 BD Ripley (ref27) 1994 RM Neal (ref14) 1998 MJ Beal (ref16) 2003 T Chen (ref22) 1995; 6(4) KJ Friston (ref4) 2005; 360 S Grossberg (ref51) 2008; 48 M London (ref55) 2005; 28 G Evensen (ref80) 2000; 128(6) AJ Bell (ref36) 1995; 7 SM Sherman (ref44) 1998; 95 H-C Kim (ref29) 2006; 28(12) ME Tipping (ref35) 1999; 61(3) KJ Friston (ref3) 2003; 16 KJ Friston (ref83) 2009 H Sørensen (ref32) 2004; 72(3) K Friston (ref15) 2007; 34 F Crick (ref54) 1998; 391(6664) A Beskos (ref79) 2006; 68 DE Rumelhart (ref21) 1986; Vol. 1 H Helmholtz (ref87) 1860 RL Stratonovich (ref6) 1967 RE Kass (ref8) 1989; 407 WJ Freeman (ref78) 2008; 21(2–3) KJ Friston (ref24) 2002; 16(2) JM Restrepo (ref82) 2008; 237(1) Y Niv (ref71) 2005; 4 DJC MacKay (ref13) 1995; 31 SJ Schiff (ref81) 2008; 5(1) BA Olshausen (ref37) 1996; 381 R Desimone (ref61) 1996; 93(24) S Brocher (ref66) 1992; 573 KY Tseng (ref65) 2004; 24 P Dayan (ref91) 1995; 7 RP Rao (ref64) 1998; 2 ME Tipping (ref26) 2001; 1 K Friston (ref34) 2000; 355(1393) R Kalman (ref30) 1960; 82(1) PR Montague (ref69) 1995; 377(6551) R Henson (ref84) 2000; 287 L Chelazzi (ref60) 1993; 363 TS Lee (ref86) 2003; 20 M Kawato (ref72) 1993; 4 A Angelucci (ref45) 2002; 22 J DeFelipe (ref46) 2002; 31 AP Dempster (ref17) 1977; 39 S Zeki (ref39) 1988; 335 KJ Friston (ref68) 1994; 59(2) S Treue (ref58) 1996; 382 DH Ballard (ref90) 1983; 306 S Roweis (ref20) 1999; 11(2) PC Murphy (ref43) 1987; 329 Z Ghahramani (ref33) 2004 MM Mesulam (ref41) 1998; 121 HB Barlow (ref88) 1961 LF Abbott (ref74) 1997; 275(5297) RP Feynman (ref11) 1972 B Efron (ref9) 1973; 68 JH Maunsell (ref38) 1983; 3 SJ Martin (ref57) 2000; 23 DA Harville (ref18) 1977; 72 R Desimone (ref73) 1995; 18 KJ Friston (ref1) 2008; 41(3) AH Jazwinski (ref7) 1970 T Ozaki (ref19) 1992; 2 D Mumford (ref49) 1992; 66 CE Schroeder (ref62) 2001; 6 GM Edelman (ref50) 1993; 10 KJ Friston (ref2) 2008; 41(3) Q Gu (ref67) 2002; 111 R Näätänen (ref85) 2003; 48 |
References_xml | – volume: 31 start-page: 299 year: 2002 ident: ref46 article-title: Microstructure of the neocortex: comparative aspects. publication-title: J Neurocytol doi: 10.1023/A:1024130211265 – volume: 48 start-page: 1345 year: 2008 ident: ref51 article-title: Temporal dynamics of decision-making during motion perception in the visual cortex. publication-title: Vis Res doi: 10.1016/j.visres.2008.02.019 – volume: 6 start-page: D672 year: 2001 ident: ref62 article-title: Determinants and mechanisms of attentional modulation of neural processing. publication-title: Front Biosci doi: 10.2741/A634 – volume: 237(1) start-page: 14 year: 2008 ident: ref82 article-title: A path integral method for data assimilation. publication-title: Physica D doi: 10.1016/j.physd.2007.07.020 – volume: 121 start-page: 1013 year: 1998 ident: ref41 article-title: From sensation to cognition. publication-title: Brain doi: 10.1093/brain/121.6.1013 – volume: 177(4052) start-page: 850 year: 1972 ident: ref77 article-title: Switchboard versus statistical theories of learning and memory. publication-title: Science doi: 10.1126/science.177.4052.850 – volume: 11(2) start-page: 305 year: 1999 ident: ref20 article-title: A unifying review of linear Gaussian models. publication-title: Neural Comput doi: 10.1162/089976699300016674 – volume: 22 start-page: 8633 year: 2002 ident: ref45 article-title: Circuits for local and global signal integration in primary visual cortex. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-19-08633.2002 – volume: 4 start-page: 415 year: 1993 ident: ref72 article-title: A forward-inverse optics model of reciprocal connections between visual cortical areas. publication-title: Network doi: 10.1088/0954-898X_4_4_001 – volume: 18 start-page: 193 year: 1995 ident: ref73 article-title: Neural mechanisms of selective visual attention. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.ne.18.030195.001205 – year: 2008 ident: ref76 article-title: An introduction to stochastic control theory, path integrals and reinforcement learning. – volume: 335 start-page: 311 year: 1988 ident: ref39 article-title: The functional logic of cortical connections. publication-title: Nature doi: 10.1038/335311a0 – volume: 30 start-page: 753 year: 2006 ident: ref25 article-title: MEG source localization under multiple constraints: an extended Bayesian framework. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.10.037 – volume: 287 start-page: 1269 year: 2000 ident: ref84 article-title: Neuroimaging evidence for dissociable forms of repetition priming. publication-title: Science doi: 10.1126/science.287.5456.1269 – volume: 355(1393) start-page: 135 year: 2000 ident: ref34 article-title: Nonlinear PCA: characterizing interactions between modes of brain activity. publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2000.0554 – volume: 111 start-page: 815 year: 2002 ident: ref67 article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00026-X – volume: 382 start-page: 539 year: 1996 ident: ref58 article-title: Attentional modulation of visual motion processing in cortical areas MT and MST. publication-title: Nature doi: 10.1038/382539a0 – start-page: 5 year: 1993 ident: ref12 article-title: Keeping neural networks simple by minimising the description length of weights. – volume: 3 start-page: 2563 year: 1983 ident: ref38 article-title: The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.03-12-02563.1983 – volume: 394 start-page: 784 year: 1998 ident: ref47 article-title: Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. publication-title: Nature doi: 10.1038/29537 – year: 2003 ident: ref16 article-title: The variational Bayesian EM algorithm for incomplete Data: with application to scoring graphical model structures. – volume: 4 start-page: 1 year: 2005 ident: ref71 article-title: Dopamine, uncertainty and TD learning. publication-title: Behav Brain Funct – volume: 82(1) start-page: 35 year: 1960 ident: ref30 article-title: A new approach to linear filtering and prediction problems. publication-title: ASME Trans J Basic Eng doi: 10.1115/1.3662552 – volume: 329 start-page: 727 year: 1987 ident: ref43 article-title: Corticofugal feedback influences the generation of length tuning in the visual pathway. publication-title: Nature doi: 10.1038/329727a0 – year: 1965 ident: ref10 article-title: The theory of stochastic processes. – volume: 39 start-page: 1 year: 1977 ident: ref17 article-title: Maximum likelihood from incomplete data via the EM algorithm. publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – year: 2004 ident: ref33 article-title: Unsupervised Learning. doi: 10.1007/978-3-540-28650-9_5 – volume: 21(2–3) start-page: 257 year: 2008 ident: ref78 article-title: A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics. publication-title: Neural Netw doi: 10.1016/j.neunet.2007.12.011 – volume: 2 start-page: 113 year: 1992 ident: ref19 article-title: A bridge between nonlinear time-series models and nonlinear stochastic dynamical systems: A local linearization approach. publication-title: Stat Sin – volume: 41(3) start-page: 849 year: 2008 ident: ref2 article-title: DEM: a variational treatment of dynamic systems. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.054 – volume: 2 start-page: 79 year: 1998 ident: ref64 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. publication-title: Nat Neurosci doi: 10.1038/4580 – volume: 34 start-page: 220 year: 2007 ident: ref15 article-title: Variational Bayes and the Laplace approximation. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.035 – volume: 5(1) start-page: 1 year: 2008 ident: ref81 article-title: Kalman filter control of a model of spatiotemporal cortical dynamics. publication-title: J Neural Eng doi: 10.1088/1741-2560/5/1/001 – volume: 7 start-page: 889 year: 1995 ident: ref91 article-title: The Helmholtz machine. publication-title: Neural Comput doi: 10.1162/neco.1995.7.5.889 – volume: 10 start-page: 115 year: 1993 ident: ref50 article-title: Neural Darwinism: selection and reentrant signaling in higher brain function. publication-title: Neuron doi: 10.1016/0896-6273(93)90304-A – volume: 20 start-page: 1434 year: 2003 ident: ref86 article-title: Hierarchical Bayesian inference in the visual cortex. publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.20.001434 – volume: 360 start-page: 815 year: 2005 ident: ref4 article-title: A theory of cortical responses. publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1622 – volume: 100(1–3) start-page: 70 year: 2006 ident: ref5 article-title: A free energy principle for the brain. publication-title: J Physiol Paris doi: 10.1016/j.jphysparis.2006.10.001 – volume: 23 start-page: 649 year: 2000 ident: ref57 article-title: Synaptic plasticity and memory: an evaluation of the hypothesis. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.23.1.649 – volume: 61(3) start-page: 611 year: 1999 ident: ref35 article-title: Probabilistic principal component analysis. publication-title: J R Stat Soc Ser B doi: 10.1111/1467-9868.00196 – volume: 93(24) start-page: 13494 year: 1996 ident: ref61 article-title: Neural mechanisms for visual memory and their role in attention. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.24.13494 – start-page: 1 year: 2007 ident: ref75 article-title: Gaussian process approximations of stochastic differential equations. – volume: 573 start-page: 27 year: 1992 ident: ref66 article-title: Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. publication-title: Brain Res doi: 10.1016/0006-8993(92)90110-U – volume: 68 start-page: 117 year: 1973 ident: ref9 article-title: Stein's estimation rule and its competitors – an empirical Bayes approach. publication-title: J Am Stats Assoc – volume: 275(5297) start-page: 220 year: 1997 ident: ref74 article-title: Synaptic depression and cortical gain control. publication-title: Science – volume: 27(19) start-page: 5207 year: 2007 ident: ref53 article-title: Processing asymmetry of transitions between order and disorder in human auditory cortex. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0318-07.2007 – year: 1967 ident: ref6 article-title: Topics in the Theory of Random Noise – year: 1972 ident: ref11 article-title: Statistical mechanics – volume: 72 start-page: 320 year: 1977 ident: ref18 article-title: Maximum likelihood approaches to variance component estimation and to related problems. publication-title: J Am Stat Assoc doi: 10.1080/01621459.1977.10480998 – volume: 6(4) start-page: 918 year: 1995 ident: ref22 article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. publication-title: IEEE Trans Neural Netw – volume: 335 start-page: 369 year: 1993 ident: ref48 article-title: Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding. publication-title: J Comp Neurol doi: 10.1002/cne.903350307 – volume: 1 start-page: 1 year: 1991 ident: ref40 article-title: Distributed hierarchical processing in the primate cerebral cortex. publication-title: Cereb Cortex doi: 10.1093/cercor/1.1.1 – volume: 66 start-page: 241 year: 1992 ident: ref49 article-title: On the computational architecture of the neocortex. II. The role of cortico-cortical loops. publication-title: Biol Cybern doi: 10.1007/BF00198477 – volume: 41(3) start-page: 747 year: 2008 ident: ref1 article-title: Variational filtering. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.017 – volume: 59(2) start-page: 229 year: 1994 ident: ref68 article-title: Value-dependent selection in the brain: simulation in a synthetic neural model. publication-title: Neuroscience doi: 10.1016/0306-4522(94)90592-4 – volume: 128(6) start-page: 1852 year: 2000 ident: ref80 article-title: An ensemble Kalman smoother for nonlinear dynamics. publication-title: Mon Weather Rev doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2 – volume: 179 start-page: 3 year: 1979 ident: ref42 article-title: Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. publication-title: Brain Res doi: 10.1016/0006-8993(79)90485-2 – volume: 21 start-page: 149 year: 1998 ident: ref56 article-title: Cortical plasticity: from synapses to maps. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.21.1.149 – volume: 31 start-page: 445 year: 1995 ident: ref13 article-title: Free-energy minimisation algorithm for decoding and cryptoanalysis. publication-title: Electron Lett – year: 1998 ident: ref14 article-title: A view of the EM algorithm that justifies incremental sparse and other variants. – year: 1967 ident: ref89 article-title: Cognitive psychology – volume: 407 start-page: 717 year: 1989 ident: ref8 article-title: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478825 – volume: Vol. 1 start-page: 318 year: 1986 ident: ref21 article-title: Learning internal representations by error propagations. – start-page: 105 year: 1994 ident: ref27 article-title: Flexible Nonlinear Approaches to Classification. – volume: 95 start-page: 7121 year: 1998 ident: ref44 article-title: On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.12.7121 – volume: 16(2) start-page: 513 year: 2002 ident: ref24 article-title: Bayesian estimation of dynamical systems: an application to fMRI. publication-title: Neuroimage doi: 10.1006/nimg.2001.1044 – volume: 1218 start-page: 278 year: 2008 ident: ref52 article-title: Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. publication-title: Brain Res doi: 10.1016/j.brainres.2008.04.024 – volume: 363 start-page: 345 year: 1993 ident: ref60 article-title: A neural basis for visual search in inferior temporal cortex. publication-title: Nature doi: 10.1038/363345a0 – year: 2009 ident: ref83 article-title: Predictive coding under the free energy principle. doi: 10.1098/rstb.2008.0300 – volume: 46 start-page: 681 year: 2005 ident: ref63 article-title: Uncertainty, neuromodulation and attention. publication-title: Neuron doi: 10.1016/j.neuron.2005.04.026 – volume: 30 start-page: 554 year: 1983 ident: ref23 article-title: An algebraic approach to nonlinear functional expansions. publication-title: IEEE Trans Circuits Syst doi: 10.1109/TCS.1983.1085397 – year: 2004 ident: ref31 article-title: Variational Bayesian inference for partially observed diffusions. Technical Report 04-4, University of Glasgow. – year: 1860 ident: ref87 article-title: Handbuch der Physiologischen Optik. English translation. – volume: 391(6664) start-page: 245 year: 1998 ident: ref54 article-title: Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. publication-title: Nature doi: 10.1038/34584 – volume: 30 start-page: 259 year: 2007 ident: ref70 article-title: Multiple dopamine functions at different time courses. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.061604.135722 – volume: 28 start-page: 503 year: 2005 ident: ref55 article-title: Dendritic computation. publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.28.061604.135703 – volume: 72(3) start-page: 337 year: 2004 ident: ref32 article-title: Parametric inference for diffusion processes observed at discrete points in time: a survey. publication-title: Int Stat Rev doi: 10.1111/j.1751-5823.2004.tb00241.x – volume: 377(6551) start-page: 725 year: 1995 ident: ref69 article-title: Bee foraging in uncertain environments using predictive Hebbian learning. publication-title: Nature doi: 10.1038/377725a0 – volume: 14 start-page: 744 year: 2004 ident: ref59 article-title: Feature-based attention increases the selectivity of population responses in primate visual cortex. publication-title: Curr Biol doi: 10.1016/j.cub.2004.04.028 – volume: 1 start-page: 211 year: 2001 ident: ref26 article-title: Sparse Bayesian learning and the Relevance Vector Machine. publication-title: J Mach Learn Res – volume: 306 start-page: 21 year: 1983 ident: ref90 article-title: Parallel visual computation. publication-title: Nature doi: 10.1038/306021a0 – volume: 381 start-page: 607 year: 1996 ident: ref37 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. publication-title: Nature doi: 10.1038/381607a0 – volume: 24 start-page: 5131 year: 2004 ident: ref65 article-title: Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1021-04.2004 – start-page: 122 year: 1970 ident: ref7 article-title: Stochastic Processes and Filtering Theory – volume: 48 start-page: 179 year: 2003 ident: ref85 article-title: Mismatch negativity: clinical research and possible applications. publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(03)00053-9 – volume: 68 start-page: 333 year: 2006 ident: ref79 article-title: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2006.00552.x – volume: 16 start-page: 1325 year: 2003 ident: ref3 article-title: Learning and inference in the brain. publication-title: Neural Netw doi: 10.1016/j.neunet.2003.06.005 – volume: 28(12) start-page: 1948 year: 2006 ident: ref29 article-title: Bayesian Gaussian process classification with the EM-EP algorithm. publication-title: IEEE Trans Pattern Anal Mach Intell – year: 1996 ident: ref28 article-title: Evaluation of Gaussian Processes and Other Methods for Nonlinear Regression [PhD thesis]. Toronto, Canada: Department of Computer Science, University of Toronto. – volume: 7 start-page: 1129 year: 1995 ident: ref36 article-title: An information maximisation approach to blind separation and blind de-convolution. publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 – year: 1961 ident: ref88 article-title: Possible principles underlying the transformation of sensory messages. |
SSID | ssj0035896 |
Score | 2.4802072 |
Snippet | This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic... This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic... This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000211 |
SubjectTerms | Algorithms Anatomy & physiology Animals Brain - anatomy & histology Brain - physiology Economic models Humans Linear Models Mathematics/Statistics Mental Processes - physiology Models, Neurological Nerve Net - anatomy & histology Nerve Net - physiology Neural Networks, Computer Neuroscience Neuroscience/Theoretical Neuroscience Nonlinear Dynamics Probability Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyI36ufPXiNa5u0aY4qjiHoycFuJUlTLIxuuO3gf-97aTtXUXbxVtq06Xsvyfs98vJ-hNwKkyfgBnNqipBT5LCmiktBhZEqN4xz7ZLHX16T0Zg_T-LJBtUX5oTV5YFrxQ0CGFBMcqFCy-AjRoZ5YJO0iPNIFDLSuPqCz2uDqXoNZnHqmLmQFIcKxifNoTkmwkFjo7u50SXmCICTCztOydXux1qn09niN9z5M31ywx8ND8h-AyT9-1qAQ7JjqyOyW1NLfh4Tf1Ti0WLHdDL1Hd_Nwi8rH_Cer5EW4oSMh09vjyPasCFQE0diSYsozblkgYUgJM2tAr-imZJWgxvSVqdJga464BYgUB7q1CqldWFMIqyFC8tOSa-aVbZPfAk4C4BUIRKluEkTFQWR5KEwALU5xGseYa06MtOUCkfGimnm9r8EhAy1kBkqMWuU6BG6fmtel8rY0v4BNb1ui4Wu3Q0wf9aYP9tmfo_00U5tBwvoLoQRB8CWeeSmtV0GcwY3QlRlZytog2ckecr_bpEALIZhFHnkrLb1t0TIt8kk_L3ojIKOGN0nVfnu6nYjYSCEm-f_IfcF2XOZK-5U5CXpLT9W9grg0VJfu5nwBc0kCtI priority: 102 providerName: Directory of Open Access Journals |
Title | Hierarchical Models in the Brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18989391 https://www.proquest.com/docview/19568484 https://www.proquest.com/docview/69770032 https://pubmed.ncbi.nlm.nih.gov/PMC2570625 https://doaj.org/article/08703947a1e3497c91d0e68f5d27f92b http://dx.doi.org/10.1371/journal.pcbi.1000211 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Ra9swED66lsFeyrpui7c188NeVWxLsaSHMZq1WRi0lLJA3owky1sgOF2SQvvvdyfb6VJa-pLEjhxZp7vcdz7pPoAv0pU5usGSuSoVjDismRFaMum0KR0XwobF4-cX-Xgifk4H0x3oOFtbAa4eDe2IT2qynB_f_r37hgb_NbA2yLS76Pja2Rll_dFtYTy0h75Jkqmei01egQ9UYOwishwm8ajdTPfUr2w5q1DTn2qgzherx_Dow2WV__mp0WvYbwFmfNJoxAHs-PoNvGwoJ-8OIR7PaMtxYECZx4EHZxXP6hhxYGyJLuItTEZnv76PWcuSwNwgk2tWZaoUmicegxNVeoP-xnKjvUX3ZL1VeUUuPBEeoVGZWuWNsbZyLpfe4wfP38Fuvah9D2KN-AsBViVzY4RTucmSTKMUHUJwgXFcBLwTR-HaEuLEZDEvQl5MYijRDLIgIRatECNgm6uumxIaz7QfkqQ3bakAdjixWP4uWnsqEvyf4VpIk3qOuuV0WiY-V9WgzGSlMxtBj-ap62CF3aWoiQh4eQSfu7kr0JYoQWJqv7jBNrR3UijxdIsc4TKqURbB-2au70dEPJxc493LLS3YGsb2N_XsT6jnTUSCGIZ-eLbXj_AqLFcJWyE_we56eeOPEBOtbR9eyKnEVzX60Ye9k-HpcITvw7OLy6t-eM7QD4bwD3zOEDM |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+models+in+the+brain&rft.jtitle=PLoS+computational+biology&rft.au=Friston%2C+Karl&rft.date=2008-11-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=4&rft.issue=11&rft.spage=e1000211&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000211&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |