Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents

Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administ...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 1; no. 9; pp. 4876 - 4898
Main Authors Orozco, Dayana, Kouznetsov, Vladimir V, Bermúdez, Armando, Vargas Méndez, Leonor Y, Mendoza Salgado, Arturo René, Meléndez Gómez, Carlos Mario
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.01.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions.
AbstractList Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad–Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions.
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad–Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad–Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - and and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Author Bermúdez, Armando
Vargas Méndez, Leonor Y
Kouznetsov, Vladimir V
Orozco, Dayana
Mendoza Salgado, Arturo René
Meléndez Gómez, Carlos Mario
AuthorAffiliation Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química
CMN
Universidad Industrial de Santander
Universidad del Atlántico
Universidad Santo Tomás
Laboratorio de Química Orgánica y Biomolecular
Grupo de Investigaciones Ambientales para el Desarrollo Sostenible
Facultad de Química Ambiental
Facultad de Ciencias Básicas
Parque Tecnológico Guatiguara
AuthorAffiliation_xml – name: Grupo de Investigaciones Ambientales para el Desarrollo Sostenible
– name: Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química
– name: Laboratorio de Química Orgánica y Biomolecular
– name: Parque Tecnológico Guatiguara
– name: Universidad Santo Tomás
– name: CMN
– name: Universidad Industrial de Santander
– name: Facultad de Ciencias Básicas
– name: Universidad del Atlántico
– name: Facultad de Química Ambiental
Author_xml – sequence: 1
  givenname: Dayana
  surname: Orozco
  fullname: Orozco, Dayana
– sequence: 2
  givenname: Vladimir V
  surname: Kouznetsov
  fullname: Kouznetsov, Vladimir V
– sequence: 3
  givenname: Armando
  surname: Bermúdez
  fullname: Bermúdez, Armando
– sequence: 4
  givenname: Leonor Y
  surname: Vargas Méndez
  fullname: Vargas Méndez, Leonor Y
– sequence: 5
  givenname: Arturo René
  surname: Mendoza Salgado
  fullname: Mendoza Salgado, Arturo René
– sequence: 6
  givenname: Carlos Mario
  surname: Meléndez Gómez
  fullname: Meléndez Gómez, Carlos Mario
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35498276$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7MW--K4EfNmKo5ncZuZFKIs3LAhFn0OaOWnTzSbbJKMs_edNu3WtRTAvCTm_8-U7OWcf7YQYAKFnLXnTEja8NUPSZBiIWDxCe5Rw2VAih5175110mPMlqUuKlsr2Cdplgg897eQeuj4FA6HgvA7lAoozGKyNqWTsAq43eJVgpZMuLgYcLabNjL3mR432Cwhrj2c6rf0RvppciN4FwMvowUweMi7xp05jxjoU1yxqrMSV17m4Eevz-mZ-ih5b7TMc3u0H6PuH99_mn5qTrx8_z49PGiNoVxpLLKec99SO0Gk2ErAUjO2slKYF1gszUisqAJKdUeCttLSjvWG875kcO3aA3m10V9PZEsabepP2apXcsrpXUTv1dyS4C3Uef6iB8EH0pArM7gRSvJogF7V02YD3OkCcsqJS9JKL6vb_qOg4o31LREVfPkAv45RC_QlFmSCUE0l4pV7cN791_buFFXi1AUyKOSewW6Ql6mZE1Hw4Pb4dkS8VJg9g48ptc2vhzv875fkmJWWzlf4zdewXB7rIIA
CitedBy_id crossref_primary_10_1002_ajoc_202300181
crossref_primary_10_1134_S1070428023040188
crossref_primary_10_1246_bcsj_20210461
crossref_primary_10_1002_anie_202007699
crossref_primary_10_1021_acscatal_3c00088
crossref_primary_10_1107_S2053229622010063
crossref_primary_10_1021_acs_joc_0c02459
crossref_primary_10_2174_1385272827666221219101902
crossref_primary_10_1107_S2053229623001432
crossref_primary_10_1134_S1068162024010254
crossref_primary_10_1007_s12010_024_05164_2
crossref_primary_10_1002_slct_202002790
crossref_primary_10_1021_acs_joc_4c02038
crossref_primary_10_1016_j_actatropica_2023_106846
crossref_primary_10_1002_adsc_202301405
crossref_primary_10_2174_1570179417666201228165500
crossref_primary_10_1021_acs_joc_1c00078
crossref_primary_10_1002_ange_202007699
crossref_primary_10_1002_cctc_202301048
crossref_primary_10_1002_adsc_202200200
crossref_primary_10_1055_a_1638_5030
Cites_doi 10.1039/C5RA07798B
10.1039/C4MD00284A
10.4155/fmc.15.34
10.1021/acs.orglett.6b00522
10.1055/s-0035-1562496
10.1016/j.tetlet.2014.02.090
10.1021/acs.orglett.7b03673
10.1039/C7GC03175K
10.1039/b311021b
10.2174/157018007784620031
10.1016/j.drudis.2017.06.004
10.1016/j.biopha.2015.10.028
10.1134/S107042801102014X
10.1021/jo2008934
10.1246/cl.130432
10.1016/j.tetlet.2012.12.094
10.1002/asia.201402742
10.1081/SCC-120006472
10.1039/C8RA07212D
10.1134/S107042721103030X
10.1002/ejoc.201400073
10.1016/j.tetlet.2014.08.034
10.1016/j.tet.2008.12.059
10.1021/acs.joc.8b01204
10.1016/j.tet.2012.04.014
10.1016/j.ccr.2007.06.003
10.2174/1385272053369196
10.1039/C4RA01814A
10.1021/acs.joc.8b00552
10.1039/C4RA10613J
10.1016/j.bmc.2014.12.018
10.1055/s-0030-1250548
10.1021/jo101103a
10.1002/adsc.201400203
10.1038/nrmicro.2016.193
10.1021/np5006554
10.1016/j.bmcl.2005.06.036
10.1021/acs.organomet.7b00174
10.1111/j.1574-695X.2009.00615.x
10.1021/jo5015883
10.1016/j.tetlet.2015.12.028
10.1371/journal.pone.0131210
10.1007/s00706-006-0513-1
10.1016/j.tetlet.2014.10.079
10.1021/acs.joc.8b01675
10.1016/j.tetlet.2016.10.113
10.1016/j.catcom.2017.02.005
10.1128/AAC.49.12.4950-4956.2005
10.1016/j.bmcl.2017.07.051
10.1016/j.tet.2014.06.088
10.1172/JCI33945
10.1021/cc900165j
10.1016/j.tetlet.2006.02.136
10.1007/s12039-018-1466-8
10.1016/j.bioorg.2018.07.016
10.3390/molecules21070827
10.1016/j.jep.2013.03.080
10.1021/jo01282a063
10.1039/p29720001120
10.1021/acs.orglett.5b01456
10.1080/00397911.2016.1193754
10.1002/jccs.201700190
10.1093/bmb/lds031
10.1039/C4OB01025F
10.1016/j.tetlet.2014.12.016
10.1021/ja902762a
10.1021/co400144b
10.1021/acs.joc.6b01910
10.1016/j.catcom.2013.07.029
10.2174/0929867311320130010
10.1051/parasite/2011184333
10.1016/j.tetlet.2017.04.007
10.1039/C8RA06826G
10.1016/j.tetlet.2018.02.008
10.1039/C6RA23858K
10.1039/C7OB02411H
10.1016/j.cclet.2018.05.036
10.3762/bjoc.13.193
10.1016/j.tetlet.2018.06.054
10.1016/j.bmcl.2013.02.054
10.1002/ijch.199700007
10.1128/AAC.40.11.2447
10.1016/j.tet.2011.03.087
10.1016/j.jep.2007.05.030
10.1016/j.tet.2016.03.004
10.1016/j.tetlet.2015.09.035
10.1016/j.tetlet.2015.04.070
10.1021/acs.joc.7b01575
10.1039/b100455g
10.1016/j.molliq.2016.04.094
10.1371/journal.pone.0142678
10.3390/molecules21080986
10.1021/np50099a013
10.1021/op050227k
10.1016/j.tet.2008.01.046
10.1002/ejoc.201300368
10.1002/asia.201201039
10.1039/C6OB01083K
10.1016/j.ejmech.2014.07.092
10.2174/092986710793205345
10.1039/C9OB01294J
10.1016/j.jsps.2012.03.002
10.1039/C4OB00231H
10.1021/ol300391t
10.1002/ejoc.201900880
10.1055/s-0034-1378355
10.1016/j.ejmech.2016.05.007
10.1007/s10593-009-0229-3
10.2174/1389557511313050010
10.1021/cr500098f
10.1016/S0040-4039(01)00604-9
10.1016/j.tetlet.2008.06.054
10.1021/acs.orglett.6b03399
10.2174/0929867311320210005
10.1016/j.tetlet.2014.04.047
10.1002/anie.201102076
10.1016/j.tetlet.2013.07.053
10.2174/1386207319666160506123921
10.1021/ja00763a064
10.1002/adsc.201800373
10.1039/C7QO00637C
10.1021/cr500365f
10.1002/adsc.201801709
10.1007/s10593-006-0150-y
10.1021/acs.orglett.7b01686
10.1016/j.bmc.2012.08.036
10.3390/molecules21030340
10.1134/S1070428012060139
10.1016/j.biopha.2007.02.001
10.1016/j.tetlet.2009.03.208
10.1021/acs.orglett.7b02838
10.1016/j.biopha.2008.09.002
10.1021/jm980043e
10.1039/c3ob27270b
10.1016/j.farmac.2004.11.010
10.1055/s-1995-4053
10.1039/C5RA23065A
10.1016/j.bmc.2003.09.007
10.1128/AAC.01299-10
10.1039/C9OB01909J
10.1039/C4RA14486D
10.1039/C6GC03140D
10.1080/00397910903221035
10.1080/14756366.2017.1407926
10.1016/j.ejmech.2009.02.024
10.1021/acssuschemeng.6b01010
10.1016/j.tet.2008.12.077
10.1021/acs.joc.7b03198
10.1021/ol200684b
10.1056/NEJMra1410150
10.1016/j.bmc.2012.10.027
10.1021/acs.joc.5b00375
10.1039/C7OB02310C
10.1007/s12039-009-0057-0
10.2174/1570193X16666181228101137
10.1128/AAC.01936-17
10.1016/j.bmc.2013.04.063
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/c9ra09905k
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 4898
ExternalDocumentID PMC9049580
35498276
10_1039_C9RA09905K
c9ra09905k
Genre Journal Article
Review
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c527t-f0f424482fde7a3d0ef2ecf7f66c1e385cd2f5448e63b2e416f2728c348836d73
ISSN 2046-2069
IngestDate Thu Aug 21 18:29:33 EDT 2025
Thu Jul 10 17:55:10 EDT 2025
Fri Jul 11 15:35:06 EDT 2025
Mon Jun 30 03:20:58 EDT 2025
Mon Jul 21 06:03:49 EDT 2025
Tue Jul 01 04:05:11 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Sat Jan 08 04:36:17 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-f0f424482fde7a3d0ef2ecf7f66c1e385cd2f5448e63b2e416f2728c348836d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
ORCID 0000-0003-1417-8355
OpenAccessLink http://dx.doi.org/10.1039/c9ra09905k
PMID 35498276
PQID 2350240604
PQPubID 2047525
PageCount 23
ParticipantIDs proquest_miscellaneous_2658645527
proquest_journals_2350240604
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9049580
crossref_citationtrail_10_1039_C9RA09905K
proquest_miscellaneous_2574328105
crossref_primary_10_1039_C9RA09905K
rsc_primary_c9ra09905k
pubmed_primary_35498276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-January-29
PublicationDateYYYYMMDD 2020-01-29
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-January-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Meyet (C9RA09905K-(cit153)/*[position()=1]) 2014; 79
Polański (C9RA09905K-(cit67)/*[position()=1]) 2004; 61
Zhang (C9RA09905K-(cit80)/*[position()=1]) 2014; 55
Yan (C9RA09905K-(cit101)/*[position()=1]) 2014; 356
Wang (C9RA09905K-(cit127)/*[position()=1]) 2016; 48
Ogata (C9RA09905K-(cit57)/*[position()=1]) 1972
Yu (C9RA09905K-(cit162)/*[position()=1]) 2018; 8
Njogu (C9RA09905K-(cit2)/*[position()=1]) 2013; 20
Marella (C9RA09905K-(cit8)/*[position()=1]) 2013; 21
Yan (C9RA09905K-(cit82)/*[position()=1]) 2011; 76
De Paolis (C9RA09905K-(cit124)/*[position()=1]) 2009; 50
Madapa (C9RA09905K-(cit7)/*[position()=1]) 2008; 12
Jin (C9RA09905K-(cit50)/*[position()=1]) 2017; 19
Lin (C9RA09905K-(cit107)/*[position()=1]) 2006; 47
Xu (C9RA09905K-(cit139)/*[position()=1]) 2018; 20
Zhang (C9RA09905K-(cit97)/*[position()=1]) 2017; 19
Wu (C9RA09905K-(cit99)/*[position()=1]) 2009; 131
Zulfiqar (C9RA09905K-(cit18)/*[position()=1]) 2017; 22
Zongo (C9RA09905K-(cit32)/*[position()=1]) 2013; 148
Batista (C9RA09905K-(cit35)/*[position()=1]) 2016; 4
Li (C9RA09905K-(cit155)/*[position()=1]) 2011; 67
Wang (C9RA09905K-(cit103)/*[position()=1]) 2016; 21
Xiao (C9RA09905K-(cit96)/*[position()=1]) 2019; 17
Xia (C9RA09905K-(cit100)/*[position()=1]) 2016; 18
Matsubara (C9RA09905K-(cit54)/*[position()=1]) 2011; 50
Amarasekara (C9RA09905K-(cit51)/*[position()=1]) 2014; 55
Zheng (C9RA09905K-(cit125)/*[position()=1]) 2016; 6
Field (C9RA09905K-(cit17)/*[position()=1]) 2017; 15
El-Sayed (C9RA09905K-(cit90)/*[position()=1]) 2018; 33
Jadhav (C9RA09905K-(cit138)/*[position()=1]) 2017; 19
Mao (C9RA09905K-(cit72)/*[position()=1]) 2014
Bering (C9RA09905K-(cit98)/*[position()=1]) 2015; 17
Loiseau (C9RA09905K-(cit61)/*[position()=1]) 2011; 55
Le (C9RA09905K-(cit56)/*[position()=1]) 2016; 21
Dabiri (C9RA09905K-(cit92)/*[position()=1]) 2008; 49
Lee (C9RA09905K-(cit131)/*[position()=1]) 2018; 83
Li (C9RA09905K-(cit76)/*[position()=1]) 2012; 48
Baig (C9RA09905K-(cit95)/*[position()=1]) 2017; 27
Njoroge (C9RA09905K-(cit1)/*[position()=1]) 2014; 114
E Brown (C9RA09905K-(cit113)/*[position()=1]) 2016; 14
Zhang (C9RA09905K-(cit135)/*[position()=1]) 2019; 361
Fallah-Mehrjardi (C9RA09905K-(cit148)/*[position()=1]) 2017; 14
Pearson (C9RA09905K-(cit145)/*[position()=1]) 1997; 37
Kouznetsov (C9RA09905K-(cit23)/*[position()=1]) 2009; 44
Kouznetsov (C9RA09905K-(cit24)/*[position()=1]) 2013
Saggadi (C9RA09905K-(cit49)/*[position()=1]) 2014; 44
Zhang (C9RA09905K-(cit151)/*[position()=1]) 2014; 9
Ramann (C9RA09905K-(cit11)/*[position()=1]) 2016; 21
Liu (C9RA09905K-(cit126)/*[position()=1]) 2018; 360
Cinar (C9RA09905K-(cit87)/*[position()=1]) 2013; 11
Fasano (C9RA09905K-(cit156)/*[position()=1]) 2017; 36
Sarode (C9RA09905K-(cit154)/*[position()=1]) 2016; 57
Gulakova (C9RA09905K-(cit69)/*[position()=1]) 2011; 47
Reynolds (C9RA09905K-(cit31)/*[position()=1]) 2013; 13
Sridharan (C9RA09905K-(cit60)/*[position()=1]) 2009; 65
Phanindrudu (C9RA09905K-(cit140)/*[position()=1]) 2018; 83
Bompart (C9RA09905K-(cit114)/*[position()=1]) 2013; 21
Taylor (C9RA09905K-(cit65)/*[position()=1]) 1972; 94
Barrett (C9RA09905K-(cit19)/*[position()=1]) 2012; 104
Bachowska (C9RA09905K-(cit83)/*[position()=1]) 2009; 45
Kouznetsov (C9RA09905K-(cit115)/*[position()=1]) 2007; 4
Gong (C9RA09905K-(cit86)/*[position()=1]) 2014; 12
Martínez-Grueiro (C9RA09905K-(cit48)/*[position()=1]) 2005; 60
Fakhfakh (C9RA09905K-(cit36)/*[position()=1]) 2001; 42
Liu (C9RA09905K-(cit150)/*[position()=1]) 2018
Stuart (C9RA09905K-(cit12)/*[position()=1]) 2008; 118
Mekouar (C9RA09905K-(cit58)/*[position()=1]) 1998; 41
Gavrishova (C9RA09905K-(cit68)/*[position()=1]) 2011; 84
Willcox (C9RA09905K-(cit22)/*[position()=1]) 2011; 77
Jiang (C9RA09905K-(cit163)/*[position()=1]) 2018; 5
Staderini (C9RA09905K-(cit71)/*[position()=1]) 2011
Patil (C9RA09905K-(cit123)/*[position()=1]) 2010; 75
Chan-Bacab (C9RA09905K-(cit26)/*[position()=1]) 2001; 18
Vandekerckhove (C9RA09905K-(cit4)/*[position()=1]) 2015; 23
Xu (C9RA09905K-(cit121)/*[position()=1]) 2015; 56
Nakayama (C9RA09905K-(cit44)/*[position()=1]) 2007; 61
Cretton (C9RA09905K-(cit33)/*[position()=1]) 2014; 77
Shahabi (C9RA09905K-(cit105)/*[position()=1]) 2016; 220
Kumar (C9RA09905K-(cit91)/*[position()=1]) 2015; 5
Kouznetsov (C9RA09905K-(cit6)/*[position()=1]) 2005; 9
Kouznetsov (C9RA09905K-(cit42)/*[position()=1]) 2009; 65
Zhang (C9RA09905K-(cit129)/*[position()=1]) 2014; 55
Gisbert (C9RA09905K-(cit167)/*[position()=1]) 2019
Fournet (C9RA09905K-(cit29)/*[position()=1]) 1993; 56
Yaragorla (C9RA09905K-(cit94)/*[position()=1]) 2017; 58
Xu (C9RA09905K-(cit159)/*[position()=1]) 2015; 6
Nakayama (C9RA09905K-(cit40)/*[position()=1]) 2005; 49
Xu (C9RA09905K-(cit77)/*[position()=1]) 2014; 55
Jamal (C9RA09905K-(cit73)/*[position()=1]) 2016; 72
Mir (C9RA09905K-(cit104)/*[position()=1]) 2011; 5
Zhong (C9RA09905K-(cit165)/*[position()=1]) 2016; 81
Bharate (C9RA09905K-(cit10)/*[position()=1]) 2015; 5
Upadhayaya (C9RA09905K-(cit112)/*[position()=1]) 2013; 23
Das (C9RA09905K-(cit122)/*[position()=1]) 2018; 83
da Silveira (C9RA09905K-(cit168)/*[position()=1]) 2019; 16
Fournet (C9RA09905K-(cit30)/*[position()=1]) 1996; 40
Jamal (C9RA09905K-(cit74)/*[position()=1]) 2014; 25
Sharghi (C9RA09905K-(cit134)/*[position()=1]) 2017; 13
Kouznetsov (C9RA09905K-(cit59)/*[position()=1]) 2012; 20
Balaraman (C9RA09905K-(cit46)/*[position()=1]) 2015; 76
Pearson (C9RA09905K-(cit62)/*[position()=1]) 1967; 32
Nagle (C9RA09905K-(cit16)/*[position()=1]) 2014; 114
Tummatorn (C9RA09905K-(cit143)/*[position()=1]) 2015; 80
Yamashkin (C9RA09905K-(cit41)/*[position()=1]) 2006; 42
Rams-Baron (C9RA09905K-(cit88)/*[position()=1]) 2015; 10
Xiao (C9RA09905K-(cit152)/*[position()=1]) 2008; 64
Shah (C9RA09905K-(cit43)/*[position()=1]) 2018; 80
Narasimhamurthy (C9RA09905K-(cit120)/*[position()=1]) 2013; 42
Yaragorla (C9RA09905K-(cit75)/*[position()=1]) 2015; 56
Khillare (C9RA09905K-(cit102)/*[position()=1]) 2017; 9
Zhang (C9RA09905K-(cit133)/*[position()=1]) 2012; 14
Kryshchyshyn (C9RA09905K-(cit3)/*[position()=1]) 2014; 85
Li (C9RA09905K-(cit110)/*[position()=1]) 2017; 15
Fakhfakh (C9RA09905K-(cit37)/*[position()=1]) 2003; 11
Castillo (C9RA09905K-(cit13)/*[position()=1]) 2010; 17
Fakhfakh (C9RA09905K-(cit47)/*[position()=1]) 2002; 32
Mahat (C9RA09905K-(cit109)/*[position()=1]) 2019; 17
Hoet (C9RA09905K-(cit25)/*[position()=1]) 2004; 21
Mrozek-Wilczkiewicz (C9RA09905K-(cit89)/*[position()=1]) 2015; 10
Bernardes (C9RA09905K-(cit15)/*[position()=1]) 2013; 20
Sharma (C9RA09905K-(cit147)/*[position()=1]) 2018; 130
Xu (C9RA09905K-(cit149)/*[position()=1]) 2016; 57
Qian (C9RA09905K-(cit81)/*[position()=1]) 2011; 13
Albrecht (C9RA09905K-(cit161)/*[position()=1]) 2008; 252
Li (C9RA09905K-(cit52)/*[position()=1]) 2017; 98
Gen (C9RA09905K-(cit111)/*[position()=1]) 2017; 19
Ren (C9RA09905K-(cit132)/*[position()=1]) 2018; 59
Bern (C9RA09905K-(cit20)/*[position()=1]) 2015; 373
Musiol (C9RA09905K-(cit66)/*[position()=1]) 2006; 137
Xu (C9RA09905K-(cit128)/*[position()=1]) 2014; 12
Ahmed (C9RA09905K-(cit166)/*[position()=1]) 2018; 20
Jiang (C9RA09905K-(cit141)/*[position()=1]) 2018; 59
Oliveri (C9RA09905K-(cit160)/*[position()=1]) 2016; 120
Tummatorn (C9RA09905K-(cit142)/*[position()=1]) 2012; 68
Borel (C9RA09905K-(cit118)/*[position()=1]) 2015; 56
Li (C9RA09905K-(cit85)/*[position()=1]) 2013; 8
Zhang (C9RA09905K-(cit158)/*[position()=1]) 2018; 30
Trécourt (C9RA09905K-(cit63)/*[position()=1]) 1995
Zhang (C9RA09905K-(cit136)/*[position()=1]) 2014; 9
Chandrashekarappa (C9RA09905K-(cit55)/*[position()=1]) 2013; 54
Normand-Bayle (C9RA09905K-(cit64)/*[position()=1]) 2005; 15
Prajapati (C9RA09905K-(cit9)/*[position()=1]) 2014; 4
Cieslik (C9RA09905K-(cit70)/*[position()=1]) 2012; 20
Chung (C9RA09905K-(cit5)/*[position()=1]) 2015; 7
Varma (C9RA09905K-(cit119)/*[position()=1]) 2010; 40
Pang (C9RA09905K-(cit146)/*[position()=1]) 2017; 82
Oluwafemi (C9RA09905K-(cit28)/*[position()=1]) 2009; 4
Nefertiti (C9RA09905K-(cit116)/*[position()=1]) 2018; 62
Tucker (C9RA09905K-(cit34)/*[position()=1]) 2006; 10
Lee (C9RA09905K-(cit130)/*[position()=1]) 2018; 83
Wang (C9RA09905K-(cit79)/*[position()=1]) 2015; 5
Ma (C9RA09905K-(cit27)/*[position()=1]) 2007; 113
Campos-Vieira (C9RA09905K-(cit38)/*[position()=1]) 2008; 62
Safari (C9RA09905K-(cit53)/*[position()=1]) 2009; 121
Yang (C9RA09905K-(cit164)/*[position()=1]) 2018; 8
Sarma (C9RA09905K-(cit93)/*[position()=1]) 2016; 46
Cavalli (C9RA09905K-(cit14)/*[position()=1]) 2010; 58
Tan (C9RA09905K-(cit157)/*[position()=1]) 2018; 65
Rao (C9RA09905K-(cit78)/*[position()=1]) 2013; 54
Anvar (C9RA09905K-(cit106)/*[position()=1]) 2014; 16
Scotti (C9RA09905K-(cit21)/*[position()=1]) 2016; 19
Stevenson (C9RA09905K-(cit108)/*[position()=1]) 2014; 70
Zhang (C9RA09905K-(cit84)/*[position()=1]) 2013
Luo (C9RA09905K-(cit144)/*[position()=1]) 2015; 5
Madapa (C9RA09905K-(cit6)/*[position()=2]) 2008; 12
Campos-Vieira (C9RA09905K-(cit45)/*[position()=1]) 2011; 18
Xu (C9RA09905K-(cit137)/*[position()=1]) 2017; 15
Wang (C9RA09905K-(cit117)/*[position()=1]) 2010; 12
References_xml – issn: 1996
  doi: Fournet Barrios Muñoz Hocquemiller Roblot Bruneton Richomme Gantier
– issn: 2013
  end-page: p 69-128
  publication-title: New Quinoline-Based Multiple Ligands in Antimalarial Drug Development in: Antimalarial Drug Research and Development
  doi: Kouznetsov
– volume: 14
  start-page: 187
  year: 2017
  ident: C9RA09905K-(cit148)/*[position()=1]
  publication-title: Mini-Rev. Org. Chem.
– volume: 5
  start-page: 42020
  year: 2015
  ident: C9RA09905K-(cit10)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07798B
– volume: 6
  start-page: 61
  year: 2015
  ident: C9RA09905K-(cit159)/*[position()=1]
  publication-title: MedChemComm
  doi: 10.1039/C4MD00284A
– volume: 7
  start-page: 947
  year: 2015
  ident: C9RA09905K-(cit5)/*[position()=1]
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.15.34
– volume: 18
  start-page: 1796
  year: 2016
  ident: C9RA09905K-(cit100)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b00522
– volume: 48
  start-page: 3985
  year: 2016
  ident: C9RA09905K-(cit127)/*[position()=1]
  publication-title: Synthesis
  doi: 10.1055/s-0035-1562496
– volume: 55
  start-page: 2280
  year: 2014
  ident: C9RA09905K-(cit129)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.02.090
– volume: 20
  start-page: 566
  year: 2018
  ident: C9RA09905K-(cit139)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b03673
– volume: 20
  start-page: 261
  year: 2018
  ident: C9RA09905K-(cit166)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC03175K
– volume: 21
  start-page: 353
  year: 2004
  ident: C9RA09905K-(cit25)/*[position()=1]
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b311021b
– volume: 4
  start-page: 293
  year: 2007
  ident: C9RA09905K-(cit115)/*[position()=1]
  publication-title: Lett. Drug Des. Discov.
  doi: 10.2174/157018007784620031
– volume: 22
  start-page: 1516
  year: 2017
  ident: C9RA09905K-(cit18)/*[position()=1]
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2017.06.004
– volume: 76
  start-page: 127
  year: 2015
  ident: C9RA09905K-(cit46)/*[position()=1]
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2015.10.028
– start-page: 2577
  year: 2011
  ident: C9RA09905K-(cit71)/*[position()=1]
  publication-title: Synlett
– volume: 47
  start-page: 245
  year: 2011
  ident: C9RA09905K-(cit69)/*[position()=1]
  publication-title: Russ. J. Org. Chem.
  doi: 10.1134/S107042801102014X
– volume: 76
  start-page: 6849
  year: 2011
  ident: C9RA09905K-(cit82)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo2008934
– volume: 12
  start-page: 1116
  year: 2008
  ident: C9RA09905K-(cit6)/*[position()=2]
  publication-title: Curr. Med. Chem.
– volume: 42
  start-page: 1073
  year: 2013
  ident: C9RA09905K-(cit120)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.130432
– volume: 54
  start-page: 1368
  year: 2013
  ident: C9RA09905K-(cit55)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2012.12.094
– volume: 9
  start-page: 3089
  year: 2014
  ident: C9RA09905K-(cit151)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201402742
– volume: 32
  start-page: 2863
  year: 2002
  ident: C9RA09905K-(cit47)/*[position()=1]
  publication-title: Synth. Commun.
  doi: 10.1081/SCC-120006472
– volume: 8
  start-page: 33968
  year: 2018
  ident: C9RA09905K-(cit162)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07212D
– volume: 84
  start-page: 507
  year: 2011
  ident: C9RA09905K-(cit68)/*[position()=1]
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1134/S107042721103030X
– start-page: 3009
  year: 2014
  ident: C9RA09905K-(cit72)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201400073
– volume: 55
  start-page: 5462
  year: 2014
  ident: C9RA09905K-(cit80)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.08.034
– volume: 65
  start-page: 2721
  year: 2009
  ident: C9RA09905K-(cit42)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.12.059
– volume: 83
  start-page: 9137
  year: 2018
  ident: C9RA09905K-(cit140)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b01204
– volume: 68
  start-page: 4732
  year: 2012
  ident: C9RA09905K-(cit142)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2012.04.014
– volume: 252
  start-page: 812
  year: 2008
  ident: C9RA09905K-(cit161)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2007.06.003
– volume: 9
  start-page: 141
  year: 2005
  ident: C9RA09905K-(cit6)/*[position()=1]
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272053369196
– volume: 4
  start-page: 24463
  year: 2014
  ident: C9RA09905K-(cit9)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA01814A
– volume: 83
  start-page: 5177
  year: 2018
  ident: C9RA09905K-(cit130)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b00552
– volume: 5
  start-page: 2920
  year: 2015
  ident: C9RA09905K-(cit91)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10613J
– volume: 23
  start-page: 5098
  year: 2015
  ident: C9RA09905K-(cit4)/*[position()=1]
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2014.12.018
– volume: 77
  start-page: 662
  year: 2011
  ident: C9RA09905K-(cit22)/*[position()=1]
  publication-title: Planta Med.
  doi: 10.1055/s-0030-1250548
– volume: 75
  start-page: 6961
  year: 2010
  ident: C9RA09905K-(cit123)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo101103a
– volume: 356
  start-page: 2375
  year: 2014
  ident: C9RA09905K-(cit101)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201400203
– volume: 15
  start-page: 217
  year: 2017
  ident: C9RA09905K-(cit17)/*[position()=1]
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.193
– volume: 77
  start-page: 2304
  year: 2014
  ident: C9RA09905K-(cit33)/*[position()=1]
  publication-title: J. Nat. Prod.
  doi: 10.1021/np5006554
– volume: 15
  start-page: 4019
  year: 2005
  ident: C9RA09905K-(cit64)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2005.06.036
– volume: 36
  start-page: 1623
  year: 2017
  ident: C9RA09905K-(cit156)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.7b00174
– volume: 58
  start-page: 51
  year: 2010
  ident: C9RA09905K-(cit14)/*[position()=1]
  publication-title: FEMS Immunol. Med. Microbiol.
  doi: 10.1111/j.1574-695X.2009.00615.x
– volume: 79
  start-page: 9835
  year: 2014
  ident: C9RA09905K-(cit153)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo5015883
– volume: 9
  start-page: 3089
  year: 2014
  ident: C9RA09905K-(cit136)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201402742
– volume: 57
  start-page: 226
  year: 2016
  ident: C9RA09905K-(cit149)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.12.028
– volume: 10
  start-page: e0131210
  year: 2015
  ident: C9RA09905K-(cit88)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0131210
– volume: 137
  start-page: 1211
  year: 2006
  ident: C9RA09905K-(cit66)/*[position()=1]
  publication-title: Monatsh. Chem.
  doi: 10.1007/s00706-006-0513-1
– volume: 55
  start-page: 6856
  year: 2014
  ident: C9RA09905K-(cit77)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.10.079
– volume: 83
  start-page: 13036
  year: 2018
  ident: C9RA09905K-(cit131)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b01675
– volume: 57
  start-page: 5753
  year: 2016
  ident: C9RA09905K-(cit154)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2016.10.113
– volume: 98
  start-page: 13
  year: 2017
  ident: C9RA09905K-(cit52)/*[position()=1]
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.02.005
– volume: 9
  start-page: 30
  year: 2017
  ident: C9RA09905K-(cit102)/*[position()=1]
  publication-title: Der Pharma Chem.
– volume: 49
  start-page: 4950
  year: 2005
  ident: C9RA09905K-(cit40)/*[position()=1]
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.49.12.4950-4956.2005
– volume: 27
  start-page: 4039
  year: 2017
  ident: C9RA09905K-(cit95)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2017.07.051
– volume: 70
  start-page: 7350
  year: 2014
  ident: C9RA09905K-(cit108)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2014.06.088
– volume: 118
  start-page: 1301
  year: 2008
  ident: C9RA09905K-(cit12)/*[position()=1]
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI33945
– volume: 12
  start-page: 266
  year: 2010
  ident: C9RA09905K-(cit117)/*[position()=1]
  publication-title: J. Comb. Chem.
  doi: 10.1021/cc900165j
– volume: 47
  start-page: 3127
  year: 2006
  ident: C9RA09905K-(cit107)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.02.136
– volume: 130
  start-page: 73
  year: 2018
  ident: C9RA09905K-(cit147)/*[position()=1]
  publication-title: J. Chem. Sci.
  doi: 10.1007/s12039-018-1466-8
– volume: 80
  start-page: 591
  year: 2018
  ident: C9RA09905K-(cit43)/*[position()=1]
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2018.07.016
– volume: 21
  start-page: 827
  year: 2016
  ident: C9RA09905K-(cit56)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules21070827
– volume: 148
  start-page: 14
  year: 2013
  ident: C9RA09905K-(cit32)/*[position()=1]
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2013.03.080
– volume: 32
  start-page: 2358
  year: 1967
  ident: C9RA09905K-(cit62)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01282a063
– start-page: 1120
  year: 1972
  ident: C9RA09905K-(cit57)/*[position()=1]
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/p29720001120
– volume: 17
  start-page: 3134
  year: 2015
  ident: C9RA09905K-(cit98)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b01456
– volume-title: New Quinoline-Based Multiple Ligands in Antimalarial Drug Development in: Antimalarial Drug Research and Development
  year: 2013
  ident: C9RA09905K-(cit24)/*[position()=1]
– volume: 46
  start-page: 1187
  year: 2016
  ident: C9RA09905K-(cit93)/*[position()=1]
  publication-title: Synth. Commun.
  doi: 10.1080/00397911.2016.1193754
– volume: 65
  start-page: 65
  year: 2018
  ident: C9RA09905K-(cit157)/*[position()=1]
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.201700190
– volume: 104
  start-page: 175
  year: 2012
  ident: C9RA09905K-(cit19)/*[position()=1]
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/lds031
– volume: 12
  start-page: 6557
  year: 2014
  ident: C9RA09905K-(cit86)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB01025F
– volume: 56
  start-page: 662
  year: 2015
  ident: C9RA09905K-(cit118)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.12.016
– volume: 131
  start-page: 13888
  year: 2009
  ident: C9RA09905K-(cit99)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902762a
– volume: 16
  start-page: 93
  year: 2014
  ident: C9RA09905K-(cit106)/*[position()=1]
  publication-title: ACS Comb. Sci.
  doi: 10.1021/co400144b
– volume: 81
  start-page: 10825
  year: 2016
  ident: C9RA09905K-(cit165)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b01910
– volume: 44
  start-page: 15
  year: 2014
  ident: C9RA09905K-(cit49)/*[position()=1]
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2013.07.029
– volume: 20
  start-page: 1715
  year: 2013
  ident: C9RA09905K-(cit2)/*[position()=1]
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867311320130010
– volume: 18
  start-page: 333
  year: 2011
  ident: C9RA09905K-(cit45)/*[position()=1]
  publication-title: Parasite
  doi: 10.1051/parasite/2011184333
– volume: 58
  start-page: 1879
  year: 2017
  ident: C9RA09905K-(cit94)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.04.007
– volume: 8
  start-page: 31603
  year: 2018
  ident: C9RA09905K-(cit164)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA06826G
– volume: 59
  start-page: 1065
  year: 2018
  ident: C9RA09905K-(cit132)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2018.02.008
– volume: 6
  start-page: 103478
  year: 2016
  ident: C9RA09905K-(cit125)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23858K
– volume: 15
  start-page: 9585
  year: 2017
  ident: C9RA09905K-(cit110)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C7OB02411H
– volume: 30
  start-page: 392
  year: 2018
  ident: C9RA09905K-(cit158)/*[position()=1]
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.05.036
– volume: 13
  start-page: 1977
  year: 2017
  ident: C9RA09905K-(cit134)/*[position()=1]
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.13.193
– volume: 59
  start-page: 2979
  year: 2018
  ident: C9RA09905K-(cit141)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2018.06.054
– volume: 23
  start-page: 2750
  year: 2013
  ident: C9RA09905K-(cit112)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2013.02.054
– volume: 37
  start-page: 39
  year: 1997
  ident: C9RA09905K-(cit145)/*[position()=1]
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.199700007
– volume: 5
  start-page: 644
  year: 2011
  ident: C9RA09905K-(cit104)/*[position()=1]
  publication-title: J. Chem. Chem. Eng.
– volume: 40
  start-page: 2447
  year: 1996
  ident: C9RA09905K-(cit30)/*[position()=1]
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.40.11.2447
– volume: 67
  start-page: 3858
  year: 2011
  ident: C9RA09905K-(cit155)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2011.03.087
– volume: 113
  start-page: 15
  year: 2007
  ident: C9RA09905K-(cit27)/*[position()=1]
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2007.05.030
– volume: 72
  start-page: 2132
  year: 2016
  ident: C9RA09905K-(cit73)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2016.03.004
– volume: 56
  start-page: 5924
  year: 2015
  ident: C9RA09905K-(cit75)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.09.035
– volume: 56
  start-page: 3790
  year: 2015
  ident: C9RA09905K-(cit121)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2015.04.070
– volume: 82
  start-page: 10110
  year: 2017
  ident: C9RA09905K-(cit146)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b01575
– volume: 12
  start-page: 1116
  year: 2008
  ident: C9RA09905K-(cit7)/*[position()=1]
  publication-title: Curr. Med. Chem.
– volume: 4
  start-page: 193
  year: 2009
  ident: C9RA09905K-(cit28)/*[position()=1]
  publication-title: Nat. Prod. Commun.
– volume: 18
  start-page: 674
  year: 2001
  ident: C9RA09905K-(cit26)/*[position()=1]
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b100455g
– volume: 220
  start-page: 324
  year: 2016
  ident: C9RA09905K-(cit105)/*[position()=1]
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.04.094
– volume: 10
  start-page: e0142678
  year: 2015
  ident: C9RA09905K-(cit89)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142678
– volume: 21
  start-page: 986
  year: 2016
  ident: C9RA09905K-(cit11)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules21080986
– volume: 56
  start-page: 1547
  year: 1993
  ident: C9RA09905K-(cit29)/*[position()=1]
  publication-title: J. Nat. Prod.
  doi: 10.1021/np50099a013
– volume: 10
  start-page: 315
  year: 2006
  ident: C9RA09905K-(cit34)/*[position()=1]
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op050227k
– volume: 64
  start-page: 2755
  year: 2008
  ident: C9RA09905K-(cit152)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.01.046
– start-page: 3648
  year: 2013
  ident: C9RA09905K-(cit84)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201300368
– volume: 8
  start-page: 534
  year: 2013
  ident: C9RA09905K-(cit85)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201201039
– volume: 14
  start-page: 5951
  year: 2016
  ident: C9RA09905K-(cit113)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB01083K
– volume: 85
  start-page: 51
  year: 2014
  ident: C9RA09905K-(cit3)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2014.07.092
– volume: 17
  start-page: 4027
  year: 2010
  ident: C9RA09905K-(cit13)/*[position()=1]
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986710793205345
– volume: 17
  start-page: 7907
  year: 2019
  ident: C9RA09905K-(cit109)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01294J
– volume: 21
  start-page: 1
  year: 2013
  ident: C9RA09905K-(cit8)/*[position()=1]
  publication-title: Saudi Pharm. J.
  doi: 10.1016/j.jsps.2012.03.002
– volume: 12
  start-page: 3114
  year: 2014
  ident: C9RA09905K-(cit128)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB00231H
– volume: 14
  start-page: 2206
  year: 2012
  ident: C9RA09905K-(cit133)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol300391t
– start-page: 4928
  year: 2019
  ident: C9RA09905K-(cit167)/*[position()=1]
  publication-title: Eur. J. Org Chem.
  doi: 10.1002/ejoc.201900880
– volume: 25
  start-page: 2049
  year: 2014
  ident: C9RA09905K-(cit74)/*[position()=1]
  publication-title: Synlett
  doi: 10.1055/s-0034-1378355
– volume: 120
  start-page: 252
  year: 2016
  ident: C9RA09905K-(cit160)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2016.05.007
– volume: 45
  start-page: 80
  year: 2009
  ident: C9RA09905K-(cit83)/*[position()=1]
  publication-title: Chem. Heterocycl. Compd.
  doi: 10.1007/s10593-009-0229-3
– volume: 13
  start-page: 730
  year: 2013
  ident: C9RA09905K-(cit31)/*[position()=1]
  publication-title: Mini-Rev. Med. Chem.
  doi: 10.2174/1389557511313050010
– volume: 114
  start-page: 11138
  year: 2014
  ident: C9RA09905K-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500098f
– volume: 42
  start-page: 3847
  year: 2001
  ident: C9RA09905K-(cit36)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)00604-9
– volume: 49
  start-page: 5366
  year: 2008
  ident: C9RA09905K-(cit92)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2008.06.054
– volume: 19
  start-page: 440
  year: 2017
  ident: C9RA09905K-(cit97)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b03399
– volume: 20
  start-page: 2673
  year: 2013
  ident: C9RA09905K-(cit15)/*[position()=1]
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867311320210005
– volume: 55
  start-page: 3319
  year: 2014
  ident: C9RA09905K-(cit51)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2014.04.047
– volume: 50
  start-page: 7670
  year: 2011
  ident: C9RA09905K-(cit54)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201102076
– volume: 54
  start-page: 5087
  year: 2013
  ident: C9RA09905K-(cit78)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2013.07.053
– volume: 19
  start-page: 537
  year: 2016
  ident: C9RA09905K-(cit21)/*[position()=1]
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/1386207319666160506123921
– volume: 94
  start-page: 2874
  year: 1972
  ident: C9RA09905K-(cit65)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00763a064
– volume: 360
  start-page: 2691
  year: 2018
  ident: C9RA09905K-(cit126)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201800373
– volume: 5
  start-page: 434
  year: 2018
  ident: C9RA09905K-(cit163)/*[position()=1]
  publication-title: Org. Chem. Front.
  doi: 10.1039/C7QO00637C
– volume: 114
  start-page: 11305
  year: 2014
  ident: C9RA09905K-(cit16)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500365f
– volume: 361
  start-page: 3002
  year: 2019
  ident: C9RA09905K-(cit135)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801709
– volume: 42
  start-page: 701
  year: 2006
  ident: C9RA09905K-(cit41)/*[position()=1]
  publication-title: Chem. Heterocycl. Compd.
  doi: 10.1007/s10593-006-0150-y
– volume: 19
  start-page: 4179
  year: 2017
  ident: C9RA09905K-(cit111)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01686
– volume: 61
  start-page: 3
  year: 2004
  ident: C9RA09905K-(cit67)/*[position()=1]
  publication-title: Acta Pol. Pharm.
– volume: 20
  start-page: 6506
  year: 2012
  ident: C9RA09905K-(cit59)/*[position()=1]
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2012.08.036
– volume: 21
  start-page: 340
  year: 2016
  ident: C9RA09905K-(cit103)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules21030340
– volume: 48
  start-page: 823
  year: 2012
  ident: C9RA09905K-(cit76)/*[position()=1]
  publication-title: Russ. J. Org. Chem.
  doi: 10.1134/S1070428012060139
– volume: 61
  start-page: 186
  year: 2007
  ident: C9RA09905K-(cit44)/*[position()=1]
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2007.02.001
– volume: 50
  start-page: 2939
  year: 2009
  ident: C9RA09905K-(cit124)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2009.03.208
– volume: 19
  start-page: 5673
  year: 2017
  ident: C9RA09905K-(cit138)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b02838
– volume: 62
  start-page: 684
  year: 2008
  ident: C9RA09905K-(cit38)/*[position()=1]
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2008.09.002
– volume: 41
  start-page: 2846
  year: 1998
  ident: C9RA09905K-(cit58)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm980043e
– volume: 11
  start-page: 2597
  year: 2013
  ident: C9RA09905K-(cit87)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c3ob27270b
– volume: 60
  start-page: 219
  year: 2005
  ident: C9RA09905K-(cit48)/*[position()=1]
  publication-title: Il Farmaco
  doi: 10.1016/j.farmac.2004.11.010
– start-page: 1159
  year: 1995
  ident: C9RA09905K-(cit63)/*[position()=1]
  publication-title: Synthesis
  doi: 10.1055/s-1995-4053
– volume: 5
  start-page: 106012
  year: 2015
  ident: C9RA09905K-(cit144)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23065A
– volume: 11
  start-page: 5013
  year: 2003
  ident: C9RA09905K-(cit37)/*[position()=1]
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2003.09.007
– volume: 55
  start-page: 1777
  year: 2011
  ident: C9RA09905K-(cit61)/*[position()=1]
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01299-10
– volume: 17
  start-page: 9163
  year: 2019
  ident: C9RA09905K-(cit96)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01909J
– volume: 5
  start-page: 5563
  year: 2015
  ident: C9RA09905K-(cit79)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA14486D
– volume: 19
  start-page: 2439
  year: 2017
  ident: C9RA09905K-(cit50)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC03140D
– volume: 40
  start-page: 2220
  year: 2010
  ident: C9RA09905K-(cit119)/*[position()=1]
  publication-title: Synth. Commun.
  doi: 10.1080/00397910903221035
– volume: 33
  start-page: 199
  year: 2018
  ident: C9RA09905K-(cit90)/*[position()=1]
  publication-title: J. Enzyme Inhib. Med. Chem.
  doi: 10.1080/14756366.2017.1407926
– volume: 44
  start-page: 3091
  year: 2009
  ident: C9RA09905K-(cit23)/*[position()=1]
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2009.02.024
– volume: 4
  start-page: 4064
  year: 2016
  ident: C9RA09905K-(cit35)/*[position()=1]
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01010
– volume: 65
  start-page: 2087
  year: 2009
  ident: C9RA09905K-(cit60)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.12.077
– volume: 83
  start-page: 2309
  year: 2018
  ident: C9RA09905K-(cit122)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b03198
– volume: 13
  start-page: 2580
  year: 2011
  ident: C9RA09905K-(cit81)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol200684b
– volume: 373
  start-page: 456
  year: 2015
  ident: C9RA09905K-(cit20)/*[position()=1]
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1410150
– volume: 20
  start-page: 6960
  year: 2012
  ident: C9RA09905K-(cit70)/*[position()=1]
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2012.10.027
– volume: 80
  start-page: 4516
  year: 2015
  ident: C9RA09905K-(cit143)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00375
– volume: 15
  start-page: 9061
  year: 2017
  ident: C9RA09905K-(cit137)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C7OB02310C
– start-page: 1
  year: 2018
  ident: C9RA09905K-(cit150)/*[position()=1]
  publication-title: J. Chin. Chem. Soc.
– volume: 121
  start-page: 481
  year: 2009
  ident: C9RA09905K-(cit53)/*[position()=1]
  publication-title: J. Chem. Sci.
  doi: 10.1007/s12039-009-0057-0
– volume: 16
  start-page: 602
  year: 2019
  ident: C9RA09905K-(cit168)/*[position()=1]
  publication-title: Mini-Rev. Org. Chem.
  doi: 10.2174/1570193X16666181228101137
– volume: 62
  start-page: e01936-17
  year: 2018
  ident: C9RA09905K-(cit116)/*[position()=1]
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01936-17
– volume: 21
  start-page: 4426
  year: 2013
  ident: C9RA09905K-(cit114)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmc.2013.04.063
SSID ssj0000651261
Score 2.4115934
SecondaryResourceType review_article
Snippet Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4876
SubjectTerms Alkaloids
antiprotozoal properties
Aromatic compounds
Chagas disease
Chemical synthesis
Chemistry
cost effectiveness
drug design
Drugs
humans
Illnesses
Leishmania
leishmaniasis
Organic chemistry
Organic compounds
Parasitic diseases
Protozoa
pyridines
quinine
Quinoline
Schedules
Tropical diseases
Trypanosoma
Title Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
URI https://www.ncbi.nlm.nih.gov/pubmed/35498276
https://www.proquest.com/docview/2350240604
https://www.proquest.com/docview/2574328105
https://www.proquest.com/docview/2658645527
https://pubmed.ncbi.nlm.nih.gov/PMC9049580
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6IcFeEF-DwkBG8LCppGR24iSPpQJNjAEa27Q9VfmwIVqblDRF6viZ_CGu7djN6IRgL1EVXzlV7ol9rn19LkIvKfdcESfEgck5cDyShE4oGHEguohCloggVRIbBx_Z3rH3_tQ_7XR-tbKW5nXSTy-uPFdyHa_CPfCrPCX7H561ncIN-A3-hSt4GK7_5GPgfHIrf7YogMZJ5VUuhNoBaJIXpxXX0t6aFBIH6CSFl-pB_O_E43NeLMaSYsbVYiyXB77P86JUvHOiq-Yq_QeZVyuVnOvcOYe2upwC467zrBd_NUJQht4efhmarALL1T9V5UVa6vz5RVzYaWC_nF9Ab7Pyh8q1HcdZPsmr3knfrhDApCH38d8MmmXugTzgkJWm_UTW6J31DvRev1kL_8DLoqx6Z_32egaRaXEOWY6a8uvQKycmbVWlpTTF7_SspYZHApE9oEEXerFjudvCbNQamCEuY61J3gt17euVCcSlUn81japY7hj6520jcP50oqBEIaoOSfCHhrdiBZ8PhhFEXX7orqEbBGKXdpyv6QFwLLZrpHJp9Hr5tA1003R9mSetBD-rObxrlSlZo6jR0R10u4lp8EAD9C7q8OIeumXf5n30UwMVW6DiBqg4LzDcwS2g4lJg4mzTV96OgSjelgDdwRae2MITN_DEq_DEGp4P0PG7t0fDPaep-uGkPglqR7hCHr4Mich4ENPM5YLwVASCsXSX09BPMyJ8MOCMJoRDQCFIQMKUwlREWRbQTbRelAV_hDBLKI8FkF4vE14QxhALuWmcMrLLOIEndNGOecejtJHEl5VZxiOVmkGj0TA6HCjX7HfRC2s71UIwV1ptGVeNmoFiNiLUl0qCzPW66LltBhfIvbm44OUcbHyg8iSEaOcvNhAtME9KJnbRQ-19-1cMbLoouIQLayBl5C-3FPk3JSffwLWLNgFB1n4JysfX7vIJ2lh-4Vtova7m_Clw-Dp5pr6J3whM9sQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+synthetic+efforts+in+the+preparation+of+2-%283%2C4%29-alkenyl+%28aryl%29+quinoline+molecules+towards+anti-kinetoplastid+agents&rft.jtitle=RSC+advances&rft.au=Orozco%2C+Dayana&rft.au=Kouznetsov%2C+Vladimir+V.&rft.au=Berm%C3%BAdez%2C+Armando&rft.au=Vargas+M%C3%A9ndez%2C+Leonor+Y.&rft.date=2020-01-29&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=9&rft.spage=4876&rft.epage=4898&rft_id=info:doi/10.1039%2Fc9ra09905k&rft_id=info%3Apmid%2F35498276&rft.externalDocID=PMC9049580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon