Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administ...
Saved in:
Published in | RSC advances Vol. 1; no. 9; pp. 4876 - 4898 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
29.01.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, -
Leishmania
and
Trypanosoma
and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. |
---|---|
AbstractList | Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, –
Leishmania
and
Trypanosoma
and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad–Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad–Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, – Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015–2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad–Limpach, Doebner–Miller, as well as contemporary methods like Gould–Jacobs, Meth–Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - and and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies. |
Author | Bermúdez, Armando Vargas Méndez, Leonor Y Kouznetsov, Vladimir V Orozco, Dayana Mendoza Salgado, Arturo René Meléndez Gómez, Carlos Mario |
AuthorAffiliation | Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química CMN Universidad Industrial de Santander Universidad del Atlántico Universidad Santo Tomás Laboratorio de Química Orgánica y Biomolecular Grupo de Investigaciones Ambientales para el Desarrollo Sostenible Facultad de Química Ambiental Facultad de Ciencias Básicas Parque Tecnológico Guatiguara |
AuthorAffiliation_xml | – name: Grupo de Investigaciones Ambientales para el Desarrollo Sostenible – name: Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química – name: Laboratorio de Química Orgánica y Biomolecular – name: Parque Tecnológico Guatiguara – name: Universidad Santo Tomás – name: CMN – name: Universidad Industrial de Santander – name: Facultad de Ciencias Básicas – name: Universidad del Atlántico – name: Facultad de Química Ambiental |
Author_xml | – sequence: 1 givenname: Dayana surname: Orozco fullname: Orozco, Dayana – sequence: 2 givenname: Vladimir V surname: Kouznetsov fullname: Kouznetsov, Vladimir V – sequence: 3 givenname: Armando surname: Bermúdez fullname: Bermúdez, Armando – sequence: 4 givenname: Leonor Y surname: Vargas Méndez fullname: Vargas Méndez, Leonor Y – sequence: 5 givenname: Arturo René surname: Mendoza Salgado fullname: Mendoza Salgado, Arturo René – sequence: 6 givenname: Carlos Mario surname: Meléndez Gómez fullname: Meléndez Gómez, Carlos Mario |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35498276$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttrFDEUxoNU7MW--K4EfNmKo5ncZuZFKIs3LAhFn0OaOWnTzSbbJKMs_edNu3WtRTAvCTm_8-U7OWcf7YQYAKFnLXnTEja8NUPSZBiIWDxCe5Rw2VAih5175110mPMlqUuKlsr2Cdplgg897eQeuj4FA6HgvA7lAoozGKyNqWTsAq43eJVgpZMuLgYcLabNjL3mR432Cwhrj2c6rf0RvppciN4FwMvowUweMi7xp05jxjoU1yxqrMSV17m4Eevz-mZ-ih5b7TMc3u0H6PuH99_mn5qTrx8_z49PGiNoVxpLLKec99SO0Gk2ErAUjO2slKYF1gszUisqAJKdUeCttLSjvWG875kcO3aA3m10V9PZEsabepP2apXcsrpXUTv1dyS4C3Uef6iB8EH0pArM7gRSvJogF7V02YD3OkCcsqJS9JKL6vb_qOg4o31LREVfPkAv45RC_QlFmSCUE0l4pV7cN791_buFFXi1AUyKOSewW6Ql6mZE1Hw4Pb4dkS8VJg9g48ptc2vhzv875fkmJWWzlf4zdewXB7rIIA |
CitedBy_id | crossref_primary_10_1002_ajoc_202300181 crossref_primary_10_1134_S1070428023040188 crossref_primary_10_1246_bcsj_20210461 crossref_primary_10_1002_anie_202007699 crossref_primary_10_1021_acscatal_3c00088 crossref_primary_10_1107_S2053229622010063 crossref_primary_10_1021_acs_joc_0c02459 crossref_primary_10_2174_1385272827666221219101902 crossref_primary_10_1107_S2053229623001432 crossref_primary_10_1134_S1068162024010254 crossref_primary_10_1007_s12010_024_05164_2 crossref_primary_10_1002_slct_202002790 crossref_primary_10_1021_acs_joc_4c02038 crossref_primary_10_1016_j_actatropica_2023_106846 crossref_primary_10_1002_adsc_202301405 crossref_primary_10_2174_1570179417666201228165500 crossref_primary_10_1021_acs_joc_1c00078 crossref_primary_10_1002_ange_202007699 crossref_primary_10_1002_cctc_202301048 crossref_primary_10_1002_adsc_202200200 crossref_primary_10_1055_a_1638_5030 |
Cites_doi | 10.1039/C5RA07798B 10.1039/C4MD00284A 10.4155/fmc.15.34 10.1021/acs.orglett.6b00522 10.1055/s-0035-1562496 10.1016/j.tetlet.2014.02.090 10.1021/acs.orglett.7b03673 10.1039/C7GC03175K 10.1039/b311021b 10.2174/157018007784620031 10.1016/j.drudis.2017.06.004 10.1016/j.biopha.2015.10.028 10.1134/S107042801102014X 10.1021/jo2008934 10.1246/cl.130432 10.1016/j.tetlet.2012.12.094 10.1002/asia.201402742 10.1081/SCC-120006472 10.1039/C8RA07212D 10.1134/S107042721103030X 10.1002/ejoc.201400073 10.1016/j.tetlet.2014.08.034 10.1016/j.tet.2008.12.059 10.1021/acs.joc.8b01204 10.1016/j.tet.2012.04.014 10.1016/j.ccr.2007.06.003 10.2174/1385272053369196 10.1039/C4RA01814A 10.1021/acs.joc.8b00552 10.1039/C4RA10613J 10.1016/j.bmc.2014.12.018 10.1055/s-0030-1250548 10.1021/jo101103a 10.1002/adsc.201400203 10.1038/nrmicro.2016.193 10.1021/np5006554 10.1016/j.bmcl.2005.06.036 10.1021/acs.organomet.7b00174 10.1111/j.1574-695X.2009.00615.x 10.1021/jo5015883 10.1016/j.tetlet.2015.12.028 10.1371/journal.pone.0131210 10.1007/s00706-006-0513-1 10.1016/j.tetlet.2014.10.079 10.1021/acs.joc.8b01675 10.1016/j.tetlet.2016.10.113 10.1016/j.catcom.2017.02.005 10.1128/AAC.49.12.4950-4956.2005 10.1016/j.bmcl.2017.07.051 10.1016/j.tet.2014.06.088 10.1172/JCI33945 10.1021/cc900165j 10.1016/j.tetlet.2006.02.136 10.1007/s12039-018-1466-8 10.1016/j.bioorg.2018.07.016 10.3390/molecules21070827 10.1016/j.jep.2013.03.080 10.1021/jo01282a063 10.1039/p29720001120 10.1021/acs.orglett.5b01456 10.1080/00397911.2016.1193754 10.1002/jccs.201700190 10.1093/bmb/lds031 10.1039/C4OB01025F 10.1016/j.tetlet.2014.12.016 10.1021/ja902762a 10.1021/co400144b 10.1021/acs.joc.6b01910 10.1016/j.catcom.2013.07.029 10.2174/0929867311320130010 10.1051/parasite/2011184333 10.1016/j.tetlet.2017.04.007 10.1039/C8RA06826G 10.1016/j.tetlet.2018.02.008 10.1039/C6RA23858K 10.1039/C7OB02411H 10.1016/j.cclet.2018.05.036 10.3762/bjoc.13.193 10.1016/j.tetlet.2018.06.054 10.1016/j.bmcl.2013.02.054 10.1002/ijch.199700007 10.1128/AAC.40.11.2447 10.1016/j.tet.2011.03.087 10.1016/j.jep.2007.05.030 10.1016/j.tet.2016.03.004 10.1016/j.tetlet.2015.09.035 10.1016/j.tetlet.2015.04.070 10.1021/acs.joc.7b01575 10.1039/b100455g 10.1016/j.molliq.2016.04.094 10.1371/journal.pone.0142678 10.3390/molecules21080986 10.1021/np50099a013 10.1021/op050227k 10.1016/j.tet.2008.01.046 10.1002/ejoc.201300368 10.1002/asia.201201039 10.1039/C6OB01083K 10.1016/j.ejmech.2014.07.092 10.2174/092986710793205345 10.1039/C9OB01294J 10.1016/j.jsps.2012.03.002 10.1039/C4OB00231H 10.1021/ol300391t 10.1002/ejoc.201900880 10.1055/s-0034-1378355 10.1016/j.ejmech.2016.05.007 10.1007/s10593-009-0229-3 10.2174/1389557511313050010 10.1021/cr500098f 10.1016/S0040-4039(01)00604-9 10.1016/j.tetlet.2008.06.054 10.1021/acs.orglett.6b03399 10.2174/0929867311320210005 10.1016/j.tetlet.2014.04.047 10.1002/anie.201102076 10.1016/j.tetlet.2013.07.053 10.2174/1386207319666160506123921 10.1021/ja00763a064 10.1002/adsc.201800373 10.1039/C7QO00637C 10.1021/cr500365f 10.1002/adsc.201801709 10.1007/s10593-006-0150-y 10.1021/acs.orglett.7b01686 10.1016/j.bmc.2012.08.036 10.3390/molecules21030340 10.1134/S1070428012060139 10.1016/j.biopha.2007.02.001 10.1016/j.tetlet.2009.03.208 10.1021/acs.orglett.7b02838 10.1016/j.biopha.2008.09.002 10.1021/jm980043e 10.1039/c3ob27270b 10.1016/j.farmac.2004.11.010 10.1055/s-1995-4053 10.1039/C5RA23065A 10.1016/j.bmc.2003.09.007 10.1128/AAC.01299-10 10.1039/C9OB01909J 10.1039/C4RA14486D 10.1039/C6GC03140D 10.1080/00397910903221035 10.1080/14756366.2017.1407926 10.1016/j.ejmech.2009.02.024 10.1021/acssuschemeng.6b01010 10.1016/j.tet.2008.12.077 10.1021/acs.joc.7b03198 10.1021/ol200684b 10.1056/NEJMra1410150 10.1016/j.bmc.2012.10.027 10.1021/acs.joc.5b00375 10.1039/C7OB02310C 10.1007/s12039-009-0057-0 10.2174/1570193X16666181228101137 10.1128/AAC.01936-17 10.1016/j.bmc.2013.04.063 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/c9ra09905k |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 4898 |
ExternalDocumentID | PMC9049580 35498276 10_1039_C9RA09905K c9ra09905k |
Genre | Journal Article Review |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ M~E PGMZT RPM NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c527t-f0f424482fde7a3d0ef2ecf7f66c1e385cd2f5448e63b2e416f2728c348836d73 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 18:29:33 EDT 2025 Thu Jul 10 17:55:10 EDT 2025 Fri Jul 11 15:35:06 EDT 2025 Mon Jun 30 03:20:58 EDT 2025 Mon Jul 21 06:03:49 EDT 2025 Tue Jul 01 04:05:11 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Sat Jan 08 04:36:17 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-f0f424482fde7a3d0ef2ecf7f66c1e385cd2f5448e63b2e416f2728c348836d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
ORCID | 0000-0003-1417-8355 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra09905k |
PMID | 35498276 |
PQID | 2350240604 |
PQPubID | 2047525 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2658645527 proquest_journals_2350240604 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9049580 crossref_citationtrail_10_1039_C9RA09905K proquest_miscellaneous_2574328105 crossref_primary_10_1039_C9RA09905K rsc_primary_c9ra09905k pubmed_primary_35498276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-January-29 |
PublicationDateYYYYMMDD | 2020-01-29 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-January-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Meyet (C9RA09905K-(cit153)/*[position()=1]) 2014; 79 Polański (C9RA09905K-(cit67)/*[position()=1]) 2004; 61 Zhang (C9RA09905K-(cit80)/*[position()=1]) 2014; 55 Yan (C9RA09905K-(cit101)/*[position()=1]) 2014; 356 Wang (C9RA09905K-(cit127)/*[position()=1]) 2016; 48 Ogata (C9RA09905K-(cit57)/*[position()=1]) 1972 Yu (C9RA09905K-(cit162)/*[position()=1]) 2018; 8 Njogu (C9RA09905K-(cit2)/*[position()=1]) 2013; 20 Marella (C9RA09905K-(cit8)/*[position()=1]) 2013; 21 Yan (C9RA09905K-(cit82)/*[position()=1]) 2011; 76 De Paolis (C9RA09905K-(cit124)/*[position()=1]) 2009; 50 Madapa (C9RA09905K-(cit7)/*[position()=1]) 2008; 12 Jin (C9RA09905K-(cit50)/*[position()=1]) 2017; 19 Lin (C9RA09905K-(cit107)/*[position()=1]) 2006; 47 Xu (C9RA09905K-(cit139)/*[position()=1]) 2018; 20 Zhang (C9RA09905K-(cit97)/*[position()=1]) 2017; 19 Wu (C9RA09905K-(cit99)/*[position()=1]) 2009; 131 Zulfiqar (C9RA09905K-(cit18)/*[position()=1]) 2017; 22 Zongo (C9RA09905K-(cit32)/*[position()=1]) 2013; 148 Batista (C9RA09905K-(cit35)/*[position()=1]) 2016; 4 Li (C9RA09905K-(cit155)/*[position()=1]) 2011; 67 Wang (C9RA09905K-(cit103)/*[position()=1]) 2016; 21 Xiao (C9RA09905K-(cit96)/*[position()=1]) 2019; 17 Xia (C9RA09905K-(cit100)/*[position()=1]) 2016; 18 Matsubara (C9RA09905K-(cit54)/*[position()=1]) 2011; 50 Amarasekara (C9RA09905K-(cit51)/*[position()=1]) 2014; 55 Zheng (C9RA09905K-(cit125)/*[position()=1]) 2016; 6 Field (C9RA09905K-(cit17)/*[position()=1]) 2017; 15 El-Sayed (C9RA09905K-(cit90)/*[position()=1]) 2018; 33 Jadhav (C9RA09905K-(cit138)/*[position()=1]) 2017; 19 Mao (C9RA09905K-(cit72)/*[position()=1]) 2014 Bering (C9RA09905K-(cit98)/*[position()=1]) 2015; 17 Loiseau (C9RA09905K-(cit61)/*[position()=1]) 2011; 55 Le (C9RA09905K-(cit56)/*[position()=1]) 2016; 21 Dabiri (C9RA09905K-(cit92)/*[position()=1]) 2008; 49 Lee (C9RA09905K-(cit131)/*[position()=1]) 2018; 83 Li (C9RA09905K-(cit76)/*[position()=1]) 2012; 48 Baig (C9RA09905K-(cit95)/*[position()=1]) 2017; 27 Njoroge (C9RA09905K-(cit1)/*[position()=1]) 2014; 114 E Brown (C9RA09905K-(cit113)/*[position()=1]) 2016; 14 Zhang (C9RA09905K-(cit135)/*[position()=1]) 2019; 361 Fallah-Mehrjardi (C9RA09905K-(cit148)/*[position()=1]) 2017; 14 Pearson (C9RA09905K-(cit145)/*[position()=1]) 1997; 37 Kouznetsov (C9RA09905K-(cit23)/*[position()=1]) 2009; 44 Kouznetsov (C9RA09905K-(cit24)/*[position()=1]) 2013 Saggadi (C9RA09905K-(cit49)/*[position()=1]) 2014; 44 Zhang (C9RA09905K-(cit151)/*[position()=1]) 2014; 9 Ramann (C9RA09905K-(cit11)/*[position()=1]) 2016; 21 Liu (C9RA09905K-(cit126)/*[position()=1]) 2018; 360 Cinar (C9RA09905K-(cit87)/*[position()=1]) 2013; 11 Fasano (C9RA09905K-(cit156)/*[position()=1]) 2017; 36 Sarode (C9RA09905K-(cit154)/*[position()=1]) 2016; 57 Gulakova (C9RA09905K-(cit69)/*[position()=1]) 2011; 47 Reynolds (C9RA09905K-(cit31)/*[position()=1]) 2013; 13 Sridharan (C9RA09905K-(cit60)/*[position()=1]) 2009; 65 Phanindrudu (C9RA09905K-(cit140)/*[position()=1]) 2018; 83 Bompart (C9RA09905K-(cit114)/*[position()=1]) 2013; 21 Taylor (C9RA09905K-(cit65)/*[position()=1]) 1972; 94 Barrett (C9RA09905K-(cit19)/*[position()=1]) 2012; 104 Bachowska (C9RA09905K-(cit83)/*[position()=1]) 2009; 45 Kouznetsov (C9RA09905K-(cit115)/*[position()=1]) 2007; 4 Gong (C9RA09905K-(cit86)/*[position()=1]) 2014; 12 Martínez-Grueiro (C9RA09905K-(cit48)/*[position()=1]) 2005; 60 Fakhfakh (C9RA09905K-(cit36)/*[position()=1]) 2001; 42 Liu (C9RA09905K-(cit150)/*[position()=1]) 2018 Stuart (C9RA09905K-(cit12)/*[position()=1]) 2008; 118 Mekouar (C9RA09905K-(cit58)/*[position()=1]) 1998; 41 Gavrishova (C9RA09905K-(cit68)/*[position()=1]) 2011; 84 Willcox (C9RA09905K-(cit22)/*[position()=1]) 2011; 77 Jiang (C9RA09905K-(cit163)/*[position()=1]) 2018; 5 Staderini (C9RA09905K-(cit71)/*[position()=1]) 2011 Patil (C9RA09905K-(cit123)/*[position()=1]) 2010; 75 Chan-Bacab (C9RA09905K-(cit26)/*[position()=1]) 2001; 18 Vandekerckhove (C9RA09905K-(cit4)/*[position()=1]) 2015; 23 Xu (C9RA09905K-(cit121)/*[position()=1]) 2015; 56 Nakayama (C9RA09905K-(cit44)/*[position()=1]) 2007; 61 Cretton (C9RA09905K-(cit33)/*[position()=1]) 2014; 77 Shahabi (C9RA09905K-(cit105)/*[position()=1]) 2016; 220 Kumar (C9RA09905K-(cit91)/*[position()=1]) 2015; 5 Kouznetsov (C9RA09905K-(cit6)/*[position()=1]) 2005; 9 Kouznetsov (C9RA09905K-(cit42)/*[position()=1]) 2009; 65 Zhang (C9RA09905K-(cit129)/*[position()=1]) 2014; 55 Gisbert (C9RA09905K-(cit167)/*[position()=1]) 2019 Fournet (C9RA09905K-(cit29)/*[position()=1]) 1993; 56 Yaragorla (C9RA09905K-(cit94)/*[position()=1]) 2017; 58 Xu (C9RA09905K-(cit159)/*[position()=1]) 2015; 6 Nakayama (C9RA09905K-(cit40)/*[position()=1]) 2005; 49 Xu (C9RA09905K-(cit77)/*[position()=1]) 2014; 55 Jamal (C9RA09905K-(cit73)/*[position()=1]) 2016; 72 Mir (C9RA09905K-(cit104)/*[position()=1]) 2011; 5 Zhong (C9RA09905K-(cit165)/*[position()=1]) 2016; 81 Bharate (C9RA09905K-(cit10)/*[position()=1]) 2015; 5 Upadhayaya (C9RA09905K-(cit112)/*[position()=1]) 2013; 23 Das (C9RA09905K-(cit122)/*[position()=1]) 2018; 83 da Silveira (C9RA09905K-(cit168)/*[position()=1]) 2019; 16 Fournet (C9RA09905K-(cit30)/*[position()=1]) 1996; 40 Jamal (C9RA09905K-(cit74)/*[position()=1]) 2014; 25 Sharghi (C9RA09905K-(cit134)/*[position()=1]) 2017; 13 Kouznetsov (C9RA09905K-(cit59)/*[position()=1]) 2012; 20 Balaraman (C9RA09905K-(cit46)/*[position()=1]) 2015; 76 Pearson (C9RA09905K-(cit62)/*[position()=1]) 1967; 32 Nagle (C9RA09905K-(cit16)/*[position()=1]) 2014; 114 Tummatorn (C9RA09905K-(cit143)/*[position()=1]) 2015; 80 Yamashkin (C9RA09905K-(cit41)/*[position()=1]) 2006; 42 Rams-Baron (C9RA09905K-(cit88)/*[position()=1]) 2015; 10 Xiao (C9RA09905K-(cit152)/*[position()=1]) 2008; 64 Shah (C9RA09905K-(cit43)/*[position()=1]) 2018; 80 Narasimhamurthy (C9RA09905K-(cit120)/*[position()=1]) 2013; 42 Yaragorla (C9RA09905K-(cit75)/*[position()=1]) 2015; 56 Khillare (C9RA09905K-(cit102)/*[position()=1]) 2017; 9 Zhang (C9RA09905K-(cit133)/*[position()=1]) 2012; 14 Kryshchyshyn (C9RA09905K-(cit3)/*[position()=1]) 2014; 85 Li (C9RA09905K-(cit110)/*[position()=1]) 2017; 15 Fakhfakh (C9RA09905K-(cit37)/*[position()=1]) 2003; 11 Castillo (C9RA09905K-(cit13)/*[position()=1]) 2010; 17 Fakhfakh (C9RA09905K-(cit47)/*[position()=1]) 2002; 32 Mahat (C9RA09905K-(cit109)/*[position()=1]) 2019; 17 Hoet (C9RA09905K-(cit25)/*[position()=1]) 2004; 21 Mrozek-Wilczkiewicz (C9RA09905K-(cit89)/*[position()=1]) 2015; 10 Bernardes (C9RA09905K-(cit15)/*[position()=1]) 2013; 20 Sharma (C9RA09905K-(cit147)/*[position()=1]) 2018; 130 Xu (C9RA09905K-(cit149)/*[position()=1]) 2016; 57 Qian (C9RA09905K-(cit81)/*[position()=1]) 2011; 13 Albrecht (C9RA09905K-(cit161)/*[position()=1]) 2008; 252 Li (C9RA09905K-(cit52)/*[position()=1]) 2017; 98 Gen (C9RA09905K-(cit111)/*[position()=1]) 2017; 19 Ren (C9RA09905K-(cit132)/*[position()=1]) 2018; 59 Bern (C9RA09905K-(cit20)/*[position()=1]) 2015; 373 Musiol (C9RA09905K-(cit66)/*[position()=1]) 2006; 137 Xu (C9RA09905K-(cit128)/*[position()=1]) 2014; 12 Ahmed (C9RA09905K-(cit166)/*[position()=1]) 2018; 20 Jiang (C9RA09905K-(cit141)/*[position()=1]) 2018; 59 Oliveri (C9RA09905K-(cit160)/*[position()=1]) 2016; 120 Tummatorn (C9RA09905K-(cit142)/*[position()=1]) 2012; 68 Borel (C9RA09905K-(cit118)/*[position()=1]) 2015; 56 Li (C9RA09905K-(cit85)/*[position()=1]) 2013; 8 Zhang (C9RA09905K-(cit158)/*[position()=1]) 2018; 30 Trécourt (C9RA09905K-(cit63)/*[position()=1]) 1995 Zhang (C9RA09905K-(cit136)/*[position()=1]) 2014; 9 Chandrashekarappa (C9RA09905K-(cit55)/*[position()=1]) 2013; 54 Normand-Bayle (C9RA09905K-(cit64)/*[position()=1]) 2005; 15 Prajapati (C9RA09905K-(cit9)/*[position()=1]) 2014; 4 Cieslik (C9RA09905K-(cit70)/*[position()=1]) 2012; 20 Chung (C9RA09905K-(cit5)/*[position()=1]) 2015; 7 Varma (C9RA09905K-(cit119)/*[position()=1]) 2010; 40 Pang (C9RA09905K-(cit146)/*[position()=1]) 2017; 82 Oluwafemi (C9RA09905K-(cit28)/*[position()=1]) 2009; 4 Nefertiti (C9RA09905K-(cit116)/*[position()=1]) 2018; 62 Tucker (C9RA09905K-(cit34)/*[position()=1]) 2006; 10 Lee (C9RA09905K-(cit130)/*[position()=1]) 2018; 83 Wang (C9RA09905K-(cit79)/*[position()=1]) 2015; 5 Ma (C9RA09905K-(cit27)/*[position()=1]) 2007; 113 Campos-Vieira (C9RA09905K-(cit38)/*[position()=1]) 2008; 62 Safari (C9RA09905K-(cit53)/*[position()=1]) 2009; 121 Yang (C9RA09905K-(cit164)/*[position()=1]) 2018; 8 Sarma (C9RA09905K-(cit93)/*[position()=1]) 2016; 46 Cavalli (C9RA09905K-(cit14)/*[position()=1]) 2010; 58 Tan (C9RA09905K-(cit157)/*[position()=1]) 2018; 65 Rao (C9RA09905K-(cit78)/*[position()=1]) 2013; 54 Anvar (C9RA09905K-(cit106)/*[position()=1]) 2014; 16 Scotti (C9RA09905K-(cit21)/*[position()=1]) 2016; 19 Stevenson (C9RA09905K-(cit108)/*[position()=1]) 2014; 70 Zhang (C9RA09905K-(cit84)/*[position()=1]) 2013 Luo (C9RA09905K-(cit144)/*[position()=1]) 2015; 5 Madapa (C9RA09905K-(cit6)/*[position()=2]) 2008; 12 Campos-Vieira (C9RA09905K-(cit45)/*[position()=1]) 2011; 18 Xu (C9RA09905K-(cit137)/*[position()=1]) 2017; 15 Wang (C9RA09905K-(cit117)/*[position()=1]) 2010; 12 |
References_xml | – issn: 1996 doi: Fournet Barrios Muñoz Hocquemiller Roblot Bruneton Richomme Gantier – issn: 2013 end-page: p 69-128 publication-title: New Quinoline-Based Multiple Ligands in Antimalarial Drug Development in: Antimalarial Drug Research and Development doi: Kouznetsov – volume: 14 start-page: 187 year: 2017 ident: C9RA09905K-(cit148)/*[position()=1] publication-title: Mini-Rev. Org. Chem. – volume: 5 start-page: 42020 year: 2015 ident: C9RA09905K-(cit10)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA07798B – volume: 6 start-page: 61 year: 2015 ident: C9RA09905K-(cit159)/*[position()=1] publication-title: MedChemComm doi: 10.1039/C4MD00284A – volume: 7 start-page: 947 year: 2015 ident: C9RA09905K-(cit5)/*[position()=1] publication-title: Future Med. Chem. doi: 10.4155/fmc.15.34 – volume: 18 start-page: 1796 year: 2016 ident: C9RA09905K-(cit100)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b00522 – volume: 48 start-page: 3985 year: 2016 ident: C9RA09905K-(cit127)/*[position()=1] publication-title: Synthesis doi: 10.1055/s-0035-1562496 – volume: 55 start-page: 2280 year: 2014 ident: C9RA09905K-(cit129)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.02.090 – volume: 20 start-page: 566 year: 2018 ident: C9RA09905K-(cit139)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b03673 – volume: 20 start-page: 261 year: 2018 ident: C9RA09905K-(cit166)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC03175K – volume: 21 start-page: 353 year: 2004 ident: C9RA09905K-(cit25)/*[position()=1] publication-title: Nat. Prod. Rep. doi: 10.1039/b311021b – volume: 4 start-page: 293 year: 2007 ident: C9RA09905K-(cit115)/*[position()=1] publication-title: Lett. Drug Des. Discov. doi: 10.2174/157018007784620031 – volume: 22 start-page: 1516 year: 2017 ident: C9RA09905K-(cit18)/*[position()=1] publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2017.06.004 – volume: 76 start-page: 127 year: 2015 ident: C9RA09905K-(cit46)/*[position()=1] publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2015.10.028 – start-page: 2577 year: 2011 ident: C9RA09905K-(cit71)/*[position()=1] publication-title: Synlett – volume: 47 start-page: 245 year: 2011 ident: C9RA09905K-(cit69)/*[position()=1] publication-title: Russ. J. Org. Chem. doi: 10.1134/S107042801102014X – volume: 76 start-page: 6849 year: 2011 ident: C9RA09905K-(cit82)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo2008934 – volume: 12 start-page: 1116 year: 2008 ident: C9RA09905K-(cit6)/*[position()=2] publication-title: Curr. Med. Chem. – volume: 42 start-page: 1073 year: 2013 ident: C9RA09905K-(cit120)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.130432 – volume: 54 start-page: 1368 year: 2013 ident: C9RA09905K-(cit55)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2012.12.094 – volume: 9 start-page: 3089 year: 2014 ident: C9RA09905K-(cit151)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201402742 – volume: 32 start-page: 2863 year: 2002 ident: C9RA09905K-(cit47)/*[position()=1] publication-title: Synth. Commun. doi: 10.1081/SCC-120006472 – volume: 8 start-page: 33968 year: 2018 ident: C9RA09905K-(cit162)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA07212D – volume: 84 start-page: 507 year: 2011 ident: C9RA09905K-(cit68)/*[position()=1] publication-title: Russ. J. Appl. Chem. doi: 10.1134/S107042721103030X – start-page: 3009 year: 2014 ident: C9RA09905K-(cit72)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201400073 – volume: 55 start-page: 5462 year: 2014 ident: C9RA09905K-(cit80)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.08.034 – volume: 65 start-page: 2721 year: 2009 ident: C9RA09905K-(cit42)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2008.12.059 – volume: 83 start-page: 9137 year: 2018 ident: C9RA09905K-(cit140)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b01204 – volume: 68 start-page: 4732 year: 2012 ident: C9RA09905K-(cit142)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2012.04.014 – volume: 252 start-page: 812 year: 2008 ident: C9RA09905K-(cit161)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2007.06.003 – volume: 9 start-page: 141 year: 2005 ident: C9RA09905K-(cit6)/*[position()=1] publication-title: Curr. Org. Chem. doi: 10.2174/1385272053369196 – volume: 4 start-page: 24463 year: 2014 ident: C9RA09905K-(cit9)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA01814A – volume: 83 start-page: 5177 year: 2018 ident: C9RA09905K-(cit130)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b00552 – volume: 5 start-page: 2920 year: 2015 ident: C9RA09905K-(cit91)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA10613J – volume: 23 start-page: 5098 year: 2015 ident: C9RA09905K-(cit4)/*[position()=1] publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2014.12.018 – volume: 77 start-page: 662 year: 2011 ident: C9RA09905K-(cit22)/*[position()=1] publication-title: Planta Med. doi: 10.1055/s-0030-1250548 – volume: 75 start-page: 6961 year: 2010 ident: C9RA09905K-(cit123)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo101103a – volume: 356 start-page: 2375 year: 2014 ident: C9RA09905K-(cit101)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201400203 – volume: 15 start-page: 217 year: 2017 ident: C9RA09905K-(cit17)/*[position()=1] publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.193 – volume: 77 start-page: 2304 year: 2014 ident: C9RA09905K-(cit33)/*[position()=1] publication-title: J. Nat. Prod. doi: 10.1021/np5006554 – volume: 15 start-page: 4019 year: 2005 ident: C9RA09905K-(cit64)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2005.06.036 – volume: 36 start-page: 1623 year: 2017 ident: C9RA09905K-(cit156)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.7b00174 – volume: 58 start-page: 51 year: 2010 ident: C9RA09905K-(cit14)/*[position()=1] publication-title: FEMS Immunol. Med. Microbiol. doi: 10.1111/j.1574-695X.2009.00615.x – volume: 79 start-page: 9835 year: 2014 ident: C9RA09905K-(cit153)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo5015883 – volume: 9 start-page: 3089 year: 2014 ident: C9RA09905K-(cit136)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201402742 – volume: 57 start-page: 226 year: 2016 ident: C9RA09905K-(cit149)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.12.028 – volume: 10 start-page: e0131210 year: 2015 ident: C9RA09905K-(cit88)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0131210 – volume: 137 start-page: 1211 year: 2006 ident: C9RA09905K-(cit66)/*[position()=1] publication-title: Monatsh. Chem. doi: 10.1007/s00706-006-0513-1 – volume: 55 start-page: 6856 year: 2014 ident: C9RA09905K-(cit77)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.10.079 – volume: 83 start-page: 13036 year: 2018 ident: C9RA09905K-(cit131)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.8b01675 – volume: 57 start-page: 5753 year: 2016 ident: C9RA09905K-(cit154)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.10.113 – volume: 98 start-page: 13 year: 2017 ident: C9RA09905K-(cit52)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.02.005 – volume: 9 start-page: 30 year: 2017 ident: C9RA09905K-(cit102)/*[position()=1] publication-title: Der Pharma Chem. – volume: 49 start-page: 4950 year: 2005 ident: C9RA09905K-(cit40)/*[position()=1] publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.12.4950-4956.2005 – volume: 27 start-page: 4039 year: 2017 ident: C9RA09905K-(cit95)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2017.07.051 – volume: 70 start-page: 7350 year: 2014 ident: C9RA09905K-(cit108)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2014.06.088 – volume: 118 start-page: 1301 year: 2008 ident: C9RA09905K-(cit12)/*[position()=1] publication-title: J. Clin. Invest. doi: 10.1172/JCI33945 – volume: 12 start-page: 266 year: 2010 ident: C9RA09905K-(cit117)/*[position()=1] publication-title: J. Comb. Chem. doi: 10.1021/cc900165j – volume: 47 start-page: 3127 year: 2006 ident: C9RA09905K-(cit107)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.02.136 – volume: 130 start-page: 73 year: 2018 ident: C9RA09905K-(cit147)/*[position()=1] publication-title: J. Chem. Sci. doi: 10.1007/s12039-018-1466-8 – volume: 80 start-page: 591 year: 2018 ident: C9RA09905K-(cit43)/*[position()=1] publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2018.07.016 – volume: 21 start-page: 827 year: 2016 ident: C9RA09905K-(cit56)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules21070827 – volume: 148 start-page: 14 year: 2013 ident: C9RA09905K-(cit32)/*[position()=1] publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2013.03.080 – volume: 32 start-page: 2358 year: 1967 ident: C9RA09905K-(cit62)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo01282a063 – start-page: 1120 year: 1972 ident: C9RA09905K-(cit57)/*[position()=1] publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/p29720001120 – volume: 17 start-page: 3134 year: 2015 ident: C9RA09905K-(cit98)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b01456 – volume-title: New Quinoline-Based Multiple Ligands in Antimalarial Drug Development in: Antimalarial Drug Research and Development year: 2013 ident: C9RA09905K-(cit24)/*[position()=1] – volume: 46 start-page: 1187 year: 2016 ident: C9RA09905K-(cit93)/*[position()=1] publication-title: Synth. Commun. doi: 10.1080/00397911.2016.1193754 – volume: 65 start-page: 65 year: 2018 ident: C9RA09905K-(cit157)/*[position()=1] publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201700190 – volume: 104 start-page: 175 year: 2012 ident: C9RA09905K-(cit19)/*[position()=1] publication-title: Br. Med. Bull. doi: 10.1093/bmb/lds031 – volume: 12 start-page: 6557 year: 2014 ident: C9RA09905K-(cit86)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB01025F – volume: 56 start-page: 662 year: 2015 ident: C9RA09905K-(cit118)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.12.016 – volume: 131 start-page: 13888 year: 2009 ident: C9RA09905K-(cit99)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902762a – volume: 16 start-page: 93 year: 2014 ident: C9RA09905K-(cit106)/*[position()=1] publication-title: ACS Comb. Sci. doi: 10.1021/co400144b – volume: 81 start-page: 10825 year: 2016 ident: C9RA09905K-(cit165)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b01910 – volume: 44 start-page: 15 year: 2014 ident: C9RA09905K-(cit49)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.07.029 – volume: 20 start-page: 1715 year: 2013 ident: C9RA09905K-(cit2)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/0929867311320130010 – volume: 18 start-page: 333 year: 2011 ident: C9RA09905K-(cit45)/*[position()=1] publication-title: Parasite doi: 10.1051/parasite/2011184333 – volume: 58 start-page: 1879 year: 2017 ident: C9RA09905K-(cit94)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2017.04.007 – volume: 8 start-page: 31603 year: 2018 ident: C9RA09905K-(cit164)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C8RA06826G – volume: 59 start-page: 1065 year: 2018 ident: C9RA09905K-(cit132)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2018.02.008 – volume: 6 start-page: 103478 year: 2016 ident: C9RA09905K-(cit125)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA23858K – volume: 15 start-page: 9585 year: 2017 ident: C9RA09905K-(cit110)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB02411H – volume: 30 start-page: 392 year: 2018 ident: C9RA09905K-(cit158)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2018.05.036 – volume: 13 start-page: 1977 year: 2017 ident: C9RA09905K-(cit134)/*[position()=1] publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.13.193 – volume: 59 start-page: 2979 year: 2018 ident: C9RA09905K-(cit141)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2018.06.054 – volume: 23 start-page: 2750 year: 2013 ident: C9RA09905K-(cit112)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2013.02.054 – volume: 37 start-page: 39 year: 1997 ident: C9RA09905K-(cit145)/*[position()=1] publication-title: Isr. J. Chem. doi: 10.1002/ijch.199700007 – volume: 5 start-page: 644 year: 2011 ident: C9RA09905K-(cit104)/*[position()=1] publication-title: J. Chem. Chem. Eng. – volume: 40 start-page: 2447 year: 1996 ident: C9RA09905K-(cit30)/*[position()=1] publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.40.11.2447 – volume: 67 start-page: 3858 year: 2011 ident: C9RA09905K-(cit155)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2011.03.087 – volume: 113 start-page: 15 year: 2007 ident: C9RA09905K-(cit27)/*[position()=1] publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2007.05.030 – volume: 72 start-page: 2132 year: 2016 ident: C9RA09905K-(cit73)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2016.03.004 – volume: 56 start-page: 5924 year: 2015 ident: C9RA09905K-(cit75)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.09.035 – volume: 56 start-page: 3790 year: 2015 ident: C9RA09905K-(cit121)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2015.04.070 – volume: 82 start-page: 10110 year: 2017 ident: C9RA09905K-(cit146)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b01575 – volume: 12 start-page: 1116 year: 2008 ident: C9RA09905K-(cit7)/*[position()=1] publication-title: Curr. Med. Chem. – volume: 4 start-page: 193 year: 2009 ident: C9RA09905K-(cit28)/*[position()=1] publication-title: Nat. Prod. Commun. – volume: 18 start-page: 674 year: 2001 ident: C9RA09905K-(cit26)/*[position()=1] publication-title: Nat. Prod. Rep. doi: 10.1039/b100455g – volume: 220 start-page: 324 year: 2016 ident: C9RA09905K-(cit105)/*[position()=1] publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.094 – volume: 10 start-page: e0142678 year: 2015 ident: C9RA09905K-(cit89)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0142678 – volume: 21 start-page: 986 year: 2016 ident: C9RA09905K-(cit11)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules21080986 – volume: 56 start-page: 1547 year: 1993 ident: C9RA09905K-(cit29)/*[position()=1] publication-title: J. Nat. Prod. doi: 10.1021/np50099a013 – volume: 10 start-page: 315 year: 2006 ident: C9RA09905K-(cit34)/*[position()=1] publication-title: Org. Process Res. Dev. doi: 10.1021/op050227k – volume: 64 start-page: 2755 year: 2008 ident: C9RA09905K-(cit152)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2008.01.046 – start-page: 3648 year: 2013 ident: C9RA09905K-(cit84)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201300368 – volume: 8 start-page: 534 year: 2013 ident: C9RA09905K-(cit85)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.201201039 – volume: 14 start-page: 5951 year: 2016 ident: C9RA09905K-(cit113)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB01083K – volume: 85 start-page: 51 year: 2014 ident: C9RA09905K-(cit3)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2014.07.092 – volume: 17 start-page: 4027 year: 2010 ident: C9RA09905K-(cit13)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/092986710793205345 – volume: 17 start-page: 7907 year: 2019 ident: C9RA09905K-(cit109)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01294J – volume: 21 start-page: 1 year: 2013 ident: C9RA09905K-(cit8)/*[position()=1] publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2012.03.002 – volume: 12 start-page: 3114 year: 2014 ident: C9RA09905K-(cit128)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB00231H – volume: 14 start-page: 2206 year: 2012 ident: C9RA09905K-(cit133)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol300391t – start-page: 4928 year: 2019 ident: C9RA09905K-(cit167)/*[position()=1] publication-title: Eur. J. Org Chem. doi: 10.1002/ejoc.201900880 – volume: 25 start-page: 2049 year: 2014 ident: C9RA09905K-(cit74)/*[position()=1] publication-title: Synlett doi: 10.1055/s-0034-1378355 – volume: 120 start-page: 252 year: 2016 ident: C9RA09905K-(cit160)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.05.007 – volume: 45 start-page: 80 year: 2009 ident: C9RA09905K-(cit83)/*[position()=1] publication-title: Chem. Heterocycl. Compd. doi: 10.1007/s10593-009-0229-3 – volume: 13 start-page: 730 year: 2013 ident: C9RA09905K-(cit31)/*[position()=1] publication-title: Mini-Rev. Med. Chem. doi: 10.2174/1389557511313050010 – volume: 114 start-page: 11138 year: 2014 ident: C9RA09905K-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500098f – volume: 42 start-page: 3847 year: 2001 ident: C9RA09905K-(cit36)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)00604-9 – volume: 49 start-page: 5366 year: 2008 ident: C9RA09905K-(cit92)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2008.06.054 – volume: 19 start-page: 440 year: 2017 ident: C9RA09905K-(cit97)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.6b03399 – volume: 20 start-page: 2673 year: 2013 ident: C9RA09905K-(cit15)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/0929867311320210005 – volume: 55 start-page: 3319 year: 2014 ident: C9RA09905K-(cit51)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2014.04.047 – volume: 50 start-page: 7670 year: 2011 ident: C9RA09905K-(cit54)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102076 – volume: 54 start-page: 5087 year: 2013 ident: C9RA09905K-(cit78)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2013.07.053 – volume: 19 start-page: 537 year: 2016 ident: C9RA09905K-(cit21)/*[position()=1] publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/1386207319666160506123921 – volume: 94 start-page: 2874 year: 1972 ident: C9RA09905K-(cit65)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00763a064 – volume: 360 start-page: 2691 year: 2018 ident: C9RA09905K-(cit126)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201800373 – volume: 5 start-page: 434 year: 2018 ident: C9RA09905K-(cit163)/*[position()=1] publication-title: Org. Chem. Front. doi: 10.1039/C7QO00637C – volume: 114 start-page: 11305 year: 2014 ident: C9RA09905K-(cit16)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500365f – volume: 361 start-page: 3002 year: 2019 ident: C9RA09905K-(cit135)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801709 – volume: 42 start-page: 701 year: 2006 ident: C9RA09905K-(cit41)/*[position()=1] publication-title: Chem. Heterocycl. Compd. doi: 10.1007/s10593-006-0150-y – volume: 19 start-page: 4179 year: 2017 ident: C9RA09905K-(cit111)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01686 – volume: 61 start-page: 3 year: 2004 ident: C9RA09905K-(cit67)/*[position()=1] publication-title: Acta Pol. Pharm. – volume: 20 start-page: 6506 year: 2012 ident: C9RA09905K-(cit59)/*[position()=1] publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2012.08.036 – volume: 21 start-page: 340 year: 2016 ident: C9RA09905K-(cit103)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules21030340 – volume: 48 start-page: 823 year: 2012 ident: C9RA09905K-(cit76)/*[position()=1] publication-title: Russ. J. Org. Chem. doi: 10.1134/S1070428012060139 – volume: 61 start-page: 186 year: 2007 ident: C9RA09905K-(cit44)/*[position()=1] publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2007.02.001 – volume: 50 start-page: 2939 year: 2009 ident: C9RA09905K-(cit124)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.03.208 – volume: 19 start-page: 5673 year: 2017 ident: C9RA09905K-(cit138)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b02838 – volume: 62 start-page: 684 year: 2008 ident: C9RA09905K-(cit38)/*[position()=1] publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2008.09.002 – volume: 41 start-page: 2846 year: 1998 ident: C9RA09905K-(cit58)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm980043e – volume: 11 start-page: 2597 year: 2013 ident: C9RA09905K-(cit87)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/c3ob27270b – volume: 60 start-page: 219 year: 2005 ident: C9RA09905K-(cit48)/*[position()=1] publication-title: Il Farmaco doi: 10.1016/j.farmac.2004.11.010 – start-page: 1159 year: 1995 ident: C9RA09905K-(cit63)/*[position()=1] publication-title: Synthesis doi: 10.1055/s-1995-4053 – volume: 5 start-page: 106012 year: 2015 ident: C9RA09905K-(cit144)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA23065A – volume: 11 start-page: 5013 year: 2003 ident: C9RA09905K-(cit37)/*[position()=1] publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2003.09.007 – volume: 55 start-page: 1777 year: 2011 ident: C9RA09905K-(cit61)/*[position()=1] publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01299-10 – volume: 17 start-page: 9163 year: 2019 ident: C9RA09905K-(cit96)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01909J – volume: 5 start-page: 5563 year: 2015 ident: C9RA09905K-(cit79)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA14486D – volume: 19 start-page: 2439 year: 2017 ident: C9RA09905K-(cit50)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC03140D – volume: 40 start-page: 2220 year: 2010 ident: C9RA09905K-(cit119)/*[position()=1] publication-title: Synth. Commun. doi: 10.1080/00397910903221035 – volume: 33 start-page: 199 year: 2018 ident: C9RA09905K-(cit90)/*[position()=1] publication-title: J. Enzyme Inhib. Med. Chem. doi: 10.1080/14756366.2017.1407926 – volume: 44 start-page: 3091 year: 2009 ident: C9RA09905K-(cit23)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2009.02.024 – volume: 4 start-page: 4064 year: 2016 ident: C9RA09905K-(cit35)/*[position()=1] publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01010 – volume: 65 start-page: 2087 year: 2009 ident: C9RA09905K-(cit60)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2008.12.077 – volume: 83 start-page: 2309 year: 2018 ident: C9RA09905K-(cit122)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b03198 – volume: 13 start-page: 2580 year: 2011 ident: C9RA09905K-(cit81)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol200684b – volume: 373 start-page: 456 year: 2015 ident: C9RA09905K-(cit20)/*[position()=1] publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1410150 – volume: 20 start-page: 6960 year: 2012 ident: C9RA09905K-(cit70)/*[position()=1] publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2012.10.027 – volume: 80 start-page: 4516 year: 2015 ident: C9RA09905K-(cit143)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00375 – volume: 15 start-page: 9061 year: 2017 ident: C9RA09905K-(cit137)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB02310C – start-page: 1 year: 2018 ident: C9RA09905K-(cit150)/*[position()=1] publication-title: J. Chin. Chem. Soc. – volume: 121 start-page: 481 year: 2009 ident: C9RA09905K-(cit53)/*[position()=1] publication-title: J. Chem. Sci. doi: 10.1007/s12039-009-0057-0 – volume: 16 start-page: 602 year: 2019 ident: C9RA09905K-(cit168)/*[position()=1] publication-title: Mini-Rev. Org. Chem. doi: 10.2174/1570193X16666181228101137 – volume: 62 start-page: e01936-17 year: 2018 ident: C9RA09905K-(cit116)/*[position()=1] publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01936-17 – volume: 21 start-page: 4426 year: 2013 ident: C9RA09905K-(cit114)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmc.2013.04.063 |
SSID | ssj0000651261 |
Score | 2.4115934 |
SecondaryResourceType | review_article |
Snippet | Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4876 |
SubjectTerms | Alkaloids antiprotozoal properties Aromatic compounds Chagas disease Chemical synthesis Chemistry cost effectiveness drug design Drugs humans Illnesses Leishmania leishmaniasis Organic chemistry Organic compounds Parasitic diseases Protozoa pyridines quinine Quinoline Schedules Tropical diseases Trypanosoma |
Title | Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35498276 https://www.proquest.com/docview/2350240604 https://www.proquest.com/docview/2574328105 https://www.proquest.com/docview/2658645527 https://pubmed.ncbi.nlm.nih.gov/PMC9049580 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6IcFeEF-DwkBG8LCppGR24iSPpQJNjAEa27Q9VfmwIVqblDRF6viZ_CGu7djN6IRgL1EVXzlV7ol9rn19LkIvKfdcESfEgck5cDyShE4oGHEguohCloggVRIbBx_Z3rH3_tQ_7XR-tbKW5nXSTy-uPFdyHa_CPfCrPCX7H561ncIN-A3-hSt4GK7_5GPgfHIrf7YogMZJ5VUuhNoBaJIXpxXX0t6aFBIH6CSFl-pB_O_E43NeLMaSYsbVYiyXB77P86JUvHOiq-Yq_QeZVyuVnOvcOYe2upwC467zrBd_NUJQht4efhmarALL1T9V5UVa6vz5RVzYaWC_nF9Ab7Pyh8q1HcdZPsmr3knfrhDApCH38d8MmmXugTzgkJWm_UTW6J31DvRev1kL_8DLoqx6Z_32egaRaXEOWY6a8uvQKycmbVWlpTTF7_SspYZHApE9oEEXerFjudvCbNQamCEuY61J3gt17euVCcSlUn81japY7hj6520jcP50oqBEIaoOSfCHhrdiBZ8PhhFEXX7orqEbBGKXdpyv6QFwLLZrpHJp9Hr5tA1003R9mSetBD-rObxrlSlZo6jR0R10u4lp8EAD9C7q8OIeumXf5n30UwMVW6DiBqg4LzDcwS2g4lJg4mzTV96OgSjelgDdwRae2MITN_DEq_DEGp4P0PG7t0fDPaep-uGkPglqR7hCHr4Mich4ENPM5YLwVASCsXSX09BPMyJ8MOCMJoRDQCFIQMKUwlREWRbQTbRelAV_hDBLKI8FkF4vE14QxhALuWmcMrLLOIEndNGOecejtJHEl5VZxiOVmkGj0TA6HCjX7HfRC2s71UIwV1ptGVeNmoFiNiLUl0qCzPW66LltBhfIvbm44OUcbHyg8iSEaOcvNhAtME9KJnbRQ-19-1cMbLoouIQLayBl5C-3FPk3JSffwLWLNgFB1n4JysfX7vIJ2lh-4Vtova7m_Clw-Dp5pr6J3whM9sQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+synthetic+efforts+in+the+preparation+of+2-%283%2C4%29-alkenyl+%28aryl%29+quinoline+molecules+towards+anti-kinetoplastid+agents&rft.jtitle=RSC+advances&rft.au=Orozco%2C+Dayana&rft.au=Kouznetsov%2C+Vladimir+V.&rft.au=Berm%C3%BAdez%2C+Armando&rft.au=Vargas+M%C3%A9ndez%2C+Leonor+Y.&rft.date=2020-01-29&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=9&rft.spage=4876&rft.epage=4898&rft_id=info:doi/10.1039%2Fc9ra09905k&rft_id=info%3Apmid%2F35498276&rft.externalDocID=PMC9049580 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |