High ionic conduction, toughness and self-healing poly(ionic liquid)-based electrolytes enabled by synergy between flexible units and counteranions

Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating hi...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 56; pp. 35687 - 35694
Main Authors Yang, Fu Jie, Liu, Qing Feng, Wu, Xiao Bing, He, Yu Yi, Shu, Xu Gang, Huang, Jin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 03.11.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA ) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI − ) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI − counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm −1 , 1129% of that of a PIL homopolymer electrolyte containing Cl − counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics. Polymer electrolytes offer great potential for emerging wearable electronics.
AbstractList Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI − ) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI − counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm −1 , 1129% of that of a PIL homopolymer electrolyte containing Cl − counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics.
Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI − ) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI − counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm −1 , 1129% of that of a PIL homopolymer electrolyte containing Cl − counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics. Polymer electrolytes offer great potential for emerging wearable electronics.
Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI-) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI- counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm-1, 1129% of that of a PIL homopolymer electrolyte containing Cl- counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics.Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI-) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI- counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm-1, 1129% of that of a PIL homopolymer electrolyte containing Cl- counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics.
Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI−) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI− counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm−1, 1129% of that of a PIL homopolymer electrolyte containing Cl− counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics.
Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI ) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm , 1129% of that of a PIL homopolymer electrolyte containing Cl counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics.
Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI⁻) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI⁻ counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm⁻¹, 1129% of that of a PIL homopolymer electrolyte containing Cl⁻ counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics.
Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic conductivity, stretchability and security simultaneously is still a considerable challenge. Herein, we reported an effective approach for fabricating high-performance poly(ionic liquids) (PILs) copolymer (denoted as PIL-BA ) electrolytes by the interaction between flexible units (butyl acrylate) and counteranions. The introduction of butyl acrylate units and bis(trifluoromethane-sulfonyl)imide (TFSI − ) counteranions can significantly enhance the mobility of polymer chains, resulting in the effective improvement of ion transport, toughness and self-healability. As a result, the PIL-BA copolymer-based electrolytes containing TFSI − counterions achieved the highest ionic conductivity of 2.71 ± 0.17 mS cm −1 , 1129% of that of a PIL homopolymer electrolyte containing Cl − counterions. Moreover, the PIL-BA copolymer-based electrolytes also exhibit ultrahigh tensile strain of 1762% and good self-healable capability. Such multifunctional polymer electrolytes can potentially be applied for safe and stable wearable electronics. Polymer electrolytes offer great potential for emerging wearable electronics.
Author Wu, Xiao Bing
Shu, Xu Gang
Liu, Qing Feng
Huang, Jin
Yang, Fu Jie
He, Yu Yi
AuthorAffiliation Zhongkai University of Agriculture and Engineering
Guangxi Medical University
College Chemistry and Chemical Engineering
College of Pharmacy
AuthorAffiliation_xml – name: Guangxi Medical University
– name: College Chemistry and Chemical Engineering
– name: Zhongkai University of Agriculture and Engineering
– name: College of Pharmacy
Author_xml – sequence: 1
  givenname: Fu Jie
  surname: Yang
  fullname: Yang, Fu Jie
– sequence: 2
  givenname: Qing Feng
  surname: Liu
  fullname: Liu, Qing Feng
– sequence: 3
  givenname: Xiao Bing
  surname: Wu
  fullname: Wu, Xiao Bing
– sequence: 4
  givenname: Yu Yi
  surname: He
  fullname: He, Yu Yi
– sequence: 5
  givenname: Xu Gang
  surname: Shu
  fullname: Shu, Xu Gang
– sequence: 6
  givenname: Jin
  surname: Huang
  fullname: Huang, Jin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35493141$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEUxwep2Fr74rsS6EsVR3Obmc2LsNRLhYIg-hwymZPdlGyyTTLqfA6_sFmnrrX4YAjkcn7nf3L5P6wOfPBQVY8JfkkwE68GEhXmTcPUveqIYt7WFLfi4Nb8sDpJ6QqX1jaEtuRBdcgaLhjh5Kj6cWFXa2SDtxrp4IdR57J4gXIYV2sPKSHlB5TAmXoNylm_QtvgprM5w9nr0Q7P6l4lGBA40DmWaIaEwKvelc1-QmnyEFcT6iF_A_DIOPhuSxCN3ua5gA6jzxCVL7rpUXXfKJfg5GY8rr68e_v5_KK-_Pj-w_nystYN7XI99ILTBeBOU9L3hiqqjaGaAAxgGFGtGbg2WrQGNBCMFx2BzjQLpZjoMO3ZcfV61t2O_QYGDT5H5eQ22o2KkwzKyr8j3q7lKnyVAnNGO14Ezm4EYrgeIWW5sUmDc8pDGJOkbbNoG0w5-Q-UtaXTjhX09A56Fcboy0tI2ghBeCforvbT24ffn_r31xbg-QzoGFKKYPYIwXJnHfmGfFr-ss6ywPgOrG1WOyuUi1v375Qnc0pMei_9x43sJ5WM03M
CitedBy_id crossref_primary_10_1021_acs_macromol_2c02306
crossref_primary_10_1007_s10853_023_08889_3
crossref_primary_10_1021_acsapm_3c02293
crossref_primary_10_1016_j_molliq_2023_121981
crossref_primary_10_3390_technologies12020024
Cites_doi 10.1016/j.jpowsour.2019.02.004
10.1039/C9MH01688K
10.1038/s41467-019-13362-4
10.1016/j.cej.2019.02.064
10.1038/nmat4369
10.1016/j.chempr.2019.05.009
10.1002/anie.201504971
10.1039/C8QM00592C
10.1039/C9TA05028K
10.1002/adma.201804909
10.1016/j.electacta.2015.01.213
10.1021/acsami.9b10595
10.1002/adfm.201909912
10.1039/c2jm33273f
10.1021/acsaem.9b00440
10.1021/acs.macromol.6b00714
10.1021/acs.macromol.9b02305
10.1038/s41565-019-0465-3
10.1002/aenm.201500353
10.1002/aenm.201501082
10.1038/srep06272
10.1021/acsmacrolett.0c00142
10.1002/aenm.201800703
10.1039/C7TA06793C
10.1021/acsami.7b16880
10.1039/C8SM00907D
10.1002/admi.201801445
10.1002/adma.202001259
10.1016/j.jpowsour.2012.01.143
10.1039/C7CS00505A
10.1039/C6CS00491A
10.1002/adma.201802792
10.1016/j.polymer.2017.09.057
10.1039/C7TA08233A
10.1016/j.nanoen.2018.09.059
10.1016/j.polymer.2016.08.100
10.1039/C9TA00634F
10.1016/j.jpowsour.2019.227629
10.1021/acs.macromol.9b00871
10.1002/marc.201600533
10.1002/chem.201803943
10.1002/adma.201605099
10.1016/j.polymer.2018.08.039
10.1039/C8TA05642K
10.1016/j.cej.2019.121925
10.1021/acsami.9b12297
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d1ra04553a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 35694
ExternalDocumentID PMC9043274
35493141
10_1039_D1RA04553A
d1ra04553a
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2019067
– fundername: ;
  grantid: 52003307
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7G
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c527t-db9428e07c21bbf2a2cff2c1eedef31a6fd4cfc96fece100871e7f58aa39702b3
ISSN 2046-2069
IngestDate Thu Aug 21 18:41:47 EDT 2025
Thu Jul 10 23:51:36 EDT 2025
Fri Jul 11 09:02:03 EDT 2025
Sun Jun 29 17:00:44 EDT 2025
Thu Jan 02 22:54:07 EST 2025
Tue Jul 01 04:06:15 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Mon Apr 18 07:58:17 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 56
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-db9428e07c21bbf2a2cff2c1eedef31a6fd4cfc96fece100871e7f58aa39702b3
Notes 10.1039/d1ra04553a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Fu Jie Yang and Qing Feng Liu contributed equally to this work.
ORCID 0000-0002-4751-8101
0000-0001-5654-2464
OpenAccessLink http://dx.doi.org/10.1039/d1ra04553a
PMID 35493141
PQID 2599147924
PQPubID 2047525
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9043274
proquest_miscellaneous_2658650241
pubmed_primary_35493141
proquest_journals_2599147924
crossref_primary_10_1039_D1RA04553A
rsc_primary_d1ra04553a
crossref_citationtrail_10_1039_D1RA04553A
proquest_miscellaneous_2636636273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-03
PublicationDateYYYYMMDD 2021-11-03
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Niu (D1RA04553A/cit42) 2019; 417
Cao (D1RA04553A/cit8) 2017; 29
Chen (D1RA04553A/cit33) 2012; 22
Cao (D1RA04553A/cit44) 2019; 11
Wan (D1RA04553A/cit36) 2019; 14
Yang (D1RA04553A/cit20) 2018; 153
Osada (D1RA04553A/cit13) 2016; 55
Tamate (D1RA04553A/cit9) 2018; 30
Guo (D1RA04553A/cit30) 2018; 10
Sun (D1RA04553A/cit41) 2019; 7
Cui (D1RA04553A/cit32) 2017; 5
Jo (D1RA04553A/cit5) 2020; 53
Fan (D1RA04553A/cit22) 2016; 49
Wang (D1RA04553A/cit24) 2017; 5
Cui (D1RA04553A/cit14) 2019; 3
Yu (D1RA04553A/cit19) 2018; 14
Zhou (D1RA04553A/cit39) 2015; 5
Mai (D1RA04553A/cit2) 2020; 30
Lin (D1RA04553A/cit11) 2019; 367
Song (D1RA04553A/cit29) 2017; 129
Zhang (D1RA04553A/cit38) 2015; 5
Wang (D1RA04553A/cit3) 2015; 14
Liu (D1RA04553A/cit17) 2020; 7
Lee (D1RA04553A/cit28) 2016; 37
Wang (D1RA04553A/cit35) 2018; 6
Luo (D1RA04553A/cit43) 2019; 2
Kato (D1RA04553A/cit6) 2020; 9
Zhou (D1RA04553A/cit7) 2018; 24
Nykaza (D1RA04553A/cit26) 2016; 101
Mackanic (D1RA04553A/cit34) 2019; 10
Zhang (D1RA04553A/cit21) 2015; 159
Dubal (D1RA04553A/cit1) 2018; 47
Tian (D1RA04553A/cit10) 2020; 450
Chen (D1RA04553A/cit12) 2018; 54
Cai (D1RA04553A/cit31) 2019; 11
Zuo (D1RA04553A/cit40) 2019; 7
Chen (D1RA04553A/cit18) 2012; 207
Mackanic (D1RA04553A/cit37) 2018; 8
Wang (D1RA04553A/cit46) 2020; 32
Cui (D1RA04553A/cit15) 2017; 5
Huang (D1RA04553A/cit45) 2018; 6
Zhang (D1RA04553A/cit27) 2017; 46
Nie (D1RA04553A/cit23) 2019; 52
Li (D1RA04553A/cit25) 2019; 375
Zhang (D1RA04553A/cit47) 2014; 4
Zhou (D1RA04553A/cit4) 2019; 5
Cho (D1RA04553A/cit16) 2019; 31
References_xml – volume: 417
  start-page: 70
  year: 2019
  ident: D1RA04553A/cit42
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.02.004
– volume: 7
  start-page: 919
  issue: 3
  year: 2020
  ident: D1RA04553A/cit17
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01688K
– volume: 10
  start-page: 5384
  year: 2019
  ident: D1RA04553A/cit34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13362-4
– volume: 367
  start-page: 139
  year: 2019
  ident: D1RA04553A/cit11
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.064
– volume: 14
  start-page: 1026
  year: 2015
  ident: D1RA04553A/cit3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4369
– volume: 5
  start-page: 2326
  issue: 9
  year: 2019
  ident: D1RA04553A/cit4
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.05.009
– volume: 55
  start-page: 500
  issue: 2
  year: 2016
  ident: D1RA04553A/cit13
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504971
– volume: 3
  start-page: 464
  issue: 3
  year: 2019
  ident: D1RA04553A/cit14
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00592C
– volume: 7
  start-page: 18871
  year: 2019
  ident: D1RA04553A/cit40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05028K
– volume: 31
  start-page: 1804909
  issue: 20
  year: 2019
  ident: D1RA04553A/cit16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804909
– volume: 159
  start-page: 93
  year: 2015
  ident: D1RA04553A/cit21
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.213
– volume: 11
  start-page: 35683
  issue: 39
  year: 2019
  ident: D1RA04553A/cit44
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10595
– volume: 30
  start-page: 1909912
  issue: 24
  year: 2020
  ident: D1RA04553A/cit2
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909912
– volume: 22
  start-page: 18018
  issue: 34
  year: 2012
  ident: D1RA04553A/cit33
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33273f
– volume: 2
  start-page: 3028
  issue: 5
  year: 2019
  ident: D1RA04553A/cit43
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00440
– volume: 49
  start-page: 4557
  year: 2016
  ident: D1RA04553A/cit22
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00714
– volume: 53
  start-page: 1024
  issue: 3
  year: 2020
  ident: D1RA04553A/cit5
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b02305
– volume: 14
  start-page: 705
  issue: 7
  year: 2019
  ident: D1RA04553A/cit36
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0465-3
– volume: 5
  start-page: 1500353
  issue: 15
  year: 2015
  ident: D1RA04553A/cit39
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500353
– volume: 5
  start-page: 1501082
  year: 2015
  ident: D1RA04553A/cit38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501082
– volume: 4
  start-page: 6272
  year: 2014
  ident: D1RA04553A/cit47
  publication-title: Sci. Rep.
  doi: 10.1038/srep06272
– volume: 9
  start-page: 500
  issue: 4
  year: 2020
  ident: D1RA04553A/cit6
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.0c00142
– volume: 8
  start-page: 1800703
  issue: 25
  year: 2018
  ident: D1RA04553A/cit37
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800703
– volume: 5
  start-page: 25220
  issue: 48
  year: 2017
  ident: D1RA04553A/cit15
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06793C
– volume: 10
  start-page: 2105
  issue: 2
  year: 2018
  ident: D1RA04553A/cit30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16880
– volume: 14
  start-page: 6313
  issue: 30
  year: 2018
  ident: D1RA04553A/cit19
  publication-title: Soft Matter
  doi: 10.1039/C8SM00907D
– volume: 6
  start-page: 1801445
  year: 2018
  ident: D1RA04553A/cit45
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201801445
– volume: 32
  start-page: 2001259
  year: 2020
  ident: D1RA04553A/cit46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001259
– volume: 207
  start-page: 216
  year: 2012
  ident: D1RA04553A/cit18
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.143
– volume: 47
  start-page: 2065
  issue: 6
  year: 2018
  ident: D1RA04553A/cit1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00505A
– volume: 46
  start-page: 797
  issue: 3
  year: 2017
  ident: D1RA04553A/cit27
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00491A
– volume: 30
  start-page: 1802792
  issue: 36
  year: 2018
  ident: D1RA04553A/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802792
– volume: 5
  start-page: 25220
  issue: 48
  year: 2017
  ident: D1RA04553A/cit32
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06793C
– volume: 129
  start-page: 135
  year: 2017
  ident: D1RA04553A/cit29
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.09.057
– volume: 5
  start-page: 23844
  year: 2017
  ident: D1RA04553A/cit24
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08233A
– volume: 54
  start-page: 17
  year: 2018
  ident: D1RA04553A/cit12
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.059
– volume: 101
  start-page: 311
  year: 2016
  ident: D1RA04553A/cit26
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.08.100
– volume: 7
  start-page: 11069
  issue: 18
  year: 2019
  ident: D1RA04553A/cit41
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00634F
– volume: 450
  start-page: 227629
  year: 2020
  ident: D1RA04553A/cit10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227629
– volume: 52
  start-page: 5289
  issue: 14
  year: 2019
  ident: D1RA04553A/cit23
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00871
– volume: 37
  start-page: 2045
  issue: 24
  year: 2016
  ident: D1RA04553A/cit28
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201600533
– volume: 24
  start-page: 19200
  issue: 72
  year: 2018
  ident: D1RA04553A/cit7
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201803943
– volume: 29
  start-page: 1605099
  issue: 10
  year: 2017
  ident: D1RA04553A/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605099
– volume: 153
  start-page: 438
  year: 2018
  ident: D1RA04553A/cit20
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.08.039
– volume: 6
  start-page: 17227
  year: 2018
  ident: D1RA04553A/cit35
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05642K
– volume: 375
  start-page: 121925
  year: 2019
  ident: D1RA04553A/cit25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121925
– volume: 11
  start-page: 38136
  year: 2019
  ident: D1RA04553A/cit31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12297
SSID ssj0000651261
Score 2.3692644
Snippet Polymer electrolytes offer great potential for emerging wearable electronics. However, the development of a polymer electrolyte that has high ionic...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35687
SubjectTerms Acrylics
Chain mobility
Chemistry
composite polymers
Copolymers
Electrolytes
Electronics
Ion currents
Ion transport
Ionic liquids
Ions
Polymers
Stretchability
Tensile strain
tensile strength
Toughness
Trifluoromethane
Wearable technology
Title High ionic conduction, toughness and self-healing poly(ionic liquid)-based electrolytes enabled by synergy between flexible units and counteranions
URI https://www.ncbi.nlm.nih.gov/pubmed/35493141
https://www.proquest.com/docview/2599147924
https://www.proquest.com/docview/2636636273
https://www.proquest.com/docview/2658650241
https://pubmed.ncbi.nlm.nih.gov/PMC9043274
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QAXxNegMCYjODCVjCTOR3MsY9OExpBGi9pT5Di2iFSl0DWH8m9w5J_lPTtxUnWagEvUJi-p6_eL34ffByGvwzzjAuxjx5UidrDkm5MMJXciMCWGSkYRzzF3-NNldD4JPk7Daa_3uxO1VK2yY_HzxryS_-EqnAO-YpbsP3DWPhROwGfgLxyBw3D8Kx5jkMag0D1swKzNTSFYnLQV9t7Ri5j2i8u5clAj1JnnC-wtPTR3zYsfFY46cVCa5YO6Kc58jd5YqdOqtIJ6vTYpgk1Ul8IymphzVZW48WBy4yrkES-tA7Ap-_3lpIk0aHNNKo2eQg5mvBad6HzF8cEEY9pVZaWFJp0WfDF4X7S0s2owK0Bodr0WvqfT95jFmfGNNIGpOvCkbm9n5JJeAH2w3YHfppWLXa29DirD7trLwqiW3bL5bvonb0kJl2GR1dxbclBoQ9aRhc3-_-Xn9GxycZGOT6fjHbLngw0Ci-je1dfJdGZdeKC9eWCANkVvWfKufeSmmrNlu2yH4O4sm44zWrMZ3yf3apOEjgy-HpCeLB-SO3aqHpFfiDOqEUNbnL2lFmUUAEC7KKOIsjfmDoOxI4Mw2kUYrRFGszWtEUZrhNEGYVQjTP_ABsIek8nZ6fjk3KmbeTgi9OOVk2cJWLrSjYXvZZnyuS-U8oUHOppUzOORygOhRBIpKSRWnIo9GatwyDlozK6fsX2yWy5K-ZTQEFYdjzPpZooHGMbFZegJNYwzCezgbp8cNXOfirrSPTZcmac64oIl6QfvaqT5NOqTV5b2u6nvciPVQcPCtH7_r1M_BNsqiBM_6JOX9jKwBrfceCkXFdBEDFT6CGyE22jCIdhJoEr3yRODCjsUFgYJ8_BKvIEXS4DV4TevlMU3XSU-wWKbMYxtH5Bl6VuEPrv9Pz0nd9v39oDsrpaVfAH69yo71H6rw_pt-ANZBenC
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+ionic+conduction%2C+toughness+and+self-healing+poly%28ionic+liquid%29-based+electrolytes+enabled+by+synergy+between+flexible+units+and+counteranions&rft.jtitle=RSC+advances&rft.au=Fu%2C+Jie+Yang&rft.au=Qing+Feng+Liu&rft.au=Wu%2C+Xiao+Bing&rft.au=Yu+Yi+He&rft.date=2021-11-03&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=56&rft.spage=35687&rft.epage=35694&rft_id=info:doi/10.1039%2Fd1ra04553a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon