Symbionts exploit complex signaling to educate the immune system
The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to comm...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 52; pp. 26157 - 26166 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.12.2019
|
Series | Inaugural Article |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4⁺ Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents. |
---|---|
AbstractList | The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of
is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4
Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents. Human health and the microbiota are intricately intertwined. A major interest in manipulating the microbiome has been focused on the use of symbiont microbes to improve human health. However, relatively little has been discovered on the specific molecules from microbes in the microbiota that are immunomodulatory and the mechanisms by which these molecules regulate immunity. Herein we have defined how a symbiont molecule modulates innate immunity. Using polysaccharide A of Bacteroides fragilis as the paradigm for microbiome-induced immune responses, we have discovered important mechanisms by which symbiont molecules induce antiinflammatory responses. We reveal a lipid structure on polysaccharide A that drives host antiinflammatory responses by triggering a complex collaborative integration of Toll-like receptor, C-type lectin-like receptor, and PI3K signaling pathways. The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4 + Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents. The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4⁺ Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents. |
Author | Erturk-Hasdemir, Deniz Plevy, Scott E. Okan, Nihal A. Oh, Sungwhan F. Gazzaniga, Francesca S. Stefanetti, Giuseppe Kasper, Dennis L. Seeberger, Peter H. |
Author_xml | – sequence: 1 givenname: Deniz surname: Erturk-Hasdemir fullname: Erturk-Hasdemir, Deniz – sequence: 2 givenname: Sungwhan F. surname: Oh fullname: Oh, Sungwhan F. – sequence: 3 givenname: Nihal A. surname: Okan fullname: Okan, Nihal A. – sequence: 4 givenname: Giuseppe surname: Stefanetti fullname: Stefanetti, Giuseppe – sequence: 5 givenname: Francesca S. surname: Gazzaniga fullname: Gazzaniga, Francesca S. – sequence: 6 givenname: Peter H. surname: Seeberger fullname: Seeberger, Peter H. – sequence: 7 givenname: Scott E. surname: Plevy fullname: Plevy, Scott E. – sequence: 8 givenname: Dennis L. surname: Kasper fullname: Kasper, Dennis L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31811024$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkEtP3TAQRq0KVC60666Ksuwm4Ff82FRFiJeExKLt2nLsycUosUPsIO6_b9ClF1jN4jvzzegcor2YIiD0jeATgiU7HaPNJ0STRktFiPiEVgRrUguu8R5aYUxlrTjlB-gw5weMsW4U_owOGFloTPkK_fq9GdqQYskVPI99CqVyaRh7eK5yWEfbh7iuSqrAz84WqMo9VGEY5ghV3uQCwxe039k-w9fXeYT-Xl78Ob-ub--ubs7PbmvXUFlqzxvV-lZoL7XllIJvsSe8o8wTr4SzkjhliYauUdBxq0Ex6yQRwrqOc8yO0M9t7zi3A3gHsUy2N-MUBjttTLLBfExiuDfr9GSEZkISvhT8eC2Y0uMMuZghZAd9byOkORvKKJVMNZgt6OkWdVPKeYJud4Zg8-LdvHg3b96XjeP33-34_6IX4PsWeMglTbucCqUlloL9A4lujHI |
CitedBy_id | crossref_primary_10_1038_s41598_022_20073_2 crossref_primary_10_1093_procel_pwad016 crossref_primary_10_1042_BSR20203850 crossref_primary_10_1073_pnas_1920088116 crossref_primary_10_1002_cpz1_314 crossref_primary_10_1186_s40104_022_00692_5 crossref_primary_10_1038_s41598_023_42481_8 crossref_primary_10_3390_molecules26206294 crossref_primary_10_3390_ijerph182212220 crossref_primary_10_1016_j_fshw_2022_04_003 crossref_primary_10_3389_fnut_2022_969512 crossref_primary_10_1007_s00248_022_02037_1 crossref_primary_10_1021_acscentsci_0c00791 crossref_primary_10_3390_nu15204408 crossref_primary_10_1039_D2LC00602B crossref_primary_10_1186_s13578_023_01135_y crossref_primary_10_3390_nu14204328 crossref_primary_10_1136_gutjnl_2021_326789 crossref_primary_10_1038_s41576_021_00395_z crossref_primary_10_3389_fnut_2021_783819 crossref_primary_10_3390_nu13020699 crossref_primary_10_1002_wsbm_1551 crossref_primary_10_3389_fimmu_2021_662807 crossref_primary_10_1128_msystems_00521_23 crossref_primary_10_1038_s12276_023_01075_0 crossref_primary_10_1136_gutjnl_2022_328185 crossref_primary_10_3390_ijms222111365 crossref_primary_10_1007_s11154_023_09798_1 crossref_primary_10_1038_s41586_021_04083_0 crossref_primary_10_3389_fmicb_2023_1209932 crossref_primary_10_1016_j_carbpol_2022_120533 crossref_primary_10_1186_s13045_024_01541_w crossref_primary_10_3390_biomedicines12030616 crossref_primary_10_1007_s11255_023_03760_5 crossref_primary_10_3390_cancers14153563 crossref_primary_10_1016_j_actbio_2021_05_045 crossref_primary_10_3390_nu14122528 crossref_primary_10_3892_ol_2024_14221 crossref_primary_10_3389_fcimb_2021_808005 crossref_primary_10_1002_aro2_39 crossref_primary_10_1007_s00284_022_02877_7 crossref_primary_10_1016_j_sjbs_2021_10_068 crossref_primary_10_1038_s41422_020_0332_7 crossref_primary_10_1016_j_jaut_2022_102957 crossref_primary_10_4052_tigg_2223_2J crossref_primary_10_1556_1886_2022_00017 crossref_primary_10_1016_j_carbpol_2022_120040 crossref_primary_10_1016_j_jff_2023_105583 crossref_primary_10_1111_mec_16708 crossref_primary_10_3390_ijms22083854 crossref_primary_10_1002_anie_202012374 crossref_primary_10_3389_fnins_2022_836605 crossref_primary_10_4052_tigg_2223_2E crossref_primary_10_1016_j_cell_2020_10_047 crossref_primary_10_4049_jimmunol_2200892 crossref_primary_10_3389_fgene_2021_584197 crossref_primary_10_4049_jimmunol_2200855 crossref_primary_10_58838_2075_1230_2023_101_1_74_82 crossref_primary_10_1038_s41586_022_04985_7 crossref_primary_10_3390_antibiotics11081093 crossref_primary_10_1002_med_21805 crossref_primary_10_1111_febs_17161 crossref_primary_10_1016_j_tim_2021_06_011 crossref_primary_10_1016_j_chom_2024_02_003 crossref_primary_10_1016_j_jep_2022_115721 crossref_primary_10_1002_ange_202012374 crossref_primary_10_1111_mec_16733 crossref_primary_10_1021_acs_analchem_4c00952 crossref_primary_10_1111_cns_14275 crossref_primary_10_1039_D1TB02590B crossref_primary_10_1016_j_tins_2020_06_002 crossref_primary_10_3389_fmicb_2023_1236348 crossref_primary_10_3389_fmolb_2022_1005136 crossref_primary_10_1002_cbic_202300552 |
Cites_doi | 10.1016/j.cell.2016.04.007 10.1111/j.1574-6968.2006.00177.x 10.1038/ni825 10.1053/j.gastro.2010.07.008 10.1073/pnas.0804220105 10.1016/j.cell.2006.08.021 10.1128/IAI.73.3.1491-1505.2005 10.1016/j.chom.2017.11.002 10.1016/j.chom.2009.05.010 10.1016/j.chom.2016.09.002 10.1128/jb.163.2.769-773.1985 10.1038/nature07008 10.1128/IAI.69.7.4342-4350.2001 10.1016/j.immuni.2009.09.018 10.1021/ja1087375 10.1073/pnas.1222317110 10.1126/science.1260580 10.1084/jem.20062008 10.1016/S0021-9258(19)52486-3 10.1016/j.chom.2012.08.004 10.1038/nri2515 10.1038/ni0805-751 10.1073/pnas.0909122107 10.1016/j.cell.2004.05.001 10.1038/82797 10.1021/bi00131a026 10.1093/glycob/cwq171 10.1073/pnas.0800974105 10.1038/mi.2010.29 10.1093/infdis/134.1.59 10.1038/nprot.2006.285 10.1172/JCI93820 10.3389/fimmu.2013.00103 10.1126/science.aad1329 10.3389/fmicb.2015.01050 10.1038/378785a0 10.1111/nyas.13660 10.1016/j.cell.2005.05.007 10.1016/j.cell.2007.09.008 10.1146/annurev-immunol-031210-101352 10.1128/mr.60.1.151-166.1996 10.4049/jimmunol.171.2.717 10.1016/j.cell.2012.04.037 10.1016/j.chom.2014.03.006 10.1111/j.1432-1033.1989.tb14945.x 10.1038/emboj.2009.158 10.1038/nature25019 10.1038/ni1221 10.1172/JCI27203 10.1016/j.it.2011.01.002 10.1038/ncomms5432 10.1099/jmm.0.009936-0 10.1016/j.coi.2013.06.001 10.1046/j.1471-4159.2001.00495.x 10.1038/nri2038 10.1371/journal.pone.0049653 10.4049/jimmunol.1001443 10.1126/science.aac4255 10.1371/journal.ppat.1004215 10.1248/bpb.30.1617 10.4049/jimmunol.0901367 10.1084/jem.20021787 10.1038/35107092 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1073/pnas.1915978116 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 26166 |
ExternalDocumentID | 10_1073_pnas_1915978116 31811024 26897076 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K01 DK102771 – fundername: Innovation Programme under Marie Skłodowska Curie Grant grantid: 661138 – fundername: U.S. Department of Defense (DOD) grantid: W81XWH1910626 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: 5U19AI109764 – fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: K01-DK102771 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c527t-d458bdb69d79a422edb0d14f23d1d86ca71c8a19ef58ef4a9e83ac7166acf4403 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:18:17 EDT 2024 Sat Aug 17 01:30:40 EDT 2024 Fri Dec 06 02:51:17 EST 2024 Sat Sep 28 08:28:03 EDT 2024 Tue Dec 10 23:54:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | host–microbe interactions Bacteroides fragilis symbionts polysaccharide A zwitterionic polysaccharides (ZPSs) |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-d458bdb69d79a422edb0d14f23d1d86ca71c8a19ef58ef4a9e83ac7166acf4403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: D.E.-H., S.F.O., G.S., F.S.G., and D.L.K. designed research; D.E.-H., S.F.O., N.A.O., and G.S. performed research; D.E.-H., S.F.O., P.H.S., and S.E.P. contributed new reagents/analytic tools; D.E.-H., S.F.O., N.A.O., and G.S. analyzed data; and D.E.-H., S.F.O., and D.L.K. wrote the paper. Contributed by Dennis L. Kasper, November 4, 2019 (sent for review September 15, 2019; reviewed by Robert W. Finberg and Lora V. Hooper) Reviewers: R.W.F., University of Massachusetts Medical School; and L.V.H., University of Texas Southwestern Medical Center. This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2018. 1Present address: Synlogic Therapeutics, Cambridge, MA 02142. |
ORCID | 0000-0003-3394-8466 0000-0001-8808-5333 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/52/26157.full.pdf |
PMID | 31811024 |
PQID | 2322738503 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936714 proquest_miscellaneous_2322738503 crossref_primary_10_1073_pnas_1915978116 pubmed_primary_31811024 jstor_primary_26897076 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-26 |
PublicationDateYYYYMMDD | 2019-12-26 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | Inaugural Article |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_59_2 doi: 10.1016/j.cell.2016.04.007 – ident: e_1_3_3_36_2 doi: 10.1111/j.1574-6968.2006.00177.x – ident: e_1_3_3_30_2 doi: 10.1038/ni825 – ident: e_1_3_3_31_2 doi: 10.1053/j.gastro.2010.07.008 – ident: e_1_3_3_47_2 doi: 10.1073/pnas.0804220105 – ident: e_1_3_3_48_2 doi: 10.1016/j.cell.2006.08.021 – ident: e_1_3_3_37_2 doi: 10.1128/IAI.73.3.1491-1505.2005 – ident: e_1_3_3_16_2 doi: 10.1016/j.chom.2017.11.002 – ident: e_1_3_3_49_2 doi: 10.1016/j.chom.2009.05.010 – ident: e_1_3_3_11_2 doi: 10.1016/j.chom.2016.09.002 – ident: e_1_3_3_54_2 doi: 10.1128/jb.163.2.769-773.1985 – ident: e_1_3_3_7_2 doi: 10.1038/nature07008 – ident: e_1_3_3_46_2 doi: 10.1128/IAI.69.7.4342-4350.2001 – ident: e_1_3_3_62_2 doi: 10.1016/j.immuni.2009.09.018 – ident: e_1_3_3_39_2 doi: 10.1021/ja1087375 – ident: e_1_3_3_52_2 doi: 10.1073/pnas.1222317110 – ident: e_1_3_3_58_2 doi: 10.1126/science.1260580 – ident: e_1_3_3_13_2 doi: 10.1084/jem.20062008 – ident: e_1_3_3_53_2 doi: 10.1016/S0021-9258(19)52486-3 – ident: e_1_3_3_14_2 doi: 10.1016/j.chom.2012.08.004 – ident: e_1_3_3_44_2 doi: 10.1038/nri2515 – ident: e_1_3_3_35_2 doi: 10.1038/ni0805-751 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.0909122107 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2004.05.001 – ident: e_1_3_3_27_2 doi: 10.1038/82797 – ident: e_1_3_3_51_2 doi: 10.1021/bi00131a026 – ident: e_1_3_3_20_2 doi: 10.1093/glycob/cwq171 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0800974105 – ident: e_1_3_3_8_2 doi: 10.1038/mi.2010.29 – ident: e_1_3_3_60_2 doi: 10.1093/infdis/134.1.59 – ident: e_1_3_3_63_2 doi: 10.1038/nprot.2006.285 – ident: e_1_3_3_17_2 doi: 10.1172/JCI93820 – ident: e_1_3_3_25_2 doi: 10.3389/fimmu.2013.00103 – ident: e_1_3_3_41_2 doi: 10.1126/science.aad1329 – ident: e_1_3_3_40_2 doi: 10.3389/fmicb.2015.01050 – ident: e_1_3_3_32_2 doi: 10.1038/378785a0 – ident: e_1_3_3_3_2 doi: 10.1111/nyas.13660 – ident: e_1_3_3_4_2 doi: 10.1016/j.cell.2005.05.007 – ident: e_1_3_3_61_2 doi: 10.1016/j.cell.2007.09.008 – ident: e_1_3_3_21_2 doi: 10.1146/annurev-immunol-031210-101352 – ident: e_1_3_3_55_2 doi: 10.1128/mr.60.1.151-166.1996 – ident: e_1_3_3_29_2 doi: 10.4049/jimmunol.171.2.717 – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2012.04.037 – ident: e_1_3_3_6_2 doi: 10.1016/j.chom.2014.03.006 – ident: e_1_3_3_38_2 doi: 10.1111/j.1432-1033.1989.tb14945.x – ident: e_1_3_3_28_2 doi: 10.1038/emboj.2009.158 – ident: e_1_3_3_43_2 doi: 10.1038/nature25019 – ident: e_1_3_3_33_2 doi: 10.1038/ni1221 – ident: e_1_3_3_23_2 doi: 10.1172/JCI27203 – ident: e_1_3_3_24_2 doi: 10.1016/j.it.2011.01.002 – ident: e_1_3_3_10_2 doi: 10.1038/ncomms5432 – ident: e_1_3_3_57_2 doi: 10.1099/jmm.0.009936-0 – ident: e_1_3_3_1_2 doi: 10.1016/j.coi.2013.06.001 – ident: e_1_3_3_34_2 doi: 10.1046/j.1471-4159.2001.00495.x – ident: e_1_3_3_45_2 doi: 10.1038/nri2038 – ident: e_1_3_3_5_2 doi: 10.1371/journal.pone.0049653 – ident: e_1_3_3_9_2 doi: 10.4049/jimmunol.1001443 – ident: e_1_3_3_42_2 doi: 10.1126/science.aac4255 – ident: e_1_3_3_56_2 doi: 10.1371/journal.ppat.1004215 – ident: e_1_3_3_26_2 doi: 10.1248/bpb.30.1617 – ident: e_1_3_3_15_2 doi: 10.4049/jimmunol.0901367 – ident: e_1_3_3_22_2 doi: 10.1084/jem.20021787 – ident: e_1_3_3_50_2 doi: 10.1038/35107092 |
SSID | ssj0009580 |
Score | 2.616139 |
Snippet | The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite... Human health and the microbiota are intricately intertwined. A major interest in manipulating the microbiome has been focused on the use of symbiont microbes... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 26157 |
SubjectTerms | Biological Sciences INAUGURAL ARTICLE |
Title | Symbionts exploit complex signaling to educate the immune system |
URI | https://www.jstor.org/stable/26897076 https://www.ncbi.nlm.nih.gov/pubmed/31811024 https://search.proquest.com/docview/2322738503 https://pubmed.ncbi.nlm.nih.gov/PMC6936714 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSyQxEC3UkxdZP3fWDyJ40EPPdOejk9wUUURQhFXw1iTpNA7s9Aw7Lei_t5LunnUWT56TQPNS6XpFXr0AnAgrJZPCJMhFTRKCJFHU0oSZFNMdZVK70I18d5_fPPHbZ_G8AqLvhYmifWfHw_rPZFiPX6K2cjZxo14nNnq4u8w1y2XGR6uwium3L9EXTruq7Tuh-PvllPd-PpKNZrWZD7FAEcHoKQuvF2FEY_6jfCkrtcLEryjn_8rJT6no-gdsdBySXLTfugkrvt6Cze6UzslpZyV9tg3nv98nFpFv5sQHsd24IVFD7t9IEG6Y0ItOmilp_Vs9QTZIxqFjxJPW4nkHnq6vHi9vku7NhMQJKpuk5ELZ0ua6lNpwSn1p0zLjFWVlVqrcGZk5ZTLtK6F8xY32ihmHRVNuXMV5ynZhrZ7W_icQXjHJhNXhgheLaK-c9jr1tpSW-SytBnDaY1bMWmuMIl5pS1YEpIt_SA9gN2K6mEdzpWUqceC4B7nAuA6XFab209d5gUwvOu2kbAB7LeiL1f2uDUAubcdiQvDMXh7BUIre2V3o_Pr2yn1YR84Un5Cg-QGsNX9f_SHyksYehawgjmI0fgDbqeJX |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RemgvFZRSFtriShzoIbuJP2L7VoSKti2LKhUkbpHtOGIlNrvqBgn-PWMnWbpVT5xtR9HzJPNGfvMMcCSslEwKkyAXNUkIkkRRSxNmUkx3lEntQjfy5CIfX_Ef1-J6A0TfCxNF-85Oh_XtbFhPb6K2cjFzo14nNvo1Oc01y2XGRy_gpcCnZX2RvvLaVW3nCcUfMKe8d_SRbLSozXKIJYoIVk9ZuL8IYxozIOVreamVJv6PdP6rnfwrGZ1twZuORZKT9m23YcPXb2G7-06X5Lgzk_6yA19_P8wsYt8siQ9yu2lDoorc35Mg3TChG500c9I6uHqCfJBMQ8-IJ63J8zu4Ovt2eTpOulsTEieobJKSC2VLm-tSasMp9aVNy4xXlJVZqXJnZOaUybSvhPIVN9orZhyWTblxFecp24XNel77PSC8YpIJq8MRL5bRXjntdeptKS3zWVoN4LjHrFi05hhFPNSWrAhIF09ID2A3YrqaR3OlZSpx4HMPcoGRHY4rTO3nd8sCuV702knZAN63oK9W97s2ALm2HasJwTV7fQSDKbpnd8Gz_-yVh_BqfDk5L86_X_w8gNfIoOKFEjT_AJvNnzv_EVlKYz_FmHwElrTkxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIHCQgEjcSiHbBI_YvtW1LIqj1aVoFJvkV9RV2KzKzaV4N8zdpJtF3HibDuKxpPMN5pvvgF4J6yUTAqTIRY1WXSSTFFLM2YKDHeUSe1iN_LpWXVywT9fistbo74Sad_Z-bT9sZi286vErVwtXD7yxPLz06NKs0qWPF_5Jr8L9wQ-kY2J-kZvV_XdJxR_wpzyUdVHsnzVmvUU0xQR5Z7KOMMI_RqjIOVbsamnJ_4LeP7Nn7wVkGaP4OGAJMmH_o134U5oH8Pu8K2uycEgKP3-CRx--72waP9uTUKk3M07kpjk4ReJ9A0TO9JJtyS9imsgiAnJPPaNBNILPT-Fi9nH70cn2TA5IXOCyi7zXCjrbaW91IZTGrwtfMkbynzpVeWMLJ0ypQ6NUKHhRgfFjMPUqTKu4bxge7DTLtvwHAhvmGTC6ljmxVQ6KKeDLoL10rJQFs0EDkab1ateIKNOhW3J6mjp-sbSE9hLNt3so5XSspC48HY0co3eHUsWpg3L63WNeC_p7RRsAs96o29Oj7c2Abl1HZsNUTl7ewUdKiloDw704r9PvoH758ez-uunsy8v4QGCqDRTglb7sNP9vA6vEKh09nVyyT_tKuXZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbionts+exploit+complex+signaling+to+educate+the+immune+system&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Erturk-Hasdemir%2C+Deniz&rft.au=Oh%2C+Sungwhan+F.&rft.au=Okan%2C+Nihal+A.&rft.au=Stefanetti%2C+Giuseppe&rft.series=Inaugural+Article&rft.date=2019-12-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=52&rft.spage=26157&rft.epage=26166&rft_id=info:doi/10.1073%2Fpnas.1915978116&rft_id=info%3Apmid%2F31811024&rft.externalDBID=PMC6936714 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |