Symbionts exploit complex signaling to educate the immune system

The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to comm...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 52; pp. 26157 - 26166
Main Authors Erturk-Hasdemir, Deniz, Oh, Sungwhan F., Okan, Nihal A., Stefanetti, Giuseppe, Gazzaniga, Francesca S., Seeberger, Peter H., Plevy, Scott E., Kasper, Dennis L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.12.2019
SeriesInaugural Article
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4⁺ Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents.
AbstractList The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4 Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents.
Human health and the microbiota are intricately intertwined. A major interest in manipulating the microbiome has been focused on the use of symbiont microbes to improve human health. However, relatively little has been discovered on the specific molecules from microbes in the microbiota that are immunomodulatory and the mechanisms by which these molecules regulate immunity. Herein we have defined how a symbiont molecule modulates innate immunity. Using polysaccharide A of Bacteroides fragilis as the paradigm for microbiome-induced immune responses, we have discovered important mechanisms by which symbiont molecules induce antiinflammatory responses. We reveal a lipid structure on polysaccharide A that drives host antiinflammatory responses by triggering a complex collaborative integration of Toll-like receptor, C-type lectin-like receptor, and PI3K signaling pathways. The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4 + Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents.
The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4⁺ Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents.
Author Erturk-Hasdemir, Deniz
Plevy, Scott E.
Okan, Nihal A.
Oh, Sungwhan F.
Gazzaniga, Francesca S.
Stefanetti, Giuseppe
Kasper, Dennis L.
Seeberger, Peter H.
Author_xml – sequence: 1
  givenname: Deniz
  surname: Erturk-Hasdemir
  fullname: Erturk-Hasdemir, Deniz
– sequence: 2
  givenname: Sungwhan F.
  surname: Oh
  fullname: Oh, Sungwhan F.
– sequence: 3
  givenname: Nihal A.
  surname: Okan
  fullname: Okan, Nihal A.
– sequence: 4
  givenname: Giuseppe
  surname: Stefanetti
  fullname: Stefanetti, Giuseppe
– sequence: 5
  givenname: Francesca S.
  surname: Gazzaniga
  fullname: Gazzaniga, Francesca S.
– sequence: 6
  givenname: Peter H.
  surname: Seeberger
  fullname: Seeberger, Peter H.
– sequence: 7
  givenname: Scott E.
  surname: Plevy
  fullname: Plevy, Scott E.
– sequence: 8
  givenname: Dennis L.
  surname: Kasper
  fullname: Kasper, Dennis L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31811024$$D View this record in MEDLINE/PubMed
BookMark eNpVkEtP3TAQRq0KVC60666Ksuwm4Ff82FRFiJeExKLt2nLsycUosUPsIO6_b9ClF1jN4jvzzegcor2YIiD0jeATgiU7HaPNJ0STRktFiPiEVgRrUguu8R5aYUxlrTjlB-gw5weMsW4U_owOGFloTPkK_fq9GdqQYskVPI99CqVyaRh7eK5yWEfbh7iuSqrAz84WqMo9VGEY5ghV3uQCwxe039k-w9fXeYT-Xl78Ob-ub--ubs7PbmvXUFlqzxvV-lZoL7XllIJvsSe8o8wTr4SzkjhliYauUdBxq0Ex6yQRwrqOc8yO0M9t7zi3A3gHsUy2N-MUBjttTLLBfExiuDfr9GSEZkISvhT8eC2Y0uMMuZghZAd9byOkORvKKJVMNZgt6OkWdVPKeYJud4Zg8-LdvHg3b96XjeP33-34_6IX4PsWeMglTbucCqUlloL9A4lujHI
CitedBy_id crossref_primary_10_1038_s41598_022_20073_2
crossref_primary_10_1093_procel_pwad016
crossref_primary_10_1042_BSR20203850
crossref_primary_10_1073_pnas_1920088116
crossref_primary_10_1002_cpz1_314
crossref_primary_10_1186_s40104_022_00692_5
crossref_primary_10_1038_s41598_023_42481_8
crossref_primary_10_3390_molecules26206294
crossref_primary_10_3390_ijerph182212220
crossref_primary_10_1016_j_fshw_2022_04_003
crossref_primary_10_3389_fnut_2022_969512
crossref_primary_10_1007_s00248_022_02037_1
crossref_primary_10_1021_acscentsci_0c00791
crossref_primary_10_3390_nu15204408
crossref_primary_10_1039_D2LC00602B
crossref_primary_10_1186_s13578_023_01135_y
crossref_primary_10_3390_nu14204328
crossref_primary_10_1136_gutjnl_2021_326789
crossref_primary_10_1038_s41576_021_00395_z
crossref_primary_10_3389_fnut_2021_783819
crossref_primary_10_3390_nu13020699
crossref_primary_10_1002_wsbm_1551
crossref_primary_10_3389_fimmu_2021_662807
crossref_primary_10_1128_msystems_00521_23
crossref_primary_10_1038_s12276_023_01075_0
crossref_primary_10_1136_gutjnl_2022_328185
crossref_primary_10_3390_ijms222111365
crossref_primary_10_1007_s11154_023_09798_1
crossref_primary_10_1038_s41586_021_04083_0
crossref_primary_10_3389_fmicb_2023_1209932
crossref_primary_10_1016_j_carbpol_2022_120533
crossref_primary_10_1186_s13045_024_01541_w
crossref_primary_10_3390_biomedicines12030616
crossref_primary_10_1007_s11255_023_03760_5
crossref_primary_10_3390_cancers14153563
crossref_primary_10_1016_j_actbio_2021_05_045
crossref_primary_10_3390_nu14122528
crossref_primary_10_3892_ol_2024_14221
crossref_primary_10_3389_fcimb_2021_808005
crossref_primary_10_1002_aro2_39
crossref_primary_10_1007_s00284_022_02877_7
crossref_primary_10_1016_j_sjbs_2021_10_068
crossref_primary_10_1038_s41422_020_0332_7
crossref_primary_10_1016_j_jaut_2022_102957
crossref_primary_10_4052_tigg_2223_2J
crossref_primary_10_1556_1886_2022_00017
crossref_primary_10_1016_j_carbpol_2022_120040
crossref_primary_10_1016_j_jff_2023_105583
crossref_primary_10_1111_mec_16708
crossref_primary_10_3390_ijms22083854
crossref_primary_10_1002_anie_202012374
crossref_primary_10_3389_fnins_2022_836605
crossref_primary_10_4052_tigg_2223_2E
crossref_primary_10_1016_j_cell_2020_10_047
crossref_primary_10_4049_jimmunol_2200892
crossref_primary_10_3389_fgene_2021_584197
crossref_primary_10_4049_jimmunol_2200855
crossref_primary_10_58838_2075_1230_2023_101_1_74_82
crossref_primary_10_1038_s41586_022_04985_7
crossref_primary_10_3390_antibiotics11081093
crossref_primary_10_1002_med_21805
crossref_primary_10_1111_febs_17161
crossref_primary_10_1016_j_tim_2021_06_011
crossref_primary_10_1016_j_chom_2024_02_003
crossref_primary_10_1016_j_jep_2022_115721
crossref_primary_10_1002_ange_202012374
crossref_primary_10_1111_mec_16733
crossref_primary_10_1021_acs_analchem_4c00952
crossref_primary_10_1111_cns_14275
crossref_primary_10_1039_D1TB02590B
crossref_primary_10_1016_j_tins_2020_06_002
crossref_primary_10_3389_fmicb_2023_1236348
crossref_primary_10_3389_fmolb_2022_1005136
crossref_primary_10_1002_cbic_202300552
Cites_doi 10.1016/j.cell.2016.04.007
10.1111/j.1574-6968.2006.00177.x
10.1038/ni825
10.1053/j.gastro.2010.07.008
10.1073/pnas.0804220105
10.1016/j.cell.2006.08.021
10.1128/IAI.73.3.1491-1505.2005
10.1016/j.chom.2017.11.002
10.1016/j.chom.2009.05.010
10.1016/j.chom.2016.09.002
10.1128/jb.163.2.769-773.1985
10.1038/nature07008
10.1128/IAI.69.7.4342-4350.2001
10.1016/j.immuni.2009.09.018
10.1021/ja1087375
10.1073/pnas.1222317110
10.1126/science.1260580
10.1084/jem.20062008
10.1016/S0021-9258(19)52486-3
10.1016/j.chom.2012.08.004
10.1038/nri2515
10.1038/ni0805-751
10.1073/pnas.0909122107
10.1016/j.cell.2004.05.001
10.1038/82797
10.1021/bi00131a026
10.1093/glycob/cwq171
10.1073/pnas.0800974105
10.1038/mi.2010.29
10.1093/infdis/134.1.59
10.1038/nprot.2006.285
10.1172/JCI93820
10.3389/fimmu.2013.00103
10.1126/science.aad1329
10.3389/fmicb.2015.01050
10.1038/378785a0
10.1111/nyas.13660
10.1016/j.cell.2005.05.007
10.1016/j.cell.2007.09.008
10.1146/annurev-immunol-031210-101352
10.1128/mr.60.1.151-166.1996
10.4049/jimmunol.171.2.717
10.1016/j.cell.2012.04.037
10.1016/j.chom.2014.03.006
10.1111/j.1432-1033.1989.tb14945.x
10.1038/emboj.2009.158
10.1038/nature25019
10.1038/ni1221
10.1172/JCI27203
10.1016/j.it.2011.01.002
10.1038/ncomms5432
10.1099/jmm.0.009936-0
10.1016/j.coi.2013.06.001
10.1046/j.1471-4159.2001.00495.x
10.1038/nri2038
10.1371/journal.pone.0049653
10.4049/jimmunol.1001443
10.1126/science.aac4255
10.1371/journal.ppat.1004215
10.1248/bpb.30.1617
10.4049/jimmunol.0901367
10.1084/jem.20021787
10.1038/35107092
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1073/pnas.1915978116
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 26166
ExternalDocumentID 10_1073_pnas_1915978116
31811024
26897076
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K01 DK102771
– fundername: Innovation Programme under Marie Skłodowska Curie Grant
  grantid: 661138
– fundername: U.S. Department of Defense (DOD)
  grantid: W81XWH1910626
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: 5U19AI109764
– fundername: HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: K01-DK102771
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c527t-d458bdb69d79a422edb0d14f23d1d86ca71c8a19ef58ef4a9e83ac7166acf4403
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:18:17 EDT 2024
Sat Aug 17 01:30:40 EDT 2024
Fri Dec 06 02:51:17 EST 2024
Sat Sep 28 08:28:03 EDT 2024
Tue Dec 10 23:54:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords host–microbe interactions
Bacteroides fragilis
symbionts
polysaccharide A
zwitterionic polysaccharides (ZPSs)
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-d458bdb69d79a422edb0d14f23d1d86ca71c8a19ef58ef4a9e83ac7166acf4403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: D.E.-H., S.F.O., G.S., F.S.G., and D.L.K. designed research; D.E.-H., S.F.O., N.A.O., and G.S. performed research; D.E.-H., S.F.O., P.H.S., and S.E.P. contributed new reagents/analytic tools; D.E.-H., S.F.O., N.A.O., and G.S. analyzed data; and D.E.-H., S.F.O., and D.L.K. wrote the paper.
Contributed by Dennis L. Kasper, November 4, 2019 (sent for review September 15, 2019; reviewed by Robert W. Finberg and Lora V. Hooper)
Reviewers: R.W.F., University of Massachusetts Medical School; and L.V.H., University of Texas Southwestern Medical Center.
This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2018.
1Present address: Synlogic Therapeutics, Cambridge, MA 02142.
ORCID 0000-0003-3394-8466
0000-0001-8808-5333
OpenAccessLink https://www.pnas.org/content/pnas/116/52/26157.full.pdf
PMID 31811024
PQID 2322738503
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936714
proquest_miscellaneous_2322738503
crossref_primary_10_1073_pnas_1915978116
pubmed_primary_31811024
jstor_primary_26897076
PublicationCentury 2000
PublicationDate 2019-12-26
PublicationDateYYYYMMDD 2019-12-26
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle Inaugural Article
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_59_2
  doi: 10.1016/j.cell.2016.04.007
– ident: e_1_3_3_36_2
  doi: 10.1111/j.1574-6968.2006.00177.x
– ident: e_1_3_3_30_2
  doi: 10.1038/ni825
– ident: e_1_3_3_31_2
  doi: 10.1053/j.gastro.2010.07.008
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.0804220105
– ident: e_1_3_3_48_2
  doi: 10.1016/j.cell.2006.08.021
– ident: e_1_3_3_37_2
  doi: 10.1128/IAI.73.3.1491-1505.2005
– ident: e_1_3_3_16_2
  doi: 10.1016/j.chom.2017.11.002
– ident: e_1_3_3_49_2
  doi: 10.1016/j.chom.2009.05.010
– ident: e_1_3_3_11_2
  doi: 10.1016/j.chom.2016.09.002
– ident: e_1_3_3_54_2
  doi: 10.1128/jb.163.2.769-773.1985
– ident: e_1_3_3_7_2
  doi: 10.1038/nature07008
– ident: e_1_3_3_46_2
  doi: 10.1128/IAI.69.7.4342-4350.2001
– ident: e_1_3_3_62_2
  doi: 10.1016/j.immuni.2009.09.018
– ident: e_1_3_3_39_2
  doi: 10.1021/ja1087375
– ident: e_1_3_3_52_2
  doi: 10.1073/pnas.1222317110
– ident: e_1_3_3_58_2
  doi: 10.1126/science.1260580
– ident: e_1_3_3_13_2
  doi: 10.1084/jem.20062008
– ident: e_1_3_3_53_2
  doi: 10.1016/S0021-9258(19)52486-3
– ident: e_1_3_3_14_2
  doi: 10.1016/j.chom.2012.08.004
– ident: e_1_3_3_44_2
  doi: 10.1038/nri2515
– ident: e_1_3_3_35_2
  doi: 10.1038/ni0805-751
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.0909122107
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2004.05.001
– ident: e_1_3_3_27_2
  doi: 10.1038/82797
– ident: e_1_3_3_51_2
  doi: 10.1021/bi00131a026
– ident: e_1_3_3_20_2
  doi: 10.1093/glycob/cwq171
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0800974105
– ident: e_1_3_3_8_2
  doi: 10.1038/mi.2010.29
– ident: e_1_3_3_60_2
  doi: 10.1093/infdis/134.1.59
– ident: e_1_3_3_63_2
  doi: 10.1038/nprot.2006.285
– ident: e_1_3_3_17_2
  doi: 10.1172/JCI93820
– ident: e_1_3_3_25_2
  doi: 10.3389/fimmu.2013.00103
– ident: e_1_3_3_41_2
  doi: 10.1126/science.aad1329
– ident: e_1_3_3_40_2
  doi: 10.3389/fmicb.2015.01050
– ident: e_1_3_3_32_2
  doi: 10.1038/378785a0
– ident: e_1_3_3_3_2
  doi: 10.1111/nyas.13660
– ident: e_1_3_3_4_2
  doi: 10.1016/j.cell.2005.05.007
– ident: e_1_3_3_61_2
  doi: 10.1016/j.cell.2007.09.008
– ident: e_1_3_3_21_2
  doi: 10.1146/annurev-immunol-031210-101352
– ident: e_1_3_3_55_2
  doi: 10.1128/mr.60.1.151-166.1996
– ident: e_1_3_3_29_2
  doi: 10.4049/jimmunol.171.2.717
– ident: e_1_3_3_2_2
  doi: 10.1016/j.cell.2012.04.037
– ident: e_1_3_3_6_2
  doi: 10.1016/j.chom.2014.03.006
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1432-1033.1989.tb14945.x
– ident: e_1_3_3_28_2
  doi: 10.1038/emboj.2009.158
– ident: e_1_3_3_43_2
  doi: 10.1038/nature25019
– ident: e_1_3_3_33_2
  doi: 10.1038/ni1221
– ident: e_1_3_3_23_2
  doi: 10.1172/JCI27203
– ident: e_1_3_3_24_2
  doi: 10.1016/j.it.2011.01.002
– ident: e_1_3_3_10_2
  doi: 10.1038/ncomms5432
– ident: e_1_3_3_57_2
  doi: 10.1099/jmm.0.009936-0
– ident: e_1_3_3_1_2
  doi: 10.1016/j.coi.2013.06.001
– ident: e_1_3_3_34_2
  doi: 10.1046/j.1471-4159.2001.00495.x
– ident: e_1_3_3_45_2
  doi: 10.1038/nri2038
– ident: e_1_3_3_5_2
  doi: 10.1371/journal.pone.0049653
– ident: e_1_3_3_9_2
  doi: 10.4049/jimmunol.1001443
– ident: e_1_3_3_42_2
  doi: 10.1126/science.aac4255
– ident: e_1_3_3_56_2
  doi: 10.1371/journal.ppat.1004215
– ident: e_1_3_3_26_2
  doi: 10.1248/bpb.30.1617
– ident: e_1_3_3_15_2
  doi: 10.4049/jimmunol.0901367
– ident: e_1_3_3_22_2
  doi: 10.1084/jem.20021787
– ident: e_1_3_3_50_2
  doi: 10.1038/35107092
SSID ssj0009580
Score 2.616139
Snippet The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite...
Human health and the microbiota are intricately intertwined. A major interest in manipulating the microbiome has been focused on the use of symbiont microbes...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 26157
SubjectTerms Biological Sciences
INAUGURAL ARTICLE
Title Symbionts exploit complex signaling to educate the immune system
URI https://www.jstor.org/stable/26897076
https://www.ncbi.nlm.nih.gov/pubmed/31811024
https://search.proquest.com/docview/2322738503
https://pubmed.ncbi.nlm.nih.gov/PMC6936714
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSyQxEC3UkxdZP3fWDyJ40EPPdOejk9wUUURQhFXw1iTpNA7s9Aw7Lei_t5LunnUWT56TQPNS6XpFXr0AnAgrJZPCJMhFTRKCJFHU0oSZFNMdZVK70I18d5_fPPHbZ_G8AqLvhYmifWfHw_rPZFiPX6K2cjZxo14nNnq4u8w1y2XGR6uwium3L9EXTruq7Tuh-PvllPd-PpKNZrWZD7FAEcHoKQuvF2FEY_6jfCkrtcLEryjn_8rJT6no-gdsdBySXLTfugkrvt6Cze6UzslpZyV9tg3nv98nFpFv5sQHsd24IVFD7t9IEG6Y0ItOmilp_Vs9QTZIxqFjxJPW4nkHnq6vHi9vku7NhMQJKpuk5ELZ0ua6lNpwSn1p0zLjFWVlVqrcGZk5ZTLtK6F8xY32ihmHRVNuXMV5ynZhrZ7W_icQXjHJhNXhgheLaK-c9jr1tpSW-SytBnDaY1bMWmuMIl5pS1YEpIt_SA9gN2K6mEdzpWUqceC4B7nAuA6XFab209d5gUwvOu2kbAB7LeiL1f2uDUAubcdiQvDMXh7BUIre2V3o_Pr2yn1YR84Un5Cg-QGsNX9f_SHyksYehawgjmI0fgDbqeJX
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RemgvFZRSFtriShzoIbuJP2L7VoSKti2LKhUkbpHtOGIlNrvqBgn-PWMnWbpVT5xtR9HzJPNGfvMMcCSslEwKkyAXNUkIkkRRSxNmUkx3lEntQjfy5CIfX_Ef1-J6A0TfCxNF-85Oh_XtbFhPb6K2cjFzo14nNvo1Oc01y2XGRy_gpcCnZX2RvvLaVW3nCcUfMKe8d_SRbLSozXKIJYoIVk9ZuL8IYxozIOVreamVJv6PdP6rnfwrGZ1twZuORZKT9m23YcPXb2G7-06X5Lgzk_6yA19_P8wsYt8siQ9yu2lDoorc35Mg3TChG500c9I6uHqCfJBMQ8-IJ63J8zu4Ovt2eTpOulsTEieobJKSC2VLm-tSasMp9aVNy4xXlJVZqXJnZOaUybSvhPIVN9orZhyWTblxFecp24XNel77PSC8YpIJq8MRL5bRXjntdeptKS3zWVoN4LjHrFi05hhFPNSWrAhIF09ID2A3YrqaR3OlZSpx4HMPcoGRHY4rTO3nd8sCuV702knZAN63oK9W97s2ALm2HasJwTV7fQSDKbpnd8Gz_-yVh_BqfDk5L86_X_w8gNfIoOKFEjT_AJvNnzv_EVlKYz_FmHwElrTkxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIHCQgEjcSiHbBI_YvtW1LIqj1aVoFJvkV9RV2KzKzaV4N8zdpJtF3HibDuKxpPMN5pvvgF4J6yUTAqTIRY1WXSSTFFLM2YKDHeUSe1iN_LpWXVywT9fistbo74Sad_Z-bT9sZi286vErVwtXD7yxPLz06NKs0qWPF_5Jr8L9wQ-kY2J-kZvV_XdJxR_wpzyUdVHsnzVmvUU0xQR5Z7KOMMI_RqjIOVbsamnJ_4LeP7Nn7wVkGaP4OGAJMmH_o134U5oH8Pu8K2uycEgKP3-CRx--72waP9uTUKk3M07kpjk4ReJ9A0TO9JJtyS9imsgiAnJPPaNBNILPT-Fi9nH70cn2TA5IXOCyi7zXCjrbaW91IZTGrwtfMkbynzpVeWMLJ0ypQ6NUKHhRgfFjMPUqTKu4bxge7DTLtvwHAhvmGTC6ljmxVQ6KKeDLoL10rJQFs0EDkab1ateIKNOhW3J6mjp-sbSE9hLNt3so5XSspC48HY0co3eHUsWpg3L63WNeC_p7RRsAs96o29Oj7c2Abl1HZsNUTl7ewUdKiloDw704r9PvoH758ez-uunsy8v4QGCqDRTglb7sNP9vA6vEKh09nVyyT_tKuXZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symbionts+exploit+complex+signaling+to+educate+the+immune+system&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Erturk-Hasdemir%2C+Deniz&rft.au=Oh%2C+Sungwhan+F.&rft.au=Okan%2C+Nihal+A.&rft.au=Stefanetti%2C+Giuseppe&rft.series=Inaugural+Article&rft.date=2019-12-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=52&rft.spage=26157&rft.epage=26166&rft_id=info:doi/10.1073%2Fpnas.1915978116&rft_id=info%3Apmid%2F31811024&rft.externalDBID=PMC6936714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon