Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering

Abstract As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significa...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial microbiology & biotechnology Vol. 47; no. 6-7; pp. 497 - 510
Main Authors Promdonkoy, Peerada, Mhuantong, Wuttichai, Champreda, Verawat, Tanapongpipat, Sutipa, Runguphan, Weerawat
Format Journal Article
LanguageEnglish
Published Cham Oxford University Press 01.07.2020
Springer International Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
AbstractList Abstract As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies-adaptive laboratory evolution and rational metabolic engineering-to improve the yeast Saccharomyces cerevisiae's ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast's specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain's isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies-adaptive laboratory evolution and rational metabolic engineering-to improve the yeast Saccharomyces cerevisiae's ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast's specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain's isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae ’s ability to utilize d -xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1 , that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d -xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
Author Promdonkoy, Peerada
Champreda, Verawat
Tanapongpipat, Sutipa
Runguphan, Weerawat
Mhuantong, Wuttichai
Author_xml – sequence: 1
  givenname: Peerada
  surname: Promdonkoy
  fullname: Promdonkoy, Peerada
  organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
– sequence: 2
  givenname: Wuttichai
  surname: Mhuantong
  fullname: Mhuantong, Wuttichai
  organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
– sequence: 3
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
  organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
– sequence: 4
  givenname: Sutipa
  surname: Tanapongpipat
  fullname: Tanapongpipat, Sutipa
  organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
– sequence: 5
  givenname: Weerawat
  surname: Runguphan
  fullname: Runguphan, Weerawat
  email: weerawat.run@biotec.or.th
  organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32430798$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9v1SAYxomZcdvRL-CFIfFmN50USmkvzaJzyRIvtl0TWt4uLBQq0BPPPoEfW3q6qVmyecG_8HseeHk4RgfOO0DofUlOS0LEp1gS2vKCUJIbbcqifYWOykrUBeeMH-Q5q0XBK8YP0XGMd4QQLgR9gw4ZrRgRbXOEfl2MU_BbGMElbBzWxc-d9RHwnIw19yoZ77ByGpvouzkp5y3OAj33-52suDrFPQTYmmgU4G6HlVZTMlvAVnU-qOTDDsPW2_mPV9jbKovB3RoHEIy7fYteD8pGePcwbtDN1y_XZ9-Ky-_nF2efL4ueU5EKzfpad5RXnANhjWiGgeoBNOvYUOelagUtVQukF7zpWKMrrnSrKREdq6Ae2AadrL65ih8zxCRHE3uwVjnwc5SUc0pYKxj5P1oRnrGl36CPT9A7P4dc4kLRmtUNYwv14YGauxG0nIIZVdjJxzgy0KxAH3yMAQbZm7R_rBSUsbIkcklersnLnLzcJy_bLKVPpI_uL4rYKorTkgGEv9d-UVWsKj9Pz5zy76dkvwFrJc64
CitedBy_id crossref_primary_10_1002_cssc_202202122
crossref_primary_10_1016_j_tibtech_2022_09_004
crossref_primary_10_1186_s12934_021_01598_z
crossref_primary_10_1360_SSV_2023_0031
crossref_primary_10_1093_jimb_kuac023
crossref_primary_10_1126_science_adn0753
crossref_primary_10_1007_s43393_021_00055_7
crossref_primary_10_1016_j_synbio_2024_12_009
crossref_primary_10_1016_j_biortech_2023_128668
crossref_primary_10_3390_jof9020186
crossref_primary_10_1021_acs_jafc_3c06528
crossref_primary_10_1002_biot_202000451
crossref_primary_10_3390_fermentation7030150
crossref_primary_10_3390_app10228222
crossref_primary_10_1016_j_tibtech_2020_08_010
crossref_primary_10_3390_jof8080767
Cites_doi 10.1126/science.1193990
10.1093/bioinformatics/bty560
10.1016/j.gene.2011.09.033
10.1007/978-1-61779-197-0_12
10.1038/nature12536
10.1021/sb300074k
10.1038/ncomms1494
10.1002/j.1460-2075.1994.tb06337.x
10.1038/nature06450
10.1093/bioinformatics/btp324
10.1128/mcb.11.7.3463
10.3109/10409238.2012.667214
10.1038/nature11478
10.1186/s13068-019-1560-2
10.1534/genetics.104.030940
10.1093/nar/gkw1023
10.1002/bit.25522
10.1016/j.molcel.2012.08.014
10.1126/science.1258137
10.1128/MCB.25.1.488-498.2005
10.1038/nature10333
10.1093/nar/gkg584
10.1016/j.jbiotec.2013.12.016
10.1039/C4CC08502G
10.1186/s12934-017-0694-9
10.1007/BF00330984
10.1002/bit.27202
10.1038/nature08721
10.7554/eLife.38892
10.1111/1567-1364.12028
10.1186/s13068-018-1089-9
10.1007/s00438-007-0314-1
10.1038/nprot.2007.17
10.1186/1475-2859-12-64
10.1038/nrmicro.2016.32
10.1261/rna.1348209
10.1038/s41598-017-02460-2
10.1101/gr.107524.110
10.1186/s13568-019-0885-3
10.1128/mcb.19.11.7336
10.1038/nchembio.970
10.1128/aem.70.1.159-166.2004
10.1021/sb400081r
10.1016/j.ymben.2013.07.003
10.1093/nar/gkt135
10.1038/nprot.2007.13
10.1006/jmbi.1999.3310
ContentType Journal Article
Copyright Society for Industrial Microbiology 2020 2020
Society for Industrial Microbiology and Biotechnology 2020
Society for Industrial Microbiology and Biotechnology 2020.
Copyright_xml – notice: Society for Industrial Microbiology 2020 2020
– notice: Society for Industrial Microbiology and Biotechnology 2020
– notice: Society for Industrial Microbiology and Biotechnology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QR
7T7
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8FL
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
K60
K6~
K9.
L.-
LK8
M0C
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1007/s10295-020-02281-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Biological Science Collection
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
CrossRef
ProQuest Business Collection (Alumni Edition)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1476-5535
EndPage 510
ExternalDocumentID 32430798
10_1007_s10295_020_02281_9
10.1007/s10295-020-02281-9
Genre Journal Article
GrantInformation_xml – fundername: Thailand Research Fund
  grantid: TRG6180006
  funderid: http://dx.doi.org/10.13039/501100004396
– fundername: Thailand Research Fund
  grantid: TRG6180006
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7WY
7X7
88A
88E
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AAHBH
AAIAL
AAJKR
AANXM
AAPXW
AARHV
AARTL
AATVU
AAVAP
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABBXA
ABDBF
ABDZT
ABEJV
ABFTV
ABGNP
ABHLI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABNWP
ABPLI
ABPTD
ABQBU
ABQSL
ABTEG
ABTHY
ABTMW
ABUWG
ABXPI
ABXVV
ACBXY
ACGFS
ACGOD
ACHXU
ACIHN
ACIWK
ACKNC
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACSNA
ACUHS
ADBBV
ADHHG
ADHIR
ADINQ
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFRAH
AFULF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMNDL
AMTXH
AMYQR
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1J
DL5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
EDH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPAXT
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_DOAJ
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEP
IHE
IHR
IJ-
ITM
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
K60
K6~
KDC
KOV
KOW
KPH
KSI
LAS
LK8
M0C
M0L
M1P
M2O
M2P
M4Y
M7P
MA-
ML0
MM.
N2Q
NB0
NDZJH
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
ROX
RPM
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SSXJD
STPWE
SV3
SZN
T13
T16
TOX
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z87
Z88
Z8M
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z91
ZMTXR
ZOVNA
~8M
~EX
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QR
7T7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c527t-d3c6db25455e03878ff2dfed3b3f6878a9721a9e0c758b38d45ad9d207b34e6f3
IEDL.DBID 7X7
ISSN 1367-5435
1476-5535
IngestDate Fri Jul 11 04:34:35 EDT 2025
Fri Jul 11 09:53:22 EDT 2025
Wed Aug 13 07:49:42 EDT 2025
Wed Feb 19 02:30:13 EST 2025
Tue Jul 01 04:30:43 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Fri Feb 21 02:42:35 EST 2025
Tue Feb 04 08:58:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords Isobutanol production
Yeast
Xylose utilization
Biofuels
Adaptive laboratory evolution
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-d3c6db25455e03878ff2dfed3b3f6878a9721a9e0c758b38d45ad9d207b34e6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5707-3516
OpenAccessLink https://academic.oup.com/jimb/article-pdf/47/6-7/497/36798480/jimb0497.pdf
PMID 32430798
PQID 2426368335
PQPubID 54631
PageCount 14
ParticipantIDs proquest_miscellaneous_2552039730
proquest_miscellaneous_2405303405
proquest_journals_2426368335
pubmed_primary_32430798
crossref_citationtrail_10_1007_s10295_020_02281_9
crossref_primary_10_1007_s10295_020_02281_9
springer_journals_10_1007_s10295_020_02281_9
oup_primary_10_1007_s10295-020-02281-9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Fairfax
PublicationSubtitle Official Journal of the Society for Industrial Microbiology and Biotechnology
PublicationTitle Journal of industrial microbiology & biotechnology
PublicationTitleAbbrev J Ind Microbiol Biotechnol
PublicationTitleAlternate J Ind Microbiol Biotechnol
PublicationYear 2020
Publisher Oxford University Press
Springer International Publishing
Publisher_xml – name: Oxford University Press
– name: Springer International Publishing
References Davis López, Griffith, Choi (CR21) 2018; 11
Beekwilder, van Rossum, Koopman (CR46) 2014; 192
Geier, Fauland, Vogl, Glieder (CR45) 2015; 51
McKenna, Hanna, Banks (CR28) 2010; 20
Liao, Mi, Pontrelli, Luo (CR1) 2016; 14
Cui, Ramnarain, Chiang (CR37) 2008; 279
Kung, Runguphan, Keasling (CR4) 2012; 1
Buijs, Zhou, Siewers, Nielsen (CR9) 2015; 112
Dragosits, Mattanovich (CR18) 2013; 12
Basquin, Roudko, Rode (CR41) 2012; 48
Choi, Lee (CR8) 2013; 502
Steen, Kang, Bokinsky (CR10) 2010; 463
Brat, Boles (CR14) 2013; 13
Traven, Hammet, Tenis (CR34) 2005; 169
Promdonkoy, Siripong, Downes (CR15) 2019; 9
Gupta, Lorsch, Hinnebusch (CR39) 2018
Atsumi, Hanai, Liao (CR7) 2008; 451
DiCarlo, Norville, Mali (CR23) 2013; 41
Lenssen, James, Pedruzzi (CR35) 2005; 25
Runguphan, Keasling (CR11) 2013
Boeke, La Croute, Fink (CR31) 1984; 197
Collart, Panasenko (CR32) 2012; 492
Keasling (CR2) 2010; 330
van Maris, Geertman, Vermeulen (CR20) 2004; 70
Lee, Na, Park (CR5) 2012; 8
Hegemann, Heick (CR30) 2011; 765
Liu, Chen, Wall (CR47) 2017; 7
Gietz, Schiestl (CR25) 2007; 2
Caspeta, Chen, Ghiaci (CR19) 2014; 346
Lane, Zhang, Yun (CR16) 2020; 117
Chen, Zhou, Chen, Gu (CR26) 2018; 34
Obenauer, Cantley, Yaffe (CR42) 2003; 31
Li, Durbin (CR27) 2009; 25
Blom, Gammeltoft, Brunak (CR43) 1999; 294
Peralta-Yahya, Ouellet, Chan (CR6) 2011; 2
Li, Imataka, Morino (CR38) 1999; 19
Dellomonaco, Clomburg, Miller, Gonzalez (CR12) 2011; 476
Azzouz, Panasenko, Deluen (CR36) 2009; 15
Ryan, Drew (CR44) 1994; 13
Schmid, Linder (CR40) 1991; 11
Miller, Reese (CR33) 2012; 47
Gietz, Schiestl (CR24) 2007; 2
Kwak, Jin (CR13) 2017; 16
Farzadfard, Perli, Lu (CR22) 2013; 2
Peralta-Yahya, Zhang, del Cardayre, Keasling (CR3) 2012; 488
Reider Apel, d’Espaux, Wehrs (CR29) 2016; 45
Zhang, Lane, Chen (CR17) 2019; 12
Keasling (2021033102490760500_CR2) 2010; 330
Basquin (2021033102490760500_CR41) 2012; 48
Lenssen (2021033102490760500_CR35) 2005; 25
Peralta-Yahya (2021033102490760500_CR6) 2011; 2
Promdonkoy (2021033102490760500_CR15) 2019; 9
Choi (2021033102490760500_CR8) 2013; 502
Atsumi (2021033102490760500_CR7) 2008; 451
Miller (2021033102490760500_CR33) 2012; 47
Peralta-Yahya (2021033102490760500_CR3) 2012; 488
Runguphan (2021033102490760500_CR11) 2013
McKenna (2021033102490760500_CR28) 2010; 20
Li (2021033102490760500_CR38) 1999; 19
Cui (2021033102490760500_CR37) 2008; 279
Dellomonaco (2021033102490760500_CR12) 2011; 476
Kwak (2021033102490760500_CR13) 2017; 16
Boeke (2021033102490760500_CR31) 1984; 197
Ryan (2021033102490760500_CR44) 1994; 13
Gupta (2021033102490760500_CR39) 2018
Schmid (2021033102490760500_CR40) 1991; 11
Blom (2021033102490760500_CR43) 1999; 294
Caspeta (2021033102490760500_CR19) 2014; 346
Liu (2021033102490760500_CR47) 2017; 7
Traven (2021033102490760500_CR34) 2005; 169
Geier (2021033102490760500_CR45) 2015; 51
Gietz (2021033102490760500_CR24) 2007; 2
Chen (2021033102490760500_CR26) 2018; 34
van Maris (2021033102490760500_CR20) 2004; 70
Lee (2021033102490760500_CR5) 2012; 8
Steen (2021033102490760500_CR10) 2010; 463
Kung (2021033102490760500_CR4) 2012; 1
DiCarlo (2021033102490760500_CR23) 2013; 41
Reider Apel (2021033102490760500_CR29) 2016; 45
Zhang (2021033102490760500_CR17) 2019; 12
Collart (2021033102490760500_CR32) 2012; 492
Lane (2021033102490760500_CR16) 2020; 117
Farzadfard (2021033102490760500_CR22) 2013; 2
Azzouz (2021033102490760500_CR36) 2009; 15
Gietz (2021033102490760500_CR25) 2007; 2
Hegemann (2021033102490760500_CR30) 2011; 765
Liao (2021033102490760500_CR1) 2016; 14
Obenauer (2021033102490760500_CR42) 2003; 31
Davis López (2021033102490760500_CR21) 2018; 11
Li (2021033102490760500_CR27) 2009; 25
Buijs (2021033102490760500_CR9) 2015; 112
Brat (2021033102490760500_CR14) 2013; 13
Dragosits (2021033102490760500_CR18) 2013; 12
Beekwilder (2021033102490760500_CR46) 2014; 192
References_xml – volume: 330
  start-page: 1355
  year: 2010
  end-page: 1358
  ident: CR2
  article-title: Manufacturing molecules through metabolic engineering
  publication-title: Science
  doi: 10.1126/science.1193990
– volume: 34
  start-page: i884
  year: 2018
  end-page: i890
  ident: CR26
  article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 492
  start-page: 42
  year: 2012
  end-page: 53
  ident: CR32
  article-title: The Ccr4-Not complex
  publication-title: Gene
  doi: 10.1016/j.gene.2011.09.033
– volume: 765
  start-page: 189
  year: 2011
  end-page: 206
  ident: CR30
  article-title: Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-197-0_12
– volume: 502
  start-page: 571
  year: 2013
  end-page: 574
  ident: CR8
  article-title: Microbial production of short-chain alkanes
  publication-title: Nature
  doi: 10.1038/nature12536
– volume: 1
  start-page: 498
  year: 2012
  end-page: 513
  ident: CR4
  article-title: From fields to fuels: recent advances in the microbial production of biofuels
  publication-title: ACS Synth Biol
  doi: 10.1021/sb300074k
– volume: 2
  start-page: 483
  year: 2011
  ident: CR6
  article-title: Identification and microbial production of a terpene-based advanced biofuel
  publication-title: Nat Commun
  doi: 10.1038/ncomms1494
– volume: 13
  start-page: 928
  year: 1994
  end-page: 933
  ident: CR44
  article-title: Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06337.x
– volume: 451
  start-page: 86
  year: 2008
  end-page: 89
  ident: CR7
  article-title: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
  publication-title: Nature
  doi: 10.1038/nature06450
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: CR27
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 11
  start-page: 3463
  year: 1991
  end-page: 3471
  ident: CR40
  article-title: Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.11.7.3463
– volume: 47
  start-page: 315
  year: 2012
  end-page: 333
  ident: CR33
  article-title: Ccr4-Not complex: the control freak of eukaryotic cells
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2012.667214
– volume: 488
  start-page: 320
  year: 2012
  end-page: 328
  ident: CR3
  article-title: Microbial engineering for the production of advanced biofuels
  publication-title: Nature
  doi: 10.1038/nature11478
– volume: 12
  start-page: 223
  year: 2019
  ident: CR17
  article-title: Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1560-2
– volume: 169
  start-page: 65
  year: 2005
  end-page: 75
  ident: CR34
  article-title: Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in
  publication-title: Genetics
  doi: 10.1534/genetics.104.030940
– volume: 45
  start-page: 496
  year: 2016
  end-page: 508
  ident: CR29
  article-title: A Cas9-based toolkit to program gene expression in
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1023
– volume: 112
  start-page: 1275
  year: 2015
  end-page: 1279
  ident: CR9
  article-title: Long-chain alkane production by the yeast
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25522
– volume: 48
  start-page: 207
  year: 2012
  end-page: 218
  ident: CR41
  article-title: Architecture of the nuclease module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.08.014
– volume: 346
  start-page: 75
  year: 2014
  end-page: 78
  ident: CR19
  article-title: Altered sterol composition renders yeast thermotolerant
  publication-title: Science
  doi: 10.1126/science.1258137
– volume: 25
  start-page: 488
  year: 2005
  end-page: 498
  ident: CR35
  article-title: The Ccr4-not complex independently controls both Msn2-dependent transcriptional activation—via a newly identified Glc7/Bud14 type I protein phosphatase module—and TFIID promoter distribution
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.1.488-498.2005
– volume: 476
  start-page: 355
  year: 2011
  end-page: 359
  ident: CR12
  article-title: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
  publication-title: Nature
  doi: 10.1038/nature10333
– volume: 31
  start-page: 3635
  year: 2003
  end-page: 3641
  ident: CR42
  article-title: Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg584
– volume: 192
  start-page: 383
  year: 2014
  end-page: 392
  ident: CR46
  article-title: Polycistronic expression of a β-carotene biosynthetic pathway in coupled to β-ionone production
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2013.12.016
– volume: 51
  start-page: 1643
  year: 2015
  end-page: 1646
  ident: CR45
  article-title: Compact multi-enzyme pathways in
  publication-title: Chem Commun
  doi: 10.1039/C4CC08502G
– volume: 16
  start-page: 82
  year: 2017
  ident: CR13
  article-title: Production of fuels and chemicals from xylose by engineered : a review and perspective
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-017-0694-9
– volume: 197
  start-page: 345
  year: 1984
  end-page: 346
  ident: CR31
  article-title: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance
  publication-title: MGG Mol Gen Genet
  doi: 10.1007/BF00330984
– volume: 117
  start-page: 372
  year: 2020
  end-page: 381
  ident: CR16
  article-title: Xylose assimilation enhances the production of isobutanol in engineered
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.27202
– volume: 463
  start-page: 559
  year: 2010
  end-page: 562
  ident: CR10
  article-title: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
  publication-title: Nature
  doi: 10.1038/nature08721
– year: 2018
  ident: CR39
  article-title: Yeast Ded1 promotes 48S translation preinitiation complex assembly in an mRNA-specific and eIF4F-dependent manner
  publication-title: Elife
  doi: 10.7554/eLife.38892
– volume: 13
  start-page: 241
  year: 2013
  end-page: 244
  ident: CR14
  article-title: Isobutanol production from -xylose by recombinant
  publication-title: FEMS Yeast Res
  doi: 10.1111/1567-1364.12028
– volume: 11
  start-page: 90
  year: 2018
  ident: CR21
  article-title: Evolutionary engineering improves tolerance for medium-chain alcohols in
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1089-9
– volume: 279
  start-page: 323
  year: 2008
  end-page: 337
  ident: CR37
  article-title: Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-007-0314-1
– volume: 2
  start-page: 1
  year: 2007
  end-page: 4
  ident: CR24
  article-title: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.17
– volume: 12
  start-page: 64
  year: 2013
  ident: CR18
  article-title: Adaptive laboratory evolution—principles and applications for biotechnology
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-12-64
– volume: 14
  start-page: 288
  year: 2016
  end-page: 304
  ident: CR1
  article-title: Fuelling the future: microbial engineering for the production of sustainable biofuels
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.32
– volume: 15
  start-page: 377
  year: 2009
  end-page: 383
  ident: CR36
  article-title: Specific roles for the Ccr4-not complex subunits in expression of the genome
  publication-title: RNA
  doi: 10.1261/rna.1348209
– volume: 7
  start-page: 2193
  year: 2017
  ident: CR47
  article-title: Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02460-2
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: CR28
  article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 9
  start-page: 160
  year: 2019
  ident: CR15
  article-title: Systematic improvement of isobutanol production from -xylose in engineered
  publication-title: AMB Express
  doi: 10.1186/s13568-019-0885-3
– volume: 19
  start-page: 7336
  year: 1999
  end-page: 7346
  ident: CR38
  article-title: Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.19.11.7336
– volume: 8
  start-page: 536
  year: 2012
  end-page: 546
  ident: CR5
  article-title: Systems metabolic engineering of microorganisms for natural and non-natural chemicals
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.970
– volume: 70
  start-page: 159
  year: 2004
  end-page: 166
  ident: CR20
  article-title: Directed evolution of pyruvate decarboxylase-negative , yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.70.1.159-166.2004
– volume: 2
  start-page: 604
  year: 2013
  end-page: 613
  ident: CR22
  article-title: Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
  publication-title: ACS Synth Biol
  doi: 10.1021/sb400081r
– year: 2013
  ident: CR11
  article-title: Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2013.07.003
– volume: 41
  start-page: 4336
  year: 2013
  end-page: 4343
  ident: CR23
  article-title: Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt135
– volume: 2
  start-page: 31
  year: 2007
  end-page: 34
  ident: CR25
  article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.13
– volume: 294
  start-page: 1351
  year: 1999
  end-page: 1362
  ident: CR43
  article-title: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3310
– volume: 192
  start-page: 383
  year: 2014
  ident: 2021033102490760500_CR46
  article-title: Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2013.12.016
– volume: 34
  start-page: i884
  year: 2018
  ident: 2021033102490760500_CR26
  article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 16
  start-page: 82
  year: 2017
  ident: 2021033102490760500_CR13
  article-title: Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-017-0694-9
– volume: 25
  start-page: 488
  year: 2005
  ident: 2021033102490760500_CR35
  article-title: The Ccr4-not complex independently controls both Msn2-dependent transcriptional activation—via a newly identified Glc7/Bud14 type I protein phosphatase module—and TFIID promoter distribution
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.1.488-498.2005
– volume: 2
  start-page: 483
  year: 2011
  ident: 2021033102490760500_CR6
  article-title: Identification and microbial production of a terpene-based advanced biofuel
  publication-title: Nat Commun
  doi: 10.1038/ncomms1494
– volume: 346
  start-page: 75
  year: 2014
  ident: 2021033102490760500_CR19
  article-title: Altered sterol composition renders yeast thermotolerant
  publication-title: Science
  doi: 10.1126/science.1258137
– volume: 112
  start-page: 1275
  year: 2015
  ident: 2021033102490760500_CR9
  article-title: Long-chain alkane production by the yeast Saccharomyces cerevisiae
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25522
– volume: 13
  start-page: 928
  year: 1994
  ident: 2021033102490760500_CR44
  article-title: Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06337.x
– volume: 765
  start-page: 189
  year: 2011
  ident: 2021033102490760500_CR30
  article-title: Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-197-0_12
– volume: 14
  start-page: 288
  year: 2016
  ident: 2021033102490760500_CR1
  article-title: Fuelling the future: microbial engineering for the production of sustainable biofuels
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.32
– volume: 51
  start-page: 1643
  year: 2015
  ident: 2021033102490760500_CR45
  article-title: Compact multi-enzyme pathways in P. pastoris
  publication-title: Chem Commun
  doi: 10.1039/C4CC08502G
– volume: 492
  start-page: 42
  year: 2012
  ident: 2021033102490760500_CR32
  article-title: The Ccr4-Not complex
  publication-title: Gene
  doi: 10.1016/j.gene.2011.09.033
– volume: 169
  start-page: 65
  year: 2005
  ident: 2021033102490760500_CR34
  article-title: Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.104.030940
– volume: 451
  start-page: 86
  year: 2008
  ident: 2021033102490760500_CR7
  article-title: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
  publication-title: Nature
  doi: 10.1038/nature06450
– volume: 463
  start-page: 559
  year: 2010
  ident: 2021033102490760500_CR10
  article-title: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
  publication-title: Nature
  doi: 10.1038/nature08721
– year: 2018
  ident: 2021033102490760500_CR39
  article-title: Yeast Ded1 promotes 48S translation preinitiation complex assembly in an mRNA-specific and eIF4F-dependent manner
  publication-title: Elife
  doi: 10.7554/eLife.38892
– volume: 330
  start-page: 1355
  year: 2010
  ident: 2021033102490760500_CR2
  article-title: Manufacturing molecules through metabolic engineering
  publication-title: Science
  doi: 10.1126/science.1193990
– volume: 1
  start-page: 498
  year: 2012
  ident: 2021033102490760500_CR4
  article-title: From fields to fuels: recent advances in the microbial production of biofuels
  publication-title: ACS Synth Biol
  doi: 10.1021/sb300074k
– volume: 488
  start-page: 320
  year: 2012
  ident: 2021033102490760500_CR3
  article-title: Microbial engineering for the production of advanced biofuels
  publication-title: Nature
  doi: 10.1038/nature11478
– volume: 41
  start-page: 4336
  year: 2013
  ident: 2021033102490760500_CR23
  article-title: Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt135
– volume: 9
  start-page: 160
  year: 2019
  ident: 2021033102490760500_CR15
  article-title: Systematic improvement of isobutanol production from d-xylose in engineered Saccharomyces cerevisiae
  publication-title: AMB Express
  doi: 10.1186/s13568-019-0885-3
– volume: 476
  start-page: 355
  year: 2011
  ident: 2021033102490760500_CR12
  article-title: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
  publication-title: Nature
  doi: 10.1038/nature10333
– volume: 12
  start-page: 64
  year: 2013
  ident: 2021033102490760500_CR18
  article-title: Adaptive laboratory evolution—principles and applications for biotechnology
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-12-64
– volume: 19
  start-page: 7336
  year: 1999
  ident: 2021033102490760500_CR38
  article-title: Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.19.11.7336
– volume: 7
  start-page: 2193
  year: 2017
  ident: 2021033102490760500_CR47
  article-title: Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02460-2
– volume: 11
  start-page: 90
  year: 2018
  ident: 2021033102490760500_CR21
  article-title: Evolutionary engineering improves tolerance for medium-chain alcohols in Saccharomyces cerevisiae
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1089-9
– volume: 294
  start-page: 1351
  year: 1999
  ident: 2021033102490760500_CR43
  article-title: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3310
– volume: 502
  start-page: 571
  year: 2013
  ident: 2021033102490760500_CR8
  article-title: Microbial production of short-chain alkanes
  publication-title: Nature
  doi: 10.1038/nature12536
– volume: 279
  start-page: 323
  year: 2008
  ident: 2021033102490760500_CR37
  article-title: Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-007-0314-1
– volume: 2
  start-page: 31
  year: 2007
  ident: 2021033102490760500_CR25
  article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.13
– volume: 13
  start-page: 241
  year: 2013
  ident: 2021033102490760500_CR14
  article-title: Isobutanol production from d-xylose by recombinant Saccharomyces cerevisiae
  publication-title: FEMS Yeast Res
  doi: 10.1111/1567-1364.12028
– volume: 45
  start-page: 496
  year: 2016
  ident: 2021033102490760500_CR29
  article-title: A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1023
– volume: 2
  start-page: 1
  year: 2007
  ident: 2021033102490760500_CR24
  article-title: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.17
– volume: 197
  start-page: 345
  year: 1984
  ident: 2021033102490760500_CR31
  article-title: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance
  publication-title: MGG Mol Gen Genet
  doi: 10.1007/BF00330984
– volume: 20
  start-page: 1297
  year: 2010
  ident: 2021033102490760500_CR28
  article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 2
  start-page: 604
  year: 2013
  ident: 2021033102490760500_CR22
  article-title: Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
  publication-title: ACS Synth Biol
  doi: 10.1021/sb400081r
– volume: 31
  start-page: 3635
  year: 2003
  ident: 2021033102490760500_CR42
  article-title: Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg584
– volume: 8
  start-page: 536
  year: 2012
  ident: 2021033102490760500_CR5
  article-title: Systems metabolic engineering of microorganisms for natural and non-natural chemicals
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.970
– year: 2013
  ident: 2021033102490760500_CR11
  article-title: Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2013.07.003
– volume: 12
  start-page: 223
  year: 2019
  ident: 2021033102490760500_CR17
  article-title: Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1560-2
– volume: 70
  start-page: 159
  year: 2004
  ident: 2021033102490760500_CR20
  article-title: Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.70.1.159-166.2004
– volume: 25
  start-page: 1754
  year: 2009
  ident: 2021033102490760500_CR27
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 47
  start-page: 315
  year: 2012
  ident: 2021033102490760500_CR33
  article-title: Ccr4-Not complex: the control freak of eukaryotic cells
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2012.667214
– volume: 15
  start-page: 377
  year: 2009
  ident: 2021033102490760500_CR36
  article-title: Specific roles for the Ccr4-not complex subunits in expression of the genome
  publication-title: RNA
  doi: 10.1261/rna.1348209
– volume: 48
  start-page: 207
  year: 2012
  ident: 2021033102490760500_CR41
  article-title: Architecture of the nuclease module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.08.014
– volume: 11
  start-page: 3463
  year: 1991
  ident: 2021033102490760500_CR40
  article-title: Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.11.7.3463
– volume: 117
  start-page: 372
  year: 2020
  ident: 2021033102490760500_CR16
  article-title: Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.27202
SSID ssj0005772
Score 2.3792996
Snippet Abstract As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation...
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The...
SourceID proquest
pubmed
crossref
springer
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms Biochemistry
Biodiesel fuels
Biofuels
Bioinformatics
Biomass
Biomedical and Life Sciences
Biotechnology
Butanols - chemistry
Climate change
Climate effects
Diesel engines
Engineering
Evolution
feedstocks
Fermentation
Fossil fuels
Gasoline
Genetic Engineering
Genome, Fungal
Genomes
Greenhouse effect
Greenhouse gases
greenhouses
Growth rate
Industrial Microbiology
Inorganic Chemistry
Isobutanol
Jet engine fuels
Laboratories
Life Sciences
Metabolic Engineering
Metabolic Engineering and Synthetic Biology - Original Paper
Metabolism
Microbiology
Microorganisms
Mutation
Nucleotides
Plasmids - metabolism
Reverse engineering
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
sequence analysis
specific growth rate
Strains (organisms)
Sugar
transportation
Utilization
Xylose
Xylose - metabolism
Yeast
yeasts
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ahEBzCHm1cfNAgdJLq-C1LT-OISSEQHNJFnIzehkWFntZ75bsP8jP7ows725oE-jFYDw2kmckfSPNfAPwTYi8wpXccnI4eJIrw4tMFTzKtBroSqeRoQTnX_fp7TC5exJPPims7aPd-yNJN1OvJbtFLps45MTZMuDFR9gU6LtTINcwulwFdmSuZBNxkXGBaMCnyvz7G6-Wo1cpbmtI869TUrf43OzCjkeN7LJT8x58sPU-bHV1JBf7sL3GKngAL91Ggdv3Y6OaGf6MXnlrGdrY2KddMlkbNmobNUdw2IzZpCN-pSf4xsMF0y7-tx1Jy9SCSSMnNC8ybzPNdMHsb2-17ltTv6nI7KophzC8uX68uuW-4ALXIspm3MSaykshqBKWjrXzqkJVWROruErxVhLVjyxsqNHLUHFuEiFNYaIwU3Fi0yr-DBt1U9sjYEJalYWJRHiQoguXy0pYLQehJZ9TySqAQf_fS-3ZyKkoxrhc8SiTrkrUVel0VRYB_Fi-M-m4ON6V_o7qfENw3QQCOOk1XvoB3JaOyD6ljLQAzpePcejReYqsbTMnGZzBwhiv78gINFHEfHEYwJfOmpZNQiyLM2yRB_CzN69VA97u2Nf_Ez-GT5HrLYUYn8DGbDq3pwikZurMjZs_Y3ERfw
  priority: 102
  providerName: Springer Nature
Title Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering
URI https://link.springer.com/article/10.1007/s10295-020-02281-9
https://www.ncbi.nlm.nih.gov/pubmed/32430798
https://www.proquest.com/docview/2426368335
https://www.proquest.com/docview/2405303405
https://www.proquest.com/docview/2552039730
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_0DkEfRM-vnOexgvii66VJNh9PUqXnoXiIWqhPYb8ChZLUpj3sf-Cf7cxm2_SQ60tLk03Y7czO_mZ25zcAr4TIK1zJLSeHgye5MrzIVMGjTKuBrnQaGUpw_nqZXoyTzxMx8QG31h-r3NhEZ6hNoylGfuaYxVNKEXo__82pahTtrvoSGrfhkKjLSKuzSdYf8chc8SZiJeMCcYFPmvGpc5HLTQ45McAMeHFtYbqW7LaDOf_bL3XL0PkDuO_xIxt2An8It2x9BHe6ipLrI7i3wy_4CP52IQMXAWTTmhn-B_3z1jLUtplPwGSyNmzaNmqFMLGZsXlHAUt38Ikf75h2J4HbqbRMrZk0ck4WknntaRZrZq-8_rp3LXx4kdm-K49hfD76-fGC-9ILXIsoW3ITayo0hfBKWNrgzqsKhWZNrOIqxZ-SSH9kYUON_oaKc5MIaQoThZmKE5tW8RM4qJvaPgMmpFVZmEgECik6c7mshNVyEFryPpWsAhhs_vdSe15yKo8xK3tGZZJVibIqnazKIoA322fmHSvH3tavUZw3NNxVgQBONhIv_VRuy17xAni5vY2TkHZWZG2bFbVBWxbG-LmnjRBRiOgvDgN42mnTtkuIatHWFnkAbzfq1Xfg5oEd7-_vc7gbudHR4eITOFguVvYFQqilOnXz5BQOh59-fRnh94fR5bfveHUcDf8BLQoYtw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQ5ICiPBgoYCbiAIZvEeRwQQkC1pY8LrbS3YMeOtNIqWfYB5B_wa_iNzDjOZivUvfUSKYoTjTPj8Te25xuAF0KkJc7khlPAwaNUaZ4lKuNBUqhBURZxoCnB-eQ0Hp5HX0ditAV_u1wYOlbZ-UTrqHVd0Br5O8ssHlOK0IfpD05Vo2h3tSuh0ZrFkWl-Ycg2f3_4GfX7MggOvpx9GnJXVYAXIkgWXIcF1VBC5CAM7d2mZYnyGB2qsIzxVhKfjcyMXyCUVmGqIyF1pgM_UWFk4jLE716D6zjx-hTsJaOkP1KS2GJRxILGBeIQl6TjUvUCmwvtc2KcGfDswkR4IbluDeP-tz9rp72DO3Db4VX2sTWwu7Blql240VawbHbh1hqf4T340y5R2BVHNq6Y5r-bST03DK174hI-maw0G89rtURYWk_YtKWcpSf4xre3rLAnj-djaZhqmNRySh6ZOWutZw0zP914sd-aueVMZnpR7sP5lSjlAWxXdWX2gAlpVOJHEoFJjMFjKkthCjnwDUW7SpYeDLr_nheOB53KcUzynsGZdJWjrnKrqzzz4PXqnWnLArKx9StU5yUN103Ag_1O47lzHfO8N3QPnq8e46CnnRxZmXpJbdB3-iFeN7QRIvARbYa-Bw9ba1qJhCgafXuWevCmM69egMs79mizvM_g5vDs5Dg_Pjw9egw7ge0pHWzeh-3FbGmeIHxbqKd2zDD4ftWD9B-74lHX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTqDxgGDACAwwEvACZmkS588DQsBWbQyqCTZpb8GOHalSlZSmBfoN-Ex8Ou4Sp-mE1re9VKriRJfc-fw7--53AM-FiHNcyQ2ngIMHsdI8iVTCvShT_SzPQk9TgfOXYXh4Fnw6F-cb8LethaG0ytYn1o5alxntke_VzOIhlQjt5TYt4mR_8G7yg1MHKTppbdtpNCZybBa_MHyr3h7to65feN7g4PTjIbcdBngmvGjGtZ9RPyVEEcLQOW6c5yib0b7y8xD_SuK2kYlxM4TVyo91IKROtOdGyg9MmPv43GuwGVFU1IPNDwfDk69dgklUt44iTjQuEJXYkh1buOfVldEuJ_6ZPk8uLIsXSu1WEO9_p7X1Iji4DbcsemXvG3O7Axum2IbrTT_LxTbcXGE3vAt_mg2Lev-RjQqm-e_FuKwMQ1sf2_JPJgvNRlWp5ghSyzGbNAS0dAXv-PaGZXUecjWShqkFk1pOyD8za7vldMHMTzt76mdN7eYmM50o9-DsStRyH3pFWZgHwIQ0KnIDiTAlxFAylrkwmey7hmJfJXMH-u13TzPLik7NOcZpx-dMukpRV2mtqzRx4NXynknDCbJ29EtU5yUDV03Agd1W46l1JFXamb0Dz5aX0QXQuY4sTDmnMehJXR9_14wRwnMRe_quAzuNNS1FQkyNnj6JHXjdmlcnwOUv9nC9vE_hBk7Q9PPR8PgRbHn1i1KW8y70ZtO5eYxYbqae2EnD4PtVz9N_lHlXcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+D-xylose+utilization+and+isobutanol+production+in+S.+cerevisiae+by+adaptive+laboratory+evolution+and+rational+engineering&rft.jtitle=Journal+of+industrial+microbiology+%26+biotechnology&rft.au=Promdonkoy%2C+Peerada&rft.au=Mhuantong%2C+Wuttichai&rft.au=Champreda%2C+Verawat&rft.au=Tanapongpipat%2C+Sutipa&rft.date=2020-07-01&rft.issn=1367-5435&rft.volume=47&rft.issue=6-7+p.497-510&rft.spage=497&rft.epage=510&rft_id=info:doi/10.1007%2Fs10295-020-02281-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-5435&client=summon