Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering
Abstract As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significa...
Saved in:
Published in | Journal of industrial microbiology & biotechnology Vol. 47; no. 6-7; pp. 497 - 510 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Oxford University Press
01.07.2020
Springer International Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass. |
---|---|
AbstractList | Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass. As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies-adaptive laboratory evolution and rational metabolic engineering-to improve the yeast Saccharomyces cerevisiae's ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast's specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain's isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies-adaptive laboratory evolution and rational metabolic engineering-to improve the yeast Saccharomyces cerevisiae's ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast's specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain's isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass. As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize D-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of D-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass. As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass. As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae ’s ability to utilize d -xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1 , that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d -xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass. |
Author | Promdonkoy, Peerada Champreda, Verawat Tanapongpipat, Sutipa Runguphan, Weerawat Mhuantong, Wuttichai |
Author_xml | – sequence: 1 givenname: Peerada surname: Promdonkoy fullname: Promdonkoy, Peerada organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand – sequence: 2 givenname: Wuttichai surname: Mhuantong fullname: Mhuantong, Wuttichai organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand – sequence: 3 givenname: Verawat surname: Champreda fullname: Champreda, Verawat organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand – sequence: 4 givenname: Sutipa surname: Tanapongpipat fullname: Tanapongpipat, Sutipa organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand – sequence: 5 givenname: Weerawat surname: Runguphan fullname: Runguphan, Weerawat email: weerawat.run@biotec.or.th organization: grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32430798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9v1SAYxomZcdvRL-CFIfFmN50USmkvzaJzyRIvtl0TWt4uLBQq0BPPPoEfW3q6qVmyecG_8HseeHk4RgfOO0DofUlOS0LEp1gS2vKCUJIbbcqifYWOykrUBeeMH-Q5q0XBK8YP0XGMd4QQLgR9gw4ZrRgRbXOEfl2MU_BbGMElbBzWxc-d9RHwnIw19yoZ77ByGpvouzkp5y3OAj33-52suDrFPQTYmmgU4G6HlVZTMlvAVnU-qOTDDsPW2_mPV9jbKovB3RoHEIy7fYteD8pGePcwbtDN1y_XZ9-Ky-_nF2efL4ueU5EKzfpad5RXnANhjWiGgeoBNOvYUOelagUtVQukF7zpWKMrrnSrKREdq6Ae2AadrL65ih8zxCRHE3uwVjnwc5SUc0pYKxj5P1oRnrGl36CPT9A7P4dc4kLRmtUNYwv14YGauxG0nIIZVdjJxzgy0KxAH3yMAQbZm7R_rBSUsbIkcklersnLnLzcJy_bLKVPpI_uL4rYKorTkgGEv9d-UVWsKj9Pz5zy76dkvwFrJc64 |
CitedBy_id | crossref_primary_10_1002_cssc_202202122 crossref_primary_10_1016_j_tibtech_2022_09_004 crossref_primary_10_1186_s12934_021_01598_z crossref_primary_10_1360_SSV_2023_0031 crossref_primary_10_1093_jimb_kuac023 crossref_primary_10_1126_science_adn0753 crossref_primary_10_1007_s43393_021_00055_7 crossref_primary_10_1016_j_synbio_2024_12_009 crossref_primary_10_1016_j_biortech_2023_128668 crossref_primary_10_3390_jof9020186 crossref_primary_10_1021_acs_jafc_3c06528 crossref_primary_10_1002_biot_202000451 crossref_primary_10_3390_fermentation7030150 crossref_primary_10_3390_app10228222 crossref_primary_10_1016_j_tibtech_2020_08_010 crossref_primary_10_3390_jof8080767 |
Cites_doi | 10.1126/science.1193990 10.1093/bioinformatics/bty560 10.1016/j.gene.2011.09.033 10.1007/978-1-61779-197-0_12 10.1038/nature12536 10.1021/sb300074k 10.1038/ncomms1494 10.1002/j.1460-2075.1994.tb06337.x 10.1038/nature06450 10.1093/bioinformatics/btp324 10.1128/mcb.11.7.3463 10.3109/10409238.2012.667214 10.1038/nature11478 10.1186/s13068-019-1560-2 10.1534/genetics.104.030940 10.1093/nar/gkw1023 10.1002/bit.25522 10.1016/j.molcel.2012.08.014 10.1126/science.1258137 10.1128/MCB.25.1.488-498.2005 10.1038/nature10333 10.1093/nar/gkg584 10.1016/j.jbiotec.2013.12.016 10.1039/C4CC08502G 10.1186/s12934-017-0694-9 10.1007/BF00330984 10.1002/bit.27202 10.1038/nature08721 10.7554/eLife.38892 10.1111/1567-1364.12028 10.1186/s13068-018-1089-9 10.1007/s00438-007-0314-1 10.1038/nprot.2007.17 10.1186/1475-2859-12-64 10.1038/nrmicro.2016.32 10.1261/rna.1348209 10.1038/s41598-017-02460-2 10.1101/gr.107524.110 10.1186/s13568-019-0885-3 10.1128/mcb.19.11.7336 10.1038/nchembio.970 10.1128/aem.70.1.159-166.2004 10.1021/sb400081r 10.1016/j.ymben.2013.07.003 10.1093/nar/gkt135 10.1038/nprot.2007.13 10.1006/jmbi.1999.3310 |
ContentType | Journal Article |
Copyright | Society for Industrial Microbiology 2020 2020 Society for Industrial Microbiology and Biotechnology 2020 Society for Industrial Microbiology and Biotechnology 2020. |
Copyright_xml | – notice: Society for Industrial Microbiology 2020 2020 – notice: Society for Industrial Microbiology and Biotechnology 2020 – notice: Society for Industrial Microbiology and Biotechnology 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QR 7T7 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8FL 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ K60 K6~ K9. L.- LK8 M0C M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s10295-020-02281-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Biological Science Collection ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef ProQuest Business Collection (Alumni Edition) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1476-5535 |
EndPage | 510 |
ExternalDocumentID | 32430798 10_1007_s10295_020_02281_9 10.1007/s10295-020-02281-9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Thailand Research Fund grantid: TRG6180006 funderid: http://dx.doi.org/10.13039/501100004396 – fundername: Thailand Research Fund grantid: TRG6180006 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7WY 7X7 88A 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AAHBH AAIAL AAJKR AANXM AAPXW AARHV AARTL AATVU AAVAP AAWCG AAYIU AAYQN AAYTO AAYZH ABBBX ABBXA ABDBF ABDZT ABEJV ABFTV ABGNP ABHLI ABJOX ABKCH ABKTR ABMNI ABMOR ABNWP ABPLI ABPTD ABQBU ABQSL ABTEG ABTHY ABTMW ABUWG ABXPI ABXVV ACBXY ACGFS ACGOD ACHXU ACIHN ACIWK ACKNC ACMLO ACOKC ACOMO ACPRK ACREN ACSNA ACUHS ADBBV ADHHG ADHIR ADINQ ADKPE ADRFC ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AETLH AEUYN AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFRAH AFULF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMNDL AMTXH AMYQR ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D-I D1J DL5 DU5 DWQXO EAD EAP EAS EBC EBD EBS EDH EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_DOAJ GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IHE IHR IJ- ITM IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX K60 K6~ KDC KOV KOW KPH KSI LAS LK8 M0C M0L M1P M2O M2P M4Y M7P MA- ML0 MM. N2Q NB0 NDZJH NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R89 R9I RHV RNI RNS ROL ROX RPM RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SNE SNX SOJ SPISZ SSXJD STPWE SV3 SZN T13 T16 TOX TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK6 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z87 Z88 Z8M Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z91 ZMTXR ZOVNA ~8M ~EX ~KM AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QR 7T7 7XB 8FD 8FK C1K FR3 K9. L.- M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c527t-d3c6db25455e03878ff2dfed3b3f6878a9721a9e0c758b38d45ad9d207b34e6f3 |
IEDL.DBID | 7X7 |
ISSN | 1367-5435 1476-5535 |
IngestDate | Fri Jul 11 04:34:35 EDT 2025 Fri Jul 11 09:53:22 EDT 2025 Wed Aug 13 07:49:42 EDT 2025 Wed Feb 19 02:30:13 EST 2025 Tue Jul 01 04:30:43 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Fri Feb 21 02:42:35 EST 2025 Tue Feb 04 08:58:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Keywords | Isobutanol production Yeast Xylose utilization Biofuels Adaptive laboratory evolution |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-d3c6db25455e03878ff2dfed3b3f6878a9721a9e0c758b38d45ad9d207b34e6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5707-3516 |
OpenAccessLink | https://academic.oup.com/jimb/article-pdf/47/6-7/497/36798480/jimb0497.pdf |
PMID | 32430798 |
PQID | 2426368335 |
PQPubID | 54631 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2552039730 proquest_miscellaneous_2405303405 proquest_journals_2426368335 pubmed_primary_32430798 crossref_citationtrail_10_1007_s10295_020_02281_9 crossref_primary_10_1007_s10295_020_02281_9 springer_journals_10_1007_s10295_020_02281_9 oup_primary_10_1007_s10295-020-02281-9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany – name: Fairfax |
PublicationSubtitle | Official Journal of the Society for Industrial Microbiology and Biotechnology |
PublicationTitle | Journal of industrial microbiology & biotechnology |
PublicationTitleAbbrev | J Ind Microbiol Biotechnol |
PublicationTitleAlternate | J Ind Microbiol Biotechnol |
PublicationYear | 2020 |
Publisher | Oxford University Press Springer International Publishing |
Publisher_xml | – name: Oxford University Press – name: Springer International Publishing |
References | Davis López, Griffith, Choi (CR21) 2018; 11 Beekwilder, van Rossum, Koopman (CR46) 2014; 192 Geier, Fauland, Vogl, Glieder (CR45) 2015; 51 McKenna, Hanna, Banks (CR28) 2010; 20 Liao, Mi, Pontrelli, Luo (CR1) 2016; 14 Cui, Ramnarain, Chiang (CR37) 2008; 279 Kung, Runguphan, Keasling (CR4) 2012; 1 Buijs, Zhou, Siewers, Nielsen (CR9) 2015; 112 Dragosits, Mattanovich (CR18) 2013; 12 Basquin, Roudko, Rode (CR41) 2012; 48 Choi, Lee (CR8) 2013; 502 Steen, Kang, Bokinsky (CR10) 2010; 463 Brat, Boles (CR14) 2013; 13 Traven, Hammet, Tenis (CR34) 2005; 169 Promdonkoy, Siripong, Downes (CR15) 2019; 9 Gupta, Lorsch, Hinnebusch (CR39) 2018 Atsumi, Hanai, Liao (CR7) 2008; 451 DiCarlo, Norville, Mali (CR23) 2013; 41 Lenssen, James, Pedruzzi (CR35) 2005; 25 Runguphan, Keasling (CR11) 2013 Boeke, La Croute, Fink (CR31) 1984; 197 Collart, Panasenko (CR32) 2012; 492 Keasling (CR2) 2010; 330 van Maris, Geertman, Vermeulen (CR20) 2004; 70 Lee, Na, Park (CR5) 2012; 8 Hegemann, Heick (CR30) 2011; 765 Liu, Chen, Wall (CR47) 2017; 7 Gietz, Schiestl (CR25) 2007; 2 Caspeta, Chen, Ghiaci (CR19) 2014; 346 Lane, Zhang, Yun (CR16) 2020; 117 Chen, Zhou, Chen, Gu (CR26) 2018; 34 Obenauer, Cantley, Yaffe (CR42) 2003; 31 Li, Durbin (CR27) 2009; 25 Blom, Gammeltoft, Brunak (CR43) 1999; 294 Peralta-Yahya, Ouellet, Chan (CR6) 2011; 2 Li, Imataka, Morino (CR38) 1999; 19 Dellomonaco, Clomburg, Miller, Gonzalez (CR12) 2011; 476 Azzouz, Panasenko, Deluen (CR36) 2009; 15 Ryan, Drew (CR44) 1994; 13 Schmid, Linder (CR40) 1991; 11 Miller, Reese (CR33) 2012; 47 Gietz, Schiestl (CR24) 2007; 2 Kwak, Jin (CR13) 2017; 16 Farzadfard, Perli, Lu (CR22) 2013; 2 Peralta-Yahya, Zhang, del Cardayre, Keasling (CR3) 2012; 488 Reider Apel, d’Espaux, Wehrs (CR29) 2016; 45 Zhang, Lane, Chen (CR17) 2019; 12 Keasling (2021033102490760500_CR2) 2010; 330 Basquin (2021033102490760500_CR41) 2012; 48 Lenssen (2021033102490760500_CR35) 2005; 25 Peralta-Yahya (2021033102490760500_CR6) 2011; 2 Promdonkoy (2021033102490760500_CR15) 2019; 9 Choi (2021033102490760500_CR8) 2013; 502 Atsumi (2021033102490760500_CR7) 2008; 451 Miller (2021033102490760500_CR33) 2012; 47 Peralta-Yahya (2021033102490760500_CR3) 2012; 488 Runguphan (2021033102490760500_CR11) 2013 McKenna (2021033102490760500_CR28) 2010; 20 Li (2021033102490760500_CR38) 1999; 19 Cui (2021033102490760500_CR37) 2008; 279 Dellomonaco (2021033102490760500_CR12) 2011; 476 Kwak (2021033102490760500_CR13) 2017; 16 Boeke (2021033102490760500_CR31) 1984; 197 Ryan (2021033102490760500_CR44) 1994; 13 Gupta (2021033102490760500_CR39) 2018 Schmid (2021033102490760500_CR40) 1991; 11 Blom (2021033102490760500_CR43) 1999; 294 Caspeta (2021033102490760500_CR19) 2014; 346 Liu (2021033102490760500_CR47) 2017; 7 Traven (2021033102490760500_CR34) 2005; 169 Geier (2021033102490760500_CR45) 2015; 51 Gietz (2021033102490760500_CR24) 2007; 2 Chen (2021033102490760500_CR26) 2018; 34 van Maris (2021033102490760500_CR20) 2004; 70 Lee (2021033102490760500_CR5) 2012; 8 Steen (2021033102490760500_CR10) 2010; 463 Kung (2021033102490760500_CR4) 2012; 1 DiCarlo (2021033102490760500_CR23) 2013; 41 Reider Apel (2021033102490760500_CR29) 2016; 45 Zhang (2021033102490760500_CR17) 2019; 12 Collart (2021033102490760500_CR32) 2012; 492 Lane (2021033102490760500_CR16) 2020; 117 Farzadfard (2021033102490760500_CR22) 2013; 2 Azzouz (2021033102490760500_CR36) 2009; 15 Gietz (2021033102490760500_CR25) 2007; 2 Hegemann (2021033102490760500_CR30) 2011; 765 Liao (2021033102490760500_CR1) 2016; 14 Obenauer (2021033102490760500_CR42) 2003; 31 Davis López (2021033102490760500_CR21) 2018; 11 Li (2021033102490760500_CR27) 2009; 25 Buijs (2021033102490760500_CR9) 2015; 112 Brat (2021033102490760500_CR14) 2013; 13 Dragosits (2021033102490760500_CR18) 2013; 12 Beekwilder (2021033102490760500_CR46) 2014; 192 |
References_xml | – volume: 330 start-page: 1355 year: 2010 end-page: 1358 ident: CR2 article-title: Manufacturing molecules through metabolic engineering publication-title: Science doi: 10.1126/science.1193990 – volume: 34 start-page: i884 year: 2018 end-page: i890 ident: CR26 article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 492 start-page: 42 year: 2012 end-page: 53 ident: CR32 article-title: The Ccr4-Not complex publication-title: Gene doi: 10.1016/j.gene.2011.09.033 – volume: 765 start-page: 189 year: 2011 end-page: 206 ident: CR30 article-title: Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-197-0_12 – volume: 502 start-page: 571 year: 2013 end-page: 574 ident: CR8 article-title: Microbial production of short-chain alkanes publication-title: Nature doi: 10.1038/nature12536 – volume: 1 start-page: 498 year: 2012 end-page: 513 ident: CR4 article-title: From fields to fuels: recent advances in the microbial production of biofuels publication-title: ACS Synth Biol doi: 10.1021/sb300074k – volume: 2 start-page: 483 year: 2011 ident: CR6 article-title: Identification and microbial production of a terpene-based advanced biofuel publication-title: Nat Commun doi: 10.1038/ncomms1494 – volume: 13 start-page: 928 year: 1994 end-page: 933 ident: CR44 article-title: Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06337.x – volume: 451 start-page: 86 year: 2008 end-page: 89 ident: CR7 article-title: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels publication-title: Nature doi: 10.1038/nature06450 – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: CR27 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 11 start-page: 3463 year: 1991 end-page: 3471 ident: CR40 article-title: Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases publication-title: Mol Cell Biol doi: 10.1128/mcb.11.7.3463 – volume: 47 start-page: 315 year: 2012 end-page: 333 ident: CR33 article-title: Ccr4-Not complex: the control freak of eukaryotic cells publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2012.667214 – volume: 488 start-page: 320 year: 2012 end-page: 328 ident: CR3 article-title: Microbial engineering for the production of advanced biofuels publication-title: Nature doi: 10.1038/nature11478 – volume: 12 start-page: 223 year: 2019 ident: CR17 article-title: Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1560-2 – volume: 169 start-page: 65 year: 2005 end-page: 75 ident: CR34 article-title: Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in publication-title: Genetics doi: 10.1534/genetics.104.030940 – volume: 45 start-page: 496 year: 2016 end-page: 508 ident: CR29 article-title: A Cas9-based toolkit to program gene expression in publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1023 – volume: 112 start-page: 1275 year: 2015 end-page: 1279 ident: CR9 article-title: Long-chain alkane production by the yeast publication-title: Biotechnol Bioeng doi: 10.1002/bit.25522 – volume: 48 start-page: 207 year: 2012 end-page: 218 ident: CR41 article-title: Architecture of the nuclease module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction publication-title: Mol Cell doi: 10.1016/j.molcel.2012.08.014 – volume: 346 start-page: 75 year: 2014 end-page: 78 ident: CR19 article-title: Altered sterol composition renders yeast thermotolerant publication-title: Science doi: 10.1126/science.1258137 – volume: 25 start-page: 488 year: 2005 end-page: 498 ident: CR35 article-title: The Ccr4-not complex independently controls both Msn2-dependent transcriptional activation—via a newly identified Glc7/Bud14 type I protein phosphatase module—and TFIID promoter distribution publication-title: Mol Cell Biol doi: 10.1128/MCB.25.1.488-498.2005 – volume: 476 start-page: 355 year: 2011 end-page: 359 ident: CR12 article-title: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals publication-title: Nature doi: 10.1038/nature10333 – volume: 31 start-page: 3635 year: 2003 end-page: 3641 ident: CR42 article-title: Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg584 – volume: 192 start-page: 383 year: 2014 end-page: 392 ident: CR46 article-title: Polycistronic expression of a β-carotene biosynthetic pathway in coupled to β-ionone production publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2013.12.016 – volume: 51 start-page: 1643 year: 2015 end-page: 1646 ident: CR45 article-title: Compact multi-enzyme pathways in publication-title: Chem Commun doi: 10.1039/C4CC08502G – volume: 16 start-page: 82 year: 2017 ident: CR13 article-title: Production of fuels and chemicals from xylose by engineered : a review and perspective publication-title: Microb Cell Fact doi: 10.1186/s12934-017-0694-9 – volume: 197 start-page: 345 year: 1984 end-page: 346 ident: CR31 article-title: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance publication-title: MGG Mol Gen Genet doi: 10.1007/BF00330984 – volume: 117 start-page: 372 year: 2020 end-page: 381 ident: CR16 article-title: Xylose assimilation enhances the production of isobutanol in engineered publication-title: Biotechnol Bioeng doi: 10.1002/bit.27202 – volume: 463 start-page: 559 year: 2010 end-page: 562 ident: CR10 article-title: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass publication-title: Nature doi: 10.1038/nature08721 – year: 2018 ident: CR39 article-title: Yeast Ded1 promotes 48S translation preinitiation complex assembly in an mRNA-specific and eIF4F-dependent manner publication-title: Elife doi: 10.7554/eLife.38892 – volume: 13 start-page: 241 year: 2013 end-page: 244 ident: CR14 article-title: Isobutanol production from -xylose by recombinant publication-title: FEMS Yeast Res doi: 10.1111/1567-1364.12028 – volume: 11 start-page: 90 year: 2018 ident: CR21 article-title: Evolutionary engineering improves tolerance for medium-chain alcohols in publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1089-9 – volume: 279 start-page: 323 year: 2008 end-page: 337 ident: CR37 article-title: Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes publication-title: Mol Genet Genom doi: 10.1007/s00438-007-0314-1 – volume: 2 start-page: 1 year: 2007 end-page: 4 ident: CR24 article-title: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method publication-title: Nat Protoc doi: 10.1038/nprot.2007.17 – volume: 12 start-page: 64 year: 2013 ident: CR18 article-title: Adaptive laboratory evolution—principles and applications for biotechnology publication-title: Microb Cell Fact doi: 10.1186/1475-2859-12-64 – volume: 14 start-page: 288 year: 2016 end-page: 304 ident: CR1 article-title: Fuelling the future: microbial engineering for the production of sustainable biofuels publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.32 – volume: 15 start-page: 377 year: 2009 end-page: 383 ident: CR36 article-title: Specific roles for the Ccr4-not complex subunits in expression of the genome publication-title: RNA doi: 10.1261/rna.1348209 – volume: 7 start-page: 2193 year: 2017 ident: CR47 article-title: Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector publication-title: Sci Rep doi: 10.1038/s41598-017-02460-2 – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: CR28 article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 9 start-page: 160 year: 2019 ident: CR15 article-title: Systematic improvement of isobutanol production from -xylose in engineered publication-title: AMB Express doi: 10.1186/s13568-019-0885-3 – volume: 19 start-page: 7336 year: 1999 end-page: 7346 ident: CR38 article-title: Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII publication-title: Mol Cell Biol doi: 10.1128/mcb.19.11.7336 – volume: 8 start-page: 536 year: 2012 end-page: 546 ident: CR5 article-title: Systems metabolic engineering of microorganisms for natural and non-natural chemicals publication-title: Nat Chem Biol doi: 10.1038/nchembio.970 – volume: 70 start-page: 159 year: 2004 end-page: 166 ident: CR20 article-title: Directed evolution of pyruvate decarboxylase-negative , yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast publication-title: Appl Environ Microbiol doi: 10.1128/aem.70.1.159-166.2004 – volume: 2 start-page: 604 year: 2013 end-page: 613 ident: CR22 article-title: Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas publication-title: ACS Synth Biol doi: 10.1021/sb400081r – year: 2013 ident: CR11 article-title: Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals publication-title: Metab Eng doi: 10.1016/j.ymben.2013.07.003 – volume: 41 start-page: 4336 year: 2013 end-page: 4343 ident: CR23 article-title: Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt135 – volume: 2 start-page: 31 year: 2007 end-page: 34 ident: CR25 article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat Protoc doi: 10.1038/nprot.2007.13 – volume: 294 start-page: 1351 year: 1999 end-page: 1362 ident: CR43 article-title: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3310 – volume: 192 start-page: 383 year: 2014 ident: 2021033102490760500_CR46 article-title: Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2013.12.016 – volume: 34 start-page: i884 year: 2018 ident: 2021033102490760500_CR26 article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 16 start-page: 82 year: 2017 ident: 2021033102490760500_CR13 article-title: Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective publication-title: Microb Cell Fact doi: 10.1186/s12934-017-0694-9 – volume: 25 start-page: 488 year: 2005 ident: 2021033102490760500_CR35 article-title: The Ccr4-not complex independently controls both Msn2-dependent transcriptional activation—via a newly identified Glc7/Bud14 type I protein phosphatase module—and TFIID promoter distribution publication-title: Mol Cell Biol doi: 10.1128/MCB.25.1.488-498.2005 – volume: 2 start-page: 483 year: 2011 ident: 2021033102490760500_CR6 article-title: Identification and microbial production of a terpene-based advanced biofuel publication-title: Nat Commun doi: 10.1038/ncomms1494 – volume: 346 start-page: 75 year: 2014 ident: 2021033102490760500_CR19 article-title: Altered sterol composition renders yeast thermotolerant publication-title: Science doi: 10.1126/science.1258137 – volume: 112 start-page: 1275 year: 2015 ident: 2021033102490760500_CR9 article-title: Long-chain alkane production by the yeast Saccharomyces cerevisiae publication-title: Biotechnol Bioeng doi: 10.1002/bit.25522 – volume: 13 start-page: 928 year: 1994 ident: 2021033102490760500_CR44 article-title: Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06337.x – volume: 765 start-page: 189 year: 2011 ident: 2021033102490760500_CR30 article-title: Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-197-0_12 – volume: 14 start-page: 288 year: 2016 ident: 2021033102490760500_CR1 article-title: Fuelling the future: microbial engineering for the production of sustainable biofuels publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.32 – volume: 51 start-page: 1643 year: 2015 ident: 2021033102490760500_CR45 article-title: Compact multi-enzyme pathways in P. pastoris publication-title: Chem Commun doi: 10.1039/C4CC08502G – volume: 492 start-page: 42 year: 2012 ident: 2021033102490760500_CR32 article-title: The Ccr4-Not complex publication-title: Gene doi: 10.1016/j.gene.2011.09.033 – volume: 169 start-page: 65 year: 2005 ident: 2021033102490760500_CR34 article-title: Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.104.030940 – volume: 451 start-page: 86 year: 2008 ident: 2021033102490760500_CR7 article-title: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels publication-title: Nature doi: 10.1038/nature06450 – volume: 463 start-page: 559 year: 2010 ident: 2021033102490760500_CR10 article-title: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass publication-title: Nature doi: 10.1038/nature08721 – year: 2018 ident: 2021033102490760500_CR39 article-title: Yeast Ded1 promotes 48S translation preinitiation complex assembly in an mRNA-specific and eIF4F-dependent manner publication-title: Elife doi: 10.7554/eLife.38892 – volume: 330 start-page: 1355 year: 2010 ident: 2021033102490760500_CR2 article-title: Manufacturing molecules through metabolic engineering publication-title: Science doi: 10.1126/science.1193990 – volume: 1 start-page: 498 year: 2012 ident: 2021033102490760500_CR4 article-title: From fields to fuels: recent advances in the microbial production of biofuels publication-title: ACS Synth Biol doi: 10.1021/sb300074k – volume: 488 start-page: 320 year: 2012 ident: 2021033102490760500_CR3 article-title: Microbial engineering for the production of advanced biofuels publication-title: Nature doi: 10.1038/nature11478 – volume: 41 start-page: 4336 year: 2013 ident: 2021033102490760500_CR23 article-title: Genome engineering in Saccharomyces cerevisiae using CRISPR–Cas systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt135 – volume: 9 start-page: 160 year: 2019 ident: 2021033102490760500_CR15 article-title: Systematic improvement of isobutanol production from d-xylose in engineered Saccharomyces cerevisiae publication-title: AMB Express doi: 10.1186/s13568-019-0885-3 – volume: 476 start-page: 355 year: 2011 ident: 2021033102490760500_CR12 article-title: Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals publication-title: Nature doi: 10.1038/nature10333 – volume: 12 start-page: 64 year: 2013 ident: 2021033102490760500_CR18 article-title: Adaptive laboratory evolution—principles and applications for biotechnology publication-title: Microb Cell Fact doi: 10.1186/1475-2859-12-64 – volume: 19 start-page: 7336 year: 1999 ident: 2021033102490760500_CR38 article-title: Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII publication-title: Mol Cell Biol doi: 10.1128/mcb.19.11.7336 – volume: 7 start-page: 2193 year: 2017 ident: 2021033102490760500_CR47 article-title: Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector publication-title: Sci Rep doi: 10.1038/s41598-017-02460-2 – volume: 11 start-page: 90 year: 2018 ident: 2021033102490760500_CR21 article-title: Evolutionary engineering improves tolerance for medium-chain alcohols in Saccharomyces cerevisiae publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1089-9 – volume: 294 start-page: 1351 year: 1999 ident: 2021033102490760500_CR43 article-title: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3310 – volume: 502 start-page: 571 year: 2013 ident: 2021033102490760500_CR8 article-title: Microbial production of short-chain alkanes publication-title: Nature doi: 10.1038/nature12536 – volume: 279 start-page: 323 year: 2008 ident: 2021033102490760500_CR37 article-title: Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes publication-title: Mol Genet Genom doi: 10.1007/s00438-007-0314-1 – volume: 2 start-page: 31 year: 2007 ident: 2021033102490760500_CR25 article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method publication-title: Nat Protoc doi: 10.1038/nprot.2007.13 – volume: 13 start-page: 241 year: 2013 ident: 2021033102490760500_CR14 article-title: Isobutanol production from d-xylose by recombinant Saccharomyces cerevisiae publication-title: FEMS Yeast Res doi: 10.1111/1567-1364.12028 – volume: 45 start-page: 496 year: 2016 ident: 2021033102490760500_CR29 article-title: A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1023 – volume: 2 start-page: 1 year: 2007 ident: 2021033102490760500_CR24 article-title: Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method publication-title: Nat Protoc doi: 10.1038/nprot.2007.17 – volume: 197 start-page: 345 year: 1984 ident: 2021033102490760500_CR31 article-title: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance publication-title: MGG Mol Gen Genet doi: 10.1007/BF00330984 – volume: 20 start-page: 1297 year: 2010 ident: 2021033102490760500_CR28 article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 2 start-page: 604 year: 2013 ident: 2021033102490760500_CR22 article-title: Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas publication-title: ACS Synth Biol doi: 10.1021/sb400081r – volume: 31 start-page: 3635 year: 2003 ident: 2021033102490760500_CR42 article-title: Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg584 – volume: 8 start-page: 536 year: 2012 ident: 2021033102490760500_CR5 article-title: Systems metabolic engineering of microorganisms for natural and non-natural chemicals publication-title: Nat Chem Biol doi: 10.1038/nchembio.970 – year: 2013 ident: 2021033102490760500_CR11 article-title: Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals publication-title: Metab Eng doi: 10.1016/j.ymben.2013.07.003 – volume: 12 start-page: 223 year: 2019 ident: 2021033102490760500_CR17 article-title: Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1560-2 – volume: 70 start-page: 159 year: 2004 ident: 2021033102490760500_CR20 article-title: Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast publication-title: Appl Environ Microbiol doi: 10.1128/aem.70.1.159-166.2004 – volume: 25 start-page: 1754 year: 2009 ident: 2021033102490760500_CR27 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 47 start-page: 315 year: 2012 ident: 2021033102490760500_CR33 article-title: Ccr4-Not complex: the control freak of eukaryotic cells publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2012.667214 – volume: 15 start-page: 377 year: 2009 ident: 2021033102490760500_CR36 article-title: Specific roles for the Ccr4-not complex subunits in expression of the genome publication-title: RNA doi: 10.1261/rna.1348209 – volume: 48 start-page: 207 year: 2012 ident: 2021033102490760500_CR41 article-title: Architecture of the nuclease module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction publication-title: Mol Cell doi: 10.1016/j.molcel.2012.08.014 – volume: 11 start-page: 3463 year: 1991 ident: 2021033102490760500_CR40 article-title: Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases publication-title: Mol Cell Biol doi: 10.1128/mcb.11.7.3463 – volume: 117 start-page: 372 year: 2020 ident: 2021033102490760500_CR16 article-title: Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae publication-title: Biotechnol Bioeng doi: 10.1002/bit.27202 |
SSID | ssj0005772 |
Score | 2.3792996 |
Snippet | Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation... As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The... |
SourceID | proquest pubmed crossref springer oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 497 |
SubjectTerms | Biochemistry Biodiesel fuels Biofuels Bioinformatics Biomass Biomedical and Life Sciences Biotechnology Butanols - chemistry Climate change Climate effects Diesel engines Engineering Evolution feedstocks Fermentation Fossil fuels Gasoline Genetic Engineering Genome, Fungal Genomes Greenhouse effect Greenhouse gases greenhouses Growth rate Industrial Microbiology Inorganic Chemistry Isobutanol Jet engine fuels Laboratories Life Sciences Metabolic Engineering Metabolic Engineering and Synthetic Biology - Original Paper Metabolism Microbiology Microorganisms Mutation Nucleotides Plasmids - metabolism Reverse engineering Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism sequence analysis specific growth rate Strains (organisms) Sugar transportation Utilization Xylose Xylose - metabolism Yeast yeasts |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ahEBzCHm1cfNAgdJLq-C1LT-OISSEQHNJFnIzehkWFntZ75bsP8jP7ows725oE-jFYDw2kmckfSPNfAPwTYi8wpXccnI4eJIrw4tMFTzKtBroSqeRoQTnX_fp7TC5exJPPims7aPd-yNJN1OvJbtFLps45MTZMuDFR9gU6LtTINcwulwFdmSuZBNxkXGBaMCnyvz7G6-Wo1cpbmtI869TUrf43OzCjkeN7LJT8x58sPU-bHV1JBf7sL3GKngAL91Ggdv3Y6OaGf6MXnlrGdrY2KddMlkbNmobNUdw2IzZpCN-pSf4xsMF0y7-tx1Jy9SCSSMnNC8ybzPNdMHsb2-17ltTv6nI7KophzC8uX68uuW-4ALXIspm3MSaykshqBKWjrXzqkJVWROruErxVhLVjyxsqNHLUHFuEiFNYaIwU3Fi0yr-DBt1U9sjYEJalYWJRHiQoguXy0pYLQehJZ9TySqAQf_fS-3ZyKkoxrhc8SiTrkrUVel0VRYB_Fi-M-m4ON6V_o7qfENw3QQCOOk1XvoB3JaOyD6ljLQAzpePcejReYqsbTMnGZzBwhiv78gINFHEfHEYwJfOmpZNQiyLM2yRB_CzN69VA97u2Nf_Ez-GT5HrLYUYn8DGbDq3pwikZurMjZs_Y3ERfw priority: 102 providerName: Springer Nature |
Title | Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering |
URI | https://link.springer.com/article/10.1007/s10295-020-02281-9 https://www.ncbi.nlm.nih.gov/pubmed/32430798 https://www.proquest.com/docview/2426368335 https://www.proquest.com/docview/2405303405 https://www.proquest.com/docview/2552039730 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEB_0DkEfRM-vnOexgvii66VJNh9PUqXnoXiIWqhPYb8ChZLUpj3sf-Cf7cxm2_SQ60tLk03Y7czO_mZ25zcAr4TIK1zJLSeHgye5MrzIVMGjTKuBrnQaGUpw_nqZXoyTzxMx8QG31h-r3NhEZ6hNoylGfuaYxVNKEXo__82pahTtrvoSGrfhkKjLSKuzSdYf8chc8SZiJeMCcYFPmvGpc5HLTQ45McAMeHFtYbqW7LaDOf_bL3XL0PkDuO_xIxt2An8It2x9BHe6ipLrI7i3wy_4CP52IQMXAWTTmhn-B_3z1jLUtplPwGSyNmzaNmqFMLGZsXlHAUt38Ikf75h2J4HbqbRMrZk0ck4WknntaRZrZq-8_rp3LXx4kdm-K49hfD76-fGC-9ILXIsoW3ITayo0hfBKWNrgzqsKhWZNrOIqxZ-SSH9kYUON_oaKc5MIaQoThZmKE5tW8RM4qJvaPgMmpFVZmEgECik6c7mshNVyEFryPpWsAhhs_vdSe15yKo8xK3tGZZJVibIqnazKIoA322fmHSvH3tavUZw3NNxVgQBONhIv_VRuy17xAni5vY2TkHZWZG2bFbVBWxbG-LmnjRBRiOgvDgN42mnTtkuIatHWFnkAbzfq1Xfg5oEd7-_vc7gbudHR4eITOFguVvYFQqilOnXz5BQOh59-fRnh94fR5bfveHUcDf8BLQoYtw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQ5ICiPBgoYCbiAIZvEeRwQQkC1pY8LrbS3YMeOtNIqWfYB5B_wa_iNzDjOZivUvfUSKYoTjTPj8Te25xuAF0KkJc7khlPAwaNUaZ4lKuNBUqhBURZxoCnB-eQ0Hp5HX0ditAV_u1wYOlbZ-UTrqHVd0Br5O8ssHlOK0IfpD05Vo2h3tSuh0ZrFkWl-Ycg2f3_4GfX7MggOvpx9GnJXVYAXIkgWXIcF1VBC5CAM7d2mZYnyGB2qsIzxVhKfjcyMXyCUVmGqIyF1pgM_UWFk4jLE716D6zjx-hTsJaOkP1KS2GJRxILGBeIQl6TjUvUCmwvtc2KcGfDswkR4IbluDeP-tz9rp72DO3Db4VX2sTWwu7Blql240VawbHbh1hqf4T340y5R2BVHNq6Y5r-bST03DK174hI-maw0G89rtURYWk_YtKWcpSf4xre3rLAnj-djaZhqmNRySh6ZOWutZw0zP914sd-aueVMZnpR7sP5lSjlAWxXdWX2gAlpVOJHEoFJjMFjKkthCjnwDUW7SpYeDLr_nheOB53KcUzynsGZdJWjrnKrqzzz4PXqnWnLArKx9StU5yUN103Ag_1O47lzHfO8N3QPnq8e46CnnRxZmXpJbdB3-iFeN7QRIvARbYa-Bw9ba1qJhCgafXuWevCmM69egMs79mizvM_g5vDs5Dg_Pjw9egw7ge0pHWzeh-3FbGmeIHxbqKd2zDD4ftWD9B-74lHX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTqDxgGDACAwwEvACZmkS588DQsBWbQyqCTZpb8GOHalSlZSmBfoN-Ex8Ou4Sp-mE1re9VKriRJfc-fw7--53AM-FiHNcyQ2ngIMHsdI8iVTCvShT_SzPQk9TgfOXYXh4Fnw6F-cb8LethaG0ytYn1o5alxntke_VzOIhlQjt5TYt4mR_8G7yg1MHKTppbdtpNCZybBa_MHyr3h7to65feN7g4PTjIbcdBngmvGjGtZ9RPyVEEcLQOW6c5yib0b7y8xD_SuK2kYlxM4TVyo91IKROtOdGyg9MmPv43GuwGVFU1IPNDwfDk69dgklUt44iTjQuEJXYkh1buOfVldEuJ_6ZPk8uLIsXSu1WEO9_p7X1Iji4DbcsemXvG3O7Axum2IbrTT_LxTbcXGE3vAt_mg2Lev-RjQqm-e_FuKwMQ1sf2_JPJgvNRlWp5ghSyzGbNAS0dAXv-PaGZXUecjWShqkFk1pOyD8za7vldMHMTzt76mdN7eYmM50o9-DsStRyH3pFWZgHwIQ0KnIDiTAlxFAylrkwmey7hmJfJXMH-u13TzPLik7NOcZpx-dMukpRV2mtqzRx4NXynknDCbJ29EtU5yUDV03Agd1W46l1JFXamb0Dz5aX0QXQuY4sTDmnMehJXR9_14wRwnMRe_quAzuNNS1FQkyNnj6JHXjdmlcnwOUv9nC9vE_hBk7Q9PPR8PgRbHn1i1KW8y70ZtO5eYxYbqae2EnD4PtVz9N_lHlXcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+D-xylose+utilization+and+isobutanol+production+in+S.+cerevisiae+by+adaptive+laboratory+evolution+and+rational+engineering&rft.jtitle=Journal+of+industrial+microbiology+%26+biotechnology&rft.au=Promdonkoy%2C+Peerada&rft.au=Mhuantong%2C+Wuttichai&rft.au=Champreda%2C+Verawat&rft.au=Tanapongpipat%2C+Sutipa&rft.date=2020-07-01&rft.issn=1367-5435&rft.volume=47&rft.issue=6-7+p.497-510&rft.spage=497&rft.epage=510&rft_id=info:doi/10.1007%2Fs10295-020-02281-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-5435&client=summon |