Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be a...
Saved in:
Published in | Frontiers in cellular and infection microbiology Vol. 2; p. 167 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
01.01.2011
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X 2235-2988 |
DOI | 10.3389/fmicb.2011.00167 |
Cover
Loading…
Abstract | Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation. |
---|---|
AbstractList | Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments,
P. aeruginosa
must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides.
P. aeruginosa
has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of
P. aeruginosa
strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the
Psl
and
Pel
operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of
Escherichia coli
, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation. Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation. Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the psl and pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation. |
Author | Nivens, David E. Weadge, Joel T. Howell, P. Lynne Franklin, Michael J. |
AuthorAffiliation | 1 Department of Microbiology, Montana State University Bozeman, MT, USA 4 Program in Molecular Structure and Function, The Hospital for Sick Children Toronto, ON, Canada 5 Department of Biochemistry, University of Toronto Toronto, ON, Canada 3 Department of Food Science, Purdue University West Lafayette, IN, USA 2 Center for Biofilm Engineering, Montana State University Bozeman, MT, USA |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, Montana State University Bozeman, MT, USA – name: 4 Program in Molecular Structure and Function, The Hospital for Sick Children Toronto, ON, Canada – name: 2 Center for Biofilm Engineering, Montana State University Bozeman, MT, USA – name: 5 Department of Biochemistry, University of Toronto Toronto, ON, Canada – name: 3 Department of Food Science, Purdue University West Lafayette, IN, USA |
Author_xml | – sequence: 1 givenname: Michael J. surname: Franklin fullname: Franklin, Michael J. – sequence: 2 givenname: David E. surname: Nivens fullname: Nivens, David E. – sequence: 3 givenname: Joel T. surname: Weadge fullname: Weadge, Joel T. – sequence: 4 givenname: P. Lynne surname: Howell fullname: Howell, P. Lynne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21991261$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstv1DAQxi1URB_0zgnlxmV38SPx44JUqhYqVWIPIHEzE9vZdeXExU4Q-9_j7JaqRcIHezT-5jd-fKfoaIiDQ-gNwSvGpHrf9d60K4oJWWFMuHiBTgjn9ZJh-v3oSXyMznO-w2XUmJb5FTqmRClCOTlBPz76mHfDuHXZ5yp2VYmqdXaTjX0cIFfg0rTxQ8xQXf0eExgXwhQgVesYdhmM2ULy1uVFdRGKDka3qNYuLCoYbAGF1-hlByG784f1DH27vvp6-Xl5--XTzeXF7dI0VIxLg7kUQvFatUIwEMzWdU1ZyWGJscVSNqRpXCcpb7ljVlBohOiU5BKsEsDO0M2BayPc6fvke0g7HcHrfSKmjYY0ehOctkRa42zHVGtrVlPpHCcNVrKVXYebmfXhwLqf2t4V7VAuHp5Bn-8Mfqs38ZdmpFE1oQXw7gGQ4s_J5VH3Ps8vB4OLU9ZSScIbyVlRvn3a6rHH3x8qAnwQmBRzTq57lBCsZx_ovQ_07AO990Ep4f-UGD_C6ON8WB_-X_gHVia4Zg |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_130747 crossref_primary_10_1038_s41522_021_00230_7 crossref_primary_10_3389_fmicb_2024_1414412 crossref_primary_10_1128_mBio_00186_17 crossref_primary_10_5604_01_3001_0010_3792 crossref_primary_10_1007_s12275_016_5528_7 crossref_primary_10_1016_j_chemosphere_2023_138928 crossref_primary_10_1002_mbo3_857 crossref_primary_10_1021_acs_est_3c03855 crossref_primary_10_1016_j_jbc_2022_102854 crossref_primary_10_1021_acsinfecdis_2c00201 crossref_primary_10_1111_febs_14995 crossref_primary_10_1016_j_genrep_2018_09_003 crossref_primary_10_1074_jbc_M115_645051 crossref_primary_10_1007_s10482_021_01673_w crossref_primary_10_1016_j_scitotenv_2022_158354 crossref_primary_10_3390_microorganisms10061239 crossref_primary_10_1093_infdis_jiv436 crossref_primary_10_3390_antibiotics10121482 crossref_primary_10_3389_fmicb_2023_1218708 crossref_primary_10_1002_tqem_22080 crossref_primary_10_1074_jbc_M112_375378 crossref_primary_10_1128_JB_00534_13 crossref_primary_10_1080_21505594_2024_2397503 crossref_primary_10_1016_j_jab_2014_05_002 crossref_primary_10_1080_10408398_2021_1892585 crossref_primary_10_1039_C6AY03061K crossref_primary_10_1016_j_chemosphere_2023_141090 crossref_primary_10_3390_coatings10100930 crossref_primary_10_1016_j_soilbio_2021_108304 crossref_primary_10_3390_ma12233912 crossref_primary_10_1186_s12864_015_2069_0 crossref_primary_10_1038_srep33115 crossref_primary_10_3390_antibiotics9090551 crossref_primary_10_1111_1755_0998_13535 crossref_primary_10_1007_s00203_022_02847_4 crossref_primary_10_1074_jbc_RA119_008511 crossref_primary_10_7554_eLife_92534 crossref_primary_10_1002_mba2_70003 crossref_primary_10_1016_j_ijantimicag_2019_01_001 crossref_primary_10_1021_acs_orglett_9b00967 crossref_primary_10_1007_s10123_018_0010_5 crossref_primary_10_1016_j_biomaterials_2018_03_016 crossref_primary_10_1007_s10103_018_02707_y crossref_primary_10_1371_journal_ppat_1004334 crossref_primary_10_1016_j_watres_2024_121240 crossref_primary_10_1128_AAC_01997_16 crossref_primary_10_1007_s10989_020_10094_8 crossref_primary_10_1128_AEM_00219_18 crossref_primary_10_3389_fmicb_2018_00030 crossref_primary_10_1080_1040841X_2020_1794788 crossref_primary_10_1128_AEM_00460_13 crossref_primary_10_1021_acschembio_0c00426 crossref_primary_10_1074_jbc_M115_679050 crossref_primary_10_3390_coatings12121921 crossref_primary_10_3389_fmicb_2017_00284 crossref_primary_10_1111_1462_2920_14064 crossref_primary_10_1128_JB_02190_12 crossref_primary_10_1128_JB_00173_13 crossref_primary_10_1039_C6RA12824F crossref_primary_10_3390_pathogens3010121 crossref_primary_10_1016_j_jcf_2020_10_008 crossref_primary_10_1080_14760584_2023_2274955 crossref_primary_10_3390_microorganisms8111740 crossref_primary_10_1146_annurev_micro_041320_111355 crossref_primary_10_1021_acs_jmedchem_9b01245 crossref_primary_10_3390_antibiotics12061005 crossref_primary_10_3390_ijms23158308 crossref_primary_10_3390_genes12010069 crossref_primary_10_3390_microorganisms12122670 crossref_primary_10_1002_mbo3_61 crossref_primary_10_1016_j_micpath_2024_106866 crossref_primary_10_1016_j_desal_2017_12_006 crossref_primary_10_1111_1462_2920_16133 crossref_primary_10_1021_acs_langmuir_9b00271 crossref_primary_10_1016_j_desal_2022_116151 crossref_primary_10_3390_ijms22168632 crossref_primary_10_1002_ange_201108744 crossref_primary_10_1080_08927014_2013_857405 crossref_primary_10_1111_1751_7915_12774 crossref_primary_10_1074_jbc_M117_812842 crossref_primary_10_3390_M947 crossref_primary_10_1073_pnas_1503058112 crossref_primary_10_1021_acschembio_7b00826 crossref_primary_10_1016_j_algal_2025_103997 crossref_primary_10_4155_fmc_15_6 crossref_primary_10_1116_6_0002604 crossref_primary_10_3389_fmicb_2022_955286 crossref_primary_10_3389_fchem_2022_842238 crossref_primary_10_1128_JB_02150_12 crossref_primary_10_1128_JB_00575_19 crossref_primary_10_1002_jctb_4548 crossref_primary_10_3390_environments9070080 crossref_primary_10_1111_1758_2229_12595 crossref_primary_10_1128_AEM_01584_20 crossref_primary_10_1080_19932820_2024_2344320 crossref_primary_10_1099_mic_0_000457 crossref_primary_10_1021_acs_jmedchem_5b01698 crossref_primary_10_3390_genes9020113 crossref_primary_10_5897_AJB2016_15795 crossref_primary_10_3389_fmicb_2018_02811 crossref_primary_10_1093_femsre_fuab051 crossref_primary_10_1099_mic_0_001301 crossref_primary_10_1128_genomeA_00524_14 crossref_primary_10_1128_AEM_02628_15 crossref_primary_10_3390_md21050313 crossref_primary_10_1038_cr_2015_129 crossref_primary_10_1016_j_jiac_2018_01_007 crossref_primary_10_1186_s12864_015_1763_2 crossref_primary_10_1073_pnas_1801336115 crossref_primary_10_1371_journal_pone_0171576 crossref_primary_10_1016_j_arbres_2012_02_011 crossref_primary_10_1111_php_12331 crossref_primary_10_1074_jbc_M117_785048 crossref_primary_10_1021_jacs_4c16806 crossref_primary_10_1007_s00284_023_03498_4 crossref_primary_10_3389_fmicb_2018_00521 crossref_primary_10_1016_j_biortech_2024_130574 crossref_primary_10_1016_j_ijbiomac_2025_141430 crossref_primary_10_1128_JB_00284_21 crossref_primary_10_1074_jbc_M113_533158 crossref_primary_10_1186_s12864_018_5197_5 crossref_primary_10_3389_fmicb_2020_00991 crossref_primary_10_3390_biomedicines11041221 crossref_primary_10_3390_pathogens10091198 crossref_primary_10_1094_PHYTO_02_17_0047_RVW crossref_primary_10_1016_j_jenvman_2024_122930 crossref_primary_10_1074_jbc_M116_746743 crossref_primary_10_1016_j_bbagrm_2018_04_008 crossref_primary_10_1128_AEM_00299_14 crossref_primary_10_1111_1751_7915_12076 crossref_primary_10_1128_AAC_01781_13 crossref_primary_10_15407_microbiolj84_02_033 crossref_primary_10_1016_j_cej_2022_139595 crossref_primary_10_1007_s00253_016_7931_8 crossref_primary_10_1016_j_jbc_2023_104849 crossref_primary_10_1186_s12866_019_1662_9 crossref_primary_10_1038_s41598_023_35056_0 crossref_primary_10_1007_s00253_019_09905_w crossref_primary_10_1128_mBio_00374_17 crossref_primary_10_1021_acs_jproteome_1c00232 crossref_primary_10_2217_fmb_13_13 crossref_primary_10_3389_fmicb_2020_00760 crossref_primary_10_1016_j_bpj_2019_08_043 crossref_primary_10_1074_jbc_R115_707547 crossref_primary_10_1016_j_micpath_2020_104254 crossref_primary_10_1371_journal_ppat_1010764 crossref_primary_10_1016_j_celrep_2021_108782 crossref_primary_10_1016_j_actbio_2023_06_028 crossref_primary_10_51847_lYQJ0dBLMr crossref_primary_10_1371_journal_pbio_3002205 crossref_primary_10_3389_fcimb_2022_835754 crossref_primary_10_1073_pnas_1421748112 crossref_primary_10_1093_femsre_fuz029 crossref_primary_10_1007_s10904_023_02836_0 crossref_primary_10_1128_AAC_00234_19 crossref_primary_10_1016_j_jes_2024_12_023 crossref_primary_10_1128_jb_00076_22 crossref_primary_10_1093_jambio_lxad157 crossref_primary_10_3390_antibiotics11010013 crossref_primary_10_1128_jvi_01872_24 crossref_primary_10_1128_AEM_03551_14 crossref_primary_10_1039_D3CB00126A crossref_primary_10_1128_mBio_02548_19 crossref_primary_10_1016_j_bioflm_2024_100208 crossref_primary_10_1074_jbc_M115_674929 crossref_primary_10_3390_microorganisms11092270 crossref_primary_10_1111_jam_14609 crossref_primary_10_1128_AEM_00700_18 crossref_primary_10_1016_j_ijbiomac_2021_01_139 crossref_primary_10_3390_ijms222312892 crossref_primary_10_1007_s42485_024_00154_8 crossref_primary_10_3389_fmicb_2022_845473 crossref_primary_10_2166_wh_2024_294 crossref_primary_10_1183_13993003_02108_2016 crossref_primary_10_1111_1462_2920_12257 crossref_primary_10_1021_acs_langmuir_9b02188 crossref_primary_10_1128_spectrum_00430_23 crossref_primary_10_1016_j_meegid_2020_104509 crossref_primary_10_1111_1462_2920_15694 crossref_primary_10_3390_pathogens9090766 crossref_primary_10_1128_JB_00307_19 crossref_primary_10_3390_vaccines8040638 crossref_primary_10_1080_08927014_2020_1799354 crossref_primary_10_1021_acsomega_2c04911 crossref_primary_10_3390_microorganisms9020445 crossref_primary_10_1084_jem_20120033 crossref_primary_10_1007_s12223_018_0585_4 crossref_primary_10_1016_j_cmet_2020_04_017 crossref_primary_10_2217_fmb_2017_0175 crossref_primary_10_1177_20503121241298826 crossref_primary_10_3389_fpls_2021_798992 crossref_primary_10_3390_polym14204253 crossref_primary_10_3390_ijms24054740 crossref_primary_10_1073_pnas_2113723119 crossref_primary_10_3390_microorganisms11030664 crossref_primary_10_7554_eLife_72778 crossref_primary_10_1016_j_csbj_2020_11_025 crossref_primary_10_1016_j_micres_2015_08_003 crossref_primary_10_1016_j_micres_2021_126829 crossref_primary_10_1111_jam_13153 crossref_primary_10_1099_mic_0_001335 crossref_primary_10_1007_s12223_022_00962_9 crossref_primary_10_1371_journal_ppat_1011023 crossref_primary_10_1128_spectrum_00922_24 crossref_primary_10_1097_MRM_0000000000000194 crossref_primary_10_1007_s12010_022_04160_8 crossref_primary_10_3389_fcimb_2014_00082 crossref_primary_10_1038_s42003_022_03453_2 crossref_primary_10_1016_j_sbi_2018_05_001 crossref_primary_10_2147_AABC_S292143 crossref_primary_10_1128_AEM_03666_12 crossref_primary_10_1134_S002626171406023X crossref_primary_10_1021_acsabm_1c01198 crossref_primary_10_3389_fcimb_2017_00125 crossref_primary_10_1042_BCJ20210301 crossref_primary_10_1155_2015_759348 crossref_primary_10_1038_s41522_019_0107_4 crossref_primary_10_1042_EBC20220128 crossref_primary_10_1128_microbiolspec_MB_0011_2014 crossref_primary_10_1002_mlf2_12059 crossref_primary_10_1016_j_envres_2019_05_034 crossref_primary_10_1016_j_ijfoodmicro_2023_110369 crossref_primary_10_1128_JB_00239_13 crossref_primary_10_1016_j_carres_2017_08_005 crossref_primary_10_1038_s41396_022_01221_y crossref_primary_10_3390_ijms24044030 crossref_primary_10_1099_mgen_0_000513 crossref_primary_10_1038_s41522_021_00257_w crossref_primary_10_1128_MMBR_00052_14 crossref_primary_10_1007_s00203_023_03827_y crossref_primary_10_3390_v12070721 crossref_primary_10_3389_fmicb_2025_1526843 crossref_primary_10_5812_jjm_23669 crossref_primary_10_1186_s13104_020_4890_z crossref_primary_10_1111_1541_4337_12494 crossref_primary_10_3390_plants11212834 crossref_primary_10_1002_anie_201108744 crossref_primary_10_1016_j_arbr_2012_06_011 crossref_primary_10_1016_j_jcf_2014_06_009 crossref_primary_10_1007_s00253_015_6388_5 crossref_primary_10_1080_08927014_2022_2085566 crossref_primary_10_1128_mBio_00864_17 crossref_primary_10_3389_fmicb_2021_730980 crossref_primary_10_1016_j_apsusc_2022_155798 crossref_primary_10_1111_j_1574_6976_2011_00322_x crossref_primary_10_1111_omi_12384 crossref_primary_10_1264_jsme2_ME13151 crossref_primary_10_1371_journal_pone_0180341 crossref_primary_10_1038_s41467_019_10201_4 crossref_primary_10_1073_pnas_1702798114 crossref_primary_10_3389_fphy_2023_1239632 crossref_primary_10_1111_1462_2920_13263 crossref_primary_10_3390_md17010043 crossref_primary_10_1007_s12010_021_03509_9 crossref_primary_10_1016_j_ijfoodmicro_2021_109232 crossref_primary_10_1128_aac_00021_22 crossref_primary_10_1128_mBio_01010_13 crossref_primary_10_7554_eLife_92534_3 crossref_primary_10_1042_BST20200673 crossref_primary_10_1074_jbc_M113_484931 crossref_primary_10_1128_AAC_00629_13 crossref_primary_10_3389_fcimb_2019_00084 crossref_primary_10_1016_j_ibiod_2017_01_019 crossref_primary_10_1128_AEM_03960_12 crossref_primary_10_1186_s43556_023_00164_w crossref_primary_10_1016_j_micpath_2017_05_004 crossref_primary_10_7554_eLife_21855 crossref_primary_10_1038_s41522_016_0007_9 crossref_primary_10_1128_AEM_00177_19 crossref_primary_10_1094_PDIS_06_24_1210_RE crossref_primary_10_1016_j_jenvman_2023_117559 crossref_primary_10_1016_j_carbpol_2020_116625 crossref_primary_10_1099_jmm_0_001791 crossref_primary_10_1016_j_jbiotec_2012_04_016 crossref_primary_10_1111_j_1462_2920_2011_02657_x crossref_primary_10_3390_cimb46110770 crossref_primary_10_1021_acs_est_2c08586 crossref_primary_10_1016_j_cbpa_2023_102418 crossref_primary_10_1016_j_carbpol_2022_119536 crossref_primary_10_1111_1541_4337_12382 crossref_primary_10_3390_microorganisms9040812 crossref_primary_10_1007_s00203_021_02737_1 crossref_primary_10_1016_j_lfs_2018_03_013 crossref_primary_10_3390_antibiotics9110830 crossref_primary_10_1107_S0907444912042059 crossref_primary_10_1099_mic_0_001146 crossref_primary_10_1016_j_tim_2012_10_001 crossref_primary_10_1038_s41522_023_00427_y crossref_primary_10_1371_journal_ppat_1008745 crossref_primary_10_1016_j_micres_2023_127396 crossref_primary_10_1016_j_sbi_2023_102564 crossref_primary_10_1007_s12275_018_8114_3 crossref_primary_10_1016_j_jprot_2013_11_018 crossref_primary_10_3390_ijms25158444 crossref_primary_10_1021_acs_analchem_1c03633 crossref_primary_10_1016_j_carbpol_2021_118778 crossref_primary_10_1016_j_watres_2022_119485 crossref_primary_10_3892_etm_2017_5110 crossref_primary_10_1007_s00203_021_02303_9 crossref_primary_10_1093_femsre_fuad060 crossref_primary_10_1021_bi301425r crossref_primary_10_3389_fmicb_2015_00471 crossref_primary_10_3389_fcimb_2017_00039 crossref_primary_10_1007_s10096_016_2792_8 crossref_primary_10_1016_j_carres_2024_109279 crossref_primary_10_1111_1758_2229_12521 crossref_primary_10_1186_s13059_019_1890_1 crossref_primary_10_1128_JB_02516_14 crossref_primary_10_1371_journal_pcbi_1007721 crossref_primary_10_1016_j_biologicals_2013_11_001 crossref_primary_10_1371_journal_pcbi_1004452 crossref_primary_10_1007_s10098_024_02947_3 crossref_primary_10_1016_j_tim_2019_07_004 crossref_primary_10_3390_pathogens10080957 crossref_primary_10_3390_ijms23169202 crossref_primary_10_3389_fcimb_2023_1137947 crossref_primary_10_3390_microorganisms10020303 crossref_primary_10_1111_1462_2920_15355 crossref_primary_10_1186_1752_0509_7_19 crossref_primary_10_1074_jbc_RA120_014555 crossref_primary_10_3389_fimmu_2020_00385 crossref_primary_10_1016_j_biotechadv_2021_107734 crossref_primary_10_1038_s41396_020_00779_9 crossref_primary_10_1111_j_1365_2958_2012_08049_x crossref_primary_10_1007_s15010_024_02313_x crossref_primary_10_1128_mBio_00458_21 crossref_primary_10_1016_j_tim_2024_12_011 crossref_primary_10_1007_s10311_020_01169_5 crossref_primary_10_1039_D1BM01285A crossref_primary_10_1111_1751_7915_13411 crossref_primary_10_1016_j_isci_2021_102923 crossref_primary_10_1128_spectrum_01290_22 crossref_primary_10_1128_mBio_00453_15 crossref_primary_10_1155_2022_3858500 crossref_primary_10_3390_polym15092177 crossref_primary_10_1016_j_memsci_2014_04_046 crossref_primary_10_1128_mBio_00585_18 crossref_primary_10_1038_ismej_2016_5 crossref_primary_10_1186_s13568_024_01766_5 crossref_primary_10_1186_s12951_021_01027_8 crossref_primary_10_1371_journal_ppat_1006300 crossref_primary_10_1021_acsinfecdis_2c00183 crossref_primary_10_3389_fcimb_2022_926758 crossref_primary_10_1007_s00253_014_5529_6 crossref_primary_10_1016_j_carbpol_2025_123363 crossref_primary_10_1128_IAI_00631_20 crossref_primary_10_1107_S1399004714001850 crossref_primary_10_3390_catal13010028 crossref_primary_10_1128_JB_00265_21 crossref_primary_10_2217_fmb_15_100 crossref_primary_10_1093_jambio_lxad305 crossref_primary_10_1016_j_biomaterials_2024_122619 crossref_primary_10_1128_JB_00684_19 crossref_primary_10_1016_j_scitotenv_2019_04_371 crossref_primary_10_1073_pnas_1613606114 crossref_primary_10_2217_nnm_2022_0239 crossref_primary_10_1186_s12931_020_01591_x crossref_primary_10_1038_srep14835 crossref_primary_10_3390_ijms241512496 crossref_primary_10_3390_app9132596 crossref_primary_10_3390_jof8040336 crossref_primary_10_1099_mic_0_001392 crossref_primary_10_3390_ijms25095051 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Franklin, Nivens, Weadge and Howell. 2011 |
Copyright_xml | – notice: Copyright © 2011 Franklin, Nivens, Weadge and Howell. 2011 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2011.00167 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X 2235-2988 |
ExternalDocumentID | oai_doaj_org_article_d18dcedf39bd43428ee615098b8ff05a PMC3159412 21991261 10_3389_fmicb_2011_00167 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI065906 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 PGMZT RIG RNS RPM NPM 7X8 5PM AIAGR |
ID | FETCH-LOGICAL-c527t-c068779649b773a73d444238770800d0885155ef826b6e3d72a577f9868ad97a3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:11:18 EDT 2025 Thu Aug 21 14:09:49 EDT 2025 Fri Jul 11 00:19:22 EDT 2025 Thu Apr 03 07:07:48 EDT 2025 Tue Jul 01 03:54:40 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | alginate Pseudomonas aeruginosa Rossmann fold Pel polysaccharide glycosyltransferase Psl polysaccharide |
Language | English |
License | This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-c068779649b773a73d444238770800d0885155ef826b6e3d72a577f9868ad97a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Dara Frank, Medical College of Wisconsin, USA Reviewed by: Daniel Wozniak, The Ohio State University, USA; Chris Whitfield, University of Guelph, Canada This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology. |
OpenAccessLink | https://doaj.org/article/d18dcedf39bd43428ee615098b8ff05a |
PMID | 21991261 |
PQID | 898165863 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d18dcedf39bd43428ee615098b8ff05a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3159412 proquest_miscellaneous_898165863 pubmed_primary_21991261 crossref_primary_10_3389_fmicb_2011_00167 crossref_citationtrail_10_3389_fmicb_2011_00167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in cellular and infection microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2011 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | 21298031 - PLoS Pathog. 2011 Jan 27;7(1):e1001264 10200954 - Mol Microbiol. 1999 Mar;31(5):1321-32 15894551 - Ann Bot. 2005 Jul;96(1):9-21 8144447 - J Bacteriol. 1994 Apr;176(7):1821-30 1903398 - J Biol Chem. 1991 May 25;266(15):9754-63 16177314 - Infect Immun. 2005 Oct;73(10):6429-36 19407377 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):463-6 8294014 - Gene. 1993 Dec 22;136(1-2):267-9 11179370 - Infect Immun. 2001 Mar;69(3):1895-901 17524545 - Biochimie. 2007 Aug;89(8):903-15 10517866 - Bioessays. 1999 Nov;21(11):932-9 15813726 - Mol Microbiol. 2005 Apr;56(2):309-22 12949116 - J Bacteriol. 2003 Sep;185(18):5632-8 16980452 - J Bacteriol. 2006 Dec;188(23):8213-21 21778407 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13083-8 20534468 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11038-43 15090514 - J Bacteriol. 2004 May;186(9):2724-34 11133376 - J Infect Dis. 2001 Feb 1;183(3):444-52 2167423 - Mol Microbiol. 1990 May;4(5):737-45 2496102 - J Bacteriol. 1989 May;171(5):2312-7 10967285 - Microbes Infect. 2000 Jul;2(9):1051-60 20633230 - Mol Microbiol. 2010 Sep;77(5):1315-25 11747907 - Prog Biophys Mol Biol. 2001 Oct;77(2):111-75 19329647 - J Bacteriol. 2009 Jun;191(11):3492-503 14659747 - J Mol Biol. 2004 Jan 2;335(1):155-65 17824927 - Mol Microbiol. 2007 Sep;65(6):1474-84 15546998 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16630-5 12705829 - Biochemistry. 2003 Apr 29;42(16):4658-68 15231777 - J Bacteriol. 2004 Jul;186(14):4457-65 20861838 - Nature. 2010 Oct 21;467(7318):991-4 19659934 - Mol Microbiol. 2009 Aug;73(4):622-38 18424616 - Plant Cell. 2008 Apr;20(4):1059-72 18204465 - Nat Struct Mol Biol. 2008 Feb;15(2):130-8 20924356 - EMBO J. 2010 Nov 3;29(21):3733-44 15014442 - EMBO J. 2004 Mar 24;23(6):1257-66 19710102 - Innate Immun. 2009 Oct;15(5):261-312 3089876 - Gene. 1986;42(3):293-302 15231808 - J Bacteriol. 2004 Jul;186(14):4759-73 19325879 - PLoS Pathog. 2009 Mar;5(3):e1000354 7521870 - J Bacteriol. 1994 Sep;176(18):5639-47 20861010 - J Biol Chem. 2010 Dec 3;285(49):38149-56 10481091 - FEMS Microbiol Lett. 1999 Oct 1;179(1):85-90 3025179 - J Bacteriol. 1987 Jan;169(1):351-8 14222269 - Nature. 1964 Oct 10;204:187-8 8449870 - J Bacteriol. 1993 Mar;175(6):1605-11 19581297 - J Biol Chem. 2009 Aug 28;284(35):23852-9 17510062 - J Biol Chem. 2007 Jul 13;282(28):20705-14 11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80 20097812 - Appl Environ Microbiol. 2010 Mar;76(6):1806-12 17645452 - Mol Microbiol. 2007 Aug;65(4):876-95 19129185 - J Biol Chem. 2009 Mar 13;284(11):7395-403 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 9457868 - J Bacteriol. 1998 Feb;180(3):634-41 4200860 - J Bacteriol. 1973 Nov;116(2):915-24 20735777 - Mol Microbiol. 2010 Oct;78(1):158-72 11839312 - Structure. 2002 Feb;10(2):269-79 10984043 - Nature. 2000 Aug 31;406(6799):959-64 17086202 - Nature. 2006 Nov 9;444(7116):226-9 14731271 - Mol Microbiol. 2004 Feb;51(3):675-90 10051655 - Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2408-13 17208443 - Trends Biochem Sci. 2007 Feb;32(2):86-94 19472335 - Protein Sci. 2009 Jun;18(6):1197-209 11752785 - Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):111-9 16756484 - Annu Rev Biochem. 2006;75:39-68 18366339 - Future Microbiol. 2008 Apr;3(2):191-203 18524915 - Microbiology. 2008 Jun;154(Pt 6):1605-15 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74 8335634 - J Bacteriol. 1993 Aug;175(15):4780-9 3009178 - Eur J Clin Microbiol. 1986 Feb;5(1):6-10 21151973 - PLoS One. 2010 Dec 03;5(12):e14220 15231778 - J Bacteriol. 2004 Jul;186(14):4466-75 20445266 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 May 1;66(Pt 5):588-91 11717271 - J Bacteriol. 2001 Dec;183(24):7126-34 17020580 - Mol Microbiol. 2006 Oct;62(2):412-26 15489449 - J Bacteriol. 2004 Nov;186(21):7369-77 18574239 - J Biol Chem. 2008 Aug 29;283(35):23819-28 20159471 - Structure. 2010 Feb 10;18(2):265-73 8370530 - Gene. 1993 Sep 6;131(1):1-8 1385594 - J Bacteriol. 1992 Jul;174(14):4707-17 12066891 - Res Microbiol. 2002 May;153(4):205-12 16797016 - FEBS Lett. 2006 Jul 10;580(16):3883-8 2160929 - J Bacteriol. 1990 Jun;172(6):2894-900 18949036 - PLoS Pathog. 2008 Oct;4(10):e1000184 2965141 - J Bacteriol. 1988 Apr;170(4):1452-60 17096419 - Proteins. 2007 Feb 1;66(2):266-71 15968068 - J Bacteriol. 2005 Jul;187(13):4573-83 19247286 - Nat Protoc. 2009;4(3):363-71 12691742 - J Mol Biol. 2003 Apr 25;328(2):307-17 17375930 - J Am Chem Soc. 2007 Apr 18;129(15):4800-7 19543378 - PLoS Pathog. 2009 Jun;5(6):e1000483 11162105 - J Mol Biol. 2001 Jan 26;305(4):951-60 20573954 - J Biol Chem. 2010 Aug 27;285(35):27468-76 19258536 - Microbiol Mol Biol Rev. 2009 Mar;73(1):155-77 11932230 - Clin Microbiol Rev. 2002 Apr;15(2):194-222 16391057 - Appl Environ Microbiol. 2006 Jan;72(1):298-305 7515870 - J Bacteriol. 1994 Jun;176(12):3500-7 7961422 - J Bacteriol. 1994 Nov;176(21):6688-96 12003941 - J Bacteriol. 2002 Jun;184(11):3000-7 8394313 - J Bacteriol. 1993 Aug;175(16):5057-65 10390348 - J Mol Biol. 1999 Jul 9;290(2):505-14 12426404 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15699-704 15486088 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15307-12 19853003 - Biochimie. 2010 Jan;92(1):33-40 12581364 - Mol Microbiol. 2003 Feb;47(4):1123-33 11208804 - J Bacteriol. 2001 Feb;183(3):1047-57 12019221 - Genetics. 2002 May;161(1):33-46 14659697 - Trends Biochem Sci. 2003 Dec;28(12):655-62 |
References_xml | – reference: 2496102 - J Bacteriol. 1989 May;171(5):2312-7 – reference: 8144447 - J Bacteriol. 1994 Apr;176(7):1821-30 – reference: 11717271 - J Bacteriol. 2001 Dec;183(24):7126-34 – reference: 12691742 - J Mol Biol. 2003 Apr 25;328(2):307-17 – reference: 8370530 - Gene. 1993 Sep 6;131(1):1-8 – reference: 11932230 - Clin Microbiol Rev. 2002 Apr;15(2):194-222 – reference: 21298031 - PLoS Pathog. 2011 Jan 27;7(1):e1001264 – reference: 16797016 - FEBS Lett. 2006 Jul 10;580(16):3883-8 – reference: 18366339 - Future Microbiol. 2008 Apr;3(2):191-203 – reference: 18524915 - Microbiology. 2008 Jun;154(Pt 6):1605-15 – reference: 7961422 - J Bacteriol. 1994 Nov;176(21):6688-96 – reference: 2965141 - J Bacteriol. 1988 Apr;170(4):1452-60 – reference: 20861838 - Nature. 2010 Oct 21;467(7318):991-4 – reference: 12003941 - J Bacteriol. 2002 Jun;184(11):3000-7 – reference: 21778407 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13083-8 – reference: 19247286 - Nat Protoc. 2009;4(3):363-71 – reference: 11839312 - Structure. 2002 Feb;10(2):269-79 – reference: 10481091 - FEMS Microbiol Lett. 1999 Oct 1;179(1):85-90 – reference: 19329647 - J Bacteriol. 2009 Jun;191(11):3492-503 – reference: 18204465 - Nat Struct Mol Biol. 2008 Feb;15(2):130-8 – reference: 8335634 - J Bacteriol. 1993 Aug;175(15):4780-9 – reference: 1385594 - J Bacteriol. 1992 Jul;174(14):4707-17 – reference: 15968068 - J Bacteriol. 2005 Jul;187(13):4573-83 – reference: 19853003 - Biochimie. 2010 Jan;92(1):33-40 – reference: 8449870 - J Bacteriol. 1993 Mar;175(6):1605-11 – reference: 19129185 - J Biol Chem. 2009 Mar 13;284(11):7395-403 – reference: 17510062 - J Biol Chem. 2007 Jul 13;282(28):20705-14 – reference: 17375930 - J Am Chem Soc. 2007 Apr 18;129(15):4800-7 – reference: 17645452 - Mol Microbiol. 2007 Aug;65(4):876-95 – reference: 20633230 - Mol Microbiol. 2010 Sep;77(5):1315-25 – reference: 2167423 - Mol Microbiol. 1990 May;4(5):737-45 – reference: 12581364 - Mol Microbiol. 2003 Feb;47(4):1123-33 – reference: 16177314 - Infect Immun. 2005 Oct;73(10):6429-36 – reference: 17824927 - Mol Microbiol. 2007 Sep;65(6):1474-84 – reference: 3009178 - Eur J Clin Microbiol. 1986 Feb;5(1):6-10 – reference: 19325879 - PLoS Pathog. 2009 Mar;5(3):e1000354 – reference: 15231778 - J Bacteriol. 2004 Jul;186(14):4466-75 – reference: 18949036 - PLoS Pathog. 2008 Oct;4(10):e1000184 – reference: 19543378 - PLoS Pathog. 2009 Jun;5(6):e1000483 – reference: 7515870 - J Bacteriol. 1994 Jun;176(12):3500-7 – reference: 7521870 - J Bacteriol. 1994 Sep;176(18):5639-47 – reference: 12426404 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15699-704 – reference: 20735777 - Mol Microbiol. 2010 Oct;78(1):158-72 – reference: 17020580 - Mol Microbiol. 2006 Oct;62(2):412-26 – reference: 11747907 - Prog Biophys Mol Biol. 2001 Oct;77(2):111-75 – reference: 15486088 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15307-12 – reference: 8394313 - J Bacteriol. 1993 Aug;175(16):5057-65 – reference: 15894551 - Ann Bot. 2005 Jul;96(1):9-21 – reference: 2160929 - J Bacteriol. 1990 Jun;172(6):2894-900 – reference: 15231808 - J Bacteriol. 2004 Jul;186(14):4759-73 – reference: 11133376 - J Infect Dis. 2001 Feb 1;183(3):444-52 – reference: 10200954 - Mol Microbiol. 1999 Mar;31(5):1321-32 – reference: 20861010 - J Biol Chem. 2010 Dec 3;285(49):38149-56 – reference: 17096419 - Proteins. 2007 Feb 1;66(2):266-71 – reference: 19258536 - Microbiol Mol Biol Rev. 2009 Mar;73(1):155-77 – reference: 17524545 - Biochimie. 2007 Aug;89(8):903-15 – reference: 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 – reference: 20534468 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11038-43 – reference: 19472335 - Protein Sci. 2009 Jun;18(6):1197-209 – reference: 15546998 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16630-5 – reference: 18574239 - J Biol Chem. 2008 Aug 29;283(35):23819-28 – reference: 10517866 - Bioessays. 1999 Nov;21(11):932-9 – reference: 14659747 - J Mol Biol. 2004 Jan 2;335(1):155-65 – reference: 10390348 - J Mol Biol. 1999 Jul 9;290(2):505-14 – reference: 16980452 - J Bacteriol. 2006 Dec;188(23):8213-21 – reference: 12705829 - Biochemistry. 2003 Apr 29;42(16):4658-68 – reference: 3089876 - Gene. 1986;42(3):293-302 – reference: 12066891 - Res Microbiol. 2002 May;153(4):205-12 – reference: 12949116 - J Bacteriol. 2003 Sep;185(18):5632-8 – reference: 15231777 - J Bacteriol. 2004 Jul;186(14):4457-65 – reference: 15813726 - Mol Microbiol. 2005 Apr;56(2):309-22 – reference: 11208804 - J Bacteriol. 2001 Feb;183(3):1047-57 – reference: 17208443 - Trends Biochem Sci. 2007 Feb;32(2):86-94 – reference: 19407377 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):463-6 – reference: 9457868 - J Bacteriol. 1998 Feb;180(3):634-41 – reference: 1903398 - J Biol Chem. 1991 May 25;266(15):9754-63 – reference: 11162105 - J Mol Biol. 2001 Jan 26;305(4):951-60 – reference: 15014442 - EMBO J. 2004 Mar 24;23(6):1257-66 – reference: 19710102 - Innate Immun. 2009 Oct;15(5):261-312 – reference: 15090514 - J Bacteriol. 2004 May;186(9):2724-34 – reference: 20159471 - Structure. 2010 Feb 10;18(2):265-73 – reference: 20924356 - EMBO J. 2010 Nov 3;29(21):3733-44 – reference: 17086202 - Nature. 2006 Nov 9;444(7116):226-9 – reference: 11752785 - Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):111-9 – reference: 11179370 - Infect Immun. 2001 Mar;69(3):1895-901 – reference: 19581297 - J Biol Chem. 2009 Aug 28;284(35):23852-9 – reference: 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74 – reference: 18424616 - Plant Cell. 2008 Apr;20(4):1059-72 – reference: 10967285 - Microbes Infect. 2000 Jul;2(9):1051-60 – reference: 14222269 - Nature. 1964 Oct 10;204:187-8 – reference: 15489449 - J Bacteriol. 2004 Nov;186(21):7369-77 – reference: 8294014 - Gene. 1993 Dec 22;136(1-2):267-9 – reference: 4200860 - J Bacteriol. 1973 Nov;116(2):915-24 – reference: 16391057 - Appl Environ Microbiol. 2006 Jan;72(1):298-305 – reference: 21151973 - PLoS One. 2010 Dec 03;5(12):e14220 – reference: 16756484 - Annu Rev Biochem. 2006;75:39-68 – reference: 3025179 - J Bacteriol. 1987 Jan;169(1):351-8 – reference: 20445266 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 May 1;66(Pt 5):588-91 – reference: 19659934 - Mol Microbiol. 2009 Aug;73(4):622-38 – reference: 20097812 - Appl Environ Microbiol. 2010 Mar;76(6):1806-12 – reference: 12019221 - Genetics. 2002 May;161(1):33-46 – reference: 10051655 - Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2408-13 – reference: 14731271 - Mol Microbiol. 2004 Feb;51(3):675-90 – reference: 14659697 - Trends Biochem Sci. 2003 Dec;28(12):655-62 – reference: 11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80 – reference: 10984043 - Nature. 2000 Aug 31;406(6799):959-64 – reference: 20573954 - J Biol Chem. 2010 Aug 27;285(35):27468-76 |
SSID | ssj0000402000 ssj0000702893 |
Score | 2.4614763 |
SecondaryResourceType | review_article |
Snippet | Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 167 |
SubjectTerms | Alginate glycosyltransferase Microbiology Pel Polysaccharide Pseudomonas aeruginosa Psl Polysaccharide Rossmann Fold |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifrt-kQdfhC3XbdImeTzljkNQ9sGDe4v5mGihtHLZBfe_d6btLbsi-iL0IbRpk85MO79pJ79h7K2RSQovqyIEqQr0t2XhpEhFWLnkozOijrTe-dPn5vJKfryurw9KfVFO2EQPPAnuNK50DBCTMD5KgWAZgDjMjfY6pbIeoRH6vINganwHK_qDJqb_khiFGVRTG_xM2Ump90d-aKTr_xPG_D1V8sD3XDxg92fQyM-myT5kd6B_xO5OZSR3j9lXbOVdj1Aut5kPiWOLrzNs44BG5jJ3cLP91vZDdvz8Jw5AX-sp_ZSvh26XXaClV22EvORnHdVp2MCSr6FbctdHvFD3hF1dnH_5cFnMlROKUFdqU4Sy0YoWmRqvlHBKRCkRN-E-AogR3yxU2QUSxha-ARFV5WqlktGNdtEoJ56yk37o4TnjEBT68NJpaIhIBtXntIPgDYSYSiMW7PRWjjbMtOJU3aKzGF6Q5O0oeUuSt6PkF-zd_owfE6XGX_q-J9Xs-xEZ9rgDTcTOJmL_ZSILxm8Va_HhIRm7HoZtttroFUKwBu_i2aTn_UgV5YRheLlg6sgCjqZyfKRvv4_83AIholxVL_7H3F-ye9NXbNpesZPNzRZeIwza-Dejxf8CUdYH5Q priority: 102 providerName: Directory of Open Access Journals |
Title | Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21991261 https://www.proquest.com/docview/898165863 https://pubmed.ncbi.nlm.nih.gov/PMC3159412 https://doaj.org/article/d18dcedf39bd43428ee615098b8ff05a |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA96Ivginp_rx5EHX4Sttk3aJA8i53HnIZzsgwv7VvN5Fkp7t9mF2__emba3urIolBLSNGlnksxvkswMIW8VD5wZnifWcpGAvE0TzVlIbKaDcVqxwqG988W38nzOvy6KxW_z6JGAca9qh_Gk5svm_c315hMM-I-ocYK8BQ7U1ozeOPFU_V1yD-SSwEAOFyPY7-dlVJV6m5SsLHE7IF8M-5Z7K9mRU707_30Y9O-jlH_IprNH5OEIKunx0AsOyR3fPib3hzCTmyfkB6TipgWoF-tIu0AhRWfRr10HnVBHqv1yfVm3XdT09AYawNV8PJ5KZ12zidqiaVbtfJzS4wbjOKz8lM58M6W6dVBR85TMz06_n5wnY2SFxBa5WCU2LaVAI1RlhGBaMMc54CrIQwDpYObByC8-gO5hSs-cyHUhRFCylNopodkzctB2rX9BqLcCZHyqpS_R0QywV0vtrVHeupAqNiEfbulY2dHtOEa_aCpQP5DyVU_5Cilf9ZSfkHfbN64Glxv_KPsZWbMth86y-4xueVmNY69ymQT-uMCUcZyBvuU9usFX0sgQ0kJPCL1lbAWDC2msW9-tYyWVzACilfAXzwc-b1vK8cwYqJ8TInZ6wM6n7D5p65-9_24GEJJn-cv_N_uKPBjWsPF6TQ5Wy7V_AyBoZY76xQO4f1lkR30__wUAlwes |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biosynthesis+of+the+Pseudomonas+aeruginosa+Extracellular+Polysaccharides%2C+Alginate%2C+Pel%2C+and+Psl&rft.jtitle=Frontiers+in+microbiology&rft.au=Franklin%2C+Michael+J&rft.au=Nivens%2C+David+E&rft.au=Weadge%2C+Joel+T&rft.au=Howell%2C+P+Lynne&rft.date=2011-01-01&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=2&rft.spage=167&rft_id=info:doi/10.3389%2Ffmicb.2011.00167&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |