Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl

Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cellular and infection microbiology Vol. 2; p. 167
Main Authors Franklin, Michael J., Nivens, David E., Weadge, Joel T., Howell, P. Lynne
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 01.01.2011
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
2235-2988
DOI10.3389/fmicb.2011.00167

Cover

Loading…
Abstract Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
AbstractList Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli , where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the psl and pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Author Nivens, David E.
Weadge, Joel T.
Howell, P. Lynne
Franklin, Michael J.
AuthorAffiliation 1 Department of Microbiology, Montana State University Bozeman, MT, USA
4 Program in Molecular Structure and Function, The Hospital for Sick Children Toronto, ON, Canada
5 Department of Biochemistry, University of Toronto Toronto, ON, Canada
3 Department of Food Science, Purdue University West Lafayette, IN, USA
2 Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
AuthorAffiliation_xml – name: 1 Department of Microbiology, Montana State University Bozeman, MT, USA
– name: 4 Program in Molecular Structure and Function, The Hospital for Sick Children Toronto, ON, Canada
– name: 2 Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
– name: 5 Department of Biochemistry, University of Toronto Toronto, ON, Canada
– name: 3 Department of Food Science, Purdue University West Lafayette, IN, USA
Author_xml – sequence: 1
  givenname: Michael J.
  surname: Franklin
  fullname: Franklin, Michael J.
– sequence: 2
  givenname: David E.
  surname: Nivens
  fullname: Nivens, David E.
– sequence: 3
  givenname: Joel T.
  surname: Weadge
  fullname: Weadge, Joel T.
– sequence: 4
  givenname: P. Lynne
  surname: Howell
  fullname: Howell, P. Lynne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21991261$$D View this record in MEDLINE/PubMed
BookMark eNp1kstv1DAQxi1URB_0zgnlxmV38SPx44JUqhYqVWIPIHEzE9vZdeXExU4Q-9_j7JaqRcIHezT-5jd-fKfoaIiDQ-gNwSvGpHrf9d60K4oJWWFMuHiBTgjn9ZJh-v3oSXyMznO-w2XUmJb5FTqmRClCOTlBPz76mHfDuHXZ5yp2VYmqdXaTjX0cIFfg0rTxQ8xQXf0eExgXwhQgVesYdhmM2ULy1uVFdRGKDka3qNYuLCoYbAGF1-hlByG784f1DH27vvp6-Xl5--XTzeXF7dI0VIxLg7kUQvFatUIwEMzWdU1ZyWGJscVSNqRpXCcpb7ljVlBohOiU5BKsEsDO0M2BayPc6fvke0g7HcHrfSKmjYY0ehOctkRa42zHVGtrVlPpHCcNVrKVXYebmfXhwLqf2t4V7VAuHp5Bn-8Mfqs38ZdmpFE1oQXw7gGQ4s_J5VH3Ps8vB4OLU9ZSScIbyVlRvn3a6rHH3x8qAnwQmBRzTq57lBCsZx_ovQ_07AO990Ep4f-UGD_C6ON8WB_-X_gHVia4Zg
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_130747
crossref_primary_10_1038_s41522_021_00230_7
crossref_primary_10_3389_fmicb_2024_1414412
crossref_primary_10_1128_mBio_00186_17
crossref_primary_10_5604_01_3001_0010_3792
crossref_primary_10_1007_s12275_016_5528_7
crossref_primary_10_1016_j_chemosphere_2023_138928
crossref_primary_10_1002_mbo3_857
crossref_primary_10_1021_acs_est_3c03855
crossref_primary_10_1016_j_jbc_2022_102854
crossref_primary_10_1021_acsinfecdis_2c00201
crossref_primary_10_1111_febs_14995
crossref_primary_10_1016_j_genrep_2018_09_003
crossref_primary_10_1074_jbc_M115_645051
crossref_primary_10_1007_s10482_021_01673_w
crossref_primary_10_1016_j_scitotenv_2022_158354
crossref_primary_10_3390_microorganisms10061239
crossref_primary_10_1093_infdis_jiv436
crossref_primary_10_3390_antibiotics10121482
crossref_primary_10_3389_fmicb_2023_1218708
crossref_primary_10_1002_tqem_22080
crossref_primary_10_1074_jbc_M112_375378
crossref_primary_10_1128_JB_00534_13
crossref_primary_10_1080_21505594_2024_2397503
crossref_primary_10_1016_j_jab_2014_05_002
crossref_primary_10_1080_10408398_2021_1892585
crossref_primary_10_1039_C6AY03061K
crossref_primary_10_1016_j_chemosphere_2023_141090
crossref_primary_10_3390_coatings10100930
crossref_primary_10_1016_j_soilbio_2021_108304
crossref_primary_10_3390_ma12233912
crossref_primary_10_1186_s12864_015_2069_0
crossref_primary_10_1038_srep33115
crossref_primary_10_3390_antibiotics9090551
crossref_primary_10_1111_1755_0998_13535
crossref_primary_10_1007_s00203_022_02847_4
crossref_primary_10_1074_jbc_RA119_008511
crossref_primary_10_7554_eLife_92534
crossref_primary_10_1002_mba2_70003
crossref_primary_10_1016_j_ijantimicag_2019_01_001
crossref_primary_10_1021_acs_orglett_9b00967
crossref_primary_10_1007_s10123_018_0010_5
crossref_primary_10_1016_j_biomaterials_2018_03_016
crossref_primary_10_1007_s10103_018_02707_y
crossref_primary_10_1371_journal_ppat_1004334
crossref_primary_10_1016_j_watres_2024_121240
crossref_primary_10_1128_AAC_01997_16
crossref_primary_10_1007_s10989_020_10094_8
crossref_primary_10_1128_AEM_00219_18
crossref_primary_10_3389_fmicb_2018_00030
crossref_primary_10_1080_1040841X_2020_1794788
crossref_primary_10_1128_AEM_00460_13
crossref_primary_10_1021_acschembio_0c00426
crossref_primary_10_1074_jbc_M115_679050
crossref_primary_10_3390_coatings12121921
crossref_primary_10_3389_fmicb_2017_00284
crossref_primary_10_1111_1462_2920_14064
crossref_primary_10_1128_JB_02190_12
crossref_primary_10_1128_JB_00173_13
crossref_primary_10_1039_C6RA12824F
crossref_primary_10_3390_pathogens3010121
crossref_primary_10_1016_j_jcf_2020_10_008
crossref_primary_10_1080_14760584_2023_2274955
crossref_primary_10_3390_microorganisms8111740
crossref_primary_10_1146_annurev_micro_041320_111355
crossref_primary_10_1021_acs_jmedchem_9b01245
crossref_primary_10_3390_antibiotics12061005
crossref_primary_10_3390_ijms23158308
crossref_primary_10_3390_genes12010069
crossref_primary_10_3390_microorganisms12122670
crossref_primary_10_1002_mbo3_61
crossref_primary_10_1016_j_micpath_2024_106866
crossref_primary_10_1016_j_desal_2017_12_006
crossref_primary_10_1111_1462_2920_16133
crossref_primary_10_1021_acs_langmuir_9b00271
crossref_primary_10_1016_j_desal_2022_116151
crossref_primary_10_3390_ijms22168632
crossref_primary_10_1002_ange_201108744
crossref_primary_10_1080_08927014_2013_857405
crossref_primary_10_1111_1751_7915_12774
crossref_primary_10_1074_jbc_M117_812842
crossref_primary_10_3390_M947
crossref_primary_10_1073_pnas_1503058112
crossref_primary_10_1021_acschembio_7b00826
crossref_primary_10_1016_j_algal_2025_103997
crossref_primary_10_4155_fmc_15_6
crossref_primary_10_1116_6_0002604
crossref_primary_10_3389_fmicb_2022_955286
crossref_primary_10_3389_fchem_2022_842238
crossref_primary_10_1128_JB_02150_12
crossref_primary_10_1128_JB_00575_19
crossref_primary_10_1002_jctb_4548
crossref_primary_10_3390_environments9070080
crossref_primary_10_1111_1758_2229_12595
crossref_primary_10_1128_AEM_01584_20
crossref_primary_10_1080_19932820_2024_2344320
crossref_primary_10_1099_mic_0_000457
crossref_primary_10_1021_acs_jmedchem_5b01698
crossref_primary_10_3390_genes9020113
crossref_primary_10_5897_AJB2016_15795
crossref_primary_10_3389_fmicb_2018_02811
crossref_primary_10_1093_femsre_fuab051
crossref_primary_10_1099_mic_0_001301
crossref_primary_10_1128_genomeA_00524_14
crossref_primary_10_1128_AEM_02628_15
crossref_primary_10_3390_md21050313
crossref_primary_10_1038_cr_2015_129
crossref_primary_10_1016_j_jiac_2018_01_007
crossref_primary_10_1186_s12864_015_1763_2
crossref_primary_10_1073_pnas_1801336115
crossref_primary_10_1371_journal_pone_0171576
crossref_primary_10_1016_j_arbres_2012_02_011
crossref_primary_10_1111_php_12331
crossref_primary_10_1074_jbc_M117_785048
crossref_primary_10_1021_jacs_4c16806
crossref_primary_10_1007_s00284_023_03498_4
crossref_primary_10_3389_fmicb_2018_00521
crossref_primary_10_1016_j_biortech_2024_130574
crossref_primary_10_1016_j_ijbiomac_2025_141430
crossref_primary_10_1128_JB_00284_21
crossref_primary_10_1074_jbc_M113_533158
crossref_primary_10_1186_s12864_018_5197_5
crossref_primary_10_3389_fmicb_2020_00991
crossref_primary_10_3390_biomedicines11041221
crossref_primary_10_3390_pathogens10091198
crossref_primary_10_1094_PHYTO_02_17_0047_RVW
crossref_primary_10_1016_j_jenvman_2024_122930
crossref_primary_10_1074_jbc_M116_746743
crossref_primary_10_1016_j_bbagrm_2018_04_008
crossref_primary_10_1128_AEM_00299_14
crossref_primary_10_1111_1751_7915_12076
crossref_primary_10_1128_AAC_01781_13
crossref_primary_10_15407_microbiolj84_02_033
crossref_primary_10_1016_j_cej_2022_139595
crossref_primary_10_1007_s00253_016_7931_8
crossref_primary_10_1016_j_jbc_2023_104849
crossref_primary_10_1186_s12866_019_1662_9
crossref_primary_10_1038_s41598_023_35056_0
crossref_primary_10_1007_s00253_019_09905_w
crossref_primary_10_1128_mBio_00374_17
crossref_primary_10_1021_acs_jproteome_1c00232
crossref_primary_10_2217_fmb_13_13
crossref_primary_10_3389_fmicb_2020_00760
crossref_primary_10_1016_j_bpj_2019_08_043
crossref_primary_10_1074_jbc_R115_707547
crossref_primary_10_1016_j_micpath_2020_104254
crossref_primary_10_1371_journal_ppat_1010764
crossref_primary_10_1016_j_celrep_2021_108782
crossref_primary_10_1016_j_actbio_2023_06_028
crossref_primary_10_51847_lYQJ0dBLMr
crossref_primary_10_1371_journal_pbio_3002205
crossref_primary_10_3389_fcimb_2022_835754
crossref_primary_10_1073_pnas_1421748112
crossref_primary_10_1093_femsre_fuz029
crossref_primary_10_1007_s10904_023_02836_0
crossref_primary_10_1128_AAC_00234_19
crossref_primary_10_1016_j_jes_2024_12_023
crossref_primary_10_1128_jb_00076_22
crossref_primary_10_1093_jambio_lxad157
crossref_primary_10_3390_antibiotics11010013
crossref_primary_10_1128_jvi_01872_24
crossref_primary_10_1128_AEM_03551_14
crossref_primary_10_1039_D3CB00126A
crossref_primary_10_1128_mBio_02548_19
crossref_primary_10_1016_j_bioflm_2024_100208
crossref_primary_10_1074_jbc_M115_674929
crossref_primary_10_3390_microorganisms11092270
crossref_primary_10_1111_jam_14609
crossref_primary_10_1128_AEM_00700_18
crossref_primary_10_1016_j_ijbiomac_2021_01_139
crossref_primary_10_3390_ijms222312892
crossref_primary_10_1007_s42485_024_00154_8
crossref_primary_10_3389_fmicb_2022_845473
crossref_primary_10_2166_wh_2024_294
crossref_primary_10_1183_13993003_02108_2016
crossref_primary_10_1111_1462_2920_12257
crossref_primary_10_1021_acs_langmuir_9b02188
crossref_primary_10_1128_spectrum_00430_23
crossref_primary_10_1016_j_meegid_2020_104509
crossref_primary_10_1111_1462_2920_15694
crossref_primary_10_3390_pathogens9090766
crossref_primary_10_1128_JB_00307_19
crossref_primary_10_3390_vaccines8040638
crossref_primary_10_1080_08927014_2020_1799354
crossref_primary_10_1021_acsomega_2c04911
crossref_primary_10_3390_microorganisms9020445
crossref_primary_10_1084_jem_20120033
crossref_primary_10_1007_s12223_018_0585_4
crossref_primary_10_1016_j_cmet_2020_04_017
crossref_primary_10_2217_fmb_2017_0175
crossref_primary_10_1177_20503121241298826
crossref_primary_10_3389_fpls_2021_798992
crossref_primary_10_3390_polym14204253
crossref_primary_10_3390_ijms24054740
crossref_primary_10_1073_pnas_2113723119
crossref_primary_10_3390_microorganisms11030664
crossref_primary_10_7554_eLife_72778
crossref_primary_10_1016_j_csbj_2020_11_025
crossref_primary_10_1016_j_micres_2015_08_003
crossref_primary_10_1016_j_micres_2021_126829
crossref_primary_10_1111_jam_13153
crossref_primary_10_1099_mic_0_001335
crossref_primary_10_1007_s12223_022_00962_9
crossref_primary_10_1371_journal_ppat_1011023
crossref_primary_10_1128_spectrum_00922_24
crossref_primary_10_1097_MRM_0000000000000194
crossref_primary_10_1007_s12010_022_04160_8
crossref_primary_10_3389_fcimb_2014_00082
crossref_primary_10_1038_s42003_022_03453_2
crossref_primary_10_1016_j_sbi_2018_05_001
crossref_primary_10_2147_AABC_S292143
crossref_primary_10_1128_AEM_03666_12
crossref_primary_10_1134_S002626171406023X
crossref_primary_10_1021_acsabm_1c01198
crossref_primary_10_3389_fcimb_2017_00125
crossref_primary_10_1042_BCJ20210301
crossref_primary_10_1155_2015_759348
crossref_primary_10_1038_s41522_019_0107_4
crossref_primary_10_1042_EBC20220128
crossref_primary_10_1128_microbiolspec_MB_0011_2014
crossref_primary_10_1002_mlf2_12059
crossref_primary_10_1016_j_envres_2019_05_034
crossref_primary_10_1016_j_ijfoodmicro_2023_110369
crossref_primary_10_1128_JB_00239_13
crossref_primary_10_1016_j_carres_2017_08_005
crossref_primary_10_1038_s41396_022_01221_y
crossref_primary_10_3390_ijms24044030
crossref_primary_10_1099_mgen_0_000513
crossref_primary_10_1038_s41522_021_00257_w
crossref_primary_10_1128_MMBR_00052_14
crossref_primary_10_1007_s00203_023_03827_y
crossref_primary_10_3390_v12070721
crossref_primary_10_3389_fmicb_2025_1526843
crossref_primary_10_5812_jjm_23669
crossref_primary_10_1186_s13104_020_4890_z
crossref_primary_10_1111_1541_4337_12494
crossref_primary_10_3390_plants11212834
crossref_primary_10_1002_anie_201108744
crossref_primary_10_1016_j_arbr_2012_06_011
crossref_primary_10_1016_j_jcf_2014_06_009
crossref_primary_10_1007_s00253_015_6388_5
crossref_primary_10_1080_08927014_2022_2085566
crossref_primary_10_1128_mBio_00864_17
crossref_primary_10_3389_fmicb_2021_730980
crossref_primary_10_1016_j_apsusc_2022_155798
crossref_primary_10_1111_j_1574_6976_2011_00322_x
crossref_primary_10_1111_omi_12384
crossref_primary_10_1264_jsme2_ME13151
crossref_primary_10_1371_journal_pone_0180341
crossref_primary_10_1038_s41467_019_10201_4
crossref_primary_10_1073_pnas_1702798114
crossref_primary_10_3389_fphy_2023_1239632
crossref_primary_10_1111_1462_2920_13263
crossref_primary_10_3390_md17010043
crossref_primary_10_1007_s12010_021_03509_9
crossref_primary_10_1016_j_ijfoodmicro_2021_109232
crossref_primary_10_1128_aac_00021_22
crossref_primary_10_1128_mBio_01010_13
crossref_primary_10_7554_eLife_92534_3
crossref_primary_10_1042_BST20200673
crossref_primary_10_1074_jbc_M113_484931
crossref_primary_10_1128_AAC_00629_13
crossref_primary_10_3389_fcimb_2019_00084
crossref_primary_10_1016_j_ibiod_2017_01_019
crossref_primary_10_1128_AEM_03960_12
crossref_primary_10_1186_s43556_023_00164_w
crossref_primary_10_1016_j_micpath_2017_05_004
crossref_primary_10_7554_eLife_21855
crossref_primary_10_1038_s41522_016_0007_9
crossref_primary_10_1128_AEM_00177_19
crossref_primary_10_1094_PDIS_06_24_1210_RE
crossref_primary_10_1016_j_jenvman_2023_117559
crossref_primary_10_1016_j_carbpol_2020_116625
crossref_primary_10_1099_jmm_0_001791
crossref_primary_10_1016_j_jbiotec_2012_04_016
crossref_primary_10_1111_j_1462_2920_2011_02657_x
crossref_primary_10_3390_cimb46110770
crossref_primary_10_1021_acs_est_2c08586
crossref_primary_10_1016_j_cbpa_2023_102418
crossref_primary_10_1016_j_carbpol_2022_119536
crossref_primary_10_1111_1541_4337_12382
crossref_primary_10_3390_microorganisms9040812
crossref_primary_10_1007_s00203_021_02737_1
crossref_primary_10_1016_j_lfs_2018_03_013
crossref_primary_10_3390_antibiotics9110830
crossref_primary_10_1107_S0907444912042059
crossref_primary_10_1099_mic_0_001146
crossref_primary_10_1016_j_tim_2012_10_001
crossref_primary_10_1038_s41522_023_00427_y
crossref_primary_10_1371_journal_ppat_1008745
crossref_primary_10_1016_j_micres_2023_127396
crossref_primary_10_1016_j_sbi_2023_102564
crossref_primary_10_1007_s12275_018_8114_3
crossref_primary_10_1016_j_jprot_2013_11_018
crossref_primary_10_3390_ijms25158444
crossref_primary_10_1021_acs_analchem_1c03633
crossref_primary_10_1016_j_carbpol_2021_118778
crossref_primary_10_1016_j_watres_2022_119485
crossref_primary_10_3892_etm_2017_5110
crossref_primary_10_1007_s00203_021_02303_9
crossref_primary_10_1093_femsre_fuad060
crossref_primary_10_1021_bi301425r
crossref_primary_10_3389_fmicb_2015_00471
crossref_primary_10_3389_fcimb_2017_00039
crossref_primary_10_1007_s10096_016_2792_8
crossref_primary_10_1016_j_carres_2024_109279
crossref_primary_10_1111_1758_2229_12521
crossref_primary_10_1186_s13059_019_1890_1
crossref_primary_10_1128_JB_02516_14
crossref_primary_10_1371_journal_pcbi_1007721
crossref_primary_10_1016_j_biologicals_2013_11_001
crossref_primary_10_1371_journal_pcbi_1004452
crossref_primary_10_1007_s10098_024_02947_3
crossref_primary_10_1016_j_tim_2019_07_004
crossref_primary_10_3390_pathogens10080957
crossref_primary_10_3390_ijms23169202
crossref_primary_10_3389_fcimb_2023_1137947
crossref_primary_10_3390_microorganisms10020303
crossref_primary_10_1111_1462_2920_15355
crossref_primary_10_1186_1752_0509_7_19
crossref_primary_10_1074_jbc_RA120_014555
crossref_primary_10_3389_fimmu_2020_00385
crossref_primary_10_1016_j_biotechadv_2021_107734
crossref_primary_10_1038_s41396_020_00779_9
crossref_primary_10_1111_j_1365_2958_2012_08049_x
crossref_primary_10_1007_s15010_024_02313_x
crossref_primary_10_1128_mBio_00458_21
crossref_primary_10_1016_j_tim_2024_12_011
crossref_primary_10_1007_s10311_020_01169_5
crossref_primary_10_1039_D1BM01285A
crossref_primary_10_1111_1751_7915_13411
crossref_primary_10_1016_j_isci_2021_102923
crossref_primary_10_1128_spectrum_01290_22
crossref_primary_10_1128_mBio_00453_15
crossref_primary_10_1155_2022_3858500
crossref_primary_10_3390_polym15092177
crossref_primary_10_1016_j_memsci_2014_04_046
crossref_primary_10_1128_mBio_00585_18
crossref_primary_10_1038_ismej_2016_5
crossref_primary_10_1186_s13568_024_01766_5
crossref_primary_10_1186_s12951_021_01027_8
crossref_primary_10_1371_journal_ppat_1006300
crossref_primary_10_1021_acsinfecdis_2c00183
crossref_primary_10_3389_fcimb_2022_926758
crossref_primary_10_1007_s00253_014_5529_6
crossref_primary_10_1016_j_carbpol_2025_123363
crossref_primary_10_1128_IAI_00631_20
crossref_primary_10_1107_S1399004714001850
crossref_primary_10_3390_catal13010028
crossref_primary_10_1128_JB_00265_21
crossref_primary_10_2217_fmb_15_100
crossref_primary_10_1093_jambio_lxad305
crossref_primary_10_1016_j_biomaterials_2024_122619
crossref_primary_10_1128_JB_00684_19
crossref_primary_10_1016_j_scitotenv_2019_04_371
crossref_primary_10_1073_pnas_1613606114
crossref_primary_10_2217_nnm_2022_0239
crossref_primary_10_1186_s12931_020_01591_x
crossref_primary_10_1038_srep14835
crossref_primary_10_3390_ijms241512496
crossref_primary_10_3390_app9132596
crossref_primary_10_3390_jof8040336
crossref_primary_10_1099_mic_0_001392
crossref_primary_10_3390_ijms25095051
ContentType Journal Article
Copyright Copyright © 2011 Franklin, Nivens, Weadge and Howell. 2011
Copyright_xml – notice: Copyright © 2011 Franklin, Nivens, Weadge and Howell. 2011
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2011.00167
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
2235-2988
ExternalDocumentID oai_doaj_org_article_d18dcedf39bd43428ee615098b8ff05a
PMC3159412
21991261
10_3389_fmicb_2011_00167
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI065906
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
AIAGR
ID FETCH-LOGICAL-c527t-c068779649b773a73d444238770800d0885155ef826b6e3d72a577f9868ad97a3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:11:18 EDT 2025
Thu Aug 21 14:09:49 EDT 2025
Fri Jul 11 00:19:22 EDT 2025
Thu Apr 03 07:07:48 EDT 2025
Tue Jul 01 03:54:40 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords alginate
Pseudomonas aeruginosa
Rossmann fold
Pel polysaccharide
glycosyltransferase
Psl polysaccharide
Language English
License This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-c068779649b773a73d444238770800d0885155ef826b6e3d72a577f9868ad97a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Dara Frank, Medical College of Wisconsin, USA
Reviewed by: Daniel Wozniak, The Ohio State University, USA; Chris Whitfield, University of Guelph, Canada
This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology.
OpenAccessLink https://doaj.org/article/d18dcedf39bd43428ee615098b8ff05a
PMID 21991261
PQID 898165863
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d18dcedf39bd43428ee615098b8ff05a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3159412
proquest_miscellaneous_898165863
pubmed_primary_21991261
crossref_primary_10_3389_fmicb_2011_00167
crossref_citationtrail_10_3389_fmicb_2011_00167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in cellular and infection microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2011
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 21298031 - PLoS Pathog. 2011 Jan 27;7(1):e1001264
10200954 - Mol Microbiol. 1999 Mar;31(5):1321-32
15894551 - Ann Bot. 2005 Jul;96(1):9-21
8144447 - J Bacteriol. 1994 Apr;176(7):1821-30
1903398 - J Biol Chem. 1991 May 25;266(15):9754-63
16177314 - Infect Immun. 2005 Oct;73(10):6429-36
19407377 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):463-6
8294014 - Gene. 1993 Dec 22;136(1-2):267-9
11179370 - Infect Immun. 2001 Mar;69(3):1895-901
17524545 - Biochimie. 2007 Aug;89(8):903-15
10517866 - Bioessays. 1999 Nov;21(11):932-9
15813726 - Mol Microbiol. 2005 Apr;56(2):309-22
12949116 - J Bacteriol. 2003 Sep;185(18):5632-8
16980452 - J Bacteriol. 2006 Dec;188(23):8213-21
21778407 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13083-8
20534468 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11038-43
15090514 - J Bacteriol. 2004 May;186(9):2724-34
11133376 - J Infect Dis. 2001 Feb 1;183(3):444-52
2167423 - Mol Microbiol. 1990 May;4(5):737-45
2496102 - J Bacteriol. 1989 May;171(5):2312-7
10967285 - Microbes Infect. 2000 Jul;2(9):1051-60
20633230 - Mol Microbiol. 2010 Sep;77(5):1315-25
11747907 - Prog Biophys Mol Biol. 2001 Oct;77(2):111-75
19329647 - J Bacteriol. 2009 Jun;191(11):3492-503
14659747 - J Mol Biol. 2004 Jan 2;335(1):155-65
17824927 - Mol Microbiol. 2007 Sep;65(6):1474-84
15546998 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16630-5
12705829 - Biochemistry. 2003 Apr 29;42(16):4658-68
15231777 - J Bacteriol. 2004 Jul;186(14):4457-65
20861838 - Nature. 2010 Oct 21;467(7318):991-4
19659934 - Mol Microbiol. 2009 Aug;73(4):622-38
18424616 - Plant Cell. 2008 Apr;20(4):1059-72
18204465 - Nat Struct Mol Biol. 2008 Feb;15(2):130-8
20924356 - EMBO J. 2010 Nov 3;29(21):3733-44
15014442 - EMBO J. 2004 Mar 24;23(6):1257-66
19710102 - Innate Immun. 2009 Oct;15(5):261-312
3089876 - Gene. 1986;42(3):293-302
15231808 - J Bacteriol. 2004 Jul;186(14):4759-73
19325879 - PLoS Pathog. 2009 Mar;5(3):e1000354
7521870 - J Bacteriol. 1994 Sep;176(18):5639-47
20861010 - J Biol Chem. 2010 Dec 3;285(49):38149-56
10481091 - FEMS Microbiol Lett. 1999 Oct 1;179(1):85-90
3025179 - J Bacteriol. 1987 Jan;169(1):351-8
14222269 - Nature. 1964 Oct 10;204:187-8
8449870 - J Bacteriol. 1993 Mar;175(6):1605-11
19581297 - J Biol Chem. 2009 Aug 28;284(35):23852-9
17510062 - J Biol Chem. 2007 Jul 13;282(28):20705-14
11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80
20097812 - Appl Environ Microbiol. 2010 Mar;76(6):1806-12
17645452 - Mol Microbiol. 2007 Aug;65(4):876-95
19129185 - J Biol Chem. 2009 Mar 13;284(11):7395-403
18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8
9457868 - J Bacteriol. 1998 Feb;180(3):634-41
4200860 - J Bacteriol. 1973 Nov;116(2):915-24
20735777 - Mol Microbiol. 2010 Oct;78(1):158-72
11839312 - Structure. 2002 Feb;10(2):269-79
10984043 - Nature. 2000 Aug 31;406(6799):959-64
17086202 - Nature. 2006 Nov 9;444(7116):226-9
14731271 - Mol Microbiol. 2004 Feb;51(3):675-90
10051655 - Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2408-13
17208443 - Trends Biochem Sci. 2007 Feb;32(2):86-94
19472335 - Protein Sci. 2009 Jun;18(6):1197-209
11752785 - Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):111-9
16756484 - Annu Rev Biochem. 2006;75:39-68
18366339 - Future Microbiol. 2008 Apr;3(2):191-203
18524915 - Microbiology. 2008 Jun;154(Pt 6):1605-15
8840786 - Microbiol Rev. 1996 Sep;60(3):539-74
8335634 - J Bacteriol. 1993 Aug;175(15):4780-9
3009178 - Eur J Clin Microbiol. 1986 Feb;5(1):6-10
21151973 - PLoS One. 2010 Dec 03;5(12):e14220
15231778 - J Bacteriol. 2004 Jul;186(14):4466-75
20445266 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 May 1;66(Pt 5):588-91
11717271 - J Bacteriol. 2001 Dec;183(24):7126-34
17020580 - Mol Microbiol. 2006 Oct;62(2):412-26
15489449 - J Bacteriol. 2004 Nov;186(21):7369-77
18574239 - J Biol Chem. 2008 Aug 29;283(35):23819-28
20159471 - Structure. 2010 Feb 10;18(2):265-73
8370530 - Gene. 1993 Sep 6;131(1):1-8
1385594 - J Bacteriol. 1992 Jul;174(14):4707-17
12066891 - Res Microbiol. 2002 May;153(4):205-12
16797016 - FEBS Lett. 2006 Jul 10;580(16):3883-8
2160929 - J Bacteriol. 1990 Jun;172(6):2894-900
18949036 - PLoS Pathog. 2008 Oct;4(10):e1000184
2965141 - J Bacteriol. 1988 Apr;170(4):1452-60
17096419 - Proteins. 2007 Feb 1;66(2):266-71
15968068 - J Bacteriol. 2005 Jul;187(13):4573-83
19247286 - Nat Protoc. 2009;4(3):363-71
12691742 - J Mol Biol. 2003 Apr 25;328(2):307-17
17375930 - J Am Chem Soc. 2007 Apr 18;129(15):4800-7
19543378 - PLoS Pathog. 2009 Jun;5(6):e1000483
11162105 - J Mol Biol. 2001 Jan 26;305(4):951-60
20573954 - J Biol Chem. 2010 Aug 27;285(35):27468-76
19258536 - Microbiol Mol Biol Rev. 2009 Mar;73(1):155-77
11932230 - Clin Microbiol Rev. 2002 Apr;15(2):194-222
16391057 - Appl Environ Microbiol. 2006 Jan;72(1):298-305
7515870 - J Bacteriol. 1994 Jun;176(12):3500-7
7961422 - J Bacteriol. 1994 Nov;176(21):6688-96
12003941 - J Bacteriol. 2002 Jun;184(11):3000-7
8394313 - J Bacteriol. 1993 Aug;175(16):5057-65
10390348 - J Mol Biol. 1999 Jul 9;290(2):505-14
12426404 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15699-704
15486088 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15307-12
19853003 - Biochimie. 2010 Jan;92(1):33-40
12581364 - Mol Microbiol. 2003 Feb;47(4):1123-33
11208804 - J Bacteriol. 2001 Feb;183(3):1047-57
12019221 - Genetics. 2002 May;161(1):33-46
14659697 - Trends Biochem Sci. 2003 Dec;28(12):655-62
References_xml – reference: 2496102 - J Bacteriol. 1989 May;171(5):2312-7
– reference: 8144447 - J Bacteriol. 1994 Apr;176(7):1821-30
– reference: 11717271 - J Bacteriol. 2001 Dec;183(24):7126-34
– reference: 12691742 - J Mol Biol. 2003 Apr 25;328(2):307-17
– reference: 8370530 - Gene. 1993 Sep 6;131(1):1-8
– reference: 11932230 - Clin Microbiol Rev. 2002 Apr;15(2):194-222
– reference: 21298031 - PLoS Pathog. 2011 Jan 27;7(1):e1001264
– reference: 16797016 - FEBS Lett. 2006 Jul 10;580(16):3883-8
– reference: 18366339 - Future Microbiol. 2008 Apr;3(2):191-203
– reference: 18524915 - Microbiology. 2008 Jun;154(Pt 6):1605-15
– reference: 7961422 - J Bacteriol. 1994 Nov;176(21):6688-96
– reference: 2965141 - J Bacteriol. 1988 Apr;170(4):1452-60
– reference: 20861838 - Nature. 2010 Oct 21;467(7318):991-4
– reference: 12003941 - J Bacteriol. 2002 Jun;184(11):3000-7
– reference: 21778407 - Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13083-8
– reference: 19247286 - Nat Protoc. 2009;4(3):363-71
– reference: 11839312 - Structure. 2002 Feb;10(2):269-79
– reference: 10481091 - FEMS Microbiol Lett. 1999 Oct 1;179(1):85-90
– reference: 19329647 - J Bacteriol. 2009 Jun;191(11):3492-503
– reference: 18204465 - Nat Struct Mol Biol. 2008 Feb;15(2):130-8
– reference: 8335634 - J Bacteriol. 1993 Aug;175(15):4780-9
– reference: 1385594 - J Bacteriol. 1992 Jul;174(14):4707-17
– reference: 15968068 - J Bacteriol. 2005 Jul;187(13):4573-83
– reference: 19853003 - Biochimie. 2010 Jan;92(1):33-40
– reference: 8449870 - J Bacteriol. 1993 Mar;175(6):1605-11
– reference: 19129185 - J Biol Chem. 2009 Mar 13;284(11):7395-403
– reference: 17510062 - J Biol Chem. 2007 Jul 13;282(28):20705-14
– reference: 17375930 - J Am Chem Soc. 2007 Apr 18;129(15):4800-7
– reference: 17645452 - Mol Microbiol. 2007 Aug;65(4):876-95
– reference: 20633230 - Mol Microbiol. 2010 Sep;77(5):1315-25
– reference: 2167423 - Mol Microbiol. 1990 May;4(5):737-45
– reference: 12581364 - Mol Microbiol. 2003 Feb;47(4):1123-33
– reference: 16177314 - Infect Immun. 2005 Oct;73(10):6429-36
– reference: 17824927 - Mol Microbiol. 2007 Sep;65(6):1474-84
– reference: 3009178 - Eur J Clin Microbiol. 1986 Feb;5(1):6-10
– reference: 19325879 - PLoS Pathog. 2009 Mar;5(3):e1000354
– reference: 15231778 - J Bacteriol. 2004 Jul;186(14):4466-75
– reference: 18949036 - PLoS Pathog. 2008 Oct;4(10):e1000184
– reference: 19543378 - PLoS Pathog. 2009 Jun;5(6):e1000483
– reference: 7515870 - J Bacteriol. 1994 Jun;176(12):3500-7
– reference: 7521870 - J Bacteriol. 1994 Sep;176(18):5639-47
– reference: 12426404 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15699-704
– reference: 20735777 - Mol Microbiol. 2010 Oct;78(1):158-72
– reference: 17020580 - Mol Microbiol. 2006 Oct;62(2):412-26
– reference: 11747907 - Prog Biophys Mol Biol. 2001 Oct;77(2):111-75
– reference: 15486088 - Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15307-12
– reference: 8394313 - J Bacteriol. 1993 Aug;175(16):5057-65
– reference: 15894551 - Ann Bot. 2005 Jul;96(1):9-21
– reference: 2160929 - J Bacteriol. 1990 Jun;172(6):2894-900
– reference: 15231808 - J Bacteriol. 2004 Jul;186(14):4759-73
– reference: 11133376 - J Infect Dis. 2001 Feb 1;183(3):444-52
– reference: 10200954 - Mol Microbiol. 1999 Mar;31(5):1321-32
– reference: 20861010 - J Biol Chem. 2010 Dec 3;285(49):38149-56
– reference: 17096419 - Proteins. 2007 Feb 1;66(2):266-71
– reference: 19258536 - Microbiol Mol Biol Rev. 2009 Mar;73(1):155-77
– reference: 17524545 - Biochimie. 2007 Aug;89(8):903-15
– reference: 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8
– reference: 20534468 - Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11038-43
– reference: 19472335 - Protein Sci. 2009 Jun;18(6):1197-209
– reference: 15546998 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16630-5
– reference: 18574239 - J Biol Chem. 2008 Aug 29;283(35):23819-28
– reference: 10517866 - Bioessays. 1999 Nov;21(11):932-9
– reference: 14659747 - J Mol Biol. 2004 Jan 2;335(1):155-65
– reference: 10390348 - J Mol Biol. 1999 Jul 9;290(2):505-14
– reference: 16980452 - J Bacteriol. 2006 Dec;188(23):8213-21
– reference: 12705829 - Biochemistry. 2003 Apr 29;42(16):4658-68
– reference: 3089876 - Gene. 1986;42(3):293-302
– reference: 12066891 - Res Microbiol. 2002 May;153(4):205-12
– reference: 12949116 - J Bacteriol. 2003 Sep;185(18):5632-8
– reference: 15231777 - J Bacteriol. 2004 Jul;186(14):4457-65
– reference: 15813726 - Mol Microbiol. 2005 Apr;56(2):309-22
– reference: 11208804 - J Bacteriol. 2001 Feb;183(3):1047-57
– reference: 17208443 - Trends Biochem Sci. 2007 Feb;32(2):86-94
– reference: 19407377 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):463-6
– reference: 9457868 - J Bacteriol. 1998 Feb;180(3):634-41
– reference: 1903398 - J Biol Chem. 1991 May 25;266(15):9754-63
– reference: 11162105 - J Mol Biol. 2001 Jan 26;305(4):951-60
– reference: 15014442 - EMBO J. 2004 Mar 24;23(6):1257-66
– reference: 19710102 - Innate Immun. 2009 Oct;15(5):261-312
– reference: 15090514 - J Bacteriol. 2004 May;186(9):2724-34
– reference: 20159471 - Structure. 2010 Feb 10;18(2):265-73
– reference: 20924356 - EMBO J. 2010 Nov 3;29(21):3733-44
– reference: 17086202 - Nature. 2006 Nov 9;444(7116):226-9
– reference: 11752785 - Acta Crystallogr D Biol Crystallogr. 2002 Jan;58(Pt 1):111-9
– reference: 11179370 - Infect Immun. 2001 Mar;69(3):1895-901
– reference: 19581297 - J Biol Chem. 2009 Aug 28;284(35):23852-9
– reference: 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74
– reference: 18424616 - Plant Cell. 2008 Apr;20(4):1059-72
– reference: 10967285 - Microbes Infect. 2000 Jul;2(9):1051-60
– reference: 14222269 - Nature. 1964 Oct 10;204:187-8
– reference: 15489449 - J Bacteriol. 2004 Nov;186(21):7369-77
– reference: 8294014 - Gene. 1993 Dec 22;136(1-2):267-9
– reference: 4200860 - J Bacteriol. 1973 Nov;116(2):915-24
– reference: 16391057 - Appl Environ Microbiol. 2006 Jan;72(1):298-305
– reference: 21151973 - PLoS One. 2010 Dec 03;5(12):e14220
– reference: 16756484 - Annu Rev Biochem. 2006;75:39-68
– reference: 3025179 - J Bacteriol. 1987 Jan;169(1):351-8
– reference: 20445266 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 May 1;66(Pt 5):588-91
– reference: 19659934 - Mol Microbiol. 2009 Aug;73(4):622-38
– reference: 20097812 - Appl Environ Microbiol. 2010 Mar;76(6):1806-12
– reference: 12019221 - Genetics. 2002 May;161(1):33-46
– reference: 10051655 - Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2408-13
– reference: 14731271 - Mol Microbiol. 2004 Feb;51(3):675-90
– reference: 14659697 - Trends Biochem Sci. 2003 Dec;28(12):655-62
– reference: 11152613 - J Mol Biol. 2001 Jan 19;305(3):567-80
– reference: 10984043 - Nature. 2000 Aug 31;406(6799):959-64
– reference: 20573954 - J Biol Chem. 2010 Aug 27;285(35):27468-76
SSID ssj0000402000
ssj0000702893
Score 2.4614763
SecondaryResourceType review_article
Snippet Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 167
SubjectTerms Alginate
glycosyltransferase
Microbiology
Pel Polysaccharide
Pseudomonas aeruginosa
Psl Polysaccharide
Rossmann Fold
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifrt-kQdfhC3XbdImeTzljkNQ9sGDe4v5mGihtHLZBfe_d6btLbsi-iL0IbRpk85MO79pJ79h7K2RSQovqyIEqQr0t2XhpEhFWLnkozOijrTe-dPn5vJKfryurw9KfVFO2EQPPAnuNK50DBCTMD5KgWAZgDjMjfY6pbIeoRH6vINganwHK_qDJqb_khiFGVRTG_xM2Ump90d-aKTr_xPG_D1V8sD3XDxg92fQyM-myT5kd6B_xO5OZSR3j9lXbOVdj1Aut5kPiWOLrzNs44BG5jJ3cLP91vZDdvz8Jw5AX-sp_ZSvh26XXaClV22EvORnHdVp2MCSr6FbctdHvFD3hF1dnH_5cFnMlROKUFdqU4Sy0YoWmRqvlHBKRCkRN-E-AogR3yxU2QUSxha-ARFV5WqlktGNdtEoJ56yk37o4TnjEBT68NJpaIhIBtXntIPgDYSYSiMW7PRWjjbMtOJU3aKzGF6Q5O0oeUuSt6PkF-zd_owfE6XGX_q-J9Xs-xEZ9rgDTcTOJmL_ZSILxm8Va_HhIRm7HoZtttroFUKwBu_i2aTn_UgV5YRheLlg6sgCjqZyfKRvv4_83AIholxVL_7H3F-ye9NXbNpesZPNzRZeIwza-Dejxf8CUdYH5Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl
URI https://www.ncbi.nlm.nih.gov/pubmed/21991261
https://www.proquest.com/docview/898165863
https://pubmed.ncbi.nlm.nih.gov/PMC3159412
https://doaj.org/article/d18dcedf39bd43428ee615098b8ff05a
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA96Ivginp_rx5EHX4Sttk3aJA8i53HnIZzsgwv7VvN5Fkp7t9mF2__emba3urIolBLSNGlnksxvkswMIW8VD5wZnifWcpGAvE0TzVlIbKaDcVqxwqG988W38nzOvy6KxW_z6JGAca9qh_Gk5svm_c315hMM-I-ocYK8BQ7U1ozeOPFU_V1yD-SSwEAOFyPY7-dlVJV6m5SsLHE7IF8M-5Z7K9mRU707_30Y9O-jlH_IprNH5OEIKunx0AsOyR3fPib3hzCTmyfkB6TipgWoF-tIu0AhRWfRr10HnVBHqv1yfVm3XdT09AYawNV8PJ5KZ12zidqiaVbtfJzS4wbjOKz8lM58M6W6dVBR85TMz06_n5wnY2SFxBa5WCU2LaVAI1RlhGBaMMc54CrIQwDpYObByC8-gO5hSs-cyHUhRFCylNopodkzctB2rX9BqLcCZHyqpS_R0QywV0vtrVHeupAqNiEfbulY2dHtOEa_aCpQP5DyVU_5Cilf9ZSfkHfbN64Glxv_KPsZWbMth86y-4xueVmNY69ymQT-uMCUcZyBvuU9usFX0sgQ0kJPCL1lbAWDC2msW9-tYyWVzACilfAXzwc-b1vK8cwYqJ8TInZ6wM6n7D5p65-9_24GEJJn-cv_N_uKPBjWsPF6TQ5Wy7V_AyBoZY76xQO4f1lkR30__wUAlwes
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biosynthesis+of+the+Pseudomonas+aeruginosa+Extracellular+Polysaccharides%2C+Alginate%2C+Pel%2C+and+Psl&rft.jtitle=Frontiers+in+microbiology&rft.au=Franklin%2C+Michael+J&rft.au=Nivens%2C+David+E&rft.au=Weadge%2C+Joel+T&rft.au=Howell%2C+P+Lynne&rft.date=2011-01-01&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=2&rft.spage=167&rft_id=info:doi/10.3389%2Ffmicb.2011.00167&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon