Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea

Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In...

Full description

Saved in:
Bibliographic Details
Published inInsects (Basel, Switzerland) Vol. 14; no. 6; p. 526
Main Authors Lee, Sangjun, Kim, Hangi, Cho, Byoung-Kwan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field.
AbstractList Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field.
Conventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal timing for pest control in the field. In this study, a deep learning-based automated image analysis method was developed for the classification of eleven species of mosquito. The combination of color and fluorescence images enhanced the performance for live mosquito classification. The classification result of a 97.1% F1-score has demonstrated the potential of using an automatic measurement of mosquito species and populations in the field. The proposed technique could be adapted for establishing a mosquito monitoring and management system, which may contribute to preemptive quarantine and a reduction in the exposure to vector-borne diseases. Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field.
Simple SummaryConventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal timing for pest control in the field. In this study, a deep learning-based automated image analysis method was developed for the classification of eleven species of mosquito. The combination of color and fluorescence images enhanced the performance for live mosquito classification. The classification result of a 97.1% F1-score has demonstrated the potential of using an automatic measurement of mosquito species and populations in the field. The proposed technique could be adapted for establishing a mosquito monitoring and management system, which may contribute to preemptive quarantine and a reduction in the exposure to vector-borne diseases.AbstractMosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field.
Audience Academic
Author Kim, Hangi
Cho, Byoung-Kwan
Lee, Sangjun
AuthorAffiliation 1 Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; sangjoon10005@naver.com (S.L.); zxcvkhk@gmail.com (H.K.)
2 Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea
AuthorAffiliation_xml – name: 1 Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; sangjoon10005@naver.com (S.L.); zxcvkhk@gmail.com (H.K.)
– name: 2 Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea
Author_xml – sequence: 1
  givenname: Sangjun
  orcidid: 0009-0009-1580-7732
  surname: Lee
  fullname: Lee, Sangjun
  organization: Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
– sequence: 2
  givenname: Hangi
  surname: Kim
  fullname: Kim, Hangi
  organization: Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
– sequence: 3
  givenname: Byoung-Kwan
  orcidid: 0000-0002-8397-9853
  surname: Cho
  fullname: Cho, Byoung-Kwan
  organization: Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37367342$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1v1DAQtVARLaVnbigSFy5p_R3nhMrytWIRB8rZGieT1KvE3tpZJP49LluqtrZkW-P33szY7yU5CjEgIa8ZPReipRc-ZOyWzCTVVHH9jJxw2qhaSkWPHpyPyVnOW1qGZpxp84Ici0boRkh-Qq4-Iu6qDUIKPoz1B8jYV-sZRqxWE-TsB9_B4mOohpiq77C9XWO-2fslVj932HnM1Tpcg_NLEai-xYTwijwfYMp4drefkl-fP12tvtabH1_Wq8tN3SneLLVremSgTdM6xxSTYEq1rDemN9K0vdG8ZYyKVnNUzHHTajUY1zjg0oHUWpyS9UG3j7C1u-RnSH9sBG__BWIaLaTFdxNaVygDSgWITBrHwFGunCjKjksj-6L1_qC127sZ-w7DkmB6JPr4JvhrO8bfllHetsqwovDuTiHFmz3mxc4-dzhNEDDus-VGUM4U5bxA3z6BbuM-hfJWBcVbU75UyoI6P6BGKB34MMSSuCuzx9l3xQuDL_HLRhnBSn5VCBcHQpdizgmH-_IZtbeWsU8sUxhvHnZ9j_9vEPEXG9294Q
CitedBy_id crossref_primary_10_1186_s12936_024_04952_9
crossref_primary_10_1038_s41598_024_54233_3
crossref_primary_10_1017_S000748532400018X
Cites_doi 10.1038/s41598-020-57875-1
10.3390/s22134921
10.2807/1560-7917.ES.2016.21.21.30240
10.3390/s18124169
10.1109/ACCESS.2018.2793306
10.1109/ICPECA51329.2021.9362711
10.1109/5.726791
10.1603/ME11091
10.1016/j.knosys.2019.07.012
10.1109/ICCV.2017.324
10.1109/CVPR.2009.5206848
10.33166/AETiC.2021.03.002
10.1109/CVPR.2017.634
10.1109/CVPR.2016.90
10.1371/journal.pone.0234959
10.1109/CVPR.2017.544
10.1109/ICCV.2015.169
10.1109/CVPR.2014.81
10.1007/978-3-319-46448-0_2
10.1038/s41598-020-69964-2
10.1109/ICCV48922.2021.00986
10.1038/s41598-022-21017-6
10.1038/s41598-021-92891-9
10.1007/978-3-030-58452-8_13
10.21203/rs.3.rs-17939/v1
10.5124/jkma.2017.60.6.468
10.1109/ICCV.2017.593
10.1007/s10393-016-1176-y
10.30833/LTPR.2020.08.8.3.131
10.1109/ISCC.2004.1358414
10.1038/s41598-021-84219-4
10.1109/CVPRW50498.2020.00203
10.5626/KTCP.2021.27.11.503
10.1371/journal.pone.0210829
10.1109/TENCON.2016.7848448
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7SS
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.3390/insects14060526
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2075-4450
ExternalDocumentID oai_doaj_org_article_b4bafe45aee148b1ab025b32e5b2484d
A758318135
10_3390_insects14060526
37367342
Genre Journal Article
GeographicLocations South Korea
United States--US
GeographicLocations_xml – name: South Korea
– name: United States--US
GrantInformation_xml – fundername: Korea Disease Control and Prevention Agency
  grantid: N/A
– fundername: Korea Disease Control and Prevention Agency (KDCA)
  grantid: 1776000136
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
ABDBF
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
EAD
EAP
EPL
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
NPM
OK1
PATMY
PGMZT
PIMPY
PROAC
PYCSY
RIG
RPM
TUS
AAYXX
CITATION
3V.
7SS
8FK
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c527t-b7de1a6879bb1514a84501d88d8489d86291103962e51b28965f8b7ba24ba4663
IEDL.DBID RPM
ISSN 2075-4450
IngestDate Tue Oct 22 15:16:01 EDT 2024
Tue Sep 17 21:30:03 EDT 2024
Fri Oct 25 07:07:57 EDT 2024
Thu Oct 10 18:03:53 EDT 2024
Tue Nov 12 23:58:05 EST 2024
Wed Oct 23 14:17:32 EDT 2024
Sat Sep 28 08:13:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
image identification
artificial intelligence
mosquito
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-b7de1a6879bb1514a84501d88d8489d86291103962e51b28965f8b7ba24ba4663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8397-9853
0009-0009-1580-7732
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299581/
PMID 37367342
PQID 2829814044
PQPubID 2032383
ParticipantIDs doaj_primary_oai_doaj_org_article_b4bafe45aee148b1ab025b32e5b2484d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299581
proquest_miscellaneous_2830215022
proquest_journals_2829814044
gale_infotracacademiconefile_A758318135
crossref_primary_10_3390_insects14060526
pubmed_primary_37367342
PublicationCentury 2000
PublicationDate 20230605
PublicationDateYYYYMMDD 2023-06-05
PublicationDate_xml – month: 6
  year: 2023
  text: 20230605
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Insects (Basel, Switzerland)
PublicationTitleAlternate Insects
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Moon (ref_37) 2010; 12
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_53
ref_52
ref_51
ref_19
ref_18
Bhargavi (ref_13) 2020; 2
ref_25
ref_23
Tram (ref_33) 2018; 6
Kim (ref_4) 2011; 48
ref_29
ref_28
ref_27
Park (ref_16) 2018; 20
ref_26
Lee (ref_5) 2001; 31
Goodwin (ref_20) 2021; 11
Succo (ref_15) 2016; 21
Park (ref_54) 2020; 10
Nakano (ref_22) 2020; 189
ref_36
ref_35
ref_34
ref_32
ref_31
Park (ref_17) 2021; 27
ref_30
ref_39
ref_38
Zhao (ref_58) 2022; 12
Cotar (ref_6) 2016; 13
Siddiqua (ref_21) 2021; 5
Yeom (ref_14) 2017; 60
Kim (ref_7) 2020; 8
LeCun (ref_42) 1998; 86
ref_47
ref_46
ref_45
ref_44
ref_43
ref_41
ref_40
ref_1
ref_3
ref_2
Minakshi (ref_60) 2020; 10
ref_49
ref_48
ref_9
ref_8
Na (ref_24) 2020; 48
Kittichai (ref_59) 2021; 11
References_xml – volume: 2
  start-page: 1
  year: 2020
  ident: ref_13
  article-title: Global outbreaks of zika infection by epidemic observatory (EpiWATCH), 2016–2019
  publication-title: Glob. Biosecur.
  contributor:
    fullname: Bhargavi
– ident: ref_9
– ident: ref_32
– volume: 10
  start-page: 1012
  year: 2020
  ident: ref_54
  article-title: Classification and morphological analysis of vector mosquitoes using deep convolutional neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57875-1
  contributor:
    fullname: Park
– ident: ref_26
– ident: ref_3
  doi: 10.3390/s22134921
– volume: 21
  start-page: 30240
  year: 2016
  ident: ref_15
  article-title: Autochthonous dengue outbreak in Nîmes, south of France, July to September 2015
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2016.21.21.30240
  contributor:
    fullname: Succo
– ident: ref_39
– ident: ref_25
  doi: 10.3390/s18124169
– volume: 6
  start-page: 4521
  year: 2018
  ident: ref_33
  article-title: Vehicle-to-vehicle distance estimation using a low-resolution camera based on visible light communications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2793306
  contributor:
    fullname: Tram
– ident: ref_28
  doi: 10.1109/ICPECA51329.2021.9362711
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_42
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
  contributor:
    fullname: LeCun
– ident: ref_1
– volume: 48
  start-page: 1250
  year: 2011
  ident: ref_4
  article-title: Japanese encephalitis virus in culicine mosquitoes (Diptera: Culicidae) collected at Daeseongdong, a village in the demilitarized zone of the Republic of Korea
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME11091
  contributor:
    fullname: Kim
– volume: 189
  start-page: 104841
  year: 2020
  ident: ref_22
  article-title: Aedes mosquito detection in its larval stage using deep neural networks
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.07.012
  contributor:
    fullname: Nakano
– ident: ref_35
– ident: ref_31
  doi: 10.1109/ICCV.2017.324
– ident: ref_49
  doi: 10.1109/CVPR.2009.5206848
– volume: 5
  start-page: 11
  year: 2021
  ident: ref_21
  article-title: A deep learning-based dengue mosquito detection method using faster R-CNN and image processing techniques
  publication-title: Ann. Emerg. Technol. Comput.
  doi: 10.33166/AETiC.2021.03.002
  contributor:
    fullname: Siddiqua
– ident: ref_30
  doi: 10.1109/CVPR.2017.634
– ident: ref_52
  doi: 10.1109/CVPR.2016.90
– ident: ref_8
– ident: ref_57
  doi: 10.1371/journal.pone.0234959
– ident: ref_51
  doi: 10.1109/CVPR.2017.544
– ident: ref_10
– ident: ref_41
– ident: ref_46
  doi: 10.1109/ICCV.2015.169
– ident: ref_45
  doi: 10.1109/CVPR.2014.81
– ident: ref_44
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_38
– volume: 10
  start-page: 13059
  year: 2020
  ident: ref_60
  article-title: A framework based on deep neural networks to extract anatomy of mosquitoes from images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69964-2
  contributor:
    fullname: Minakshi
– volume: 31
  start-page: 183
  year: 2001
  ident: ref_5
  article-title: Seasonal prevalence of mosquitoes and weather factors influencing population size of anopheles sinensis (Diptera, culicidae) in Busan, Korea
  publication-title: Korea J. Entomol.
  contributor:
    fullname: Lee
– ident: ref_27
  doi: 10.1109/ICCV48922.2021.00986
– volume: 12
  start-page: 25
  year: 2010
  ident: ref_37
  article-title: Depth of Field and Magnification
  publication-title: Imaging Technol. Res.
  contributor:
    fullname: Moon
– volume: 12
  start-page: 18664
  year: 2022
  ident: ref_58
  article-title: A Swin Transformer-based model for mosquito species identification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-21017-6
  contributor:
    fullname: Zhao
– volume: 11
  start-page: 13656
  year: 2021
  ident: ref_20
  article-title: Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92891-9
  contributor:
    fullname: Goodwin
– volume: 20
  start-page: 17
  year: 2018
  ident: ref_16
  article-title: INFORMATION—Metropolitan Meteorological Administration predicts mosquitoes like the weather
  publication-title: Disaster Prev. Rev.
  contributor:
    fullname: Park
– ident: ref_34
– ident: ref_47
– ident: ref_11
– ident: ref_29
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_40
– ident: ref_56
  doi: 10.21203/rs.3.rs-17939/v1
– volume: 60
  start-page: 468
  year: 2017
  ident: ref_14
  article-title: Current status and outlook of mosquito-borne diseases in Korea
  publication-title: J. Korean Med. Assoc.
  doi: 10.5124/jkma.2017.60.6.468
  contributor:
    fullname: Yeom
– ident: ref_18
– ident: ref_53
  doi: 10.1109/ICCV.2017.593
– volume: 13
  start-page: 796
  year: 2016
  ident: ref_6
  article-title: Transmission dynamics of the West Nile virus in mosquito vector populations under the influence of weather factors in the Danube Delta, Romania
  publication-title: EcoHealth
  doi: 10.1007/s10393-016-1176-y
  contributor:
    fullname: Cotar
– ident: ref_50
– ident: ref_2
– volume: 8
  start-page: 131
  year: 2020
  ident: ref_7
  article-title: A study on the possibility and risk of dengue fever inKorea due to climate change and the main contents andimprovement measures of the ⌈Infectious DiseaseControl and Prevention Act⌋
  publication-title: Leg. Theory Pract. Rev.
  doi: 10.30833/LTPR.2020.08.8.3.131
  contributor:
    fullname: Kim
– ident: ref_36
  doi: 10.1109/ISCC.2004.1358414
– ident: ref_12
– volume: 11
  start-page: 4838
  year: 2021
  ident: ref_59
  article-title: Deep learning approaches for challenging species and gender identification of mosquito vectors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84219-4
  contributor:
    fullname: Kittichai
– ident: ref_48
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 27
  start-page: 503
  year: 2021
  ident: ref_17
  article-title: Classification of Wild Vector Mosquito Species Using Convolutional Neural Networks
  publication-title: KIISE Trans. Comput. Pract.
  doi: 10.5626/KTCP.2021.27.11.503
  contributor:
    fullname: Park
– ident: ref_19
– ident: ref_43
– volume: 48
  start-page: 581
  year: 2020
  ident: ref_24
  article-title: A construction of web application platform for detection and identification of various diseases in tomato plants using a deep learning algorithm
  publication-title: J. Korean Soc. Qual. Manag.
  contributor:
    fullname: Na
– ident: ref_55
  doi: 10.1371/journal.pone.0210829
– ident: ref_23
  doi: 10.1109/TENCON.2016.7848448
SSID ssj0000612168
Score 2.3393497
Snippet Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne...
Conventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal timing for...
Simple SummaryConventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 526
SubjectTerms Accuracy
artificial intelligence
Artificial neural networks
Biological monitoring
Biological research
Biology, Experimental
Cameras
Classification
Color
Counting methods
Culicidae
Deep learning
Dengue fever
Embedded systems
Encephalitis
Error analysis
Fluorescence
Human error
Identification and classification
Identification methods
Image acquisition
Image analysis
Image classification
Image enhancement
image identification
Image processing
Imaging systems
Imaging systems in biology
Infections
Infectious diseases
Insects
Labor
Machine learning
Malaria
Methods
Monitoring
mosquito
Mosquitoes
Neural networks
Object recognition
Pest control
Populations
Preempting
Species
Tropical diseases
Vector-borne diseases
Vectors (Biology)
West Nile virus
Zika virus
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VSJV6QVDaEqDIlZDaS8Q6tmPnCKUIiugJJNSLZSc2HxIJsLv_nxknrDbl0AuXHNbRypnZmXlvPXkDsMeLqCOWpTyKWuVS8Tp3WHnyqq5ljDrUOtLLyed_ypNL-ftKXS2N-qKesF4euDfcvpfexSCVCwGRu-fOY5X2ogjKF9LIJmXfSbVEpvoczAteml7LRyCv379tp9QegXyiJImTURlKav2vc_JSURo3TC5VoOM1WB2gIzvot7wO70L7Ed7_7dIf4xtwcRTCAxv0Uq_zQyxPDTu9x3zB0uRL6glKbmCIU9m5u6NrN32cY0yzNIY-TNlpS8Ld1ArNzjrEk5_g8vjXxc-TfJiZkNeq0LPc6yZwVxpdeY_FXDoj1YQ3xjRGmqpB_oLZbSKqEg3IPbKtUkXjtXcF2lki_PgMK23Xhk1glQzB4Jc1CikVshAz0TFE571UhdexyeDHiwntQy-NYZFSkLXtP9bO4JBMvLiNNK3TB-hpO3ja_s_TGXwnB1mKPPRC7YYXCHC3pGFlD5D6YIbiQmWw8-JDO4Tk1NKRMcl7SZnBt8UyBhOdkLg2dHO6RxAGQlyTwZfe5Ys9Cy1KLSSumNGPYfRQ45X29iYJdiOIqypl-NZbmGEbPtDI-9SupnZgZfY0D18RGM38boqBZ5vMDZM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA56RfBF_O3WKhEEfQm9bJJN9kl62tIqLSItFF9Cspu0Fdy9du_-_87kcmdXwZd7uIS72Uxm5ptk9htC3vMy6ghhiUXRKCYVb5iDyMPqppEx6tDoiC8nH59Uh2fy67k6zwduQy6rXPvE5KjbvsEz8l288UN2Jik_za8Zdo3C29XcQuM-2SphbDohW7P9k-8_NqcsGMB5ZVacPgLy-92rbsAyCZhdIdXJKBwl1v5_ffOd4DQunLwTiQ4ek0cZQtK9lc6fkHuhe0oe_OzTAfkzcvolhDnNvKkXbAZhqqVHv8Fv0NQBE2uDkjoo4FV67H7hZz9cL8G2aWpHHwZ61CGBN5ZE02894Mrn5Oxg__TzIcu9E1ijSr1gXreBu8ro2nsI6tIZqaa8NaY10tQt5DHg5aairsqguIesq1LReO1dKb2TAENekEnXd-EVobUMwcCPtQpSK8hGzFTHEJ33UpVex7YgH9dLaOcrigwLqQWutv1rtQsywyXeTENu6_RFf3Nhs6lYDxLEIJULAXI1z50HXOYFCOpLaST83wdUkEULBC00Lr9IANIil5XdgxQIPBUXqiA7ax3abJqD_bORCvJuMwxGhTclrgv9EucIxEKAbwrycqXyjcxCi0oLCSNmtBlGDzUe6a4uE3E3gLm6VoZv_1-u1-QhNrVPBWlqh0wWN8vwBqDPwr_N-_sWeQEFYQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgCIkLonwGWmQkJLgY1sk4dg4ItZSqBZVTV6q4WHZilyJI2v2Q4N8z42SXhvbAZQ_rKOudGXveS8ZvGHsp86gjpiURi1oJULIWDjOPqOoaYtSh1pEOJx99KQ-m8OlEnfxtBzQYcH4ttaN-UtPZjze_Ln6_xwX_jhgnUva3Z-2cKh-QKpSkXnKT3coBaTrV8Q1Yv9-WZS7T0bgc06QAUJNe6ue6e4yyVBLzv7plX8pZ43rKSwlq_x67OyBLvtOHwia7Edr77PbXLj03f8CO90I454Oc6qnYxezV8MOfuJ3w1BiTSoaSlzjCWH7kvtNnN79Y4pLnqUt9mPPDlnS9qVKaf-4Qbj5k0_2Pxx8OxNBSQdQq1wvhdROkK42uvMdcD86gGWRjTGPAVA3SG9z8JkVV5kFJj2SsVNF47V0O3gGik0dso-3a8ITxCkIweLNGIeNCkmImOobovAeVex2bjL1emdCe98oZFhkHWdv-Y-2M7ZKJ15eR5HX6opud2mEFWY8ziAGUCwEpnJfOI1zzBU7U52AAf-8VOchSqKAXajecL8DZksSV3UFmhBuYLFTGtlY-tKuAs_RGmdS_ADL2Yj2Ma41eoLg2dEu6piCIhLAnY497l6_nXOii1AXgiBkFw-hPjUfas29JzxsxXlUpI5_-v8WesTvU9z7VrKkttrGYLcM2oqOFf56i_g8aQA3I
  priority: 102
  providerName: Scholars Portal
Title Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea
URI https://www.ncbi.nlm.nih.gov/pubmed/37367342
https://www.proquest.com/docview/2829814044
https://search.proquest.com/docview/2830215022
https://pubmed.ncbi.nlm.nih.gov/PMC10299581
https://doaj.org/article/b4bafe45aee148b1ab025b32e5b2484d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_ahkC7IL4XGJWRkOCStU7s2DmuY9MG6jShTZq4RHZijyKadGv7__Oek1Qt3LjkkM8Xv89f8vwzwEeeeOUxLcU-LWUsJC9jg5knzstSeK9cqTxNTp5cZuc34uutvN2BrJ8LE5r2Szs9qn_Pjurpz9BbOZ-Vw75PbHg1OcGkmOdS8-Eu7KKFbmD0Nv7yhGe65fFJEdMPp_WCWiMQS2REb7IPT1KVZioVyVY2CqT9_4bmjdy03Te5kYjOnsHTroJkx62kz2HH1S_g8Y8mfB9_CddfnJuzjjb1Lh5jlqrYxQzDBgsLYFJrUNAGw3KVTcwv2jaL-xW6Ngur0bsFu6iJv5s6otm3BsvKV3Bzdnp9ch53SyfEpUzUMraqctxkWuXWYk4XRgs54pXWlRY6rxDGYJAbpXmWOMktgq5Mem2VNYmwRmAV8hr26qZ2B8By4ZzGm1USkRWCET1S3nljrZCJVb6K4HM_hMW8ZcgoEFnQwBd_DXwEYxri9WlEbR12NA93RafgwqIE3glpnEOoZrmxWJbZFAW1idACn_eJFFSQA6IWStPNI0BpicqqOEYEhIGKpzKCw16HReeZi4L-HBPLlxARfFgfRp-iHyWmds2KzkmpFMLyJoI3rcrXMveWE4HeMoatl9o-gmYceLt7s337_5e-g31a7z70qslD2Fs-rNx7rIqWdgCPxqeXV98H4asCbidCD4Jj_AHICxDO
link.rule.ids 230,315,730,783,787,867,888,2109,2228,21400,24330,27936,27937,33756,33757,43817,53804,53806,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2IviO8FNjASErxYaxI7dp7QOja1bK0Q6qSJF8tO7LFJS7ql_f-5c92ygMRLHuooufp8Hz_78jtCPqaZlx7CEvN5JRgXacUMRB5WVhX3XrpKevw4eTItRuf824W4iBtuXSyrXPvE4KjrtsI98gM88UN2Js6_zG8Zdo3C09XYQuMh2UaqKgBf28Pj6fcfm10WDOBpoVacPjng-4OrpsMyCXhSgVQnvXAUWPv_9c33glO_cPJeJDp5Sp7EFJIernT-jDxwzXPy6GcbNshfkNlX5-Y08qZesiGEqZqOb8Bv0NABE2uDgjoo5Kt0Yq7x2na3S7BtGtrRu46OGyTwxpJoetpCXvmSnJ8cz45GLPZOYJXI5IJZWbvUFEqW1kJQ50ZxMUhrpWrFVVkDjgEvN8jLInMitYC6CuGVldZk3BoOacgrstW0jdsltOTOKXhYLQBaARpRA-mdN9ZykVnp64R8Xk-hnq8oMjRAC5xt_ddsJ2SIU7y5Dbmtww_t3aWOpqItSOAdF8Y5wGo2NRbyMpuDoDbjisP7PqGCNFogaKEy8UMCkBa5rPQhQCDwVGkuErK31qGOptnpPwspIR82w2BUeFJiGtcu8Z4ccyHIbxLyeqXyjcy5zAuZcxhRvcXQ-1P9kebqVyDuhmSuLIVK3_xfrvfk8Wg2OdNn4-npW7KDDe5DcZrYI1uLu6XbhzRoYd_Ftf4bCDUIWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5BJxAviJ8jMMBISPAStYnt2HlCK1u1MlZNaJMmXiw7sceQSLql_f-5S92ygsRLHuooufp8d9_Zl-8A3md5UAHDUhp4JVMhsyq1GHnSsqpECMpXKtDHySez4uhcfLmQF7H-qYtllWuf2Dvquq1oj3xIJ37EziTEMMSyiNODyaf5dUodpOikNbbTuAs7ShR8NICd8eHs9Ntmx4WCeVboFb8Px1x_eNV0VDKBTy2I9mQrNPUM_v_66VuBaruI8lZUmjyChxFOsv2V_h_DHd88gXvf236z_CmcHXg_Z5FD9TIdY8iq2fQX-hDWd8OkOqFeNQyxKzuxP-nadtdLtHPWt6b3HZs2ROZN5dHsuEWM-QzOJ4dnn4_S2EchrWSuFqlTtc9soVXpHAZ4YbWQo6zWutZClzXmNOjxRrwsci8zhxlYIYN2ytlcOCsQkjyHQdM2_gWwUniv8WG1xDQLMxM9UsEH65yQuVOhTuDjegrNfEWXYTDNoNk2f812AmOa4s1txHPd_9DeXJpoNsahBMELab3HvM1l1iFGcxwFdbnQAt_3gRRkyBpRC5WNHxWgtMRrZfYxHUKvlXGZwN5ahyaaaWf-LKoE3m2G0cDo1MQ2vl3SPZxwEWKdBHZXKt_IzBUvFBc4orcWw9af2h5prn70JN4I7MpS6uzl_-V6C_dxmZuv09nxK3hAve77OjW5B4PFzdK_RkS0cG_iUv8NRq4MiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Image+Classification+for+Major+Mosquito+Species+Inhabiting+Korea&rft.jtitle=Insects+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Sangjun&rft.au=Kim%2C+Hangi&rft.au=Cho%2C+Byoung-Kwan&rft.date=2023-06-05&rft.issn=2075-4450&rft.eissn=2075-4450&rft.volume=14&rft.issue=6&rft.spage=526&rft_id=info:doi/10.3390%2Finsects14060526&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_insects14060526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4450&client=summon