Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea
Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In...
Saved in:
Published in | Insects (Basel, Switzerland) Vol. 14; no. 6; p. 526 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field. |
---|---|
AbstractList | Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field. Conventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal timing for pest control in the field. In this study, a deep learning-based automated image analysis method was developed for the classification of eleven species of mosquito. The combination of color and fluorescence images enhanced the performance for live mosquito classification. The classification result of a 97.1% F1-score has demonstrated the potential of using an automatic measurement of mosquito species and populations in the field. The proposed technique could be adapted for establishing a mosquito monitoring and management system, which may contribute to preemptive quarantine and a reduction in the exposure to vector-borne diseases. Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field. Simple SummaryConventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal timing for pest control in the field. In this study, a deep learning-based automated image analysis method was developed for the classification of eleven species of mosquito. The combination of color and fluorescence images enhanced the performance for live mosquito classification. The classification result of a 97.1% F1-score has demonstrated the potential of using an automatic measurement of mosquito species and populations in the field. The proposed technique could be adapted for establishing a mosquito monitoring and management system, which may contribute to preemptive quarantine and a reduction in the exposure to vector-borne diseases.AbstractMosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne diseases. However, current mosquito identification is mostly conducted manually, which consumes time, wastes labor, and causes human error. In this study, we developed an automatic image analysis method to identify mosquito species using a deep learning-based object detection technique. Color and fluorescence images of live mosquitoes were acquired using a mosquito capture device and were used to develop a deep learning-based object detection model. Among the deep learning-based object identification models, the combination of a swine transformer and a faster region-convolutional neural network model demonstrated the best performance, with a 91.7% F1-score. This indicates that the proposed automatic identification method can be rapidly applied for efficient analysis of species and populations of vector-borne mosquitoes with reduced labor in the field. |
Audience | Academic |
Author | Kim, Hangi Cho, Byoung-Kwan Lee, Sangjun |
AuthorAffiliation | 1 Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; sangjoon10005@naver.com (S.L.); zxcvkhk@gmail.com (H.K.) 2 Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea |
AuthorAffiliation_xml | – name: 1 Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; sangjoon10005@naver.com (S.L.); zxcvkhk@gmail.com (H.K.) – name: 2 Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea |
Author_xml | – sequence: 1 givenname: Sangjun orcidid: 0009-0009-1580-7732 surname: Lee fullname: Lee, Sangjun organization: Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea – sequence: 2 givenname: Hangi surname: Kim fullname: Kim, Hangi organization: Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea – sequence: 3 givenname: Byoung-Kwan orcidid: 0000-0002-8397-9853 surname: Cho fullname: Cho, Byoung-Kwan organization: Department of Smart Agricultural System, Chungnam National University, Daejeon 34134, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37367342$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUk1v1DAQtVARLaVnbigSFy5p_R3nhMrytWIRB8rZGieT1KvE3tpZJP49LluqtrZkW-P33szY7yU5CjEgIa8ZPReipRc-ZOyWzCTVVHH9jJxw2qhaSkWPHpyPyVnOW1qGZpxp84Ici0boRkh-Qq4-Iu6qDUIKPoz1B8jYV-sZRqxWE-TsB9_B4mOohpiq77C9XWO-2fslVj932HnM1Tpcg_NLEai-xYTwijwfYMp4drefkl-fP12tvtabH1_Wq8tN3SneLLVremSgTdM6xxSTYEq1rDemN9K0vdG8ZYyKVnNUzHHTajUY1zjg0oHUWpyS9UG3j7C1u-RnSH9sBG__BWIaLaTFdxNaVygDSgWITBrHwFGunCjKjksj-6L1_qC127sZ-w7DkmB6JPr4JvhrO8bfllHetsqwovDuTiHFmz3mxc4-dzhNEDDus-VGUM4U5bxA3z6BbuM-hfJWBcVbU75UyoI6P6BGKB34MMSSuCuzx9l3xQuDL_HLRhnBSn5VCBcHQpdizgmH-_IZtbeWsU8sUxhvHnZ9j_9vEPEXG9294Q |
CitedBy_id | crossref_primary_10_1186_s12936_024_04952_9 crossref_primary_10_1038_s41598_024_54233_3 crossref_primary_10_1017_S000748532400018X |
Cites_doi | 10.1038/s41598-020-57875-1 10.3390/s22134921 10.2807/1560-7917.ES.2016.21.21.30240 10.3390/s18124169 10.1109/ACCESS.2018.2793306 10.1109/ICPECA51329.2021.9362711 10.1109/5.726791 10.1603/ME11091 10.1016/j.knosys.2019.07.012 10.1109/ICCV.2017.324 10.1109/CVPR.2009.5206848 10.33166/AETiC.2021.03.002 10.1109/CVPR.2017.634 10.1109/CVPR.2016.90 10.1371/journal.pone.0234959 10.1109/CVPR.2017.544 10.1109/ICCV.2015.169 10.1109/CVPR.2014.81 10.1007/978-3-319-46448-0_2 10.1038/s41598-020-69964-2 10.1109/ICCV48922.2021.00986 10.1038/s41598-022-21017-6 10.1038/s41598-021-92891-9 10.1007/978-3-030-58452-8_13 10.21203/rs.3.rs-17939/v1 10.5124/jkma.2017.60.6.468 10.1109/ICCV.2017.593 10.1007/s10393-016-1176-y 10.30833/LTPR.2020.08.8.3.131 10.1109/ISCC.2004.1358414 10.1038/s41598-021-84219-4 10.1109/CVPRW50498.2020.00203 10.5626/KTCP.2021.27.11.503 10.1371/journal.pone.0210829 10.1109/TENCON.2016.7848448 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7SS 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
DOI | 10.3390/insects14060526 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2075-4450 |
ExternalDocumentID | oai_doaj_org_article_b4bafe45aee148b1ab025b32e5b2484d A758318135 10_3390_insects14060526 37367342 |
Genre | Journal Article |
GeographicLocations | South Korea United States--US |
GeographicLocations_xml | – name: South Korea – name: United States--US |
GrantInformation_xml | – fundername: Korea Disease Control and Prevention Agency grantid: N/A – fundername: Korea Disease Control and Prevention Agency (KDCA) grantid: 1776000136 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH ABDBF AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BBNVY BENPR BHPHI CCPQU EAD EAP EPL ESX GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M0K M48 M7P MODMG M~E NPM OK1 PATMY PGMZT PIMPY PROAC PYCSY RIG RPM TUS AAYXX CITATION 3V. 7SS 8FK ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c527t-b7de1a6879bb1514a84501d88d8489d86291103962e51b28965f8b7ba24ba4663 |
IEDL.DBID | RPM |
ISSN | 2075-4450 |
IngestDate | Tue Oct 22 15:16:01 EDT 2024 Tue Sep 17 21:30:03 EDT 2024 Fri Oct 25 07:07:57 EDT 2024 Thu Oct 10 18:03:53 EDT 2024 Tue Nov 12 23:58:05 EST 2024 Wed Oct 23 14:17:32 EDT 2024 Sat Sep 28 08:13:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | deep learning image identification artificial intelligence mosquito |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-b7de1a6879bb1514a84501d88d8489d86291103962e51b28965f8b7ba24ba4663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8397-9853 0009-0009-1580-7732 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299581/ |
PMID | 37367342 |
PQID | 2829814044 |
PQPubID | 2032383 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b4bafe45aee148b1ab025b32e5b2484d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299581 proquest_miscellaneous_2830215022 proquest_journals_2829814044 gale_infotracacademiconefile_A758318135 crossref_primary_10_3390_insects14060526 pubmed_primary_37367342 |
PublicationCentury | 2000 |
PublicationDate | 20230605 |
PublicationDateYYYYMMDD | 2023-06-05 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230605 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Insects (Basel, Switzerland) |
PublicationTitleAlternate | Insects |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Moon (ref_37) 2010; 12 ref_57 ref_12 ref_56 ref_11 ref_55 ref_10 ref_53 ref_52 ref_51 ref_19 ref_18 Bhargavi (ref_13) 2020; 2 ref_25 ref_23 Tram (ref_33) 2018; 6 Kim (ref_4) 2011; 48 ref_29 ref_28 ref_27 Park (ref_16) 2018; 20 ref_26 Lee (ref_5) 2001; 31 Goodwin (ref_20) 2021; 11 Succo (ref_15) 2016; 21 Park (ref_54) 2020; 10 Nakano (ref_22) 2020; 189 ref_36 ref_35 ref_34 ref_32 ref_31 Park (ref_17) 2021; 27 ref_30 ref_39 ref_38 Zhao (ref_58) 2022; 12 Cotar (ref_6) 2016; 13 Siddiqua (ref_21) 2021; 5 Yeom (ref_14) 2017; 60 Kim (ref_7) 2020; 8 LeCun (ref_42) 1998; 86 ref_47 ref_46 ref_45 ref_44 ref_43 ref_41 ref_40 ref_1 ref_3 ref_2 Minakshi (ref_60) 2020; 10 ref_49 ref_48 ref_9 ref_8 Na (ref_24) 2020; 48 Kittichai (ref_59) 2021; 11 |
References_xml | – volume: 2 start-page: 1 year: 2020 ident: ref_13 article-title: Global outbreaks of zika infection by epidemic observatory (EpiWATCH), 2016–2019 publication-title: Glob. Biosecur. contributor: fullname: Bhargavi – ident: ref_9 – ident: ref_32 – volume: 10 start-page: 1012 year: 2020 ident: ref_54 article-title: Classification and morphological analysis of vector mosquitoes using deep convolutional neural networks publication-title: Sci. Rep. doi: 10.1038/s41598-020-57875-1 contributor: fullname: Park – ident: ref_26 – ident: ref_3 doi: 10.3390/s22134921 – volume: 21 start-page: 30240 year: 2016 ident: ref_15 article-title: Autochthonous dengue outbreak in Nîmes, south of France, July to September 2015 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2016.21.21.30240 contributor: fullname: Succo – ident: ref_39 – ident: ref_25 doi: 10.3390/s18124169 – volume: 6 start-page: 4521 year: 2018 ident: ref_33 article-title: Vehicle-to-vehicle distance estimation using a low-resolution camera based on visible light communications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2793306 contributor: fullname: Tram – ident: ref_28 doi: 10.1109/ICPECA51329.2021.9362711 – volume: 86 start-page: 2278 year: 1998 ident: ref_42 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 contributor: fullname: LeCun – ident: ref_1 – volume: 48 start-page: 1250 year: 2011 ident: ref_4 article-title: Japanese encephalitis virus in culicine mosquitoes (Diptera: Culicidae) collected at Daeseongdong, a village in the demilitarized zone of the Republic of Korea publication-title: J. Med. Entomol. doi: 10.1603/ME11091 contributor: fullname: Kim – volume: 189 start-page: 104841 year: 2020 ident: ref_22 article-title: Aedes mosquito detection in its larval stage using deep neural networks publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.07.012 contributor: fullname: Nakano – ident: ref_35 – ident: ref_31 doi: 10.1109/ICCV.2017.324 – ident: ref_49 doi: 10.1109/CVPR.2009.5206848 – volume: 5 start-page: 11 year: 2021 ident: ref_21 article-title: A deep learning-based dengue mosquito detection method using faster R-CNN and image processing techniques publication-title: Ann. Emerg. Technol. Comput. doi: 10.33166/AETiC.2021.03.002 contributor: fullname: Siddiqua – ident: ref_30 doi: 10.1109/CVPR.2017.634 – ident: ref_52 doi: 10.1109/CVPR.2016.90 – ident: ref_8 – ident: ref_57 doi: 10.1371/journal.pone.0234959 – ident: ref_51 doi: 10.1109/CVPR.2017.544 – ident: ref_10 – ident: ref_41 – ident: ref_46 doi: 10.1109/ICCV.2015.169 – ident: ref_45 doi: 10.1109/CVPR.2014.81 – ident: ref_44 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_38 – volume: 10 start-page: 13059 year: 2020 ident: ref_60 article-title: A framework based on deep neural networks to extract anatomy of mosquitoes from images publication-title: Sci. Rep. doi: 10.1038/s41598-020-69964-2 contributor: fullname: Minakshi – volume: 31 start-page: 183 year: 2001 ident: ref_5 article-title: Seasonal prevalence of mosquitoes and weather factors influencing population size of anopheles sinensis (Diptera, culicidae) in Busan, Korea publication-title: Korea J. Entomol. contributor: fullname: Lee – ident: ref_27 doi: 10.1109/ICCV48922.2021.00986 – volume: 12 start-page: 25 year: 2010 ident: ref_37 article-title: Depth of Field and Magnification publication-title: Imaging Technol. Res. contributor: fullname: Moon – volume: 12 start-page: 18664 year: 2022 ident: ref_58 article-title: A Swin Transformer-based model for mosquito species identification publication-title: Sci. Rep. doi: 10.1038/s41598-022-21017-6 contributor: fullname: Zhao – volume: 11 start-page: 13656 year: 2021 ident: ref_20 article-title: Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection publication-title: Sci. Rep. doi: 10.1038/s41598-021-92891-9 contributor: fullname: Goodwin – volume: 20 start-page: 17 year: 2018 ident: ref_16 article-title: INFORMATION—Metropolitan Meteorological Administration predicts mosquitoes like the weather publication-title: Disaster Prev. Rev. contributor: fullname: Park – ident: ref_34 – ident: ref_47 – ident: ref_11 – ident: ref_29 doi: 10.1007/978-3-030-58452-8_13 – ident: ref_40 – ident: ref_56 doi: 10.21203/rs.3.rs-17939/v1 – volume: 60 start-page: 468 year: 2017 ident: ref_14 article-title: Current status and outlook of mosquito-borne diseases in Korea publication-title: J. Korean Med. Assoc. doi: 10.5124/jkma.2017.60.6.468 contributor: fullname: Yeom – ident: ref_18 – ident: ref_53 doi: 10.1109/ICCV.2017.593 – volume: 13 start-page: 796 year: 2016 ident: ref_6 article-title: Transmission dynamics of the West Nile virus in mosquito vector populations under the influence of weather factors in the Danube Delta, Romania publication-title: EcoHealth doi: 10.1007/s10393-016-1176-y contributor: fullname: Cotar – ident: ref_50 – ident: ref_2 – volume: 8 start-page: 131 year: 2020 ident: ref_7 article-title: A study on the possibility and risk of dengue fever inKorea due to climate change and the main contents andimprovement measures of the ⌈Infectious DiseaseControl and Prevention Act⌋ publication-title: Leg. Theory Pract. Rev. doi: 10.30833/LTPR.2020.08.8.3.131 contributor: fullname: Kim – ident: ref_36 doi: 10.1109/ISCC.2004.1358414 – ident: ref_12 – volume: 11 start-page: 4838 year: 2021 ident: ref_59 article-title: Deep learning approaches for challenging species and gender identification of mosquito vectors publication-title: Sci. Rep. doi: 10.1038/s41598-021-84219-4 contributor: fullname: Kittichai – ident: ref_48 doi: 10.1109/CVPRW50498.2020.00203 – volume: 27 start-page: 503 year: 2021 ident: ref_17 article-title: Classification of Wild Vector Mosquito Species Using Convolutional Neural Networks publication-title: KIISE Trans. Comput. Pract. doi: 10.5626/KTCP.2021.27.11.503 contributor: fullname: Park – ident: ref_19 – ident: ref_43 – volume: 48 start-page: 581 year: 2020 ident: ref_24 article-title: A construction of web application platform for detection and identification of various diseases in tomato plants using a deep learning algorithm publication-title: J. Korean Soc. Qual. Manag. contributor: fullname: Na – ident: ref_55 doi: 10.1371/journal.pone.0210829 – ident: ref_23 doi: 10.1109/TENCON.2016.7848448 |
SSID | ssj0000612168 |
Score | 2.3393497 |
Snippet | Mosquitoes are one of the deadliest insects, causing harm to humans worldwide. Preemptive prevention and forecasting are important to prevent mosquito-borne... Conventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal timing for... Simple SummaryConventional manual counting methods for the monitoring of mosquito species and populations can hinder the accurate determination of the optimal... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 526 |
SubjectTerms | Accuracy artificial intelligence Artificial neural networks Biological monitoring Biological research Biology, Experimental Cameras Classification Color Counting methods Culicidae Deep learning Dengue fever Embedded systems Encephalitis Error analysis Fluorescence Human error Identification and classification Identification methods Image acquisition Image analysis Image classification Image enhancement image identification Image processing Imaging systems Imaging systems in biology Infections Infectious diseases Insects Labor Machine learning Malaria Methods Monitoring mosquito Mosquitoes Neural networks Object recognition Pest control Populations Preempting Species Tropical diseases Vector-borne diseases Vectors (Biology) West Nile virus Zika virus |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VSJV6QVDaEqDIlZDaS8Q6tmPnCKUIiugJJNSLZSc2HxIJsLv_nxknrDbl0AuXHNbRypnZmXlvPXkDsMeLqCOWpTyKWuVS8Tp3WHnyqq5ljDrUOtLLyed_ypNL-ftKXS2N-qKesF4euDfcvpfexSCVCwGRu-fOY5X2ogjKF9LIJmXfSbVEpvoczAteml7LRyCv379tp9QegXyiJImTURlKav2vc_JSURo3TC5VoOM1WB2gIzvot7wO70L7Ed7_7dIf4xtwcRTCAxv0Uq_zQyxPDTu9x3zB0uRL6glKbmCIU9m5u6NrN32cY0yzNIY-TNlpS8Ld1ArNzjrEk5_g8vjXxc-TfJiZkNeq0LPc6yZwVxpdeY_FXDoj1YQ3xjRGmqpB_oLZbSKqEg3IPbKtUkXjtXcF2lki_PgMK23Xhk1glQzB4Jc1CikVshAz0TFE571UhdexyeDHiwntQy-NYZFSkLXtP9bO4JBMvLiNNK3TB-hpO3ja_s_TGXwnB1mKPPRC7YYXCHC3pGFlD5D6YIbiQmWw8-JDO4Tk1NKRMcl7SZnBt8UyBhOdkLg2dHO6RxAGQlyTwZfe5Ys9Cy1KLSSumNGPYfRQ45X29iYJdiOIqypl-NZbmGEbPtDI-9SupnZgZfY0D18RGM38boqBZ5vMDZM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA56RfBF_O3WKhEEfQm9bJJN9kl62tIqLSItFF9Cspu0Fdy9du_-_87kcmdXwZd7uIS72Uxm5ptk9htC3vMy6ghhiUXRKCYVb5iDyMPqppEx6tDoiC8nH59Uh2fy67k6zwduQy6rXPvE5KjbvsEz8l288UN2Jik_za8Zdo3C29XcQuM-2SphbDohW7P9k-8_NqcsGMB5ZVacPgLy-92rbsAyCZhdIdXJKBwl1v5_ffOd4DQunLwTiQ4ek0cZQtK9lc6fkHuhe0oe_OzTAfkzcvolhDnNvKkXbAZhqqVHv8Fv0NQBE2uDkjoo4FV67H7hZz9cL8G2aWpHHwZ61CGBN5ZE02894Mrn5Oxg__TzIcu9E1ijSr1gXreBu8ro2nsI6tIZqaa8NaY10tQt5DHg5aairsqguIesq1LReO1dKb2TAENekEnXd-EVobUMwcCPtQpSK8hGzFTHEJ33UpVex7YgH9dLaOcrigwLqQWutv1rtQsywyXeTENu6_RFf3Nhs6lYDxLEIJULAXI1z50HXOYFCOpLaST83wdUkEULBC00Lr9IANIil5XdgxQIPBUXqiA7ax3abJqD_bORCvJuMwxGhTclrgv9EucIxEKAbwrycqXyjcxCi0oLCSNmtBlGDzUe6a4uE3E3gLm6VoZv_1-u1-QhNrVPBWlqh0wWN8vwBqDPwr_N-_sWeQEFYQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgCIkLonwGWmQkJLgY1sk4dg4ItZSqBZVTV6q4WHZilyJI2v2Q4N8z42SXhvbAZQ_rKOudGXveS8ZvGHsp86gjpiURi1oJULIWDjOPqOoaYtSh1pEOJx99KQ-m8OlEnfxtBzQYcH4ttaN-UtPZjze_Ln6_xwX_jhgnUva3Z-2cKh-QKpSkXnKT3coBaTrV8Q1Yv9-WZS7T0bgc06QAUJNe6ue6e4yyVBLzv7plX8pZ43rKSwlq_x67OyBLvtOHwia7Edr77PbXLj03f8CO90I454Oc6qnYxezV8MOfuJ3w1BiTSoaSlzjCWH7kvtNnN79Y4pLnqUt9mPPDlnS9qVKaf-4Qbj5k0_2Pxx8OxNBSQdQq1wvhdROkK42uvMdcD86gGWRjTGPAVA3SG9z8JkVV5kFJj2SsVNF47V0O3gGik0dso-3a8ITxCkIweLNGIeNCkmImOobovAeVex2bjL1emdCe98oZFhkHWdv-Y-2M7ZKJ15eR5HX6opud2mEFWY8ziAGUCwEpnJfOI1zzBU7U52AAf-8VOchSqKAXajecL8DZksSV3UFmhBuYLFTGtlY-tKuAs_RGmdS_ADL2Yj2Ma41eoLg2dEu6piCIhLAnY497l6_nXOii1AXgiBkFw-hPjUfas29JzxsxXlUpI5_-v8WesTvU9z7VrKkttrGYLcM2oqOFf56i_g8aQA3I priority: 102 providerName: Scholars Portal |
Title | Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37367342 https://www.proquest.com/docview/2829814044 https://search.proquest.com/docview/2830215022 https://pubmed.ncbi.nlm.nih.gov/PMC10299581 https://doaj.org/article/b4bafe45aee148b1ab025b32e5b2484d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_ahkC7IL4XGJWRkOCStU7s2DmuY9MG6jShTZq4RHZijyKadGv7__Oek1Qt3LjkkM8Xv89f8vwzwEeeeOUxLcU-LWUsJC9jg5knzstSeK9cqTxNTp5cZuc34uutvN2BrJ8LE5r2Szs9qn_Pjurpz9BbOZ-Vw75PbHg1OcGkmOdS8-Eu7KKFbmD0Nv7yhGe65fFJEdMPp_WCWiMQS2REb7IPT1KVZioVyVY2CqT9_4bmjdy03Te5kYjOnsHTroJkx62kz2HH1S_g8Y8mfB9_CddfnJuzjjb1Lh5jlqrYxQzDBgsLYFJrUNAGw3KVTcwv2jaL-xW6Ngur0bsFu6iJv5s6otm3BsvKV3Bzdnp9ch53SyfEpUzUMraqctxkWuXWYk4XRgs54pXWlRY6rxDGYJAbpXmWOMktgq5Mem2VNYmwRmAV8hr26qZ2B8By4ZzGm1USkRWCET1S3nljrZCJVb6K4HM_hMW8ZcgoEFnQwBd_DXwEYxri9WlEbR12NA93RafgwqIE3glpnEOoZrmxWJbZFAW1idACn_eJFFSQA6IWStPNI0BpicqqOEYEhIGKpzKCw16HReeZi4L-HBPLlxARfFgfRp-iHyWmds2KzkmpFMLyJoI3rcrXMveWE4HeMoatl9o-gmYceLt7s337_5e-g31a7z70qslD2Fs-rNx7rIqWdgCPxqeXV98H4asCbidCD4Jj_AHICxDO |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,21400,24330,27936,27937,33756,33757,43817,53804,53806,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2IviO8FNjASErxYaxI7dp7QOja1bK0Q6qSJF8tO7LFJS7ql_f-5c92ygMRLHuooufp8Hz_78jtCPqaZlx7CEvN5JRgXacUMRB5WVhX3XrpKevw4eTItRuf824W4iBtuXSyrXPvE4KjrtsI98gM88UN2Js6_zG8Zdo3C09XYQuMh2UaqKgBf28Pj6fcfm10WDOBpoVacPjng-4OrpsMyCXhSgVQnvXAUWPv_9c33glO_cPJeJDp5Sp7EFJIernT-jDxwzXPy6GcbNshfkNlX5-Y08qZesiGEqZqOb8Bv0NABE2uDgjoo5Kt0Yq7x2na3S7BtGtrRu46OGyTwxpJoetpCXvmSnJ8cz45GLPZOYJXI5IJZWbvUFEqW1kJQ50ZxMUhrpWrFVVkDjgEvN8jLInMitYC6CuGVldZk3BoOacgrstW0jdsltOTOKXhYLQBaARpRA-mdN9ZykVnp64R8Xk-hnq8oMjRAC5xt_ddsJ2SIU7y5Dbmtww_t3aWOpqItSOAdF8Y5wGo2NRbyMpuDoDbjisP7PqGCNFogaKEy8UMCkBa5rPQhQCDwVGkuErK31qGOptnpPwspIR82w2BUeFJiGtcu8Z4ccyHIbxLyeqXyjcy5zAuZcxhRvcXQ-1P9kebqVyDuhmSuLIVK3_xfrvfk8Wg2OdNn4-npW7KDDe5DcZrYI1uLu6XbhzRoYd_Ftf4bCDUIWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5BJxAviJ8jMMBISPAStYnt2HlCK1u1MlZNaJMmXiw7sceQSLql_f-5S92ygsRLHuooufp8d9_Zl-8A3md5UAHDUhp4JVMhsyq1GHnSsqpECMpXKtDHySez4uhcfLmQF7H-qYtllWuf2Dvquq1oj3xIJ37EziTEMMSyiNODyaf5dUodpOikNbbTuAs7ShR8NICd8eHs9Ntmx4WCeVboFb8Px1x_eNV0VDKBTy2I9mQrNPUM_v_66VuBaruI8lZUmjyChxFOsv2V_h_DHd88gXvf236z_CmcHXg_Z5FD9TIdY8iq2fQX-hDWd8OkOqFeNQyxKzuxP-nadtdLtHPWt6b3HZs2ROZN5dHsuEWM-QzOJ4dnn4_S2EchrWSuFqlTtc9soVXpHAZ4YbWQo6zWutZClzXmNOjxRrwsci8zhxlYIYN2ytlcOCsQkjyHQdM2_gWwUniv8WG1xDQLMxM9UsEH65yQuVOhTuDjegrNfEWXYTDNoNk2f812AmOa4s1txHPd_9DeXJpoNsahBMELab3HvM1l1iFGcxwFdbnQAt_3gRRkyBpRC5WNHxWgtMRrZfYxHUKvlXGZwN5ahyaaaWf-LKoE3m2G0cDo1MQ2vl3SPZxwEWKdBHZXKt_IzBUvFBc4orcWw9af2h5prn70JN4I7MpS6uzl_-V6C_dxmZuv09nxK3hAve77OjW5B4PFzdK_RkS0cG_iUv8NRq4MiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Image+Classification+for+Major+Mosquito+Species+Inhabiting+Korea&rft.jtitle=Insects+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Sangjun&rft.au=Kim%2C+Hangi&rft.au=Cho%2C+Byoung-Kwan&rft.date=2023-06-05&rft.issn=2075-4450&rft.eissn=2075-4450&rft.volume=14&rft.issue=6&rft.spage=526&rft_id=info:doi/10.3390%2Finsects14060526&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_insects14060526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4450&client=summon |