Diffusion-Weighted Imaging (DWI) derived from PET/MRI for lymph node assessment in patients with Head and Neck Squamous Cell Carcinoma (HNSCC)

To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor. Retrospective study of 90 lymph nodes from 90 sub...

Full description

Saved in:
Bibliographic Details
Published inCancer imaging Vol. 20; no. 1; pp. 56 - 12
Main Authors Freihat, Omar, Pinter, Tamas, Kedves, András, Sipos, Dávid, Cselik, Zsolt, Repa, Imre, Kovács, Árpád
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 08.08.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor. Retrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm ). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization. ADCmean value of the metastatic lymph nodes in the overall sample (0.899 ± 0.98*10  mm /sec) was significantly lower than the normal lymph nodes' ADCmean value (1.267 ± 0.88*10  mm /sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 ± 0.75*10  mm /sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 ± 0.72*10  mm /sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 ± 0.89*10  mm /sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05). DWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes. The trial is registered in clinical trials under ID: NCT04360993 , registration date: 17/04/2020.
AbstractList Abstract Background To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor. Methods Retrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone 18F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm2). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization. Results ADCmean value of the metastatic lymph nodes in the overall sample (0.899 ± 0.98*10− 3 mm2/sec) was significantly lower than the normal lymph nodes’ ADCmean value (1.267 ± 0.88*10− 3 mm2/sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 ± 0.75*10− 3 mm2/sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 ± 0.72*10− 3 mm2/sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 ± 0.89*10− 3 mm2/sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05). Conclusion DWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes. Trial registration The trial is registered in clinical trials under ID: NCT04360993 , registration date: 17/04/2020.
Background To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor. Methods Retrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone 18F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm2). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization. Results ADCmean value of the metastatic lymph nodes in the overall sample (0.899 ± 0.98*10− 3 mm2/sec) was significantly lower than the normal lymph nodes’ ADCmean value (1.267 ± 0.88*10− 3 mm2/sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 ± 0.75*10− 3 mm2/sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 ± 0.72*10− 3 mm2/sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 ± 0.89*10− 3 mm2/sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05). Conclusion DWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes. Trial registration The trial is registered in clinical trials under ID:NCT04360993, registration date: 17/04/2020.
Background To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor. Methods Retrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone .sup.18F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm.sup.2). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization. Results ADCmean value of the metastatic lymph nodes in the overall sample (0.899 [+ or -] 0.98*10.sup.- 3 mm.sup.2/sec) was significantly lower than the normal lymph nodes' ADCmean value (1.267 [+ or -] 0.88*10.sup.- 3 mm.sup.2/sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 [+ or -] 0.75*10.sup.- 3 mm.sup.2/sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 [+ or -] 0.72*10.sup.- 3 mm.sup.2/sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 [+ or -] 0.89*10.sup.- 3 mm.sup.2/sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05). Conclusion DWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes. Trial registration The trial is registered in clinical trials under ID:NCT04360993, registration date: 17/04/2020. Keywords: MRI, DWI, ADC, HNSCC, Metastasis, Benign, Lymph nodes
To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor. Retrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm ). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization. ADCmean value of the metastatic lymph nodes in the overall sample (0.899 ± 0.98*10  mm /sec) was significantly lower than the normal lymph nodes' ADCmean value (1.267 ± 0.88*10  mm /sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 ± 0.75*10  mm /sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 ± 0.72*10  mm /sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 ± 0.89*10  mm /sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05). DWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes. The trial is registered in clinical trials under ID: NCT04360993 , registration date: 17/04/2020.
To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor.BACKGROUNDTo determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation between the metastatic lymph nodes with the grade and the localization of the primary tumor.Retrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone 18F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm2). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization.METHODSRetrospective study of 90 lymph nodes from 90 subjects; 65 patients who had proven histopathological metastatic lymph nodes from (HNSCC) who had undergone 18F- PET/MRI for clinical staging and assessment and twenty-five lymph nodes were chosen from 25 healthy subjects. Apparent Diffusion Coefficient (ADC) map was generated from DWI with b values (0 and 800 s/mm2). ADC values of the metastatic lymph nodes were calculated and compared to the normal lymph nodes ADC values, ROC was used to determine the best cut-off values to differentiate between the two group. Metastatic lymph nodes ADC mean values were compared to primary tumor grade and localization.ADCmean value of the metastatic lymph nodes in the overall sample (0.899 ± 0.98*10- 3 mm2/sec) was significantly lower than the normal lymph nodes' ADCmean value (1.267 ± 0.88*10- 3 mm2/sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 ± 0.75*10- 3 mm2/sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 ± 0.72*10- 3 mm2/sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 ± 0.89*10- 3 mm2/sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05).RESULTSADCmean value of the metastatic lymph nodes in the overall sample (0.899 ± 0.98*10- 3 mm2/sec) was significantly lower than the normal lymph nodes' ADCmean value (1.267 ± 0.88*10- 3 mm2/sec); (P = 0.001). The area under the curve (AUC) was 98.3%, sensitivity and specificity were 92.3 and 98.6%, respectively, when using a threshold value of (1.138 ± 0.75*10- 3 mm2/sec) to differentiate between both groups. Significant difference was found between metastatic lymph nodes (short-axis diameter < 10 mm), ADCmean (0.898 ± 0.72*10- 3 mm2/sec), and the benign lymph nodes ADCmean, (P = 0.001). No significant difference was found between ADCmean of the metastatic lymph nodes < 10 mm and the metastatic lymph nodes > 10 mm, ADCmean (0.899 ± 0.89*10- 3 mm2/sec), (P = 0.967). No significant differences were found between metastatic lymph nodes ADCmean values and different primary tumor grades or different primary tumor localization, (P > 0.05).DWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes.CONCLUSIONDWI-ADC is an effective and efficient imaging technique in differentiating between normal and malignant lymph nodes, and might be helpful to discriminate sub-centimeters lymph nodes.The trial is registered in clinical trials under ID: NCT04360993 , registration date: 17/04/2020.TRIAL REGISTRATIONThe trial is registered in clinical trials under ID: NCT04360993 , registration date: 17/04/2020.
ArticleNumber 56
Audience Academic
Author Cselik, Zsolt
Freihat, Omar
Pinter, Tamas
Sipos, Dávid
Kedves, András
Repa, Imre
Kovács, Árpád
Author_xml – sequence: 1
  givenname: Omar
  surname: Freihat
  fullname: Freihat, Omar
– sequence: 2
  givenname: Tamas
  surname: Pinter
  fullname: Pinter, Tamas
– sequence: 3
  givenname: András
  surname: Kedves
  fullname: Kedves, András
– sequence: 4
  givenname: Dávid
  surname: Sipos
  fullname: Sipos, Dávid
– sequence: 5
  givenname: Zsolt
  surname: Cselik
  fullname: Cselik, Zsolt
– sequence: 6
  givenname: Imre
  surname: Repa
  fullname: Repa, Imre
– sequence: 7
  givenname: Árpád
  orcidid: 0000-0002-8469-5764
  surname: Kovács
  fullname: Kovács, Árpád
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32771060$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAiyQJSQ0XYTaju0kG6QqLcxIpSBa1KXlxCcZl8Se2klpX4JnxtNpUdsFkiVbx__5dC7_brJlnYUkeUvwR0IKcRAYFoylmOIU4yxj6c2LZIewHKd5luGtR-_tZDeES4xpWZT5q2Q7o3lOsMA7yZ8j07ZTMM6mF2C65QgaLQbVGduh2dHFYh9p8OY6RlvvBvT9-Pzg648Fap1H_e2wWiLrNCAVAoQwgB2RsWilRhOfAf024xLNQWmkrEan0PxCZ1eTGtwUUAV9jyrlG2PdoNBsfnpWVfuvk5et6gO8ub_3kp-fj8-reXry7cuiOjxJG07zMa0zAqwEzVrGylpwoVqcYcqZEFxjVbfAW80LxkHUgglOMSlyUjel0AUrmc72ksWGq526lCtvBuVvpVNG3gWc76Tyo2l6kEQ3kUg4FA0wTUTBgfKyqXnNsOZcRdanDWs11QPoJrbuVf8E-vTHmqXs3LXMWVwQpREwuwd4dzVBGOVgQhPnoyzEUUnKsnhIbDVK3z-TXrrJ2ziqtYrTkmQli6oPG1WnYgNLUP24DK6fxrjmIA9FdETOSVZE4bvHpf-r-cEfUVBsBI13IXhoZWNGtebETkwvCZZrK8qNFWW0oryzoryJqfRZ6gP9P0l_AV8A3ys
CitedBy_id crossref_primary_10_1007_s00784_020_03622_9
crossref_primary_10_1186_s40644_021_00432_4
crossref_primary_10_1016_j_oraloncology_2021_105239
crossref_primary_10_37349_etat_2022_00110
crossref_primary_10_1016_j_mric_2023_08_001
crossref_primary_10_1002_hed_27189
crossref_primary_10_1007_s00405_024_08506_2
crossref_primary_10_1177_19714009231224447
crossref_primary_10_1016_j_phro_2024_100653
crossref_primary_10_1016_j_ejrad_2025_112048
crossref_primary_10_3390_jcm14061802
crossref_primary_10_3390_cancers14030847
crossref_primary_10_1007_s11547_023_01750_2
crossref_primary_10_1186_s40644_023_00648_6
crossref_primary_10_3390_app12031473
Cites_doi 10.3174/ajnr.A0743
10.1177/0284185115609365
10.12659/PJR.900633
10.1093/annonc/mdq185
10.1002/jmri.22152
10.2214/AJR.12.9432
10.3322/caac.21387
10.1177/1971400917708582
10.1007/s11547-017-0733-y
10.1002/jmri.24994
10.1016/j.ejrad.2012.11.021
10.1016/j.ejrad.2013.12.008
10.1148/radiol.2511080128
10.1002/nbm.1689
10.1097/RCT.0b013e3182405435
10.1148/radiology.182.3.1535890
10.2217/fon.09.77
10.3389/fonc.2019.01362
10.3390/jcm7060130
10.1002/hed.23845
10.1148/radiology.192.3.8058923
10.1148/radiol.2451061804
10.1007/s00259-012-2248-z
10.1148/radiology.175.3.2188292
10.1016/j.clinimag.2011.05.002
10.3348/kjr.2014.15.6.810
10.1016/j.ejrad.2009.07.039
10.2214/AJR.04.1832
10.2967/jnumed.112.105338
10.1016/j.ejrnm.2012.01.008
10.1007/s10334-010-0226-7
10.1016/j.ejrad.2013.01.025
10.3174/ajnr.A3281
10.2967/jnumed.116.180091
10.1016/j.nic.2018.01.010
10.1002/jmri.25405
10.2214/AJR.09.2522
10.1007/s11547-012-0890-x
10.1007/s00259-016-3307-7
10.1007/s00259-016-3361-1
10.1259/bjr/58331222
10.1007/s00330-005-0133-x
10.1148/radiol.2303030157
10.1007/s00234-008-0487-2
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88C
88E
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
M0S
M0T
M1P
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s40644-020-00334-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1470-7330
EndPage 12
ExternalDocumentID oai_doaj_org_article_1dc0ab15e8ce4d1685e259cb5b40d55a
PMC7414722
A633075138
32771060
10_1186_s40644_020_00334_x
Genre Journal Article
GroupedDBID ---
0R~
1.S
29B
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFO
ACGFS
ACIHN
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
ASPBG
AVWKF
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M0T
M1P
M48
OK1
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
SV3
TR2
UKHRP
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c527t-b31e49ed4f449b656af030254665d0abfe5fd5845e6b6465201871bc96d8494d3
IEDL.DBID M48
ISSN 1470-7330
1740-5025
IngestDate Wed Aug 27 01:25:26 EDT 2025
Thu Aug 21 14:36:17 EDT 2025
Wed Jul 30 11:13:15 EDT 2025
Sat Jul 26 00:11:03 EDT 2025
Thu May 22 21:20:41 EDT 2025
Thu Apr 03 07:03:38 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Tue Jul 01 04:33:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ADC
MRI
HNSCC
Benign
DWI
Metastasis
Lymph nodes
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-b31e49ed4f449b656af030254665d0abfe5fd5845e6b6465201871bc96d8494d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8469-5764
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40644-020-00334-x
PMID 32771060
PQID 2435291394
PQPubID 2040154
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1dc0ab15e8ce4d1685e259cb5b40d55a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7414722
proquest_miscellaneous_2432431449
proquest_journals_2435291394
gale_healthsolutions_A633075138
pubmed_primary_32771060
crossref_citationtrail_10_1186_s40644_020_00334_x
crossref_primary_10_1186_s40644_020_00334_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-08
PublicationDateYYYYMMDD 2020-08-08
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-08
  day: 08
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Cancer imaging
PublicationTitleAlternate Cancer Imaging
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References S Goldsmid (334_CR39) 2016; 516
NHGM Peters (334_CR31) 2010; 31
JR Anderson (334_CR43) 1985
JP Driessen (334_CR34) 2014; 36
AJG Even (334_CR6) 2016; 43
S Balyasnikova (334_CR13) 2012; 2
C Buchbender (334_CR14) 2012; 53
DM Yousem (334_CR8) 1992; 182
M Sumi (334_CR17) 2006; 186
X Wu (334_CR21) 2013; 82
S Chawla (334_CR44) 2013; 200
HK Lim (334_CR48) 2014; 15
A Das (334_CR24) 2017; 82
AAKA Razek (334_CR10) 2014; 83
JH Rasmussen (334_CR5) 2017; 58
AAK Abdel Razek (334_CR16) 2013; 82
X Wu (334_CR22) 2011; 24
S Ahlawat (334_CR37) 2016; 43
JT Johnson (334_CR4) 1990; 175
F Barchetti (334_CR25) 2014; 2014
A Perrone (334_CR38) 2011; 77
MC Lee (334_CR9) 2013; 34
R Siegel (334_CR1) 2017; 67
KSS Bhatia (334_CR32) 2010; 83
J Si (334_CR33) 2014; 43
N Bhatt (334_CR49) 2017; 30
van den Brekel (334_CR11) 1994; 192
L Kanmaz (334_CR23) 2018; 7
A Srinivasan (334_CR50) 2008; 29
AD King (334_CR51) 2007; 245
S Nakamatsu (334_CR52) 2012; 36
A Srinivasan (334_CR41) 2012; 36
334_CR3
V Grégoire (334_CR2) 2010; 21
AAK Abdel Razek (334_CR15) 2018; 28
A Surov (334_CR28) 2020; 9
X Han (334_CR36) 2017; 45
FPA Pereira (334_CR30) 2009; 193
JH Lee (334_CR27) 2018; 39
AAK Abdel Razek (334_CR35) 2013; 118
S Leibfarth (334_CR7) 2016; 43
De Bondt (334_CR47) 2009; 51
AD King (334_CR18) 2004; 230
334_CR42
TF Taha Ali (334_CR19) 2012; 43
M Lombardi (334_CR29) 2017; 122
CM Wendl (334_CR26) 2016; 57
S Chawla (334_CR20) 2009; 5
I Platzek (334_CR12) 2013; 40
M Sumi (334_CR45) 2003; 24
TC Kwee (334_CR40) 2011; 24
V Vandecaveye (334_CR46) 2009; 251
AAK Abdel Razek (334_CR53) 2006; 16
References_xml – volume: 29
  start-page: 40
  issue: 1
  year: 2008
  ident: 334_CR50
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A0743
– volume: 57
  start-page: 939
  issue: 8
  year: 2016
  ident: 334_CR26
  publication-title: Acta Radiol
  doi: 10.1177/0284185115609365
– volume: 82
  start-page: 345
  year: 2017
  ident: 334_CR24
  publication-title: Polish J Radiol
  doi: 10.12659/PJR.900633
– volume: 21
  start-page: 184
  issue: SUPPL. 5
  year: 2010
  ident: 334_CR2
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdq185
– volume: 2
  start-page: 458
  issue: 4
  year: 2012
  ident: 334_CR13
  publication-title: Am J Nucl Med Mol Imaging
– volume: 31
  start-page: 1100
  issue: 5
  year: 2010
  ident: 334_CR31
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22152
– volume: 200
  start-page: 35
  issue: 1
  year: 2013
  ident: 334_CR44
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.12.9432
– volume: 67
  start-page: 7
  issue: 1
  year: 2017
  ident: 334_CR1
  publication-title: Ca Cancer J
  doi: 10.3322/caac.21387
– volume: 30
  start-page: 356
  issue: 4
  year: 2017
  ident: 334_CR49
  publication-title: Neuroradiol J
  doi: 10.1177/1971400917708582
– volume: 122
  start-page: 345
  issue: 5
  year: 2017
  ident: 334_CR29
  publication-title: Radiol Med
  doi: 10.1007/s11547-017-0733-y
– volume: 43
  start-page: 446
  issue: 2
  year: 2016
  ident: 334_CR37
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24994
– volume: 82
  start-page: e158
  issue: 4
  year: 2013
  ident: 334_CR21
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2012.11.021
– volume: 83
  start-page: 537
  issue: 3
  year: 2014
  ident: 334_CR10
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2013.12.008
– volume: 251
  start-page: 134
  issue: 1
  year: 2009
  ident: 334_CR46
  publication-title: Radiology
  doi: 10.1148/radiol.2511080128
– volume: 24
  start-page: 1181
  issue: 10
  year: 2011
  ident: 334_CR22
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1689
– volume: 36
  start-page: 131
  issue: 1
  year: 2012
  ident: 334_CR41
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e3182405435
– volume: 182
  start-page: 753
  issue: 3
  year: 1992
  ident: 334_CR8
  publication-title: Radiology
  doi: 10.1148/radiology.182.3.1535890
– volume: 5
  start-page: 959
  issue: 7
  year: 2009
  ident: 334_CR20
  publication-title: Future Oncol
  doi: 10.2217/fon.09.77
– volume: 9
  start-page: 1
  year: 2020
  ident: 334_CR28
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01362
– volume: 7
  start-page: 130
  issue: 6
  year: 2018
  ident: 334_CR23
  publication-title: J Clin Med
  doi: 10.3390/jcm7060130
– volume: 36
  start-page: 1391
  issue: 10
  year: 2014
  ident: 334_CR34
  publication-title: Head Neck
  doi: 10.1002/hed.23845
– volume: 192
  start-page: 617
  issue: 3
  year: 1994
  ident: 334_CR11
  publication-title: Radiology
  doi: 10.1148/radiology.192.3.8058923
– volume: 24
  start-page: 1627
  issue: 8
  year: 2003
  ident: 334_CR45
  publication-title: Am J Neuroradiol
– volume: 245
  start-page: 806
  issue: 3
  year: 2007
  ident: 334_CR51
  publication-title: Radiology
  doi: 10.1148/radiol.2451061804
– volume: 40
  start-page: 6
  issue: 1
  year: 2013
  ident: 334_CR12
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-012-2248-z
– volume: 39
  start-page: 188
  year: 2018
  ident: 334_CR27
  publication-title: Am J Neuroradiol
– volume: 175
  start-page: 607
  issue: 3
  year: 1990
  ident: 334_CR4
  publication-title: Radiology
  doi: 10.1148/radiology.175.3.2188292
– volume: 36
  start-page: 90
  issue: 2
  year: 2012
  ident: 334_CR52
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2011.05.002
– volume-title: Muir’s textbook of pathology
  year: 1985
  ident: 334_CR43
– volume: 15
  start-page: 810
  issue: 6
  year: 2014
  ident: 334_CR48
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2014.15.6.810
– volume: 77
  start-page: 281
  issue: 2
  year: 2011
  ident: 334_CR38
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.07.039
– volume: 516
  start-page: 1
  year: 2016
  ident: 334_CR39
  publication-title: Trends Issues Crime Crim Justice
– volume: 186
  start-page: 749
  issue: 3
  year: 2006
  ident: 334_CR17
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.04.1832
– volume: 53
  start-page: 928
  issue: 6
  year: 2012
  ident: 334_CR14
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.112.105338
– volume: 2014
  start-page: 532095
  year: 2014
  ident: 334_CR25
  publication-title: Biomed Res Int
– volume: 43
  start-page: 173
  issue: 2
  year: 2012
  ident: 334_CR19
  publication-title: Egypt J Radiol Nucl Med
  doi: 10.1016/j.ejrnm.2012.01.008
– volume: 24
  start-page: 1
  issue: 1
  year: 2011
  ident: 334_CR40
  publication-title: Magn Reson Mater Physics, Biol Med
  doi: 10.1007/s10334-010-0226-7
– volume: 82
  start-page: 982
  issue: 6
  year: 2013
  ident: 334_CR16
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2013.01.025
– ident: 334_CR3
– volume: 34
  start-page: 864
  issue: 4
  year: 2013
  ident: 334_CR9
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3281
– ident: 334_CR42
– volume: 58
  start-page: 69
  issue: 1
  year: 2017
  ident: 334_CR5
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.116.180091
– volume: 28
  start-page: 245
  issue: 2
  year: 2018
  ident: 334_CR15
  publication-title: Neuroimaging Clin N Am
  doi: 10.1016/j.nic.2018.01.010
– volume: 45
  start-page: 722
  issue: 3
  year: 2017
  ident: 334_CR36
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25405
– volume: 193
  start-page: 1030
  issue: 4
  year: 2009
  ident: 334_CR30
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.09.2522
– volume: 118
  start-page: 534
  issue: 4
  year: 2013
  ident: 334_CR35
  publication-title: Radiol Med
  doi: 10.1007/s11547-012-0890-x
– volume: 43
  start-page: 1199
  issue: 7
  year: 2016
  ident: 334_CR7
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-016-3307-7
– volume: 43
  start-page: 1195
  issue: 7
  year: 2016
  ident: 334_CR6
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-016-3361-1
– volume: 83
  start-page: 753
  issue: 993
  year: 2010
  ident: 334_CR32
  publication-title: Br J Radiol
  doi: 10.1259/bjr/58331222
– volume: 16
  start-page: 1468
  issue: 7
  year: 2006
  ident: 334_CR53
  publication-title: Eur Radiol
  doi: 10.1007/s00330-005-0133-x
– volume: 230
  start-page: 720
  issue: 3
  year: 2004
  ident: 334_CR18
  publication-title: Radiology
  doi: 10.1148/radiol.2303030157
– volume: 43
  start-page: 1
  issue: 3
  year: 2014
  ident: 334_CR33
  publication-title: Dentomaxillofacial Radiol
– volume: 51
  start-page: 183
  issue: 3
  year: 2009
  ident: 334_CR47
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0487-2
SSID ssj0029897
Score 2.316037
Snippet To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the correlation...
Background To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes and the...
Abstract Background To determine the usefulness of Diffusion Weighted Imaging (DWI) derived from PET/MRI in discriminating normal from metastatic lymph nodes...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 56
SubjectTerms ADC
Adult
Aged
Benign
Biopsy
Cancer metastasis
Cancer therapies
Care and treatment
Chemotherapy
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Driving while intoxicated
DWI
Female
Head & neck cancer
Head and Neck Neoplasms - diagnostic imaging
Head and Neck Neoplasms - pathology
HNSCC
Humans
Imaging techniques
Lymph Nodes - diagnostic imaging
Lymph Nodes - pathology
Lymphatic Metastasis
Lymphatic system
Magnetic resonance imaging
Male
Medical imaging
Metastasis
Middle Aged
MRI
Multimodal Imaging - methods
Patients
Positron emission
Positron-Emission Tomography - methods
Squamous cell carcinoma
Squamous Cell Carcinoma of Head and Neck - diagnostic imaging
Squamous Cell Carcinoma of Head and Neck - pathology
Studies
Surgery
Tomography
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hHhAXxDeGAoPEoRWyEtu7m91jcVslSIkQbdXeVl7vWo1IHSAJKn-C38zM2rFiIcEFKcrB3sQf82bmzdr7hrF3fKQ9ZpUsTkt0cswYZazxOxaY3rxIFYZNWu88ncnxBf94Ja52Wn3RO2GNPHBz4waJK4eFTYRXpecukUp4ZOylFZYPnRCBGmHO2xZTbamllR5tl8goOVjh4TmPqVSi5mU8vu2loaDW_2dM3klK_RcmdzLQ6QN2v6WOcNSc8kN2x9eP2N1p-3D8Mft1PK-qDc1-xZdhwtM7mNyELkRwcHw5OQSHcPuBW2lNCXw6OR9MP08AWSssfqJRoV46D0Un1QnzGlrZ1RXQfC2MERBQ1A5mvvwCZ982BU0cQO4XC8ipKVG9vCngYDw7y_PDJ-zi9OQ8H8dtu4W4FOloHdss8Vx7xyvOtUWeV1QYAUgvXwqHNqi8qBzyFeGllVyKlPr5JbbU0imuucuesr16WfvnDDzSROQhQ-2rhFdKWeQJ-I-FzfAg1icRS7Z335StFjm1xFiYUJMoaRqLGbSYCRYztxF73_3ma6PE8dfRH8io3UhS0Q4bEFumxZb5F7Yi9oYgYZolqV0sMEcyw9AokkxFbH-LFtM6_8qkSEFTklvlEXvb7Ua3pWcxRe3RMjQGP1jN6og9a8DVnWuWjpD3yWHERj3Y9S6mv6eeXwdpcOSHpP754n9c_Ut2Lw0eQxLm-2xv_X3jXyEDW9vXwdl-AzgxKp4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXxPcCA4zEwyYUNR-24zyhkW1qkVohtml9s-KPQEWXbGuLxj_B38ydk2arkCZVeUicxsmd7353tn9HyEeW5Q68ShomBgY5eAwT5nAMObg3xxMJZhP3O48nYnjKvk75tEu4LbpllWub6A21bQzmyAcJ-PUEOSzZ54vLEKtG4exqV0LjPnmA1GW4pCub3gRcuWyLq2QsgocnfL1pRorBAjrEWIjBE5YzY-H1hmPy_P3_W-lbbmpzCeUtn3T0hDzuwCTdb6X_lNxz9TPycNxNlz8nfw9mVbXCfFh45lOgztLRua9LRHcPzkZ71IIC_oazuMuEfjs8GYy_jyjgWDr_A2KmdWMdLXvyTjqraUfEuqCYwaVDUBFa1pZOnPlFjy9XJaYSaOHmc1pgmaK6OS_p7nByXBR7L8jp0eFJMQy7Agyh4Um2DHUaO5Y7yyrGcg3Ir6zAJiCDvuA2KnXleGUBwXAntGCCJ1jhL9YmF1aynNn0Jdmqm9ptE-oAOAIyiXJXxaySUgNygH8sdQoP0S4OSLz--sp07ORYJGOufJQihWolpkBiyktMXQfkU3_PRcvNcWfrLyjUviXyavsTzdUP1Q1TFVsD7xVzJ41jNhaSO4gPjeaaRZbzMiDvUSVUu0m1tw5qX6RgLHmcyoDsrLVFdeZgoW6UNyAf-sswkHF2pqwdSAbbwA_i2zwgr1rl6vuaJhkgQREFJNtQu42X2bxSz356snBAjMgH-vrubr0hjxI_FpCufIdsLa9W7i2graV-54fUP4KNIzU
  priority: 102
  providerName: ProQuest
Title Diffusion-Weighted Imaging (DWI) derived from PET/MRI for lymph node assessment in patients with Head and Neck Squamous Cell Carcinoma (HNSCC)
URI https://www.ncbi.nlm.nih.gov/pubmed/32771060
https://www.proquest.com/docview/2435291394
https://www.proquest.com/docview/2432431449
https://pubmed.ncbi.nlm.nih.gov/PMC7414722
https://doaj.org/article/1dc0ab15e8ce4d1685e259cb5b40d55a
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTUK8IL4JjGIkHjahsCaxneQBoa1raZFaTduq9c2KYwcqupT1A23_BH8zd24arWJCSFEeEsf5uDvf787x7wDe8zi16FUiP8zRyNFj5H6Ke1-ge7MiTHDYpPXO_YHsDvnXkRhtwbrcUfUB53eGdlRPajibfLy-uvmMBv_JGXwiD-bYOec-BUJUmoz7iCl30DPFZKh9Xs8qENm4K7bC46YfYyC_XkRzZx8bjsrx-f89at9yW5u_VN7yUZ1H8LACl-xwpQ2PYcuWT-B-v5o-fwq_j8dFsaT8mH_hUqLWsN6lq1PE9o4vevvMoEL-wqO06oSdtM8P-qc9hriWTW5Q7KycGsuymsyTjUtWEbPOGWV0WRdVhmWlYQOb_2BnV8uMUgusZScT1qKyReX0MmN73cFZq7X_DIad9nmr61cFGfxchPHC11FgeWoNLzhPNSLBrMAxghj1pTDNTBdWFAYRjbBSSy5FSBX_Ap2n0iQ85SZ6DtvltLQvgVkEkohUmqktAl4kiUZ5YY-ZjvAm2gYeBOuvr_KKrZyKZkyUi1oSqVYSUygx5SSmrj34UF_zc8XV8c_WRyTUuiXxbLsD09k3VZmtCkyO7xUIm-SWm0AmwmK8mGuhedMIkXnwllRCrRat1qOFOpSoXrEIosSD3bW2qLV2qxBBakiErNyDd_VpNGyarclKi5KhNrhhvJt68GKlXPWzRmGMyFA2PYg31G7jZTbPlOPvjjwcESTxg776j_u-hgehMwjiMN-F7cVsad8gBFvoBtyLRzHuk86XBuwctQcnpw2Xzmg4i_sDye4s9w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkIAXxJ3AYEYCaROKmji2kzwgNNpNLVsrxDqtbyaOna2iS7e1he1P8FP4jZyT21Yh7W1S1YfETeOc71wdf4eQ9zyMLXiVwGUpKDl4jNSN4dsV4N6sYBGYTdzv3B_I7gH_OhKjFfK33guDr1XWNrEw1GaaYo28xcCvM-Sw5J9Pz1zsGoWrq3ULjRIWu_byN6Rss0-9Dsj3A2M728N21626CripYOHc1YFveWwNzziPNYQzSQZAR1p4KYyX6MyKzIBbFlZqyaVg2LbO12ksTcRjbgK47h1yFxyvhxoVjq4SvDgqm7mE3IPJMlFv0olkawYPgHMXkzVsn8bdiyVHWPQL-N8rXHOLy69sXvOBO4_Iwyp4pVsl2h6TFZs_Iff61fL8U_KnM86yBdbf3MOi5GoN7Z0UfZDoRuewt0kNAP4XHMVdLfTb9rDV_96jEDfTySXAiuZTY2nSkIXScU4r4tcZxYox7QIkaZIbOrDpT7p_tkiwdEHbdjKhbWyLlE9PErrRHey325vPyMGtiOY5Wc2nuX1JqIVAFSIhL7aZz7Mo0hCpwBUTHcCfaOs7xK-fvkorNnRsyjFRRVYUSVVKTIHEVCExdeGQj81vTksukBtHf0GhNiORx7s4MD0_UpVZUL5JYV6-sFFqufFlJCzko6kWmntGiMQh6wgJVW6KbayR2pIBGGfhB5FD1mq0qMr8zNSVsjjkXXMaDAeuBiW5BcngGPhAPh075EUJruZeAxZC5Ck9h4RLsFuazPKZfHxckJNDhIr8o69uvq11cr877O-pvd5g9zV5wAq9QKr0NbI6P1_YNxDpzfXbQr0o-XHb-vwP94Ve2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion-Weighted+Imaging+%28DWI%29+derived+from+PET%2FMRI+for+lymph+node+assessment+in+patients+with+Head+and+Neck+Squamous+Cell+Carcinoma+%28HNSCC%29&rft.jtitle=Cancer+imaging&rft.au=Freihat%2C+Omar&rft.au=Pinter%2C+Tamas&rft.au=Kedves%2C+Andr%C3%A1s&rft.au=Sipos%2C+D%C3%A1vid&rft.date=2020-08-08&rft.issn=1470-7330&rft.eissn=1470-7330&rft.volume=20&rft.issue=1&rft.spage=56&rft_id=info:doi/10.1186%2Fs40644-020-00334-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-7330&client=summon