3D-CNN based discrimination of schizophrenia using resting-state fMRI
•Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we have used 3D convolutional neural networks architectures.•We achieve very high diagnostic accuracy with an area under the curve of 0.9982 and ac...
Saved in:
Published in | Artificial intelligence in medicine Vol. 98; pp. 10 - 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0933-3657 1873-2860 1873-2860 |
DOI | 10.1016/j.artmed.2019.06.003 |
Cover
Loading…
Abstract | •Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we have used 3D convolutional neural networks architectures.•We achieve very high diagnostic accuracy with an area under the curve of 0.9982 and accuracy of 98.09% (p < 0.001).•With this accuracy this research may be translated into an excellent tool to assist clinicians.•3D ICA based functional connectivity networks were used as the input features of the classifier.
This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features.
We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study.
Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia. |
---|---|
AbstractList | This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features.
We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study.
Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia. •Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we have used 3D convolutional neural networks architectures.•We achieve very high diagnostic accuracy with an area under the curve of 0.9982 and accuracy of 98.09% (p < 0.001).•With this accuracy this research may be translated into an excellent tool to assist clinicians.•3D ICA based functional connectivity networks were used as the input features of the classifier. This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features. We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study. Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia. This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features.MOTIVATIONThis study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features.We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study.RESULTSWe achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study.Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia.CONCLUSIONDue to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia. |
Author | Qureshi, Muhammad Naveed Iqbal Lee, Boreom Oh, Jooyoung |
Author_xml | – sequence: 1 givenname: Muhammad Naveed Iqbal surname: Qureshi fullname: Qureshi, Muhammad Naveed Iqbal organization: Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada – sequence: 2 givenname: Jooyoung surname: Oh fullname: Oh, Jooyoung organization: Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea – sequence: 3 givenname: Boreom surname: Lee fullname: Lee, Boreom email: leebr@gist.ac.kr organization: Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 61005, Gwangju, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31521248$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFu1DAURS3Uik4Lf4BQlmySPtuxHSOEVA2FVmqLhLq3HOeFesg4g-1BKl-Py7RddDOrtzn36r5zTA7CHJCQdxQaClSerhob8xqHhgHVDcgGgL8iC9opXrNOwgFZgOa85lKoI3Kc0goAVEvla3LEqWCUtd2CnPMv9fLmpuptwqEafHLRr32w2c-hmscquTv_d97cRQzeVtvkw88qYsrl1inbjNV4_ePyDTkc7ZTw7eM9Ibdfz2-XF_XV92-Xy7Or2gmmcm2dsH2LuhOOI1JgnUM9OFRUMVSjg7YXVHUI0vVMcE47JqnutWBOaC75Cfmwq93E-fe2rDDrMhinyQact8kwpkErpTso6PtHdNsXSWZT3rLx3jx9XoB2B7g4pxRxfEYomAfBZmV2gs2DYAPSFMEl9vFFzPn831aO1k_7wp93YSyO_niMJjmPweHgI7pshtnvK_j0osBNPnhnp194vz_-D6zdq8M |
CitedBy_id | crossref_primary_10_1007_s00335_024_10034_7 crossref_primary_10_2147_NDT_S304434 crossref_primary_10_1016_j_cmpb_2019_105073 crossref_primary_10_1016_j_cmpb_2020_105726 crossref_primary_10_1016_j_neunet_2023_11_004 crossref_primary_10_3389_fnins_2021_785595 crossref_primary_10_3390_brainsci11060735 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1093_schbul_sbae069 crossref_primary_10_1002_mp_15545 crossref_primary_10_1177_15500594241253910 crossref_primary_10_3389_fnhum_2023_1256415 crossref_primary_10_1016_j_brainresbull_2023_110846 crossref_primary_10_1016_j_bspc_2021_103015 crossref_primary_10_1002_brx2_29 crossref_primary_10_3390_brainsci14080810 crossref_primary_10_1007_s10844_021_00653_w crossref_primary_10_1109_ACCESS_2020_2983317 crossref_primary_10_1155_2020_8889008 crossref_primary_10_1063_5_0011697 crossref_primary_10_1186_s44147_023_00236_2 crossref_primary_10_1088_1361_6579_acb24d crossref_primary_10_1007_s11042_020_09122_y crossref_primary_10_3390_diagnostics11081402 crossref_primary_10_1007_s12028_022_01525_z crossref_primary_10_1002_hbm_26077 crossref_primary_10_1177_02841851231218384 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_1016_j_ijmedinf_2021_104576 crossref_primary_10_3390_diagnostics14232698 crossref_primary_10_24906_isc_2023_v37_i5_44895 crossref_primary_10_1007_s11277_024_11464_x crossref_primary_10_3389_fpsyt_2020_542394 crossref_primary_10_1177_15500594221122699 crossref_primary_10_1093_bioinformatics_btaa094 crossref_primary_10_1007_s11042_022_12565_0 crossref_primary_10_1016_j_aej_2024_04_023 crossref_primary_10_1080_03772063_2025_2469644 crossref_primary_10_3389_fpsyt_2022_1075564 crossref_primary_10_3389_fnins_2024_1333712 crossref_primary_10_1016_j_ajp_2023_103705 crossref_primary_10_1142_S0219691320500885 crossref_primary_10_1002_hbm_26783 crossref_primary_10_1093_pcmedi_pbaa029 crossref_primary_10_1007_s12021_022_09603_5 crossref_primary_10_3390_brainsci14090880 crossref_primary_10_1007_s11571_022_09817_y crossref_primary_10_1016_j_artmed_2024_102897 crossref_primary_10_1016_j_bspc_2022_104293 crossref_primary_10_3233_IDA_205113 crossref_primary_10_3390_technologies13010013 crossref_primary_10_34133_icomputing_0084 crossref_primary_10_1007_s13246_020_00925_9 crossref_primary_10_1016_j_bspc_2023_104892 crossref_primary_10_1166_jbn_2023_3714 crossref_primary_10_1002_brb3_3554 crossref_primary_10_1007_s11682_022_00748_0 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_1016_j_neuri_2021_100031 crossref_primary_10_3389_fnins_2023_1140801 crossref_primary_10_1109_ACCESS_2019_2941912 crossref_primary_10_1111_ejn_16261 crossref_primary_10_1088_1741_2552_ac8fb5 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1016_j_media_2022_102430 crossref_primary_10_1016_j_ijlp_2025_102082 crossref_primary_10_1016_j_ymeth_2020_09_007 crossref_primary_10_1007_s11042_023_16676_0 crossref_primary_10_1371_journal_pone_0303278 crossref_primary_10_1186_s40708_020_00112_2 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_1002_brb3_3348 crossref_primary_10_3389_fnins_2021_652987 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1007_s12559_022_10093_5 crossref_primary_10_1016_j_schres_2021_05_018 crossref_primary_10_1007_s41939_024_00612_2 crossref_primary_10_1016_j_nicl_2024_103726 crossref_primary_10_3389_fninf_2021_777977 crossref_primary_10_3389_fnhum_2021_687288 crossref_primary_10_1016_j_ajp_2023_103687 crossref_primary_10_2174_2211555204666220131112639 crossref_primary_10_1371_journal_pone_0264710 crossref_primary_10_1016_j_artmed_2021_102110 crossref_primary_10_3390_biology11030469 |
Cites_doi | 10.1002/hbm.22945 10.1001/jamapsychiatry.2013.3469 10.3389/fnhum.2015.00259 10.1017/S0033291706008191 10.1016/j.pnpbp.2012.12.005 10.1016/j.neuroimage.2015.05.018 10.1016/j.biopsych.2008.07.025 10.1016/j.jpsychires.2013.06.010 10.1016/j.ebiom.2018.03.017 10.1016/j.neuroimage.2011.10.002 10.3389/fnhum.2013.00235 10.1109/MLSP.2014.6958889 10.3389/fninf.2017.00059 10.1073/pnas.0811879106 10.3389/fnhum.2012.00145 10.1017/ATSIP.2015.22 10.1016/j.neuroimage.2016.02.079 10.1093/schbul/sbl029 10.1093/schbul/sbw053 10.1007/s00429-013-0687-3 10.3389/fnins.2016.00466 10.1002/hbm.20995 10.3389/fnhum.2010.00192 10.1016/S1053-8119(09)71511-3 10.1371/journal.pone.0160697 10.1007/s00429-015-1059-y 10.1016/j.neuroimage.2011.06.091 10.1176/ajp.155.8.1087 10.1093/schbul/sbv060 10.1561/2000000039 10.1371/journal.pone.0050698 10.1109/TPAMI.2012.59 10.1109/TCYB.2014.2379621 10.1016/j.neuroimage.2013.06.038 10.1007/s00787-014-0593-0 10.1002/brb3.602 10.1002/hbm.22065 10.1016/j.psychres.2004.10.007 10.1038/s41380-019-0365-9 10.1016/j.euroneuro.2010.03.008 10.1007/s12021-019-09419-w 10.1109/MEMB.2006.1607674 10.1001/archgenpsychiatry.2010.85 10.1093/schbul/sbt037 10.1098/rstb.2005.1634 10.1038/srep17275 10.1371/journal.pone.0062867 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.artmed.2019.06.003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1873-2860 |
EndPage | 17 |
ExternalDocumentID | 31521248 10_1016_j_artmed_2019_06_003 S0933365719301393 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c527t-ac5ab4e985c3ee1028ce9dce7172e7fc04b5178e06cb2533182619b952c59363 |
IEDL.DBID | .~1 |
ISSN | 0933-3657 1873-2860 |
IngestDate | Fri Jul 11 05:29:01 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Tue Jul 01 00:24:36 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 23 02:25:16 EST 2024 Tue Aug 26 17:11:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neuroimaging 3D-group ICA Classification Resting-state fMRI Schizophrenia 3D-CNN TensorFlow |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-ac5ab4e985c3ee1028ce9dce7172e7fc04b5178e06cb2533182619b952c59363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ir.ymlib.yonsei.ac.kr/handle/22282913/189055 |
PMID | 31521248 |
PQID | 2290977980 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2290977980 pubmed_primary_31521248 crossref_primary_10_1016_j_artmed_2019_06_003 crossref_citationtrail_10_1016_j_artmed_2019_06_003 elsevier_sciencedirect_doi_10_1016_j_artmed_2019_06_003 elsevier_clinicalkey_doi_10_1016_j_artmed_2019_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Suk, Lee, Shen (bib0155) 2016; 221 Deng (bib0080) 2016; 5 (bib0030) 2013 Yang (bib0280) 2010; 4 Wu (bib0100) 2015; 36 Hanlon (bib0225) 2011; 58 Silva (bib0265) 2014 Ota (bib0275) 2013; 47 Liu (bib0145) 2015 Du (bib0260) 2012; 6 Deshpande (bib0165) 2015; 45 Cetin (bib0270) 2016; 10 Rajapakse (bib0095) 2006; 25 Beckmann (bib0110) 2009; 47 Bassett (bib0060) 2012; 59 Qureshi (bib0090) 2019; 11 Plis (bib0195) 2014; 8 Sehatpour (bib0295) 2010; 67 Zeng (bib0140) 2018; 30 Srinivasagopalan (bib0135) 2019 Cabral (bib0240) 2016; 42 Yoon (bib0040) 2008; 64 Qureshi (bib0185) 2017; 11 Manoliu (bib0290) 2014; 40 Ren (bib0215) 2017 Qureshi (bib0075) 2017; 11 Brune (bib0010) 2005; 133 Qureshi, Lee (bib0175) 2016 Couture, Penn, Roberts (bib0015) 2006; 32 Liberman (bib0020) 1998; 155 Calhoun (bib0220) 2011; 2 Bansal (bib0205) 2012; 7 Simonyan, Zisserman (bib0255) 2014 Zanetti (bib0050) 2013; 43 Guo (bib0300) 2015; 5 Suk, Lee, Shen (bib0150) 2015; 220 Beckmann (bib0245) 2005; 360 Oh (bib0105) 2017; 7 Sui (bib0070) 2013; 7 Ji (bib0120) 2013; 35 Kim (bib0200) 2016; 124 Ardekani (bib0055) 2011; 32 Wu (bib0005) 2006; 36 Kuang, He (bib0160) 2014 van den Heuvel, Hulshoff Pol (bib0285) 2010; 20 Duc (bib0125) 2019 Hao, He, Yin (bib0170) 2015; 6 Baker (bib0025) 2014; 71 Kaufmann (bib0250) 2015; 41 Fekete (bib0045) 2013; 8 Qureshi, Jo, Lee (bib0190) 2017 Stephen (bib0235) 2013; 83 Filippini (bib0115) 2009; 106 Wang, Li (bib0210) 2015; 9 Durstewitz, Koppe, Meyer-Lindenberg (bib0130) 2019 Arbabshirani (bib0035) 2017; 145 Mayer (bib0230) 2013; 34 Pina-Camacho (bib0065) 2015; 24 Qureshi (bib0180) 2016; 11 Deng, Yu (bib0085) 2014; 7 Qureshi (10.1016/j.artmed.2019.06.003_bib0185) 2017; 11 Brune (10.1016/j.artmed.2019.06.003_bib0010) 2005; 133 Yang (10.1016/j.artmed.2019.06.003_bib0280) 2010; 4 Duc (10.1016/j.artmed.2019.06.003_bib0125) 2019 Zeng (10.1016/j.artmed.2019.06.003_bib0140) 2018; 30 Fekete (10.1016/j.artmed.2019.06.003_bib0045) 2013; 8 Couture (10.1016/j.artmed.2019.06.003_bib0015) 2006; 32 Wang (10.1016/j.artmed.2019.06.003_bib0210) 2015; 9 Guo (10.1016/j.artmed.2019.06.003_bib0300) 2015; 5 Simonyan (10.1016/j.artmed.2019.06.003_bib0255) 2014 Kim (10.1016/j.artmed.2019.06.003_bib0200) 2016; 124 Calhoun (10.1016/j.artmed.2019.06.003_bib0220) 2011; 2 Beckmann (10.1016/j.artmed.2019.06.003_bib0110) 2009; 47 Bansal (10.1016/j.artmed.2019.06.003_bib0205) 2012; 7 Pina-Camacho (10.1016/j.artmed.2019.06.003_bib0065) 2015; 24 Manoliu (10.1016/j.artmed.2019.06.003_bib0290) 2014; 40 Sehatpour (10.1016/j.artmed.2019.06.003_bib0295) 2010; 67 Stephen (10.1016/j.artmed.2019.06.003_bib0235) 2013; 83 Ardekani (10.1016/j.artmed.2019.06.003_bib0055) 2011; 32 Qureshi (10.1016/j.artmed.2019.06.003_bib0190) 2017 Ji (10.1016/j.artmed.2019.06.003_bib0120) 2013; 35 Liberman (10.1016/j.artmed.2019.06.003_bib0020) 1998; 155 Zanetti (10.1016/j.artmed.2019.06.003_bib0050) 2013; 43 Suk (10.1016/j.artmed.2019.06.003_bib0155) 2016; 221 Kuang (10.1016/j.artmed.2019.06.003_bib0160) 2014 Beckmann (10.1016/j.artmed.2019.06.003_bib0245) 2005; 360 Qureshi (10.1016/j.artmed.2019.06.003_bib0180) 2016; 11 Yoon (10.1016/j.artmed.2019.06.003_bib0040) 2008; 64 Deng (10.1016/j.artmed.2019.06.003_bib0085) 2014; 7 Qureshi (10.1016/j.artmed.2019.06.003_bib0090) 2019; 11 Hao (10.1016/j.artmed.2019.06.003_bib0170) 2015; 6 Ota (10.1016/j.artmed.2019.06.003_bib0275) 2013; 47 Wu (10.1016/j.artmed.2019.06.003_bib0005) 2006; 36 Ren (10.1016/j.artmed.2019.06.003_bib0215) 2017 Cetin (10.1016/j.artmed.2019.06.003_bib0270) 2016; 10 Baker (10.1016/j.artmed.2019.06.003_bib0025) 2014; 71 Bassett (10.1016/j.artmed.2019.06.003_bib0060) 2012; 59 Deng (10.1016/j.artmed.2019.06.003_bib0080) 2016; 5 Oh (10.1016/j.artmed.2019.06.003_bib0105) 2017; 7 Suk (10.1016/j.artmed.2019.06.003_bib0150) 2015; 220 Silva (10.1016/j.artmed.2019.06.003_bib0265) 2014 Sui (10.1016/j.artmed.2019.06.003_bib0070) 2013; 7 Arbabshirani (10.1016/j.artmed.2019.06.003_bib0035) 2017; 145 Filippini (10.1016/j.artmed.2019.06.003_bib0115) 2009; 106 Du (10.1016/j.artmed.2019.06.003_bib0260) 2012; 6 Hanlon (10.1016/j.artmed.2019.06.003_bib0225) 2011; 58 Plis (10.1016/j.artmed.2019.06.003_bib0195) 2014; 8 Qureshi (10.1016/j.artmed.2019.06.003_bib0175) 2016 Mayer (10.1016/j.artmed.2019.06.003_bib0230) 2013; 34 van den Heuvel (10.1016/j.artmed.2019.06.003_bib0285) 2010; 20 Liu (10.1016/j.artmed.2019.06.003_bib0145) 2015 Srinivasagopalan (10.1016/j.artmed.2019.06.003_bib0135) 2019 Cabral (10.1016/j.artmed.2019.06.003_bib0240) 2016; 42 (10.1016/j.artmed.2019.06.003_bib0030) 2013 Qureshi (10.1016/j.artmed.2019.06.003_bib0075) 2017; 11 Rajapakse (10.1016/j.artmed.2019.06.003_bib0095) 2006; 25 Wu (10.1016/j.artmed.2019.06.003_bib0100) 2015; 36 Kaufmann (10.1016/j.artmed.2019.06.003_bib0250) 2015; 41 Deshpande (10.1016/j.artmed.2019.06.003_bib0165) 2015; 45 Durstewitz (10.1016/j.artmed.2019.06.003_bib0130) 2019 |
References_xml | – volume: 7 year: 2012 ident: bib0205 article-title: Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses publication-title: PLoS One – volume: 41 start-page: 1326 year: 2015 end-page: 1335 ident: bib0250 article-title: Disintegration of sensorimotor brain networks in schizophrenia publication-title: Schizophr Bull – year: 2019 ident: bib0125 article-title: 3D-deep learning based automatic diagnosis of alzheimer’s disease with joint MMSE prediction using resting-state fMRI publication-title: Neuroinformatics – year: 2017 ident: bib0215 article-title: 3-D functional brain network classification using convolutional neural networks publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging – year: 2013 ident: bib0030 article-title: Diagnostic and statistical manual of mental disorders – volume: 47 start-page: 1383 year: 2013 end-page: 1388 ident: bib0275 article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain publication-title: J Psychiatr Res – volume: 43 start-page: 116 year: 2013 end-page: 125 ident: bib0050 article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 10 start-page: 466 year: 2016 ident: bib0270 article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures publication-title: Front Neurosci – volume: 67 start-page: 772 year: 2010 end-page: 782 ident: bib0295 article-title: Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: an integrated neuroimaging study publication-title: Arch Gen Psychiatry – volume: 9 start-page: 259 year: 2015 ident: bib0210 article-title: Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM publication-title: Front Hum Neurosci – volume: 6 start-page: 145 year: 2012 ident: bib0260 article-title: High classification accuracy for schizophrenia with rest and task fMRI data publication-title: Front Hum Neurosci – volume: 34 start-page: 2302 year: 2013 end-page: 2312 ident: bib0230 article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia publication-title: Hum Brain Mapp – volume: 106 start-page: 7209 year: 2009 end-page: 7214 ident: bib0115 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc Natl Acad Sci U S A – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib0245 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond, B, Biol Sci – volume: 64 start-page: 1035 year: 2008 end-page: 1041 ident: bib0040 article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia publication-title: Biol Psychiatry – volume: 5 start-page: 17275 year: 2015 ident: bib0300 article-title: Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings publication-title: Sci Rep – volume: 2 start-page: 75 year: 2011 ident: bib0220 article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder publication-title: Front Psychiatry – volume: 30 start-page: 74 year: 2018 end-page: 85 ident: bib0140 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine – volume: 11 year: 2016 ident: bib0180 article-title: Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study publication-title: PLoS One – year: 2014 ident: bib0255 article-title: Very deep convolutional networks for large-scale image recognition publication-title: preprint arXiv – volume: 220 start-page: 841 year: 2015 end-page: 859 ident: bib0150 article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct Funct – volume: 71 start-page: 109 year: 2014 end-page: 118 ident: bib0025 article-title: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder publication-title: JAMA Psychiatry – volume: 11 start-page: 157 year: 2017 ident: bib0185 article-title: Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI publication-title: Front Hum Neurosci – volume: 47 start-page: S148 year: 2009 ident: bib0110 article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression publication-title: Neuroimage – volume: 35 start-page: 221 year: 2013 end-page: 231 ident: bib0120 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 42 start-page: S110 year: 2016 end-page: 7 ident: bib0240 article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance publication-title: Schizophr Bull – volume: 83 start-page: 418 year: 2013 end-page: 430 ident: bib0235 article-title: Using joint ICA to link function and structure using MEG and DTI in schizophrenia publication-title: Neuroimage – volume: 7 start-page: 235 year: 2013 ident: bib0070 article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA+ jICA publication-title: Front Hum Neurosci – volume: 59 start-page: 2196 year: 2012 end-page: 2207 ident: bib0060 article-title: Altered resting state complexity in schizophrenia publication-title: Neuroimage – volume: 8 year: 2014 ident: bib0195 article-title: Deep learning for neuroimaging: a validation study publication-title: Front Neurosci – volume: 133 start-page: 135 year: 2005 end-page: 147 ident: bib0010 article-title: Emotion recognition, 'theory of mind,' and social behavior in schizophrenia publication-title: Psychiatry Res – volume: 221 start-page: 2569 year: 2016 end-page: 2587 ident: bib0155 article-title: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis publication-title: Brain Struct Funct – year: 2014 ident: bib0160 article-title: Classification on ADHD with deep learning publication-title: 2014 International Conference on Cloud Computing and Big Data – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib0035 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 11 start-page: 59 year: 2017 ident: bib0075 article-title: Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine publication-title: Front Neuroinform – volume: 11 year: 2019 ident: bib0090 article-title: Evaluation of functional decline in alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements publication-title: Front Aging Neurosci – volume: 36 start-page: 4681 year: 2015 end-page: 4701 ident: bib0100 article-title: Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia publication-title: Hum Brain Mapp – volume: 7 start-page: 197 year: 2014 end-page: 387 ident: bib0085 article-title: Deep learning: methods and applications publication-title: Found Trends® Signal Process – year: 2019 ident: bib0130 article-title: Deep neural networks in psychiatry publication-title: Mol Psychiatry – volume: 4 start-page: 192 year: 2010 ident: bib0280 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front Hum Neurosci – volume: 32 start-page: 1 year: 2011 end-page: 9 ident: bib0055 article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers publication-title: Hum Brain Mapp – volume: 5 start-page: e1 year: 2016 ident: bib0080 article-title: Deep learning: from speech recognition to language and multimodal processing publication-title: APSIPA Trans Signal Inf Process – volume: 8 start-page: e62867 year: 2013 ident: bib0045 article-title: Combining classification with fMRI-derived complex network measures for potential neurodiagnostics publication-title: PLoS One – volume: 24 start-page: 427 year: 2015 end-page: 440 ident: bib0065 article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model publication-title: Eur Child Adolesc Psychiatry – volume: 155 start-page: 1087 year: 1998 end-page: 1091 ident: bib0020 article-title: Skills training versus psychosocial occupational therapy for persons with persistent schizophrenia publication-title: Am J Psychiatry – volume: 45 start-page: 2668 year: 2015 end-page: 2679 ident: bib0165 article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Trans Cybern – volume: 124 start-page: 127 year: 2016 end-page: 146 ident: bib0200 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage – year: 2015 ident: bib0145 article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis publication-title: Artificial life and computational intelligence – year: 2014 ident: bib0265 article-title: The tenth annual MLSP competition: schizophrenia classification challenge publication-title: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) – volume: 36 start-page: 1535 year: 2006 end-page: 1540 ident: bib0005 article-title: Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach publication-title: Psychol Med – volume: 7 start-page: e00602 year: 2017 ident: bib0105 article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia publication-title: Brain Behav – volume: 20 start-page: 519 year: 2010 end-page: 534 ident: bib0285 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur Neuropsychopharmacol – volume: 32 start-page: S44 year: 2006 end-page: S63 ident: bib0015 article-title: The functional significance of social cognition in schizophrenia: a review publication-title: Schizophr Bull – year: 2016 ident: bib0175 article-title: Classification of ADHD subgroup with recursive feature elimination for structural brain MRI publication-title: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2017 ident: bib0190 article-title: ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging – volume: 6 start-page: 6 year: 2015 ident: bib0170 article-title: Discrimination of ADHD children based on Deep Bayesian Network publication-title: IET Conference Proceedings – volume: 40 start-page: 428 year: 2014 end-page: 437 ident: bib0290 article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia publication-title: Schizophr Bull – volume: 58 start-page: 1158 year: 2011 end-page: 1168 ident: bib0225 article-title: Bilateral hippocampal dysfunction in schizophrenia publication-title: Neuroimage – start-page: 1 year: 2019 end-page: 14 ident: bib0135 article-title: A deep learning approach for diagnosing schizophrenic patients publication-title: J Exp Theor Artif Intell – volume: 25 start-page: 102 year: 2006 end-page: 111 ident: bib0095 article-title: Exploratory analysis of brain connectivity with ICA publication-title: IEEE Eng Med Biol Mag – volume: 6 start-page: 6 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0170 article-title: Discrimination of ADHD children based on Deep Bayesian Network publication-title: IET Conference Proceedings – volume: 36 start-page: 4681 issue: 11 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0100 article-title: Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia publication-title: Hum Brain Mapp doi: 10.1002/hbm.22945 – volume: 71 start-page: 109 issue: 2 year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0025 article-title: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.3469 – volume: 9 start-page: 259 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0210 article-title: Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2015.00259 – volume: 36 start-page: 1535 issue: 11 year: 2006 ident: 10.1016/j.artmed.2019.06.003_bib0005 article-title: Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach publication-title: Psychol Med doi: 10.1017/S0033291706008191 – volume: 43 start-page: 116 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0050 article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2012.12.005 – volume: 124 start-page: 127 issue: Pt A year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0200 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 64 start-page: 1035 issue: 12 year: 2008 ident: 10.1016/j.artmed.2019.06.003_bib0040 article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2008.07.025 – volume: 47 start-page: 1383 issue: 10 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0275 article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2013.06.010 – volume: 30 start-page: 74 year: 2018 ident: 10.1016/j.artmed.2019.06.003_bib0140 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.03.017 – volume: 59 start-page: 2196 issue: 3 year: 2012 ident: 10.1016/j.artmed.2019.06.003_bib0060 article-title: Altered resting state complexity in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.002 – year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0160 article-title: Classification on ADHD with deep learning – volume: 7 start-page: 235 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0070 article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA+ jICA publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00235 – year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0265 article-title: The tenth annual MLSP competition: schizophrenia classification challenge publication-title: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) doi: 10.1109/MLSP.2014.6958889 – volume: 8 issue: 229 year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0195 article-title: Deep learning for neuroimaging: a validation study publication-title: Front Neurosci – volume: 11 start-page: 59 year: 2017 ident: 10.1016/j.artmed.2019.06.003_bib0075 article-title: Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine publication-title: Front Neuroinform doi: 10.3389/fninf.2017.00059 – volume: 106 start-page: 7209 issue: 17 year: 2009 ident: 10.1016/j.artmed.2019.06.003_bib0115 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0811879106 – volume: 6 start-page: 145 year: 2012 ident: 10.1016/j.artmed.2019.06.003_bib0260 article-title: High classification accuracy for schizophrenia with rest and task fMRI data publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2012.00145 – volume: 5 start-page: e1 year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0080 article-title: Deep learning: from speech recognition to language and multimodal processing publication-title: APSIPA Trans Signal Inf Process doi: 10.1017/ATSIP.2015.22 – volume: 145 start-page: 137 issue: Pt B year: 2017 ident: 10.1016/j.artmed.2019.06.003_bib0035 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0255 article-title: Very deep convolutional networks for large-scale image recognition publication-title: preprint arXiv – volume: 11 start-page: 157 year: 2017 ident: 10.1016/j.artmed.2019.06.003_bib0185 article-title: Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI publication-title: Front Hum Neurosci – year: 2017 ident: 10.1016/j.artmed.2019.06.003_bib0215 article-title: 3-D functional brain network classification using convolutional neural networks – volume: 32 start-page: S44 issue: Suppl. 1 year: 2006 ident: 10.1016/j.artmed.2019.06.003_bib0015 article-title: The functional significance of social cognition in schizophrenia: a review publication-title: Schizophr Bull doi: 10.1093/schbul/sbl029 – volume: 42 start-page: S110 issue: Suppl. 1 year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0240 article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance publication-title: Schizophr Bull doi: 10.1093/schbul/sbw053 – volume: 220 start-page: 841 issue: 2 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0150 article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0687-3 – year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0175 article-title: Classification of ADHD subgroup with recursive feature elimination for structural brain MRI publication-title: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 10 start-page: 466 year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0270 article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures publication-title: Front Neurosci doi: 10.3389/fnins.2016.00466 – start-page: 1 year: 2019 ident: 10.1016/j.artmed.2019.06.003_bib0135 article-title: A deep learning approach for diagnosing schizophrenic patients publication-title: J Exp Theor Artif Intell – volume: 32 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.artmed.2019.06.003_bib0055 article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers publication-title: Hum Brain Mapp doi: 10.1002/hbm.20995 – volume: 4 start-page: 192 year: 2010 ident: 10.1016/j.artmed.2019.06.003_bib0280 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2010.00192 – volume: 47 start-page: S148 issue: Suppl. 1 year: 2009 ident: 10.1016/j.artmed.2019.06.003_bib0110 article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression publication-title: Neuroimage doi: 10.1016/S1053-8119(09)71511-3 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0180 article-title: Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study publication-title: PLoS One doi: 10.1371/journal.pone.0160697 – volume: 221 start-page: 2569 issue: 5 year: 2016 ident: 10.1016/j.artmed.2019.06.003_bib0155 article-title: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis publication-title: Brain Struct Funct doi: 10.1007/s00429-015-1059-y – volume: 58 start-page: 1158 issue: 4 year: 2011 ident: 10.1016/j.artmed.2019.06.003_bib0225 article-title: Bilateral hippocampal dysfunction in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.091 – volume: 155 start-page: 1087 issue: 8 year: 1998 ident: 10.1016/j.artmed.2019.06.003_bib0020 article-title: Skills training versus psychosocial occupational therapy for persons with persistent schizophrenia publication-title: Am J Psychiatry doi: 10.1176/ajp.155.8.1087 – volume: 2 start-page: 75 year: 2011 ident: 10.1016/j.artmed.2019.06.003_bib0220 article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder publication-title: Front Psychiatry – year: 2017 ident: 10.1016/j.artmed.2019.06.003_bib0190 article-title: ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study – volume: 41 start-page: 1326 issue: 6 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0250 article-title: Disintegration of sensorimotor brain networks in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbv060 – volume: 7 start-page: 197 issue: 3–4 year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0085 article-title: Deep learning: methods and applications publication-title: Found Trends® Signal Process doi: 10.1561/2000000039 – volume: 7 issue: 12 year: 2012 ident: 10.1016/j.artmed.2019.06.003_bib0205 article-title: Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses publication-title: PLoS One doi: 10.1371/journal.pone.0050698 – volume: 35 start-page: 221 issue: 1 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0120 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.59 – volume: 45 start-page: 2668 issue: 12 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0165 article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2379621 – volume: 83 start-page: 418 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0235 article-title: Using joint ICA to link function and structure using MEG and DTI in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.038 – volume: 24 start-page: 427 issue: 4 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0065 article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model publication-title: Eur Child Adolesc Psychiatry doi: 10.1007/s00787-014-0593-0 – volume: 7 start-page: e00602 issue: 1 year: 2017 ident: 10.1016/j.artmed.2019.06.003_bib0105 article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia publication-title: Brain Behav doi: 10.1002/brb3.602 – volume: 34 start-page: 2302 issue: 9 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0230 article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia publication-title: Hum Brain Mapp doi: 10.1002/hbm.22065 – volume: 133 start-page: 135 issue: 2–3 year: 2005 ident: 10.1016/j.artmed.2019.06.003_bib0010 article-title: Emotion recognition, 'theory of mind,' and social behavior in schizophrenia publication-title: Psychiatry Res doi: 10.1016/j.psychres.2004.10.007 – year: 2019 ident: 10.1016/j.artmed.2019.06.003_bib0130 article-title: Deep neural networks in psychiatry publication-title: Mol Psychiatry doi: 10.1038/s41380-019-0365-9 – volume: 20 start-page: 519 issue: 8 year: 2010 ident: 10.1016/j.artmed.2019.06.003_bib0285 article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity publication-title: Eur Neuropsychopharmacol doi: 10.1016/j.euroneuro.2010.03.008 – year: 2019 ident: 10.1016/j.artmed.2019.06.003_bib0125 article-title: 3D-deep learning based automatic diagnosis of alzheimer’s disease with joint MMSE prediction using resting-state fMRI publication-title: Neuroinformatics doi: 10.1007/s12021-019-09419-w – year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0030 – volume: 25 start-page: 102 issue: 2 year: 2006 ident: 10.1016/j.artmed.2019.06.003_bib0095 article-title: Exploratory analysis of brain connectivity with ICA publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2006.1607674 – volume: 67 start-page: 772 issue: 8 year: 2010 ident: 10.1016/j.artmed.2019.06.003_bib0295 article-title: Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: an integrated neuroimaging study publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.85 – volume: 11 issue: 8 year: 2019 ident: 10.1016/j.artmed.2019.06.003_bib0090 article-title: Evaluation of functional decline in alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements publication-title: Front Aging Neurosci – year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0145 article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis – volume: 40 start-page: 428 issue: 2 year: 2014 ident: 10.1016/j.artmed.2019.06.003_bib0290 article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbt037 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: 10.1016/j.artmed.2019.06.003_bib0245 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond, B, Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 5 start-page: 17275 year: 2015 ident: 10.1016/j.artmed.2019.06.003_bib0300 article-title: Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings publication-title: Sci Rep doi: 10.1038/srep17275 – volume: 8 start-page: e62867 issue: 5 year: 2013 ident: 10.1016/j.artmed.2019.06.003_bib0045 article-title: Combining classification with fMRI-derived complex network measures for potential neurodiagnostics publication-title: PLoS One doi: 10.1371/journal.pone.0062867 |
SSID | ssj0007416 |
Score | 2.5533998 |
Snippet | •Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we... This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10 |
SubjectTerms | 3D-CNN 3D-group ICA Classification Neuroimaging Resting-state fMRI Schizophrenia TensorFlow |
Title | 3D-CNN based discrimination of schizophrenia using resting-state fMRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365719301393 https://dx.doi.org/10.1016/j.artmed.2019.06.003 https://www.ncbi.nlm.nih.gov/pubmed/31521248 https://www.proquest.com/docview/2290977980 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQkBAX3o_xmILENWxrmrU5ogEaoO0AQ9otatMEDaFugnHlt2O3zQAhNMSpahX3YSf258YPgNM0cO0E7SYXTqGDYqjkrXOGhyli60w4tOiUjdwfdHoP4c1Ijpag63NhKKyy0v2lTi-0dXWlWXGzOR2Pm_fki4uOjBCCEI6hip9UvQ7n9Nn7Z5gHIY6i3p4QnEb79LkixgvvhzaHArxUUcXTt876aZ5-g5-FGbragLUKP7Lz8hU3YcnmW7DuezOwaqluwUq_2jTfhktxwbuDASODlTFKwy1beZFI2MSx169xd4wC4R8ZdezAIy_yjZjr313vwPDqctjt8ap7AjcyiGY8MTJJQ6tiaYS1hCOMVZmx6L8FNnKmFaayHcW21TFpgKCPHI22SpUMDHX5E7tQyye53QeWyQTllloRJ63QRFapLGsnYYToIUtU4OogPM-0qSqLU4OLZ-1DyJ50yWlNnNZFJJ2oA59TTcvKGgvGSy8O7bNGUc9pVP0L6KI53beZ9QfKEy91jYuOdlKS3E7eXjUVyUfgrOJWHfbK6TD_BkGIKAjjg38_9xBW6az80XMEtdnLmz1G6DNLG8XcbsDy-fVtb_ABqaMBdw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BkYDLLm-6DzASV6ttHDfxseqCWqA5QJG4WYljoyLUImj_PzOJXbFCCMQpUpLJY2zPfCN_MwNwWkSuk6Pf5MIpDFAMlbx1zvC4QGxdCocenbKRR1l3cBtf3Mm7FeiHXBiiVXrbX9v0ylr7My2vzdbTZNK6oVhcdGWCEIRwjFiFNapOFTdgrTe8HGRLg0ygoyq5JwQngZBBV9G88JHodojjpapCnqF71nsP9RECrTzR-Rb88BCS9eqv3IYVO92Bn6E9A_OrdQfWR37ffBfOxD_ezzJGPqtklIlbd_OiUWEzx17eUu8YceHvGTXtwCOvUo6YG10P92B8fjbuD7hvoMCNjJI5z43Mi9iqVBphLUEJY1VpLIZwkU2caceF7CSpbXdNESHuo1ijowolI0ON_sQ-NKazqT0EVsoch66wIs3bsUmsUmXZyeMEAUSZq8g1QQSdaeOLi1OPi0cdWGQPuta0Jk3rikwnmsCXUk91cY1P7pdhOHRIHEVTp9H6fyKXLOX-m1xfkDwJo65x3dFmSj61s8WLpjr5iJ1V2m7CQT0dlv8gCBRFcfrr2-89ho3BeHSlr4bZ5W_YpCs1R_gPNObPC_sXkdC8OPIz_RV6ugQu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-CNN+based+discrimination+of+schizophrenia+using+resting-state+fMRI&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Qureshi%2C+Muhammad+Naveed+Iqbal&rft.au=Oh%2C+Jooyoung&rft.au=Lee%2C+Boreom&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=98&rft.spage=10&rft.epage=17&rft_id=info:doi/10.1016%2Fj.artmed.2019.06.003&rft.externalDocID=S0933365719301393 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |