3D-CNN based discrimination of schizophrenia using resting-state fMRI

•Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we have used 3D convolutional neural networks architectures.•We achieve very high diagnostic accuracy with an area under the curve of 0.9982 and ac...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 98; pp. 10 - 17
Main Authors Qureshi, Muhammad Naveed Iqbal, Oh, Jooyoung, Lee, Boreom
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2019.06.003

Cover

Loading…
Abstract •Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we have used 3D convolutional neural networks architectures.•We achieve very high diagnostic accuracy with an area under the curve of 0.9982 and accuracy of 98.09% (p < 0.001).•With this accuracy this research may be translated into an excellent tool to assist clinicians.•3D ICA based functional connectivity networks were used as the input features of the classifier. This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features. We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study. Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia.
AbstractList This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features. We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study. Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia.
•Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we have used 3D convolutional neural networks architectures.•We achieve very high diagnostic accuracy with an area under the curve of 0.9982 and accuracy of 98.09% (p < 0.001).•With this accuracy this research may be translated into an excellent tool to assist clinicians.•3D ICA based functional connectivity networks were used as the input features of the classifier. This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features. We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study. Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia.
This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features.MOTIVATIONThis study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of the brain. Resting-state functional MRI data from a total of 144 subjects (72 patients with schizophrenia and 72 healthy controls) was obtained from a publicly available dataset using a three-dimensional convolution neural network 3D-CNN based deep learning classification framework and ICA based features.We achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study.RESULTSWe achieved 98.09 ± 1.01% ten-fold cross-validated classification accuracy with a p-value < 0.001 and an area under the curve (AUC) of 0.9982 ± 0.015. In addition, differences in functional connectivity between the two groups were statistically analyzed across multiple resting-state networks. The disconnection between the visual and frontal network was prominent in patients, while they showed higher connectivity between the default mode network and other task-positive/ cerebellar networks. These ICA functional network maps served as highly discriminative three-dimensional imaging features for the discrimination of schizophrenia in this study.Due to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia.CONCLUSIONDue to the very high AUC, this research with more validation on the cross diagnosis and publicly available dataset, may be translated in future as an adjunct tool to assist clinicians in the initial screening of schizophrenia.
Author Qureshi, Muhammad Naveed Iqbal
Lee, Boreom
Oh, Jooyoung
Author_xml – sequence: 1
  givenname: Muhammad Naveed Iqbal
  surname: Qureshi
  fullname: Qureshi, Muhammad Naveed Iqbal
  organization: Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
– sequence: 2
  givenname: Jooyoung
  surname: Oh
  fullname: Oh, Jooyoung
  organization: Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
– sequence: 3
  givenname: Boreom
  surname: Lee
  fullname: Lee, Boreom
  email: leebr@gist.ac.kr
  organization: Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 61005, Gwangju, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31521248$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFu1DAURS3Uik4Lf4BQlmySPtuxHSOEVA2FVmqLhLq3HOeFesg4g-1BKl-Py7RddDOrtzn36r5zTA7CHJCQdxQaClSerhob8xqHhgHVDcgGgL8iC9opXrNOwgFZgOa85lKoI3Kc0goAVEvla3LEqWCUtd2CnPMv9fLmpuptwqEafHLRr32w2c-hmscquTv_d97cRQzeVtvkw88qYsrl1inbjNV4_ePyDTkc7ZTw7eM9Ibdfz2-XF_XV92-Xy7Or2gmmcm2dsH2LuhOOI1JgnUM9OFRUMVSjg7YXVHUI0vVMcE47JqnutWBOaC75Cfmwq93E-fe2rDDrMhinyQact8kwpkErpTso6PtHdNsXSWZT3rLx3jx9XoB2B7g4pxRxfEYomAfBZmV2gs2DYAPSFMEl9vFFzPn831aO1k_7wp93YSyO_niMJjmPweHgI7pshtnvK_j0osBNPnhnp194vz_-D6zdq8M
CitedBy_id crossref_primary_10_1007_s00335_024_10034_7
crossref_primary_10_2147_NDT_S304434
crossref_primary_10_1016_j_cmpb_2019_105073
crossref_primary_10_1016_j_cmpb_2020_105726
crossref_primary_10_1016_j_neunet_2023_11_004
crossref_primary_10_3389_fnins_2021_785595
crossref_primary_10_3390_brainsci11060735
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1093_schbul_sbae069
crossref_primary_10_1002_mp_15545
crossref_primary_10_1177_15500594241253910
crossref_primary_10_3389_fnhum_2023_1256415
crossref_primary_10_1016_j_brainresbull_2023_110846
crossref_primary_10_1016_j_bspc_2021_103015
crossref_primary_10_1002_brx2_29
crossref_primary_10_3390_brainsci14080810
crossref_primary_10_1007_s10844_021_00653_w
crossref_primary_10_1109_ACCESS_2020_2983317
crossref_primary_10_1155_2020_8889008
crossref_primary_10_1063_5_0011697
crossref_primary_10_1186_s44147_023_00236_2
crossref_primary_10_1088_1361_6579_acb24d
crossref_primary_10_1007_s11042_020_09122_y
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1007_s12028_022_01525_z
crossref_primary_10_1002_hbm_26077
crossref_primary_10_1177_02841851231218384
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_1016_j_ijmedinf_2021_104576
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_24906_isc_2023_v37_i5_44895
crossref_primary_10_1007_s11277_024_11464_x
crossref_primary_10_3389_fpsyt_2020_542394
crossref_primary_10_1177_15500594221122699
crossref_primary_10_1093_bioinformatics_btaa094
crossref_primary_10_1007_s11042_022_12565_0
crossref_primary_10_1016_j_aej_2024_04_023
crossref_primary_10_1080_03772063_2025_2469644
crossref_primary_10_3389_fpsyt_2022_1075564
crossref_primary_10_3389_fnins_2024_1333712
crossref_primary_10_1016_j_ajp_2023_103705
crossref_primary_10_1142_S0219691320500885
crossref_primary_10_1002_hbm_26783
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_1007_s12021_022_09603_5
crossref_primary_10_3390_brainsci14090880
crossref_primary_10_1007_s11571_022_09817_y
crossref_primary_10_1016_j_artmed_2024_102897
crossref_primary_10_1016_j_bspc_2022_104293
crossref_primary_10_3233_IDA_205113
crossref_primary_10_3390_technologies13010013
crossref_primary_10_34133_icomputing_0084
crossref_primary_10_1007_s13246_020_00925_9
crossref_primary_10_1016_j_bspc_2023_104892
crossref_primary_10_1166_jbn_2023_3714
crossref_primary_10_1002_brb3_3554
crossref_primary_10_1007_s11682_022_00748_0
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1016_j_neuri_2021_100031
crossref_primary_10_3389_fnins_2023_1140801
crossref_primary_10_1109_ACCESS_2019_2941912
crossref_primary_10_1111_ejn_16261
crossref_primary_10_1088_1741_2552_ac8fb5
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1016_j_media_2022_102430
crossref_primary_10_1016_j_ijlp_2025_102082
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_1007_s11042_023_16676_0
crossref_primary_10_1371_journal_pone_0303278
crossref_primary_10_1186_s40708_020_00112_2
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_1002_brb3_3348
crossref_primary_10_3389_fnins_2021_652987
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1007_s12559_022_10093_5
crossref_primary_10_1016_j_schres_2021_05_018
crossref_primary_10_1007_s41939_024_00612_2
crossref_primary_10_1016_j_nicl_2024_103726
crossref_primary_10_3389_fninf_2021_777977
crossref_primary_10_3389_fnhum_2021_687288
crossref_primary_10_1016_j_ajp_2023_103687
crossref_primary_10_2174_2211555204666220131112639
crossref_primary_10_1371_journal_pone_0264710
crossref_primary_10_1016_j_artmed_2021_102110
crossref_primary_10_3390_biology11030469
Cites_doi 10.1002/hbm.22945
10.1001/jamapsychiatry.2013.3469
10.3389/fnhum.2015.00259
10.1017/S0033291706008191
10.1016/j.pnpbp.2012.12.005
10.1016/j.neuroimage.2015.05.018
10.1016/j.biopsych.2008.07.025
10.1016/j.jpsychires.2013.06.010
10.1016/j.ebiom.2018.03.017
10.1016/j.neuroimage.2011.10.002
10.3389/fnhum.2013.00235
10.1109/MLSP.2014.6958889
10.3389/fninf.2017.00059
10.1073/pnas.0811879106
10.3389/fnhum.2012.00145
10.1017/ATSIP.2015.22
10.1016/j.neuroimage.2016.02.079
10.1093/schbul/sbl029
10.1093/schbul/sbw053
10.1007/s00429-013-0687-3
10.3389/fnins.2016.00466
10.1002/hbm.20995
10.3389/fnhum.2010.00192
10.1016/S1053-8119(09)71511-3
10.1371/journal.pone.0160697
10.1007/s00429-015-1059-y
10.1016/j.neuroimage.2011.06.091
10.1176/ajp.155.8.1087
10.1093/schbul/sbv060
10.1561/2000000039
10.1371/journal.pone.0050698
10.1109/TPAMI.2012.59
10.1109/TCYB.2014.2379621
10.1016/j.neuroimage.2013.06.038
10.1007/s00787-014-0593-0
10.1002/brb3.602
10.1002/hbm.22065
10.1016/j.psychres.2004.10.007
10.1038/s41380-019-0365-9
10.1016/j.euroneuro.2010.03.008
10.1007/s12021-019-09419-w
10.1109/MEMB.2006.1607674
10.1001/archgenpsychiatry.2010.85
10.1093/schbul/sbt037
10.1098/rstb.2005.1634
10.1038/srep17275
10.1371/journal.pone.0062867
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.artmed.2019.06.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 17
ExternalDocumentID 31521248
10_1016_j_artmed_2019_06_003
S0933365719301393
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c527t-ac5ab4e985c3ee1028ce9dce7172e7fc04b5178e06cb2533182619b952c59363
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Fri Jul 11 05:29:01 EDT 2025
Wed Feb 19 02:31:21 EST 2025
Tue Jul 01 00:24:36 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 23 02:25:16 EST 2024
Tue Aug 26 17:11:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neuroimaging
3D-group ICA
Classification
Resting-state fMRI
Schizophrenia
3D-CNN
TensorFlow
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-ac5ab4e985c3ee1028ce9dce7172e7fc04b5178e06cb2533182619b952c59363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ir.ymlib.yonsei.ac.kr/handle/22282913/189055
PMID 31521248
PQID 2290977980
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2290977980
pubmed_primary_31521248
crossref_primary_10_1016_j_artmed_2019_06_003
crossref_citationtrail_10_1016_j_artmed_2019_06_003
elsevier_sciencedirect_doi_10_1016_j_artmed_2019_06_003
elsevier_clinicalkey_doi_10_1016_j_artmed_2019_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Suk, Lee, Shen (bib0155) 2016; 221
Deng (bib0080) 2016; 5
(bib0030) 2013
Yang (bib0280) 2010; 4
Wu (bib0100) 2015; 36
Hanlon (bib0225) 2011; 58
Silva (bib0265) 2014
Ota (bib0275) 2013; 47
Liu (bib0145) 2015
Du (bib0260) 2012; 6
Deshpande (bib0165) 2015; 45
Cetin (bib0270) 2016; 10
Rajapakse (bib0095) 2006; 25
Beckmann (bib0110) 2009; 47
Bassett (bib0060) 2012; 59
Qureshi (bib0090) 2019; 11
Plis (bib0195) 2014; 8
Sehatpour (bib0295) 2010; 67
Zeng (bib0140) 2018; 30
Srinivasagopalan (bib0135) 2019
Cabral (bib0240) 2016; 42
Yoon (bib0040) 2008; 64
Qureshi (bib0185) 2017; 11
Manoliu (bib0290) 2014; 40
Ren (bib0215) 2017
Qureshi (bib0075) 2017; 11
Brune (bib0010) 2005; 133
Qureshi, Lee (bib0175) 2016
Couture, Penn, Roberts (bib0015) 2006; 32
Liberman (bib0020) 1998; 155
Calhoun (bib0220) 2011; 2
Bansal (bib0205) 2012; 7
Simonyan, Zisserman (bib0255) 2014
Zanetti (bib0050) 2013; 43
Guo (bib0300) 2015; 5
Suk, Lee, Shen (bib0150) 2015; 220
Beckmann (bib0245) 2005; 360
Oh (bib0105) 2017; 7
Sui (bib0070) 2013; 7
Ji (bib0120) 2013; 35
Kim (bib0200) 2016; 124
Ardekani (bib0055) 2011; 32
Wu (bib0005) 2006; 36
Kuang, He (bib0160) 2014
van den Heuvel, Hulshoff Pol (bib0285) 2010; 20
Duc (bib0125) 2019
Hao, He, Yin (bib0170) 2015; 6
Baker (bib0025) 2014; 71
Kaufmann (bib0250) 2015; 41
Fekete (bib0045) 2013; 8
Qureshi, Jo, Lee (bib0190) 2017
Stephen (bib0235) 2013; 83
Filippini (bib0115) 2009; 106
Wang, Li (bib0210) 2015; 9
Durstewitz, Koppe, Meyer-Lindenberg (bib0130) 2019
Arbabshirani (bib0035) 2017; 145
Mayer (bib0230) 2013; 34
Pina-Camacho (bib0065) 2015; 24
Qureshi (bib0180) 2016; 11
Deng, Yu (bib0085) 2014; 7
Qureshi (10.1016/j.artmed.2019.06.003_bib0185) 2017; 11
Brune (10.1016/j.artmed.2019.06.003_bib0010) 2005; 133
Yang (10.1016/j.artmed.2019.06.003_bib0280) 2010; 4
Duc (10.1016/j.artmed.2019.06.003_bib0125) 2019
Zeng (10.1016/j.artmed.2019.06.003_bib0140) 2018; 30
Fekete (10.1016/j.artmed.2019.06.003_bib0045) 2013; 8
Couture (10.1016/j.artmed.2019.06.003_bib0015) 2006; 32
Wang (10.1016/j.artmed.2019.06.003_bib0210) 2015; 9
Guo (10.1016/j.artmed.2019.06.003_bib0300) 2015; 5
Simonyan (10.1016/j.artmed.2019.06.003_bib0255) 2014
Kim (10.1016/j.artmed.2019.06.003_bib0200) 2016; 124
Calhoun (10.1016/j.artmed.2019.06.003_bib0220) 2011; 2
Beckmann (10.1016/j.artmed.2019.06.003_bib0110) 2009; 47
Bansal (10.1016/j.artmed.2019.06.003_bib0205) 2012; 7
Pina-Camacho (10.1016/j.artmed.2019.06.003_bib0065) 2015; 24
Manoliu (10.1016/j.artmed.2019.06.003_bib0290) 2014; 40
Sehatpour (10.1016/j.artmed.2019.06.003_bib0295) 2010; 67
Stephen (10.1016/j.artmed.2019.06.003_bib0235) 2013; 83
Ardekani (10.1016/j.artmed.2019.06.003_bib0055) 2011; 32
Qureshi (10.1016/j.artmed.2019.06.003_bib0190) 2017
Ji (10.1016/j.artmed.2019.06.003_bib0120) 2013; 35
Liberman (10.1016/j.artmed.2019.06.003_bib0020) 1998; 155
Zanetti (10.1016/j.artmed.2019.06.003_bib0050) 2013; 43
Suk (10.1016/j.artmed.2019.06.003_bib0155) 2016; 221
Kuang (10.1016/j.artmed.2019.06.003_bib0160) 2014
Beckmann (10.1016/j.artmed.2019.06.003_bib0245) 2005; 360
Qureshi (10.1016/j.artmed.2019.06.003_bib0180) 2016; 11
Yoon (10.1016/j.artmed.2019.06.003_bib0040) 2008; 64
Deng (10.1016/j.artmed.2019.06.003_bib0085) 2014; 7
Qureshi (10.1016/j.artmed.2019.06.003_bib0090) 2019; 11
Hao (10.1016/j.artmed.2019.06.003_bib0170) 2015; 6
Ota (10.1016/j.artmed.2019.06.003_bib0275) 2013; 47
Wu (10.1016/j.artmed.2019.06.003_bib0005) 2006; 36
Ren (10.1016/j.artmed.2019.06.003_bib0215) 2017
Cetin (10.1016/j.artmed.2019.06.003_bib0270) 2016; 10
Baker (10.1016/j.artmed.2019.06.003_bib0025) 2014; 71
Bassett (10.1016/j.artmed.2019.06.003_bib0060) 2012; 59
Deng (10.1016/j.artmed.2019.06.003_bib0080) 2016; 5
Oh (10.1016/j.artmed.2019.06.003_bib0105) 2017; 7
Suk (10.1016/j.artmed.2019.06.003_bib0150) 2015; 220
Silva (10.1016/j.artmed.2019.06.003_bib0265) 2014
Sui (10.1016/j.artmed.2019.06.003_bib0070) 2013; 7
Arbabshirani (10.1016/j.artmed.2019.06.003_bib0035) 2017; 145
Filippini (10.1016/j.artmed.2019.06.003_bib0115) 2009; 106
Du (10.1016/j.artmed.2019.06.003_bib0260) 2012; 6
Hanlon (10.1016/j.artmed.2019.06.003_bib0225) 2011; 58
Plis (10.1016/j.artmed.2019.06.003_bib0195) 2014; 8
Qureshi (10.1016/j.artmed.2019.06.003_bib0175) 2016
Mayer (10.1016/j.artmed.2019.06.003_bib0230) 2013; 34
van den Heuvel (10.1016/j.artmed.2019.06.003_bib0285) 2010; 20
Liu (10.1016/j.artmed.2019.06.003_bib0145) 2015
Srinivasagopalan (10.1016/j.artmed.2019.06.003_bib0135) 2019
Cabral (10.1016/j.artmed.2019.06.003_bib0240) 2016; 42
(10.1016/j.artmed.2019.06.003_bib0030) 2013
Qureshi (10.1016/j.artmed.2019.06.003_bib0075) 2017; 11
Rajapakse (10.1016/j.artmed.2019.06.003_bib0095) 2006; 25
Wu (10.1016/j.artmed.2019.06.003_bib0100) 2015; 36
Kaufmann (10.1016/j.artmed.2019.06.003_bib0250) 2015; 41
Deshpande (10.1016/j.artmed.2019.06.003_bib0165) 2015; 45
Durstewitz (10.1016/j.artmed.2019.06.003_bib0130) 2019
References_xml – volume: 7
  year: 2012
  ident: bib0205
  article-title: Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses
  publication-title: PLoS One
– volume: 41
  start-page: 1326
  year: 2015
  end-page: 1335
  ident: bib0250
  article-title: Disintegration of sensorimotor brain networks in schizophrenia
  publication-title: Schizophr Bull
– year: 2019
  ident: bib0125
  article-title: 3D-deep learning based automatic diagnosis of alzheimer’s disease with joint MMSE prediction using resting-state fMRI
  publication-title: Neuroinformatics
– year: 2017
  ident: bib0215
  article-title: 3-D functional brain network classification using convolutional neural networks
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging
– year: 2013
  ident: bib0030
  article-title: Diagnostic and statistical manual of mental disorders
– volume: 47
  start-page: 1383
  year: 2013
  end-page: 1388
  ident: bib0275
  article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain
  publication-title: J Psychiatr Res
– volume: 43
  start-page: 116
  year: 2013
  end-page: 125
  ident: bib0050
  article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 10
  start-page: 466
  year: 2016
  ident: bib0270
  article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures
  publication-title: Front Neurosci
– volume: 67
  start-page: 772
  year: 2010
  end-page: 782
  ident: bib0295
  article-title: Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: an integrated neuroimaging study
  publication-title: Arch Gen Psychiatry
– volume: 9
  start-page: 259
  year: 2015
  ident: bib0210
  article-title: Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
  publication-title: Front Hum Neurosci
– volume: 6
  start-page: 145
  year: 2012
  ident: bib0260
  article-title: High classification accuracy for schizophrenia with rest and task fMRI data
  publication-title: Front Hum Neurosci
– volume: 34
  start-page: 2302
  year: 2013
  end-page: 2312
  ident: bib0230
  article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia
  publication-title: Hum Brain Mapp
– volume: 106
  start-page: 7209
  year: 2009
  end-page: 7214
  ident: bib0115
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc Natl Acad Sci U S A
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib0245
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond, B, Biol Sci
– volume: 64
  start-page: 1035
  year: 2008
  end-page: 1041
  ident: bib0040
  article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia
  publication-title: Biol Psychiatry
– volume: 5
  start-page: 17275
  year: 2015
  ident: bib0300
  article-title: Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings
  publication-title: Sci Rep
– volume: 2
  start-page: 75
  year: 2011
  ident: bib0220
  article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder
  publication-title: Front Psychiatry
– volume: 30
  start-page: 74
  year: 2018
  end-page: 85
  ident: bib0140
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
– volume: 11
  year: 2016
  ident: bib0180
  article-title: Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study
  publication-title: PLoS One
– year: 2014
  ident: bib0255
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: preprint arXiv
– volume: 220
  start-page: 841
  year: 2015
  end-page: 859
  ident: bib0150
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct Funct
– volume: 71
  start-page: 109
  year: 2014
  end-page: 118
  ident: bib0025
  article-title: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder
  publication-title: JAMA Psychiatry
– volume: 11
  start-page: 157
  year: 2017
  ident: bib0185
  article-title: Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI
  publication-title: Front Hum Neurosci
– volume: 47
  start-page: S148
  year: 2009
  ident: bib0110
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  publication-title: Neuroimage
– volume: 35
  start-page: 221
  year: 2013
  end-page: 231
  ident: bib0120
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 42
  start-page: S110
  year: 2016
  end-page: 7
  ident: bib0240
  article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance
  publication-title: Schizophr Bull
– volume: 83
  start-page: 418
  year: 2013
  end-page: 430
  ident: bib0235
  article-title: Using joint ICA to link function and structure using MEG and DTI in schizophrenia
  publication-title: Neuroimage
– volume: 7
  start-page: 235
  year: 2013
  ident: bib0070
  article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA+ jICA
  publication-title: Front Hum Neurosci
– volume: 59
  start-page: 2196
  year: 2012
  end-page: 2207
  ident: bib0060
  article-title: Altered resting state complexity in schizophrenia
  publication-title: Neuroimage
– volume: 8
  year: 2014
  ident: bib0195
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front Neurosci
– volume: 133
  start-page: 135
  year: 2005
  end-page: 147
  ident: bib0010
  article-title: Emotion recognition, 'theory of mind,' and social behavior in schizophrenia
  publication-title: Psychiatry Res
– volume: 221
  start-page: 2569
  year: 2016
  end-page: 2587
  ident: bib0155
  article-title: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
  publication-title: Brain Struct Funct
– year: 2014
  ident: bib0160
  article-title: Classification on ADHD with deep learning
  publication-title: 2014 International Conference on Cloud Computing and Big Data
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib0035
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 11
  start-page: 59
  year: 2017
  ident: bib0075
  article-title: Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine
  publication-title: Front Neuroinform
– volume: 11
  year: 2019
  ident: bib0090
  article-title: Evaluation of functional decline in alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements
  publication-title: Front Aging Neurosci
– volume: 36
  start-page: 4681
  year: 2015
  end-page: 4701
  ident: bib0100
  article-title: Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia
  publication-title: Hum Brain Mapp
– volume: 7
  start-page: 197
  year: 2014
  end-page: 387
  ident: bib0085
  article-title: Deep learning: methods and applications
  publication-title: Found Trends® Signal Process
– year: 2019
  ident: bib0130
  article-title: Deep neural networks in psychiatry
  publication-title: Mol Psychiatry
– volume: 4
  start-page: 192
  year: 2010
  ident: bib0280
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front Hum Neurosci
– volume: 32
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib0055
  article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers
  publication-title: Hum Brain Mapp
– volume: 5
  start-page: e1
  year: 2016
  ident: bib0080
  article-title: Deep learning: from speech recognition to language and multimodal processing
  publication-title: APSIPA Trans Signal Inf Process
– volume: 8
  start-page: e62867
  year: 2013
  ident: bib0045
  article-title: Combining classification with fMRI-derived complex network measures for potential neurodiagnostics
  publication-title: PLoS One
– volume: 24
  start-page: 427
  year: 2015
  end-page: 440
  ident: bib0065
  article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model
  publication-title: Eur Child Adolesc Psychiatry
– volume: 155
  start-page: 1087
  year: 1998
  end-page: 1091
  ident: bib0020
  article-title: Skills training versus psychosocial occupational therapy for persons with persistent schizophrenia
  publication-title: Am J Psychiatry
– volume: 45
  start-page: 2668
  year: 2015
  end-page: 2679
  ident: bib0165
  article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans Cybern
– volume: 124
  start-page: 127
  year: 2016
  end-page: 146
  ident: bib0200
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
– year: 2015
  ident: bib0145
  article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis
  publication-title: Artificial life and computational intelligence
– year: 2014
  ident: bib0265
  article-title: The tenth annual MLSP competition: schizophrenia classification challenge
  publication-title: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
– volume: 36
  start-page: 1535
  year: 2006
  end-page: 1540
  ident: bib0005
  article-title: Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach
  publication-title: Psychol Med
– volume: 7
  start-page: e00602
  year: 2017
  ident: bib0105
  article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia
  publication-title: Brain Behav
– volume: 20
  start-page: 519
  year: 2010
  end-page: 534
  ident: bib0285
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur Neuropsychopharmacol
– volume: 32
  start-page: S44
  year: 2006
  end-page: S63
  ident: bib0015
  article-title: The functional significance of social cognition in schizophrenia: a review
  publication-title: Schizophr Bull
– year: 2016
  ident: bib0175
  article-title: Classification of ADHD subgroup with recursive feature elimination for structural brain MRI
  publication-title: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2017
  ident: bib0190
  article-title: ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging
– volume: 6
  start-page: 6
  year: 2015
  ident: bib0170
  article-title: Discrimination of ADHD children based on Deep Bayesian Network
  publication-title: IET Conference Proceedings
– volume: 40
  start-page: 428
  year: 2014
  end-page: 437
  ident: bib0290
  article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia
  publication-title: Schizophr Bull
– volume: 58
  start-page: 1158
  year: 2011
  end-page: 1168
  ident: bib0225
  article-title: Bilateral hippocampal dysfunction in schizophrenia
  publication-title: Neuroimage
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0135
  article-title: A deep learning approach for diagnosing schizophrenic patients
  publication-title: J Exp Theor Artif Intell
– volume: 25
  start-page: 102
  year: 2006
  end-page: 111
  ident: bib0095
  article-title: Exploratory analysis of brain connectivity with ICA
  publication-title: IEEE Eng Med Biol Mag
– volume: 6
  start-page: 6
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0170
  article-title: Discrimination of ADHD children based on Deep Bayesian Network
  publication-title: IET Conference Proceedings
– volume: 36
  start-page: 4681
  issue: 11
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0100
  article-title: Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22945
– volume: 71
  start-page: 109
  issue: 2
  year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0025
  article-title: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.3469
– volume: 9
  start-page: 259
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0210
  article-title: Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00259
– volume: 36
  start-page: 1535
  issue: 11
  year: 2006
  ident: 10.1016/j.artmed.2019.06.003_bib0005
  article-title: Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach
  publication-title: Psychol Med
  doi: 10.1017/S0033291706008191
– volume: 43
  start-page: 116
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0050
  article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2012.12.005
– volume: 124
  start-page: 127
  issue: Pt A
  year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0200
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 64
  start-page: 1035
  issue: 12
  year: 2008
  ident: 10.1016/j.artmed.2019.06.003_bib0040
  article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.07.025
– volume: 47
  start-page: 1383
  issue: 10
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0275
  article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2013.06.010
– volume: 30
  start-page: 74
  year: 2018
  ident: 10.1016/j.artmed.2019.06.003_bib0140
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.017
– volume: 59
  start-page: 2196
  issue: 3
  year: 2012
  ident: 10.1016/j.artmed.2019.06.003_bib0060
  article-title: Altered resting state complexity in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.002
– year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0160
  article-title: Classification on ADHD with deep learning
– volume: 7
  start-page: 235
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0070
  article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA+ jICA
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00235
– year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0265
  article-title: The tenth annual MLSP competition: schizophrenia classification challenge
  publication-title: 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
  doi: 10.1109/MLSP.2014.6958889
– volume: 8
  issue: 229
  year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0195
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front Neurosci
– volume: 11
  start-page: 59
  year: 2017
  ident: 10.1016/j.artmed.2019.06.003_bib0075
  article-title: Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2017.00059
– volume: 106
  start-page: 7209
  issue: 17
  year: 2009
  ident: 10.1016/j.artmed.2019.06.003_bib0115
  article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811879106
– volume: 6
  start-page: 145
  year: 2012
  ident: 10.1016/j.artmed.2019.06.003_bib0260
  article-title: High classification accuracy for schizophrenia with rest and task fMRI data
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2012.00145
– volume: 5
  start-page: e1
  year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0080
  article-title: Deep learning: from speech recognition to language and multimodal processing
  publication-title: APSIPA Trans Signal Inf Process
  doi: 10.1017/ATSIP.2015.22
– volume: 145
  start-page: 137
  issue: Pt B
  year: 2017
  ident: 10.1016/j.artmed.2019.06.003_bib0035
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0255
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: preprint arXiv
– volume: 11
  start-page: 157
  year: 2017
  ident: 10.1016/j.artmed.2019.06.003_bib0185
  article-title: Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI
  publication-title: Front Hum Neurosci
– year: 2017
  ident: 10.1016/j.artmed.2019.06.003_bib0215
  article-title: 3-D functional brain network classification using convolutional neural networks
– volume: 32
  start-page: S44
  issue: Suppl. 1
  year: 2006
  ident: 10.1016/j.artmed.2019.06.003_bib0015
  article-title: The functional significance of social cognition in schizophrenia: a review
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbl029
– volume: 42
  start-page: S110
  issue: Suppl. 1
  year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0240
  article-title: Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbw053
– volume: 220
  start-page: 841
  issue: 2
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0150
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0687-3
– year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0175
  article-title: Classification of ADHD subgroup with recursive feature elimination for structural brain MRI
  publication-title: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 10
  start-page: 466
  year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0270
  article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00466
– start-page: 1
  year: 2019
  ident: 10.1016/j.artmed.2019.06.003_bib0135
  article-title: A deep learning approach for diagnosing schizophrenic patients
  publication-title: J Exp Theor Artif Intell
– volume: 32
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.artmed.2019.06.003_bib0055
  article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20995
– volume: 4
  start-page: 192
  year: 2010
  ident: 10.1016/j.artmed.2019.06.003_bib0280
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2010.00192
– volume: 47
  start-page: S148
  issue: Suppl. 1
  year: 2009
  ident: 10.1016/j.artmed.2019.06.003_bib0110
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(09)71511-3
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0180
  article-title: Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160697
– volume: 221
  start-page: 2569
  issue: 5
  year: 2016
  ident: 10.1016/j.artmed.2019.06.003_bib0155
  article-title: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-015-1059-y
– volume: 58
  start-page: 1158
  issue: 4
  year: 2011
  ident: 10.1016/j.artmed.2019.06.003_bib0225
  article-title: Bilateral hippocampal dysfunction in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.091
– volume: 155
  start-page: 1087
  issue: 8
  year: 1998
  ident: 10.1016/j.artmed.2019.06.003_bib0020
  article-title: Skills training versus psychosocial occupational therapy for persons with persistent schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.155.8.1087
– volume: 2
  start-page: 75
  year: 2011
  ident: 10.1016/j.artmed.2019.06.003_bib0220
  article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder
  publication-title: Front Psychiatry
– year: 2017
  ident: 10.1016/j.artmed.2019.06.003_bib0190
  article-title: ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study
– volume: 41
  start-page: 1326
  issue: 6
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0250
  article-title: Disintegration of sensorimotor brain networks in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbv060
– volume: 7
  start-page: 197
  issue: 3–4
  year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0085
  article-title: Deep learning: methods and applications
  publication-title: Found Trends® Signal Process
  doi: 10.1561/2000000039
– volume: 7
  issue: 12
  year: 2012
  ident: 10.1016/j.artmed.2019.06.003_bib0205
  article-title: Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050698
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0120
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.59
– volume: 45
  start-page: 2668
  issue: 12
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0165
  article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2379621
– volume: 83
  start-page: 418
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0235
  article-title: Using joint ICA to link function and structure using MEG and DTI in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.038
– volume: 24
  start-page: 427
  issue: 4
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0065
  article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model
  publication-title: Eur Child Adolesc Psychiatry
  doi: 10.1007/s00787-014-0593-0
– volume: 7
  start-page: e00602
  issue: 1
  year: 2017
  ident: 10.1016/j.artmed.2019.06.003_bib0105
  article-title: Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia
  publication-title: Brain Behav
  doi: 10.1002/brb3.602
– volume: 34
  start-page: 2302
  issue: 9
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0230
  article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22065
– volume: 133
  start-page: 135
  issue: 2–3
  year: 2005
  ident: 10.1016/j.artmed.2019.06.003_bib0010
  article-title: Emotion recognition, 'theory of mind,' and social behavior in schizophrenia
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2004.10.007
– year: 2019
  ident: 10.1016/j.artmed.2019.06.003_bib0130
  article-title: Deep neural networks in psychiatry
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-019-0365-9
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  ident: 10.1016/j.artmed.2019.06.003_bib0285
  article-title: Exploring the brain network: a review on resting-state fMRI functional connectivity
  publication-title: Eur Neuropsychopharmacol
  doi: 10.1016/j.euroneuro.2010.03.008
– year: 2019
  ident: 10.1016/j.artmed.2019.06.003_bib0125
  article-title: 3D-deep learning based automatic diagnosis of alzheimer’s disease with joint MMSE prediction using resting-state fMRI
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-019-09419-w
– year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0030
– volume: 25
  start-page: 102
  issue: 2
  year: 2006
  ident: 10.1016/j.artmed.2019.06.003_bib0095
  article-title: Exploratory analysis of brain connectivity with ICA
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/MEMB.2006.1607674
– volume: 67
  start-page: 772
  issue: 8
  year: 2010
  ident: 10.1016/j.artmed.2019.06.003_bib0295
  article-title: Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: an integrated neuroimaging study
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.85
– volume: 11
  issue: 8
  year: 2019
  ident: 10.1016/j.artmed.2019.06.003_bib0090
  article-title: Evaluation of functional decline in alzheimer’s dementia using 3D deep learning and group ICA for rs-fMRI measurements
  publication-title: Front Aging Neurosci
– year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0145
  article-title: Multi-phase feature representation learning for neurodegenerative disease diagnosis
– volume: 40
  start-page: 428
  issue: 2
  year: 2014
  ident: 10.1016/j.artmed.2019.06.003_bib0290
  article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbt037
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 10.1016/j.artmed.2019.06.003_bib0245
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond, B, Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 5
  start-page: 17275
  year: 2015
  ident: 10.1016/j.artmed.2019.06.003_bib0300
  article-title: Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings
  publication-title: Sci Rep
  doi: 10.1038/srep17275
– volume: 8
  start-page: e62867
  issue: 5
  year: 2013
  ident: 10.1016/j.artmed.2019.06.003_bib0045
  article-title: Combining classification with fMRI-derived complex network measures for potential neurodiagnostics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062867
SSID ssj0007416
Score 2.5533998
Snippet •Very optimistic results for the automated discrimination of schizophrenia using state-of-the-art 3D deep learning architecture.•For the classification, we...
This study reports a framework to discriminate patients with schizophrenia and normal healthy control subjects, based on magnetic resonance imaging (MRI) of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms 3D-CNN
3D-group ICA
Classification
Neuroimaging
Resting-state fMRI
Schizophrenia
TensorFlow
Title 3D-CNN based discrimination of schizophrenia using resting-state fMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365719301393
https://dx.doi.org/10.1016/j.artmed.2019.06.003
https://www.ncbi.nlm.nih.gov/pubmed/31521248
https://www.proquest.com/docview/2290977980
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQkBAX3o_xmILENWxrmrU5ogEaoO0AQ9otatMEDaFugnHlt2O3zQAhNMSpahX3YSf258YPgNM0cO0E7SYXTqGDYqjkrXOGhyli60w4tOiUjdwfdHoP4c1Ijpag63NhKKyy0v2lTi-0dXWlWXGzOR2Pm_fki4uOjBCCEI6hip9UvQ7n9Nn7Z5gHIY6i3p4QnEb79LkixgvvhzaHArxUUcXTt876aZ5-g5-FGbragLUKP7Lz8hU3YcnmW7DuezOwaqluwUq_2jTfhktxwbuDASODlTFKwy1beZFI2MSx169xd4wC4R8ZdezAIy_yjZjr313vwPDqctjt8ap7AjcyiGY8MTJJQ6tiaYS1hCOMVZmx6L8FNnKmFaayHcW21TFpgKCPHI22SpUMDHX5E7tQyye53QeWyQTllloRJ63QRFapLGsnYYToIUtU4OogPM-0qSqLU4OLZ-1DyJ50yWlNnNZFJJ2oA59TTcvKGgvGSy8O7bNGUc9pVP0L6KI53beZ9QfKEy91jYuOdlKS3E7eXjUVyUfgrOJWHfbK6TD_BkGIKAjjg38_9xBW6az80XMEtdnLmz1G6DNLG8XcbsDy-fVtb_ABqaMBdw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BkYDLLm-6DzASV6ttHDfxseqCWqA5QJG4WYljoyLUImj_PzOJXbFCCMQpUpLJY2zPfCN_MwNwWkSuk6Pf5MIpDFAMlbx1zvC4QGxdCocenbKRR1l3cBtf3Mm7FeiHXBiiVXrbX9v0ylr7My2vzdbTZNK6oVhcdGWCEIRwjFiFNapOFTdgrTe8HGRLg0ygoyq5JwQngZBBV9G88JHodojjpapCnqF71nsP9RECrTzR-Rb88BCS9eqv3IYVO92Bn6E9A_OrdQfWR37ffBfOxD_ezzJGPqtklIlbd_OiUWEzx17eUu8YceHvGTXtwCOvUo6YG10P92B8fjbuD7hvoMCNjJI5z43Mi9iqVBphLUEJY1VpLIZwkU2caceF7CSpbXdNESHuo1ijowolI0ON_sQ-NKazqT0EVsoch66wIs3bsUmsUmXZyeMEAUSZq8g1QQSdaeOLi1OPi0cdWGQPuta0Jk3rikwnmsCXUk91cY1P7pdhOHRIHEVTp9H6fyKXLOX-m1xfkDwJo65x3dFmSj61s8WLpjr5iJ1V2m7CQT0dlv8gCBRFcfrr2-89ho3BeHSlr4bZ5W_YpCs1R_gPNObPC_sXkdC8OPIz_RV6ugQu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-CNN+based+discrimination+of+schizophrenia+using+resting-state+fMRI&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Qureshi%2C+Muhammad+Naveed+Iqbal&rft.au=Oh%2C+Jooyoung&rft.au=Lee%2C+Boreom&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=98&rft.spage=10&rft.epage=17&rft_id=info:doi/10.1016%2Fj.artmed.2019.06.003&rft.externalDocID=S0933365719301393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon