Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography

The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subje...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 11562 - 12
Main Author Tsai, Shang-Yueh
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CV ws , CV bs ), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CV ws  = 73.2 ± 37.7%, CV bs  = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CV ws  < 45%, CV bs  < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.
AbstractList The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CV ws , CV bs ), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CV ws  = 73.2 ± 37.7%, CV bs  = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CV ws  < 45%, CV bs  < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.
The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.
The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CV , CV ), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CV  = 73.2 ± 37.7%, CV  = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CV  < 45%, CV  < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.
The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.
ArticleNumber 11562
Author Tsai, Shang-Yueh
Author_xml – sequence: 1
  givenname: Shang-Yueh
  orcidid: 0000-0002-6310-4750
  surname: Tsai
  fullname: Tsai, Shang-Yueh
  email: sytsai@nccu.edu.tw
  organization: Graduate Institute of Applied Physics, National Chengchi University, Research Center for Mind, Brain and Learning, National Chengchi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30068926$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rHSEUhqUkNGmaP9BFEbrpZho_xhndFEroFwQCpV2Lo8cb07l6q07K_ff19qZpkkVEUPR5X8_xfYEOYoqA0CtK3lHC5VnpqVCyI1R2TKmed-QZOmakFx3jjB3c2x-h01KuSRuCqZ6q5-iIEzJIxYZjlL7BJie32DCFOdQtTh6Xmhdbl2xmPGUTIrYpRrA13OwAEx2OUH-n_BOvoeZgC15KiCvcjCazsyk1WOyC9-08RVyzsTWtstlcbV-iQ2_mAqe36wn68enj9_Mv3cXl56_nHy46K9hYO8N7qUbLvZSeKA5O9KOTfGSUgR2dZcZxw8nIYRhE760aGHjnlGWOykkBP0Hv976bZVqDsxBbFbPe5LA2eauTCfrhTQxXepVu9EBGInrWDN7eGuT0a4FS9ToUC_NsIqSlaEZkm0ow2dA3j9DrtOTY2ttRVLCBctqo1_cruivlXxYNYHvA5lRKBn-HUKJ3met95rplrv9mrkkTyUciG6qp7dtbV2F-Wsr30tLeiSvI_8t-QvUHyQbD-A
CitedBy_id crossref_primary_10_1007_s00429_020_02064_z
crossref_primary_10_7554_eLife_49298
crossref_primary_10_1002_hbm_25773
crossref_primary_10_1089_brain_2021_0123
crossref_primary_10_1080_01621459_2021_2020126
crossref_primary_10_1162_netn_a_00407
crossref_primary_10_1038_s41598_022_19994_9
crossref_primary_10_1016_j_nicl_2020_102177
crossref_primary_10_1016_j_neuroimage_2021_118231
crossref_primary_10_1089_brain_2019_0686
crossref_primary_10_1371_journal_pone_0289406
crossref_primary_10_1002_mds_29425
crossref_primary_10_1109_TNSRE_2021_3125420
crossref_primary_10_1016_j_media_2022_102550
crossref_primary_10_1016_j_neuroimage_2024_120684
crossref_primary_10_3390_s21248305
crossref_primary_10_1016_j_neuroimage_2022_119558
crossref_primary_10_1016_j_nicl_2019_101899
crossref_primary_10_1016_j_neuroimage_2023_120160
crossref_primary_10_1016_j_cccb_2023_100175
crossref_primary_10_1162_netn_a_00130
crossref_primary_10_1016_j_neuroimage_2021_118007
crossref_primary_10_3389_fnagi_2020_604940
crossref_primary_10_1016_j_media_2021_102082
crossref_primary_10_1016_j_jogn_2020_06_003
crossref_primary_10_1016_j_ejmp_2023_102610
crossref_primary_10_1016_j_bandc_2022_105943
crossref_primary_10_1016_j_bandl_2020_104743
crossref_primary_10_5607_en_2020_29_1_80
crossref_primary_10_1161_STROKEAHA_122_041687
Cites_doi 10.1089/brain.2013.0202
10.1002/mrm.23254
10.1093/brain/awl100
10.1016/j.neuroimage.2006.09.018
10.1016/j.neuroimage.2007.02.012
10.1002/hbm.23017
10.2307/2529309
10.1371/journal.pone.0135247
10.1016/j.neuroimage.2014.10.004
10.1371/journal.pone.0013701
10.1089/brain.2014.0313
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2013.09.054
10.1523/JNEUROSCI.4793-12.2013
10.1111/j.1749-6632.2010.05888.x
10.1523/JNEUROSCI.2308-09.2009
10.1016/j.neuroimage.2012.03.036
10.1093/cercor/bhn011
10.1016/j.neuroimage.2005.01.019
10.1016/j.neuroimage.2013.03.023
10.1016/j.neuroimage.2013.12.022
10.1089/brain.2012.0121
10.1016/j.neuroimage.2009.12.027
10.1006/nimg.2001.0978
10.1038/30918
10.1371/journal.pcbi.0030017
10.1148/radiol.14132593
10.1093/cercor/bhn102
10.1093/cercor/bhq111
10.1016/j.neuroimage.2010.03.011
10.1016/j.neuroimage.2010.03.035
10.1016/j.neuroimage.2015.06.008
10.1103/PhysRevLett.87.198701
10.1016/j.jneumeth.2010.01.014
10.1016/j.neuroimage.2010.06.041
10.1016/j.neuroimage.2010.09.006
10.1016/j.jcm.2016.02.012
10.1016/j.neuroimage.2017.09.021
10.1016/j.neuroimage.2008.07.006
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-018-29943-0
DatabaseName Springer Nature Link
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID PMC6070542
30068926
10_1038_s41598_018_29943_0
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
  grantid: 105-2221-E-004-003; 105-2420-H-004-003-MY2; 106-2221-E-004-001
  funderid: https://doi.org/10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
  grantid: 105-2420-H-004-003-MY2
– fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
  grantid: 106-2221-E-004-001
– fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
  grantid: 105-2221-E-004-003
– fundername: ;
  grantid: 105-2221-E-004-003; 105-2420-H-004-003-MY2; 106-2221-E-004-001
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c527t-a34897c3f88f093ed547d837212ec7dc2ad3a3073e6654fc962efdd9c2d18b9e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:29:14 EDT 2025
Tue Aug 05 09:48:46 EDT 2025
Wed Aug 13 08:04:38 EDT 2025
Mon Jul 21 06:01:41 EDT 2025
Tue Jul 01 00:57:55 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-a34897c3f88f093ed547d837212ec7dc2ad3a3073e6654fc962efdd9c2d18b9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6310-4750
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-29943-0
PMID 30068926
PQID 2081526131
PQPubID 2041939
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6070542
proquest_miscellaneous_2082089528
proquest_journals_2081526131
pubmed_primary_30068926
crossref_primary_10_1038_s41598_018_29943_0
crossref_citationtrail_10_1038_s41598_018_29943_0
springer_journals_10_1038_s41598_018_29943_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Welton, Kent, Auer, Dineen (CR22) 2015; 5
Buchanan, Pernet, Gorgolewski, Storkey, Bastin (CR26) 2014; 86
van Wijk, Stam, Daffertshofer (CR29) 2010; 5
Cao (CR21) 2013; 33
Munsell (CR19) 2015; 118
CR17
Moldrich (CR31) 2010; 51
Gong (CR15) 2009; 29
Vaessen (CR25) 2010; 51
Glasser, Rilling (CR3) 2008; 18
Bonilha (CR27) 2015; 10
Achard, Bullmore (CR35) 2007; 3
Rubinov, Sporns (CR9) 2010; 52
Andreotti (CR23) 2014; 4
Koo, Li (CR39) 2016; 15
Prescott (CR20) 2014; 273
Watts, Strogatz (CR37) 1998; 393
Lebel, Benner, Beaulieu (CR1) 2012; 68
Smith, Tournier, Calamante, Connelly (CR32) 2015; 104
Khalsa, Mayhew, Chechlacz, Bagary, Bagshaw (CR30) 2014; 102
Koch (CR38) 1977; 33
Zalesky (CR11) 2010; 50
CR2
Huang (CR4) 2005; 26
Behrens, Berg, Jbabdi, Rushworth, Woolrich (CR5) 2007; 34
Gong (CR13) 2009; 19
Sporns (CR7) 2013; 80
Zalesky, Fornito, Bullmore (CR12) 2010; 53
Ciccarelli (CR6) 2006; 129
Bassett, Brown, Deshpande, Carlson, Grafton (CR28) 2011; 54
Sporns (CR8) 2011; 1224
Yan (CR16) 2011; 21
Hagmann (CR10) 2010; 194
Owen (CR24) 2013; 3
Cheng (CR33) 2012; 61
Iturria-Medina (CR14) 2007; 36
Collin (CR18) 2016; 37
Latora, Marchiori (CR36) 2001; 87
Tzourio-Mazoyer (CR34) 2002; 15
MF Glasser (29943_CR3) 2008; 18
JP Owen (29943_CR24) 2013; 3
TK Koo (29943_CR39) 2016; 15
P Hagmann (29943_CR10) 2010; 194
A Zalesky (29943_CR12) 2010; 53
TE Behrens (29943_CR5) 2007; 34
O Sporns (29943_CR8) 2011; 1224
G Gong (29943_CR13) 2009; 19
G Collin (29943_CR18) 2016; 37
Q Cao (29943_CR21) 2013; 33
DS Bassett (29943_CR28) 2011; 54
H Cheng (29943_CR33) 2012; 61
29943_CR2
O Sporns (29943_CR7) 2013; 80
MJ Vaessen (29943_CR25) 2010; 51
BC Munsell (29943_CR19) 2015; 118
BC van Wijk (29943_CR29) 2010; 5
CR Buchanan (29943_CR26) 2014; 86
J Andreotti (29943_CR23) 2014; 4
29943_CR17
C Lebel (29943_CR1) 2012; 68
N Tzourio-Mazoyer (29943_CR34) 2002; 15
M Rubinov (29943_CR9) 2010; 52
G Gong (29943_CR15) 2009; 29
O Ciccarelli (29943_CR6) 2006; 129
GG Koch (29943_CR38) 1977; 33
A Zalesky (29943_CR11) 2010; 50
DJ Watts (29943_CR37) 1998; 393
S Khalsa (29943_CR30) 2014; 102
RE Smith (29943_CR32) 2015; 104
S Achard (29943_CR35) 2007; 3
JW Prescott (29943_CR20) 2014; 273
V Latora (29943_CR36) 2001; 87
C Yan (29943_CR16) 2011; 21
L Bonilha (29943_CR27) 2015; 10
Y Iturria-Medina (29943_CR14) 2007; 36
RX Moldrich (29943_CR31) 2010; 51
H Huang (29943_CR4) 2005; 26
T Welton (29943_CR22) 2015; 5
References_xml – volume: 4
  start-page: 203
  year: 2014
  end-page: 220
  ident: CR23
  article-title: Repeatability analysis of global and local metrics of brain structural networks
  publication-title: Brain Connect
  doi: 10.1089/brain.2013.0202
– volume: 68
  start-page: 474
  year: 2012
  end-page: 483
  ident: CR1
  article-title: Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23254
– volume: 129
  start-page: 1859
  year: 2006
  end-page: 1871
  ident: CR6
  article-title: Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awl100
– ident: CR2
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: CR5
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 36
  start-page: 645
  year: 2007
  end-page: 660
  ident: CR14
  article-title: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.012
– volume: 37
  start-page: 122
  year: 2016
  end-page: 134
  ident: CR18
  article-title: Brain network analysis reveals affected connectome structure in bipolar I disorder
  publication-title: Human brain mapping
  doi: 10.1002/hbm.23017
– volume: 33
  start-page: 133
  year: 1977
  end-page: 158
  ident: CR38
  article-title: A general methodology for the analysis of experiments with repeated measurement of categorical data
  publication-title: Biometrics
  doi: 10.2307/2529309
– volume: 10
  start-page: e0135247
  year: 2015
  ident: CR27
  article-title: Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging
  publication-title: PloS one
  doi: 10.1371/journal.pone.0135247
– volume: 104
  start-page: 253
  year: 2015
  end-page: 265
  ident: CR32
  article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.004
– volume: 5
  start-page: e13701
  year: 2010
  ident: CR29
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PloS one
  doi: 10.1371/journal.pone.0013701
– volume: 5
  start-page: 193
  year: 2015
  end-page: 202
  ident: CR22
  article-title: Reproducibility of graph-theoretic brain network metrics: a systematic review
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0313
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: CR9
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 86
  start-page: 231
  year: 2014
  end-page: 243
  ident: CR26
  article-title: Test-retest reliability of structural brain networks from diffusion MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.054
– volume: 33
  start-page: 10676
  year: 2013
  end-page: 10687
  ident: CR21
  article-title: Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.4793-12.2013
– volume: 1224
  start-page: 109
  year: 2011
  end-page: 125
  ident: CR8
  article-title: The human connectome: a complex network
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 29
  start-page: 15684
  year: 2009
  end-page: 15693
  ident: CR15
  article-title: Age- and gender-related differences in the cortical anatomical network
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.2308-09.2009
– volume: 61
  start-page: 1153
  year: 2012
  end-page: 1164
  ident: CR33
  article-title: Characteristics and variability of structural networks derived from diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.036
– volume: 18
  start-page: 2471
  year: 2008
  end-page: 2482
  ident: CR3
  article-title: DTI tractography of the human brain’s language pathways
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn011
– volume: 26
  start-page: 195
  year: 2005
  end-page: 205
  ident: CR4
  article-title: DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.019
– volume: 80
  start-page: 53
  year: 2013
  end-page: 61
  ident: CR7
  article-title: The human connectome: origins and challenges
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.023
– volume: 102
  start-page: 118
  issue: Pt 1
  year: 2014
  end-page: 127
  ident: CR30
  article-title: The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.022
– volume: 3
  start-page: 160
  year: 2013
  end-page: 176
  ident: CR24
  article-title: Test-retest reliability of computational network measurements derived from the structural connectome of the human brain
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0121
– volume: 50
  start-page: 970
  year: 2010
  end-page: 983
  ident: CR11
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: CR34
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: CR37
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 3
  start-page: e17
  year: 2007
  ident: CR35
  article-title: Efficiency and cost of economical brain functional networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030017
– ident: CR17
– volume: 273
  start-page: 175
  year: 2014
  end-page: 184
  ident: CR20
  article-title: The Alzheimer structural connectome: changes in cortical network topology with increased amyloid plaque burden
  publication-title: Radiology
  doi: 10.1148/radiol.14132593
– volume: 19
  start-page: 524
  year: 2009
  end-page: 536
  ident: CR13
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using diffusion tensor imaging tractography
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn102
– volume: 21
  start-page: 449
  year: 2011
  end-page: 458
  ident: CR16
  article-title: Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq111
– volume: 51
  start-page: 1106
  year: 2010
  end-page: 1116
  ident: CR25
  article-title: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.011
– volume: 51
  start-page: 1027
  year: 2010
  end-page: 1036
  ident: CR31
  article-title: Comparative mouse brain tractography of diffusion magnetic resonance imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.035
– volume: 118
  start-page: 219
  year: 2015
  end-page: 230
  ident: CR19
  article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.008
– volume: 87
  start-page: 198701
  year: 2001
  ident: CR36
  article-title: Efficient behavior of small-world networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.198701
– volume: 194
  start-page: 34
  year: 2010
  end-page: 45
  ident: CR10
  article-title: MR connectomics: Principles and challenges
  publication-title: Journal of neuroscience methods
  doi: 10.1016/j.jneumeth.2010.01.014
– volume: 53
  start-page: 1197
  year: 2010
  end-page: 1207
  ident: CR12
  article-title: Network-based statistic: identifying differences in brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.041
– volume: 54
  start-page: 1262
  year: 2011
  end-page: 1279
  ident: CR28
  article-title: Conserved and variable architecture of human white matter connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.006
– volume: 15
  start-page: 155
  year: 2016
  end-page: 163
  ident: CR39
  article-title: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
  publication-title: J Chiropr Med
  doi: 10.1016/j.jcm.2016.02.012
– volume: 53
  start-page: 1197
  year: 2010
  ident: 29943_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.041
– volume: 37
  start-page: 122
  year: 2016
  ident: 29943_CR18
  publication-title: Human brain mapping
  doi: 10.1002/hbm.23017
– volume: 10
  start-page: e0135247
  year: 2015
  ident: 29943_CR27
  publication-title: PloS one
  doi: 10.1371/journal.pone.0135247
– volume: 102
  start-page: 118
  issue: Pt 1
  year: 2014
  ident: 29943_CR30
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.022
– volume: 273
  start-page: 175
  year: 2014
  ident: 29943_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.14132593
– volume: 86
  start-page: 231
  year: 2014
  ident: 29943_CR26
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.054
– volume: 15
  start-page: 273
  year: 2002
  ident: 29943_CR34
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 15
  start-page: 155
  year: 2016
  ident: 29943_CR39
  publication-title: J Chiropr Med
  doi: 10.1016/j.jcm.2016.02.012
– volume: 80
  start-page: 53
  year: 2013
  ident: 29943_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.023
– volume: 36
  start-page: 645
  year: 2007
  ident: 29943_CR14
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.012
– volume: 29
  start-page: 15684
  year: 2009
  ident: 29943_CR15
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.2308-09.2009
– volume: 5
  start-page: 193
  year: 2015
  ident: 29943_CR22
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0313
– volume: 19
  start-page: 524
  year: 2009
  ident: 29943_CR13
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn102
– volume: 61
  start-page: 1153
  year: 2012
  ident: 29943_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.036
– volume: 34
  start-page: 144
  year: 2007
  ident: 29943_CR5
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 194
  start-page: 34
  year: 2010
  ident: 29943_CR10
  publication-title: Journal of neuroscience methods
  doi: 10.1016/j.jneumeth.2010.01.014
– ident: 29943_CR17
  doi: 10.1016/j.neuroimage.2017.09.021
– volume: 4
  start-page: 203
  year: 2014
  ident: 29943_CR23
  publication-title: Brain Connect
  doi: 10.1089/brain.2013.0202
– volume: 87
  start-page: 198701
  year: 2001
  ident: 29943_CR36
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.198701
– volume: 52
  start-page: 1059
  year: 2010
  ident: 29943_CR9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 21
  start-page: 449
  year: 2011
  ident: 29943_CR16
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq111
– volume: 118
  start-page: 219
  year: 2015
  ident: 29943_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.008
– volume: 54
  start-page: 1262
  year: 2011
  ident: 29943_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.006
– volume: 26
  start-page: 195
  year: 2005
  ident: 29943_CR4
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.01.019
– volume: 51
  start-page: 1027
  year: 2010
  ident: 29943_CR31
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.035
– volume: 51
  start-page: 1106
  year: 2010
  ident: 29943_CR25
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.011
– volume: 33
  start-page: 10676
  year: 2013
  ident: 29943_CR21
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.4793-12.2013
– volume: 104
  start-page: 253
  year: 2015
  ident: 29943_CR32
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.004
– volume: 3
  start-page: 160
  year: 2013
  ident: 29943_CR24
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0121
– volume: 50
  start-page: 970
  year: 2010
  ident: 29943_CR11
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 393
  start-page: 440
  year: 1998
  ident: 29943_CR37
  publication-title: Nature
  doi: 10.1038/30918
– volume: 33
  start-page: 133
  year: 1977
  ident: 29943_CR38
  publication-title: Biometrics
  doi: 10.2307/2529309
– ident: 29943_CR2
  doi: 10.1016/j.neuroimage.2008.07.006
– volume: 68
  start-page: 474
  year: 2012
  ident: 29943_CR1
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23254
– volume: 1224
  start-page: 109
  year: 2011
  ident: 29943_CR8
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 18
  start-page: 2471
  year: 2008
  ident: 29943_CR3
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn011
– volume: 5
  start-page: e13701
  year: 2010
  ident: 29943_CR29
  publication-title: PloS one
  doi: 10.1371/journal.pone.0013701
– volume: 3
  start-page: e17
  year: 2007
  ident: 29943_CR35
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030017
– volume: 129
  start-page: 1859
  year: 2006
  ident: 29943_CR6
  publication-title: Brain
  doi: 10.1093/brain/awl100
SSID ssj0000529419
Score 2.4065402
Snippet The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11562
SubjectTerms 59/57
631/1647/245/2149
692/700/1421/65
Humanities and Social Sciences
multidisciplinary
Neural networks
Reproducibility
Science
Science (multidisciplinary)
Short term
Sparsity
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFH_oyIKXxXX96H5IBG9rMU3SJjmJiMMg6MmBuZU0SVdB25WZOcx_v3lJpsu4uFB6SUqbvpe85H38fgDvqJemZ46XjWi6UqialR3emKHU19Qo0aO_49v3ZrEUX1f1Kjvc1jmtcr8mxoXajRZ95OGQroKpCcan-njzt0TWKIyuZgqNx_AEocswpUuu5ORjwSiWqHSulaFcfVgHe4U1ZRWWHmjBS3poj-5tMu_nSv4TMI12aP4MjvMGknxKEj-BR354DkeJUnJ3CmPYUUcQ15T1uiNjTxJGLOJrkA4ZIYjF7BabeCOIGRwZUjI4-YP8WnZNMBv-miDZTATgRSxnglQqW_StkQ1WVmWo6xewnH_58XlRZlKF0tZMbkrDhdLS8l6pnmruXS2kC6fUYMK8lc4y47jBie-Rl7i3umG-d05b5irVac9fwmwYB_8aiKgMbVQ4YhneC0FDI_O1NthRSCF0AdX-17Y2I44j8cXvNka-uWqTONogjjaKo6UFXE3P3CS8jQd7X-wl1ua5t27vNKWAt1NzmDUYCjGDH7exT7h0zVQBr5KAp9dxLJvRrClAHoh-6oCI3Ictw6-fEZm7CQtoLVgB7_dKcvdZ_x_F2cOjOIenDBU2Zh1ewCzojL8MO6FN9yaq-y2z5Ags
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB5ClkIvZbdPb9OiQm-tqayHLR1L2BAWtqcGcjOyJLeF1i4kOeTfVyPZLmm2hYLxRSP8mJE0I818H8Bb6ivTMsfzUpRNLpRkeYM3Zij1kholWtzvuPtUrjfidiu3M2BjLUxM2o-QlnGaHrPDPuzCQoPFYAXWDGjB8xCmXyB0O1r1slxO-yp4ciUKPdTHUK7u6Xq6Bp05luf5kX8cksa1Z3UJjwankXxMr3kFM989hgeJRvL4BPrgRUfg1pTpeiR9SxIuLGJqkAZZIIjFjBabuCKI6RzpUgI4-YGcWnZHMAP-C0GCmQi6i_jNBOlTDrifRvZYTTXAWz-Fzerm83KdD0QKuZWs2ueGC6Ury1ulWqq5d1JULkSmYdnytnKWGccNDnaPXMSt1SXzrXPaMleoRnv-DOZd3_kXQERhaKlCWGV4KwQNjcxLbVBQBG3oDIrx19Z2QBlHsovvdTzt5qpO6qiDOuqojppm8G7q8zNhbPxTejFqrB7G265mwbORIRjkRQZvpuYwUvD4w3S-P0SZcGnJVAbPk4Knx3EsldGszKA6Uf0kgCjcpy3dt68RjbsMk6YULIP3o5H8fq2_f8X1_4m_hIcMDThmHi5gHmzIvwre0L55Hc3_F7DOBiQ
  priority: 102
  providerName: Springer Nature
Title Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography
URI https://link.springer.com/article/10.1038/s41598-018-29943-0
https://www.ncbi.nlm.nih.gov/pubmed/30068926
https://www.proquest.com/docview/2081526131
https://www.proquest.com/docview/2082089528
https://pubmed.ncbi.nlm.nih.gov/PMC6070542
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTaC9IH4vMCoj8QaBxHZi-wGhUm2aKm1CQKW-RY7jDKSRDtpJ9L_nzk4KY4MHpKqVYkdOfefcnX33fQDPM69syxuRlrKsU6kLntb0xW2W-SKzWra033F8Uh7N5HRezLdgoDvqJ3B5bWhHfFKz72evfnxbv8UF_yaWjOvXSzRCVCiWUz2BkSLFEH4HLZOihXrcu_sR65sbmZu-dub6W3fhlqC6CUNwC7-bqiv-59U0yj_OUoOJOrwDt3vfko2jMtyFLd_dg5uRbXJ9HxbobAd815gQu2aLlkX4WILeYDWRRTBHiS8uUkow2zWsi3ni7CtRb7klo0T5U0Y8NAGbl2CeGbGsXNC2G1tR0VWPgv0AZocHnyZHac-3kLqCq1VqhdRGOdFq3WZG-KaQqsEAFq2bd6px3DbC0jvBE2Vx60zJfds0xvEm17Xx4iFsd4vO7wGTucU5xOjLilbKDBu5L4yljlJJaRLIh6mtXA9GTpwYZ1U4FBe6ipKpUDJVkEyVJfBic895hOL4Z-_9QWLVoFUVRweowJhR5Ak82zTjgqJTEtv5xUXogx9TcJ3AoyjgzXCDZiSgLol-04HAui-3dF8-B9DuEt-theQJvByU5Ndj_f1fPP7vgZ7ALie1DrmK-7CN6uSfov-0qkdwQ83VCHbG4-nHKf6-Ozh5_wGvTsrJKOxJjMKy-QmXMx6m
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChgJThCR2E5iHxDi0WpL2xVCrdRb6tgORYKkaLdC-6f4jczESaqlordKUS52njP2eDwz3wfwIvGFqbkTcS7zKpYq43FFJ26SxGeJUbKm_Y79WT49lJ-PsqM1-DPUwlBa5TAndhO1ay3tkaOTrtDUoPFJ353-iok1iqKrA4VGUItdv_yNLtv87c4nlO9Lzre3Dj5O455VILYZLxaxEVLpwopaqRrdee8yWTh003AO97ZwlhsnDGm-J2Le2uqc-9o5bblLVaW9wPteg3Up0JWZwPqHrdmXr-OuDsXNZKr76pxEqDdztJBUxZZSsYOWIk5WLeCFZe3F7Mx_QrSd5du-BTf7JSt7H3TsNqz55g5cDySWy7vQ4hq-g40NebZL1tYsoNISogeriIOCWcqnsYGpgpnGsSakn7OfxOhl54zy778xorfpIH8JPZoRecsZ7eaxBdVy9eDa9-DwSn74fZg0beMfApOpSXKFTp0RtZQJNnKfaUMdZSGljiAdfm1pe4xzotr4UXaxdqHKII4SxVF24iiTCF6N15wGhI9Le28OEiv70T4vz3UzgudjM45TCr6YxrdnXR88dMZVBA-CgMfHCSrU0TyPoFgR_diBMMBXW5rvJx0WeI5TdiZ5BK8HJTl_rf9_xaPLv-IZ3Jge7O-Vezuz3cewwUl5u5zHTZig_vgnuA5bVE975WdwfNXj7S_X3UbP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlAviO8GChgJThA1sZ3YOSCEKKuWQsWBSnsLju0AEiRFuxXav8avY8ZOUi0VvVVa5WJvdpOZ8Xg8M-8BPMu8Mi13Ii1l2aRSFzxt6MJNlvkiM1q2dN7x8ajcP5bv58V8A_6MvTBUVjmuiWGhdr2lM3IM0jW6GnQ--W47lEV82pu9PvmVEoMUZVpHOo2oIod-9RvDt8Wrgz2U9XPOZ-8-v91PB4aB1BZcLVMjpK6UFa3WLYb23hVSOQzZcD33VjnLjROGrMATSW9rq5L71rnKcpfrpvIC73sFripR5GRjaq6m8x3KoMm8Gvp0MqF3F-grqZ8tp7aHSoo0W_eF5za45-s0_0nWBh84uwk3hs0rexO17RZs-O42XIt0lqs70ONuPgDIxorbFetbFvFpCduDNcRGwSxV1tjIWcFM51gXC9HZT-L2sgtGlfhfGRHdBPBfwpFmRONySud6bEldXQPM9l04vpTXfQ82u77z28BkbrJSY3hnRCtlhoPcF5WhiVJJWSWQj6-2tgPaOZFu_KhD1l3oOoqjRnHUQRx1lsCL6TsnEevjwtk7o8Tqwe4X9ZmWJvB0GkaLpTSM6Xx_Gubgpyq4TuB-FPD0c4JadipeJqDWRD9NIDTw9ZHu-7eACl7i4l1InsDLUUnO_tb_n-LBxU_xBK6jldUfDo4OH8IWJ90NxY87sInq4x_hhmzZPA6az-DLZZvaX1ydSZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+structural+brain+connectivity+and+network+metrics+using+probabilistic+diffusion+tractography&rft.jtitle=Scientific+reports&rft.au=Tsai%2C+Shang-Yueh&rft.date=2018-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=8&rft_id=info:doi/10.1038%2Fs41598-018-29943-0&rft_id=info%3Apmid%2F30068926&rft.externalDocID=PMC6070542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon