Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography
The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subje...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 11562 - 12 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CV
ws
, CV
bs
), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CV
ws
= 73.2 ± 37.7%, CV
bs
= 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CV
ws
< 45%, CV
bs
< 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics. |
---|---|
AbstractList | The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CV
ws
, CV
bs
), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CV
ws
= 73.2 ± 37.7%, CV
bs
= 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CV
ws
< 45%, CV
bs
< 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics. The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics. The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CV , CV ), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CV = 73.2 ± 37.7%, CV = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CV < 45%, CV < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics. The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics. |
ArticleNumber | 11562 |
Author | Tsai, Shang-Yueh |
Author_xml | – sequence: 1 givenname: Shang-Yueh orcidid: 0000-0002-6310-4750 surname: Tsai fullname: Tsai, Shang-Yueh email: sytsai@nccu.edu.tw organization: Graduate Institute of Applied Physics, National Chengchi University, Research Center for Mind, Brain and Learning, National Chengchi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30068926$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rHSEUhqUkNGmaP9BFEbrpZho_xhndFEroFwQCpV2Lo8cb07l6q07K_ff19qZpkkVEUPR5X8_xfYEOYoqA0CtK3lHC5VnpqVCyI1R2TKmed-QZOmakFx3jjB3c2x-h01KuSRuCqZ6q5-iIEzJIxYZjlL7BJie32DCFOdQtTh6Xmhdbl2xmPGUTIrYpRrA13OwAEx2OUH-n_BOvoeZgC15KiCvcjCazsyk1WOyC9-08RVyzsTWtstlcbV-iQ2_mAqe36wn68enj9_Mv3cXl56_nHy46K9hYO8N7qUbLvZSeKA5O9KOTfGSUgR2dZcZxw8nIYRhE760aGHjnlGWOykkBP0Hv976bZVqDsxBbFbPe5LA2eauTCfrhTQxXepVu9EBGInrWDN7eGuT0a4FS9ToUC_NsIqSlaEZkm0ow2dA3j9DrtOTY2ttRVLCBctqo1_cruivlXxYNYHvA5lRKBn-HUKJ3met95rplrv9mrkkTyUciG6qp7dtbV2F-Wsr30tLeiSvI_8t-QvUHyQbD-A |
CitedBy_id | crossref_primary_10_1007_s00429_020_02064_z crossref_primary_10_7554_eLife_49298 crossref_primary_10_1002_hbm_25773 crossref_primary_10_1089_brain_2021_0123 crossref_primary_10_1080_01621459_2021_2020126 crossref_primary_10_1162_netn_a_00407 crossref_primary_10_1038_s41598_022_19994_9 crossref_primary_10_1016_j_nicl_2020_102177 crossref_primary_10_1016_j_neuroimage_2021_118231 crossref_primary_10_1089_brain_2019_0686 crossref_primary_10_1371_journal_pone_0289406 crossref_primary_10_1002_mds_29425 crossref_primary_10_1109_TNSRE_2021_3125420 crossref_primary_10_1016_j_media_2022_102550 crossref_primary_10_1016_j_neuroimage_2024_120684 crossref_primary_10_3390_s21248305 crossref_primary_10_1016_j_neuroimage_2022_119558 crossref_primary_10_1016_j_nicl_2019_101899 crossref_primary_10_1016_j_neuroimage_2023_120160 crossref_primary_10_1016_j_cccb_2023_100175 crossref_primary_10_1162_netn_a_00130 crossref_primary_10_1016_j_neuroimage_2021_118007 crossref_primary_10_3389_fnagi_2020_604940 crossref_primary_10_1016_j_media_2021_102082 crossref_primary_10_1016_j_jogn_2020_06_003 crossref_primary_10_1016_j_ejmp_2023_102610 crossref_primary_10_1016_j_bandc_2022_105943 crossref_primary_10_1016_j_bandl_2020_104743 crossref_primary_10_5607_en_2020_29_1_80 crossref_primary_10_1161_STROKEAHA_122_041687 |
Cites_doi | 10.1089/brain.2013.0202 10.1002/mrm.23254 10.1093/brain/awl100 10.1016/j.neuroimage.2006.09.018 10.1016/j.neuroimage.2007.02.012 10.1002/hbm.23017 10.2307/2529309 10.1371/journal.pone.0135247 10.1016/j.neuroimage.2014.10.004 10.1371/journal.pone.0013701 10.1089/brain.2014.0313 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2013.09.054 10.1523/JNEUROSCI.4793-12.2013 10.1111/j.1749-6632.2010.05888.x 10.1523/JNEUROSCI.2308-09.2009 10.1016/j.neuroimage.2012.03.036 10.1093/cercor/bhn011 10.1016/j.neuroimage.2005.01.019 10.1016/j.neuroimage.2013.03.023 10.1016/j.neuroimage.2013.12.022 10.1089/brain.2012.0121 10.1016/j.neuroimage.2009.12.027 10.1006/nimg.2001.0978 10.1038/30918 10.1371/journal.pcbi.0030017 10.1148/radiol.14132593 10.1093/cercor/bhn102 10.1093/cercor/bhq111 10.1016/j.neuroimage.2010.03.011 10.1016/j.neuroimage.2010.03.035 10.1016/j.neuroimage.2015.06.008 10.1103/PhysRevLett.87.198701 10.1016/j.jneumeth.2010.01.014 10.1016/j.neuroimage.2010.06.041 10.1016/j.neuroimage.2010.09.006 10.1016/j.jcm.2016.02.012 10.1016/j.neuroimage.2017.09.021 10.1016/j.neuroimage.2008.07.006 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-29943-0 |
DatabaseName | Springer Nature Link CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | PMC6070542 30068926 10_1038_s41598_018_29943_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan) grantid: 105-2221-E-004-003; 105-2420-H-004-003-MY2; 106-2221-E-004-001 funderid: https://doi.org/10.13039/501100004663 – fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan) grantid: 105-2420-H-004-003-MY2 – fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan) grantid: 106-2221-E-004-001 – fundername: Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan) grantid: 105-2221-E-004-003 – fundername: ; grantid: 105-2221-E-004-003; 105-2420-H-004-003-MY2; 106-2221-E-004-001 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c527t-a34897c3f88f093ed547d837212ec7dc2ad3a3073e6654fc962efdd9c2d18b9e3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:29:14 EDT 2025 Tue Aug 05 09:48:46 EDT 2025 Wed Aug 13 08:04:38 EDT 2025 Mon Jul 21 06:01:41 EDT 2025 Tue Jul 01 00:57:55 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-a34897c3f88f093ed547d837212ec7dc2ad3a3073e6654fc962efdd9c2d18b9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6310-4750 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-29943-0 |
PMID | 30068926 |
PQID | 2081526131 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6070542 proquest_miscellaneous_2082089528 proquest_journals_2081526131 pubmed_primary_30068926 crossref_primary_10_1038_s41598_018_29943_0 crossref_citationtrail_10_1038_s41598_018_29943_0 springer_journals_10_1038_s41598_018_29943_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Welton, Kent, Auer, Dineen (CR22) 2015; 5 Buchanan, Pernet, Gorgolewski, Storkey, Bastin (CR26) 2014; 86 van Wijk, Stam, Daffertshofer (CR29) 2010; 5 Cao (CR21) 2013; 33 Munsell (CR19) 2015; 118 CR17 Moldrich (CR31) 2010; 51 Gong (CR15) 2009; 29 Vaessen (CR25) 2010; 51 Glasser, Rilling (CR3) 2008; 18 Bonilha (CR27) 2015; 10 Achard, Bullmore (CR35) 2007; 3 Rubinov, Sporns (CR9) 2010; 52 Andreotti (CR23) 2014; 4 Koo, Li (CR39) 2016; 15 Prescott (CR20) 2014; 273 Watts, Strogatz (CR37) 1998; 393 Lebel, Benner, Beaulieu (CR1) 2012; 68 Smith, Tournier, Calamante, Connelly (CR32) 2015; 104 Khalsa, Mayhew, Chechlacz, Bagary, Bagshaw (CR30) 2014; 102 Koch (CR38) 1977; 33 Zalesky (CR11) 2010; 50 CR2 Huang (CR4) 2005; 26 Behrens, Berg, Jbabdi, Rushworth, Woolrich (CR5) 2007; 34 Gong (CR13) 2009; 19 Sporns (CR7) 2013; 80 Zalesky, Fornito, Bullmore (CR12) 2010; 53 Ciccarelli (CR6) 2006; 129 Bassett, Brown, Deshpande, Carlson, Grafton (CR28) 2011; 54 Sporns (CR8) 2011; 1224 Yan (CR16) 2011; 21 Hagmann (CR10) 2010; 194 Owen (CR24) 2013; 3 Cheng (CR33) 2012; 61 Iturria-Medina (CR14) 2007; 36 Collin (CR18) 2016; 37 Latora, Marchiori (CR36) 2001; 87 Tzourio-Mazoyer (CR34) 2002; 15 MF Glasser (29943_CR3) 2008; 18 JP Owen (29943_CR24) 2013; 3 TK Koo (29943_CR39) 2016; 15 P Hagmann (29943_CR10) 2010; 194 A Zalesky (29943_CR12) 2010; 53 TE Behrens (29943_CR5) 2007; 34 O Sporns (29943_CR8) 2011; 1224 G Gong (29943_CR13) 2009; 19 G Collin (29943_CR18) 2016; 37 Q Cao (29943_CR21) 2013; 33 DS Bassett (29943_CR28) 2011; 54 H Cheng (29943_CR33) 2012; 61 29943_CR2 O Sporns (29943_CR7) 2013; 80 MJ Vaessen (29943_CR25) 2010; 51 BC Munsell (29943_CR19) 2015; 118 BC van Wijk (29943_CR29) 2010; 5 CR Buchanan (29943_CR26) 2014; 86 J Andreotti (29943_CR23) 2014; 4 29943_CR17 C Lebel (29943_CR1) 2012; 68 N Tzourio-Mazoyer (29943_CR34) 2002; 15 M Rubinov (29943_CR9) 2010; 52 G Gong (29943_CR15) 2009; 29 O Ciccarelli (29943_CR6) 2006; 129 GG Koch (29943_CR38) 1977; 33 A Zalesky (29943_CR11) 2010; 50 DJ Watts (29943_CR37) 1998; 393 S Khalsa (29943_CR30) 2014; 102 RE Smith (29943_CR32) 2015; 104 S Achard (29943_CR35) 2007; 3 JW Prescott (29943_CR20) 2014; 273 V Latora (29943_CR36) 2001; 87 C Yan (29943_CR16) 2011; 21 L Bonilha (29943_CR27) 2015; 10 Y Iturria-Medina (29943_CR14) 2007; 36 RX Moldrich (29943_CR31) 2010; 51 H Huang (29943_CR4) 2005; 26 T Welton (29943_CR22) 2015; 5 |
References_xml | – volume: 4 start-page: 203 year: 2014 end-page: 220 ident: CR23 article-title: Repeatability analysis of global and local metrics of brain structural networks publication-title: Brain Connect doi: 10.1089/brain.2013.0202 – volume: 68 start-page: 474 year: 2012 end-page: 483 ident: CR1 article-title: Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography publication-title: Magn Reson Med doi: 10.1002/mrm.23254 – volume: 129 start-page: 1859 year: 2006 end-page: 1871 ident: CR6 article-title: Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis publication-title: Brain doi: 10.1093/brain/awl100 – ident: CR2 – volume: 34 start-page: 144 year: 2007 end-page: 155 ident: CR5 article-title: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 36 start-page: 645 year: 2007 end-page: 660 ident: CR14 article-title: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.012 – volume: 37 start-page: 122 year: 2016 end-page: 134 ident: CR18 article-title: Brain network analysis reveals affected connectome structure in bipolar I disorder publication-title: Human brain mapping doi: 10.1002/hbm.23017 – volume: 33 start-page: 133 year: 1977 end-page: 158 ident: CR38 article-title: A general methodology for the analysis of experiments with repeated measurement of categorical data publication-title: Biometrics doi: 10.2307/2529309 – volume: 10 start-page: e0135247 year: 2015 ident: CR27 article-title: Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging publication-title: PloS one doi: 10.1371/journal.pone.0135247 – volume: 104 start-page: 253 year: 2015 end-page: 265 ident: CR32 article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.004 – volume: 5 start-page: e13701 year: 2010 ident: CR29 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PloS one doi: 10.1371/journal.pone.0013701 – volume: 5 start-page: 193 year: 2015 end-page: 202 ident: CR22 article-title: Reproducibility of graph-theoretic brain network metrics: a systematic review publication-title: Brain Connect doi: 10.1089/brain.2014.0313 – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: CR9 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 86 start-page: 231 year: 2014 end-page: 243 ident: CR26 article-title: Test-retest reliability of structural brain networks from diffusion MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.09.054 – volume: 33 start-page: 10676 year: 2013 end-page: 10687 ident: CR21 article-title: Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.4793-12.2013 – volume: 1224 start-page: 109 year: 2011 end-page: 125 ident: CR8 article-title: The human connectome: a complex network publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2010.05888.x – volume: 29 start-page: 15684 year: 2009 end-page: 15693 ident: CR15 article-title: Age- and gender-related differences in the cortical anatomical network publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.2308-09.2009 – volume: 61 start-page: 1153 year: 2012 end-page: 1164 ident: CR33 article-title: Characteristics and variability of structural networks derived from diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.036 – volume: 18 start-page: 2471 year: 2008 end-page: 2482 ident: CR3 article-title: DTI tractography of the human brain’s language pathways publication-title: Cereb Cortex doi: 10.1093/cercor/bhn011 – volume: 26 start-page: 195 year: 2005 end-page: 205 ident: CR4 article-title: DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.019 – volume: 80 start-page: 53 year: 2013 end-page: 61 ident: CR7 article-title: The human connectome: origins and challenges publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.023 – volume: 102 start-page: 118 issue: Pt 1 year: 2014 end-page: 127 ident: CR30 article-title: The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.022 – volume: 3 start-page: 160 year: 2013 end-page: 176 ident: CR24 article-title: Test-retest reliability of computational network measurements derived from the structural connectome of the human brain publication-title: Brain Connect doi: 10.1089/brain.2012.0121 – volume: 50 start-page: 970 year: 2010 end-page: 983 ident: CR11 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: CR34 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: CR37 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 3 start-page: e17 year: 2007 ident: CR35 article-title: Efficiency and cost of economical brain functional networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030017 – ident: CR17 – volume: 273 start-page: 175 year: 2014 end-page: 184 ident: CR20 article-title: The Alzheimer structural connectome: changes in cortical network topology with increased amyloid plaque burden publication-title: Radiology doi: 10.1148/radiol.14132593 – volume: 19 start-page: 524 year: 2009 end-page: 536 ident: CR13 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using diffusion tensor imaging tractography publication-title: Cereb Cortex doi: 10.1093/cercor/bhn102 – volume: 21 start-page: 449 year: 2011 end-page: 458 ident: CR16 article-title: Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study publication-title: Cereb Cortex doi: 10.1093/cercor/bhq111 – volume: 51 start-page: 1106 year: 2010 end-page: 1116 ident: CR25 article-title: The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.011 – volume: 51 start-page: 1027 year: 2010 end-page: 1036 ident: CR31 article-title: Comparative mouse brain tractography of diffusion magnetic resonance imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.035 – volume: 118 start-page: 219 year: 2015 end-page: 230 ident: CR19 article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.008 – volume: 87 start-page: 198701 year: 2001 ident: CR36 article-title: Efficient behavior of small-world networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.87.198701 – volume: 194 start-page: 34 year: 2010 end-page: 45 ident: CR10 article-title: MR connectomics: Principles and challenges publication-title: Journal of neuroscience methods doi: 10.1016/j.jneumeth.2010.01.014 – volume: 53 start-page: 1197 year: 2010 end-page: 1207 ident: CR12 article-title: Network-based statistic: identifying differences in brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.041 – volume: 54 start-page: 1262 year: 2011 end-page: 1279 ident: CR28 article-title: Conserved and variable architecture of human white matter connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.006 – volume: 15 start-page: 155 year: 2016 end-page: 163 ident: CR39 article-title: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research publication-title: J Chiropr Med doi: 10.1016/j.jcm.2016.02.012 – volume: 53 start-page: 1197 year: 2010 ident: 29943_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.041 – volume: 37 start-page: 122 year: 2016 ident: 29943_CR18 publication-title: Human brain mapping doi: 10.1002/hbm.23017 – volume: 10 start-page: e0135247 year: 2015 ident: 29943_CR27 publication-title: PloS one doi: 10.1371/journal.pone.0135247 – volume: 102 start-page: 118 issue: Pt 1 year: 2014 ident: 29943_CR30 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.022 – volume: 273 start-page: 175 year: 2014 ident: 29943_CR20 publication-title: Radiology doi: 10.1148/radiol.14132593 – volume: 86 start-page: 231 year: 2014 ident: 29943_CR26 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.09.054 – volume: 15 start-page: 273 year: 2002 ident: 29943_CR34 publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 15 start-page: 155 year: 2016 ident: 29943_CR39 publication-title: J Chiropr Med doi: 10.1016/j.jcm.2016.02.012 – volume: 80 start-page: 53 year: 2013 ident: 29943_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.023 – volume: 36 start-page: 645 year: 2007 ident: 29943_CR14 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.012 – volume: 29 start-page: 15684 year: 2009 ident: 29943_CR15 publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.2308-09.2009 – volume: 5 start-page: 193 year: 2015 ident: 29943_CR22 publication-title: Brain Connect doi: 10.1089/brain.2014.0313 – volume: 19 start-page: 524 year: 2009 ident: 29943_CR13 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn102 – volume: 61 start-page: 1153 year: 2012 ident: 29943_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.036 – volume: 34 start-page: 144 year: 2007 ident: 29943_CR5 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 194 start-page: 34 year: 2010 ident: 29943_CR10 publication-title: Journal of neuroscience methods doi: 10.1016/j.jneumeth.2010.01.014 – ident: 29943_CR17 doi: 10.1016/j.neuroimage.2017.09.021 – volume: 4 start-page: 203 year: 2014 ident: 29943_CR23 publication-title: Brain Connect doi: 10.1089/brain.2013.0202 – volume: 87 start-page: 198701 year: 2001 ident: 29943_CR36 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.87.198701 – volume: 52 start-page: 1059 year: 2010 ident: 29943_CR9 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 21 start-page: 449 year: 2011 ident: 29943_CR16 publication-title: Cereb Cortex doi: 10.1093/cercor/bhq111 – volume: 118 start-page: 219 year: 2015 ident: 29943_CR19 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.008 – volume: 54 start-page: 1262 year: 2011 ident: 29943_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.006 – volume: 26 start-page: 195 year: 2005 ident: 29943_CR4 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.019 – volume: 51 start-page: 1027 year: 2010 ident: 29943_CR31 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.035 – volume: 51 start-page: 1106 year: 2010 ident: 29943_CR25 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.011 – volume: 33 start-page: 10676 year: 2013 ident: 29943_CR21 publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.4793-12.2013 – volume: 104 start-page: 253 year: 2015 ident: 29943_CR32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.004 – volume: 3 start-page: 160 year: 2013 ident: 29943_CR24 publication-title: Brain Connect doi: 10.1089/brain.2012.0121 – volume: 50 start-page: 970 year: 2010 ident: 29943_CR11 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 393 start-page: 440 year: 1998 ident: 29943_CR37 publication-title: Nature doi: 10.1038/30918 – volume: 33 start-page: 133 year: 1977 ident: 29943_CR38 publication-title: Biometrics doi: 10.2307/2529309 – ident: 29943_CR2 doi: 10.1016/j.neuroimage.2008.07.006 – volume: 68 start-page: 474 year: 2012 ident: 29943_CR1 publication-title: Magn Reson Med doi: 10.1002/mrm.23254 – volume: 1224 start-page: 109 year: 2011 ident: 29943_CR8 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2010.05888.x – volume: 18 start-page: 2471 year: 2008 ident: 29943_CR3 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn011 – volume: 5 start-page: e13701 year: 2010 ident: 29943_CR29 publication-title: PloS one doi: 10.1371/journal.pone.0013701 – volume: 3 start-page: e17 year: 2007 ident: 29943_CR35 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030017 – volume: 129 start-page: 1859 year: 2006 ident: 29943_CR6 publication-title: Brain doi: 10.1093/brain/awl100 |
SSID | ssj0000529419 |
Score | 2.4065402 |
Snippet | The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11562 |
SubjectTerms | 59/57 631/1647/245/2149 692/700/1421/65 Humanities and Social Sciences multidisciplinary Neural networks Reproducibility Science Science (multidisciplinary) Short term Sparsity |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFH_oyIKXxXX96H5IBG9rMU3SJjmJiMMg6MmBuZU0SVdB25WZOcx_v3lJpsu4uFB6SUqbvpe85H38fgDvqJemZ46XjWi6UqialR3emKHU19Qo0aO_49v3ZrEUX1f1Kjvc1jmtcr8mxoXajRZ95OGQroKpCcan-njzt0TWKIyuZgqNx_AEocswpUuu5ORjwSiWqHSulaFcfVgHe4U1ZRWWHmjBS3poj-5tMu_nSv4TMI12aP4MjvMGknxKEj-BR354DkeJUnJ3CmPYUUcQ15T1uiNjTxJGLOJrkA4ZIYjF7BabeCOIGRwZUjI4-YP8WnZNMBv-miDZTATgRSxnglQqW_StkQ1WVmWo6xewnH_58XlRZlKF0tZMbkrDhdLS8l6pnmruXS2kC6fUYMK8lc4y47jBie-Rl7i3umG-d05b5irVac9fwmwYB_8aiKgMbVQ4YhneC0FDI_O1NthRSCF0AdX-17Y2I44j8cXvNka-uWqTONogjjaKo6UFXE3P3CS8jQd7X-wl1ua5t27vNKWAt1NzmDUYCjGDH7exT7h0zVQBr5KAp9dxLJvRrClAHoh-6oCI3Ictw6-fEZm7CQtoLVgB7_dKcvdZ_x_F2cOjOIenDBU2Zh1ewCzojL8MO6FN9yaq-y2z5Ags priority: 102 providerName: ProQuest – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB5ClkIvZbdPb9OiQm-tqayHLR1L2BAWtqcGcjOyJLeF1i4kOeTfVyPZLmm2hYLxRSP8mJE0I818H8Bb6ivTMsfzUpRNLpRkeYM3Zij1kholWtzvuPtUrjfidiu3M2BjLUxM2o-QlnGaHrPDPuzCQoPFYAXWDGjB8xCmXyB0O1r1slxO-yp4ciUKPdTHUK7u6Xq6Bp05luf5kX8cksa1Z3UJjwankXxMr3kFM989hgeJRvL4BPrgRUfg1pTpeiR9SxIuLGJqkAZZIIjFjBabuCKI6RzpUgI4-YGcWnZHMAP-C0GCmQi6i_jNBOlTDrifRvZYTTXAWz-Fzerm83KdD0QKuZWs2ueGC6Ury1ulWqq5d1JULkSmYdnytnKWGccNDnaPXMSt1SXzrXPaMleoRnv-DOZd3_kXQERhaKlCWGV4KwQNjcxLbVBQBG3oDIrx19Z2QBlHsovvdTzt5qpO6qiDOuqojppm8G7q8zNhbPxTejFqrB7G265mwbORIRjkRQZvpuYwUvD4w3S-P0SZcGnJVAbPk4Knx3EsldGszKA6Uf0kgCjcpy3dt68RjbsMk6YULIP3o5H8fq2_f8X1_4m_hIcMDThmHi5gHmzIvwre0L55Hc3_F7DOBiQ priority: 102 providerName: Springer Nature |
Title | Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography |
URI | https://link.springer.com/article/10.1038/s41598-018-29943-0 https://www.ncbi.nlm.nih.gov/pubmed/30068926 https://www.proquest.com/docview/2081526131 https://www.proquest.com/docview/2082089528 https://pubmed.ncbi.nlm.nih.gov/PMC6070542 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTaC9IH4vMCoj8QaBxHZi-wGhUm2aKm1CQKW-RY7jDKSRDtpJ9L_nzk4KY4MHpKqVYkdOfefcnX33fQDPM69syxuRlrKsU6kLntb0xW2W-SKzWra033F8Uh7N5HRezLdgoDvqJ3B5bWhHfFKz72evfnxbv8UF_yaWjOvXSzRCVCiWUz2BkSLFEH4HLZOihXrcu_sR65sbmZu-dub6W3fhlqC6CUNwC7-bqiv-59U0yj_OUoOJOrwDt3vfko2jMtyFLd_dg5uRbXJ9HxbobAd815gQu2aLlkX4WILeYDWRRTBHiS8uUkow2zWsi3ni7CtRb7klo0T5U0Y8NAGbl2CeGbGsXNC2G1tR0VWPgv0AZocHnyZHac-3kLqCq1VqhdRGOdFq3WZG-KaQqsEAFq2bd6px3DbC0jvBE2Vx60zJfds0xvEm17Xx4iFsd4vO7wGTucU5xOjLilbKDBu5L4yljlJJaRLIh6mtXA9GTpwYZ1U4FBe6ipKpUDJVkEyVJfBic895hOL4Z-_9QWLVoFUVRweowJhR5Ak82zTjgqJTEtv5xUXogx9TcJ3AoyjgzXCDZiSgLol-04HAui-3dF8-B9DuEt-theQJvByU5Ndj_f1fPP7vgZ7ALie1DrmK-7CN6uSfov-0qkdwQ83VCHbG4-nHKf6-Ozh5_wGvTsrJKOxJjMKy-QmXMx6m |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChgJThCR2E5iHxDi0WpL2xVCrdRb6tgORYKkaLdC-6f4jczESaqlordKUS52njP2eDwz3wfwIvGFqbkTcS7zKpYq43FFJ26SxGeJUbKm_Y79WT49lJ-PsqM1-DPUwlBa5TAndhO1ay3tkaOTrtDUoPFJ353-iok1iqKrA4VGUItdv_yNLtv87c4nlO9Lzre3Dj5O455VILYZLxaxEVLpwopaqRrdee8yWTh003AO97ZwlhsnDGm-J2Le2uqc-9o5bblLVaW9wPteg3Up0JWZwPqHrdmXr-OuDsXNZKr76pxEqDdztJBUxZZSsYOWIk5WLeCFZe3F7Mx_QrSd5du-BTf7JSt7H3TsNqz55g5cDySWy7vQ4hq-g40NebZL1tYsoNISogeriIOCWcqnsYGpgpnGsSakn7OfxOhl54zy778xorfpIH8JPZoRecsZ7eaxBdVy9eDa9-DwSn74fZg0beMfApOpSXKFTp0RtZQJNnKfaUMdZSGljiAdfm1pe4xzotr4UXaxdqHKII4SxVF24iiTCF6N15wGhI9Le28OEiv70T4vz3UzgudjM45TCr6YxrdnXR88dMZVBA-CgMfHCSrU0TyPoFgR_diBMMBXW5rvJx0WeI5TdiZ5BK8HJTl_rf9_xaPLv-IZ3Jge7O-Vezuz3cewwUl5u5zHTZig_vgnuA5bVE975WdwfNXj7S_X3UbP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlAviO8GChgJThA1sZ3YOSCEKKuWQsWBSnsLju0AEiRFuxXav8avY8ZOUi0VvVVa5WJvdpOZ8Xg8M-8BPMu8Mi13Ii1l2aRSFzxt6MJNlvkiM1q2dN7x8ajcP5bv58V8A_6MvTBUVjmuiWGhdr2lM3IM0jW6GnQ--W47lEV82pu9PvmVEoMUZVpHOo2oIod-9RvDt8Wrgz2U9XPOZ-8-v91PB4aB1BZcLVMjpK6UFa3WLYb23hVSOQzZcD33VjnLjROGrMATSW9rq5L71rnKcpfrpvIC73sFripR5GRjaq6m8x3KoMm8Gvp0MqF3F-grqZ8tp7aHSoo0W_eF5za45-s0_0nWBh84uwk3hs0rexO17RZs-O42XIt0lqs70ONuPgDIxorbFetbFvFpCduDNcRGwSxV1tjIWcFM51gXC9HZT-L2sgtGlfhfGRHdBPBfwpFmRONySud6bEldXQPM9l04vpTXfQ82u77z28BkbrJSY3hnRCtlhoPcF5WhiVJJWSWQj6-2tgPaOZFu_KhD1l3oOoqjRnHUQRx1lsCL6TsnEevjwtk7o8Tqwe4X9ZmWJvB0GkaLpTSM6Xx_Gubgpyq4TuB-FPD0c4JadipeJqDWRD9NIDTw9ZHu-7eACl7i4l1InsDLUUnO_tb_n-LBxU_xBK6jldUfDo4OH8IWJ90NxY87sInq4x_hhmzZPA6az-DLZZvaX1ydSZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+structural+brain+connectivity+and+network+metrics+using+probabilistic+diffusion+tractography&rft.jtitle=Scientific+reports&rft.au=Tsai%2C+Shang-Yueh&rft.date=2018-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=8&rft_id=info:doi/10.1038%2Fs41598-018-29943-0&rft_id=info%3Apmid%2F30068926&rft.externalDocID=PMC6070542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |