The effects of the post-delay epochs on working memory error reduction
Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive cues and generate responses. However, the computational and neural mechanisms that underlie these post-delay epochs to support robust memory r...
Saved in:
Published in | PLoS computational biology Vol. 21; no. 5; p. e1013083 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
13.05.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive cues and generate responses. However, the computational and neural mechanisms that underlie these post-delay epochs to support robust memory remain poorly understood. To address this, we trained recurrent neural networks (RNNs) on a color delayed-response task, where certain colors (referred to as common colors) were more frequently presented for memorization. We found that the trained RNNs reduced memory errors for common colors by decoding a broader range of neural states into these colors through the post-delay epochs. This decoding process was driven by convergent neural dynamics and a non-dynamic, biased readout process during the post-delay epochs. Our findings highlight the importance of post-delay epochs in working memory and suggest that neural systems adapt to environmental statistics by using multiple mechanisms across task epochs. |
---|---|
AbstractList | Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive cues and generate responses. However, the computational and neural mechanisms that underlie these post-delay epochs to support robust memory remain poorly understood. To address this, we trained recurrent neural networks (RNNs) on a color delayed-response task, where certain colors (referred to as common colors) were more frequently presented for memorization. We found that the trained RNNs reduced memory errors for common colors by decoding a broader range of neural states into these colors through the post-delay epochs. This decoding process was driven by convergent neural dynamics and a non-dynamic, biased readout process during the post-delay epochs. Our findings highlight the importance of post-delay epochs in working memory and suggest that neural systems adapt to environmental statistics by using multiple mechanisms across task epochs. Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive cues and generate responses. However, the computational and neural mechanisms that underlie these post-delay epochs to support robust memory remain poorly understood. To address this, we trained recurrent neural networks (RNNs) on a color delayed-response task, where certain colors (referred to as common colors) were more frequently presented for memorization. We found that the trained RNNs reduced memory errors for common colors by decoding a broader range of neural states into these colors through the post-delay epochs. This decoding process was driven by convergent neural dynamics and a non-dynamic, biased readout process during the post-delay epochs. Our findings highlight the importance of post-delay epochs in working memory and suggest that neural systems adapt to environmental statistics by using multiple mechanisms across task epochs. In daily life, we often need to store information temporarily (during a delay epoch) and retrieve it later when required. While this ability may seem simple, it poses significant challenges at the neural level. Neural activity is inherently highly variable (“noisy”), so how can we maintain accurate memory despite this variability? Previous research has primarily focused on neural processes during the delay epoch, however, the neural processes after delay (post-delay epochs) remain poorly studied. The post-delay epochs are critical for information retrieval—for instance, they are time periods when we write down something we just heard of, or, in a laboratory setting, when an animal makes a saccade to indicate a memorized color to earn a reward. In this study, we investigated the computational role of the post-delay epochs in helping noisy neural networks reduce memory errors. Our findings revealed that post-delay processes adapt to environmental statistics, and identified key neural mechanisms that reduce memory errors, highlighting the importance of post-delay epochs in supporting robust working memory. Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive cues and generate responses. However, the computational and neural mechanisms that underlie these post-delay epochs to support robust memory remain poorly understood. To address this, we trained recurrent neural networks (RNNs) on a color delayed-response task, where certain colors (referred to as common colors) were more frequently presented for memorization. We found that the trained RNNs reduced memory errors for common colors by decoding a broader range of neural states into these colors through the post-delay epochs. This decoding process was driven by convergent neural dynamics and a non-dynamic, biased readout process during the post-delay epochs. Our findings highlight the importance of post-delay epochs in working memory and suggest that neural systems adapt to environmental statistics by using multiple mechanisms across task epochs.Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive cues and generate responses. However, the computational and neural mechanisms that underlie these post-delay epochs to support robust memory remain poorly understood. To address this, we trained recurrent neural networks (RNNs) on a color delayed-response task, where certain colors (referred to as common colors) were more frequently presented for memorization. We found that the trained RNNs reduced memory errors for common colors by decoding a broader range of neural states into these colors through the post-delay epochs. This decoding process was driven by convergent neural dynamics and a non-dynamic, biased readout process during the post-delay epochs. Our findings highlight the importance of post-delay epochs in working memory and suggest that neural systems adapt to environmental statistics by using multiple mechanisms across task epochs. |
Audience | Academic |
Author | Li, Haoran Tian, Liang Zhou, Changsong Ye, Zeyuan |
AuthorAffiliation | 5 Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China 6 Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China 2 Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Hong Kong Baptist University, Hong Kong, China 4 Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America 1 Department of Physics, Hong Kong Baptist University, Hong Kong, China 7 Life Science Imaging Centre, Hong Kong Baptist University, Hong Kong, China UT Austin: The University of Texas at Austin, UNITED STATES OF AMERICA 3 Institute of Transdisciplinary Studies, Hong Kong Baptist University, Hong KongChina |
AuthorAffiliation_xml | – name: 1 Department of Physics, Hong Kong Baptist University, Hong Kong, China – name: 5 Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China – name: 2 Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Hong Kong Baptist University, Hong Kong, China – name: 3 Institute of Transdisciplinary Studies, Hong Kong Baptist University, Hong KongChina – name: 7 Life Science Imaging Centre, Hong Kong Baptist University, Hong Kong, China – name: UT Austin: The University of Texas at Austin, UNITED STATES OF AMERICA – name: 4 Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America – name: 6 Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China |
Author_xml | – sequence: 1 givenname: Zeyuan surname: Ye fullname: Ye, Zeyuan – sequence: 2 givenname: Haoran surname: Li fullname: Li, Haoran – sequence: 3 givenname: Liang orcidid: 0000-0002-6595-445X surname: Tian fullname: Tian, Liang – sequence: 4 givenname: Changsong orcidid: 0000-0002-4130-0216 surname: Zhou fullname: Zhou, Changsong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40359421$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttu1DAQhiNURA_wBghF4gYusviQg3OFqqqFlSohQbm2fBhnvSR2sBOgb1-HXapGQr7weOab32P5P89OnHeQZa8x2mDa4A97Pwcn-s2opN1ghCli9Fl2hquKFg2t2MmT-DQ7j3GPUArb-kV2WqaoLQk-y27udpCDMaCmmHuTT-k4-jgVGnpxn8Po1S4VXP7bhx_WdfkAgw-pEIIPeQA9q8l69zJ7bkQf4dVxv8i-31zfXX0ubr982l5d3haqIs1UtEhrQRjComYVrQHJihIptWSCIMIqXZq2hUYrYAQprUpBDDJCmpopKRSiF9n2oKu92PMx2EGEe-6F5X8TPnRchMmqHniZ1LRh2EhalUhUDIAgqRssjCxbSpLWx4PWOMsB0p1uCqJfia4rzu54539xTDCty5olhXdHheB_zhAnPtiooO-FAz9HTgmiLW5YvQz-9oB2Is1mnfFJUi04v2QlrQmldKE2_6HS0jBYlf7f2JRfNbxfNSRmgj9TJ-YY-fbb1zX75ul7Hx_6zwwJKA-ACj7GAOYRwYgvnuNHz_HFc_zoOfoAhT_L5w |
Cites_doi | 10.1371/journal.pcbi.1011622 10.1007/BF02291478 10.1038/nn.3776 10.1016/j.neuron.2024.01.021 10.1016/j.neuron.2020.09.005 10.1038/s41583-022-00642-0 10.1016/j.tics.2007.06.010 10.1016/S0022-5371(63)80063-8 10.1016/j.conb.2021.10.010 10.1016/j.xpro.2022.101501 10.1038/s41593-019-0460-x 10.1038/s41593-018-0314-y 10.1073/pnas.1921609117 10.1016/j.neuron.2017.03.002 10.1038/s41586-021-04268-7 10.32470/CCN.2022.1162-0 10.1038/s41593-023-01458-6 10.1038/s41467-019-11298-3 10.1038/nature13665 10.1152/jn.1989.61.2.331 10.1038/s41593-024-01668-6 10.1371/journal.pbio.3000625 10.1037/xge0000076 10.1038/s41586-021-03390-w 10.1038/s41593-018-0147-8 10.1016/j.celrep.2022.110612 10.1523/JNEUROSCI.21-10-03646.2001 10.1038/nn.3309 10.1073/pnas.92.9.3844 10.1073/pnas.1619449114 10.1038/s41593-018-0310-2 10.1371/journal.pcbi.1005505 10.1038/s41586-019-0919-7 10.1016/j.neuron.2021.06.009 10.1371/journal.pcbi.1006928 10.1016/j.neuron.2022.01.005 10.1038/nn.3645 10.1016/j.tics.2013.10.010 10.1038/s41598-018-25958-9 10.1016/j.neuron.2019.06.012 10.1016/S0896-6273(03)00255-1 10.1371/journal.pcbi.1011555 10.1523/JNEUROSCI.1641-13.2013 10.1038/nn.4509 10.1038/nn.3702 10.1038/s41586-023-06031-6 10.1038/nn.4237 10.1016/j.conb.2021.08.002 10.1016/j.neuron.2018.05.015 10.1162/NECO_a_00409 10.1073/pnas.1117386109 10.1038/s41593-023-01473-7 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Ye et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Ye et al 2025 Ye et al |
Copyright_xml | – notice: Copyright: © 2025 Ye et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Ye et al 2025 Ye et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1013083 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Post-delay epochs and working memory error |
EISSN | 1553-7358 |
ExternalDocumentID | oai_doaj_org_article_45d4df81fb3540a58ee20bd71afb4932 PMC12136468 A843623330 40359421 10_1371_journal_pcbi_1013083 |
Genre | Journal Article |
GeographicLocations | Hong Kong, China |
GeographicLocations_xml | – name: Hong Kong, China |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: 27306C2005 – grantid: GRF12200620, GRF12202124 and C4012-22G – grantid: RC-IRCMs/18-19/SCI01 and RC_SFCRG/23-24/SCI0 – grantid: 12275229 – grantid: C2005-22Y, GRF12301723, and GRF12301624 – grantid: RC-FNRA-IG/23-24/SCI/05 and CRMS/23-24/03 – grantid: 22B2/049A – grantid: 11975194 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PMFND RIG WOQ 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c527t-90dda2801a68536e0b532bbdb8a20285d4f99e7dce820cdc4a2f0fabf68cbac03 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Wed Aug 27 01:04:16 EDT 2025 Thu Aug 21 18:25:39 EDT 2025 Fri Jul 11 17:55:42 EDT 2025 Thu Jun 19 01:36:22 EDT 2025 Tue Jun 17 03:41:45 EDT 2025 Fri Jun 27 05:13:03 EDT 2025 Sun Jun 08 01:33:17 EDT 2025 Thu Jul 03 08:13:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Copyright: © 2025 Ye et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-90dda2801a68536e0b532bbdb8a20285d4f99e7dce820cdc4a2f0fabf68cbac03 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-4130-0216 0000-0002-6595-445X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1013083 |
PMID | 40359421 |
PQID | 3203917860 |
PQPubID | 23479 |
PageCount | e1013083 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_45d4df81fb3540a58ee20bd71afb4932 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12136468 proquest_miscellaneous_3203917860 gale_infotracmisc_A843623330 gale_infotracacademiconefile_A843623330 gale_incontextgauss_ISR_A843623330 pubmed_primary_40359421 crossref_primary_10_1371_journal_pcbi_1013083 |
PublicationCentury | 2000 |
PublicationDate | 20250513 |
PublicationDateYYYYMMDD | 2025-05-13 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250513 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | JR Zech (pcbi.1013083.ref059) 2018; 15 M Khona (pcbi.1013083.ref005) 2022; 23 S Chung (pcbi.1013083.ref043) 2021; 70 ZP Kilpatrick (pcbi.1013083.ref008) 2013; 33 pcbi.1013083.ref009 L McInnes (pcbi.1013083.ref047) 2020 Z Bi (pcbi.1013083.ref060) 2020; 117 EP Piwek (pcbi.1013083.ref027) 2023; 19 R Chaudhuri (pcbi.1013083.ref010) 2016; 19 T Flesch (pcbi.1013083.ref055) 2022; 110 MF Panichello (pcbi.1013083.ref001) 2019; 10 F Al Roumi (pcbi.1013083.ref053) 2021; 109 LM Boyle (pcbi.1013083.ref054) 2024; 112 RD Lange (pcbi.1013083.ref056) 2023; 26 Z Ye (pcbi.1013083.ref048) 2024 AH Williams (pcbi.1013083.ref024) 2018; 98 pcbi.1013083.ref057 G-Y Bae (pcbi.1013083.ref031) 2015; 144 JC Gower (pcbi.1013083.ref062) 1975; 40 A Renart (pcbi.1013083.ref006) 2003; 38 RJ Gardner (pcbi.1013083.ref052) 2022; 602 R Ben-Yishai (pcbi.1013083.ref015) 1995; 92 JD Murray (pcbi.1013083.ref011) 2017; 114 LN Driscoll (pcbi.1013083.ref014) 2024; 27 C Constantinidis (pcbi.1013083.ref035) 2001; 21 M Jazayeri (pcbi.1013083.ref044) 2021; 70 S Funahashi (pcbi.1013083.ref036) 1989; 61 pcbi.1013083.ref061 W Chaisangmongkon (pcbi.1013083.ref030) 2017; 93 VB McGinty (pcbi.1013083.ref021) 2023; 26 GR Yang (pcbi.1013083.ref026) 2020; 107 A Seeholzer (pcbi.1013083.ref012) 2019; 15 MJ Wolff (pcbi.1013083.ref040) 2020; 18 JP Cunningham (pcbi.1013083.ref045) 2014; 17 K Wimmer (pcbi.1013083.ref028) 2014; 17 AM Ni (pcbi.1013083.ref022) 2022; 11 F Roux (pcbi.1013083.ref049) 2014; 18 AE Orhan (pcbi.1013083.ref025) 2019; 22 AW Melton (pcbi.1013083.ref003) 1963; 2 MF Panichello (pcbi.1013083.ref034) 2021; 592 J Liu (pcbi.1013083.ref058) 2023 RM Haefner (pcbi.1013083.ref020) 2013; 16 JJ DiCarlo (pcbi.1013083.ref042) 2007; 11 JX Wang (pcbi.1013083.ref038) 2018; 21 Y Burak (pcbi.1013083.ref004) 2012; 109 ZP Kilpatrick (pcbi.1013083.ref019) 2018; 8 PT Sadtler (pcbi.1013083.ref023) 2014; 512 X Mou (pcbi.1013083.ref050) 2022; 3 J Smith (pcbi.1013083.ref033) 2021; 34 N Shaham (pcbi.1013083.ref007) 2017; 13 S Schneider (pcbi.1013083.ref046) 2023; 617 J Kamiński (pcbi.1013083.ref017) 2017; 20 Q Yu (pcbi.1013083.ref002) 2020; 18 GR Yang (pcbi.1013083.ref029) 2019; 22 R Chaudhuri (pcbi.1013083.ref041) 2019; 22 HF Song (pcbi.1013083.ref037) 2017; 6 HK Inagaki (pcbi.1013083.ref016) 2019; 566 R Darshan (pcbi.1013083.ref018) 2022; 39 TL Eissa (pcbi.1013083.ref013) 2023; 19 H Sohn (pcbi.1013083.ref039) 2019; 103 AH Lara (pcbi.1013083.ref051) 2014; 17 D Sussillo (pcbi.1013083.ref032) 2013; 25 |
References_xml | – volume: 19 issue: 11 year: 2023 ident: pcbi.1013083.ref013 article-title: Learning efficient representations of environmental priors in working memory publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1011622 – volume: 40 start-page: 33 issue: 1 year: 1975 ident: pcbi.1013083.ref062 article-title: Generalized Procrustes Analysis publication-title: Psychometrika doi: 10.1007/BF02291478 – volume: 17 start-page: 1500 issue: 11 year: 2014 ident: pcbi.1013083.ref045 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat Neurosci doi: 10.1038/nn.3776 – volume: 112 issue: 8 year: 2024 ident: pcbi.1013083.ref054 article-title: Tuned geometries of hippocampal representations meet the computational demands of social memory publication-title: Neuron doi: 10.1016/j.neuron.2024.01.021 – volume: 107 start-page: 1048 issue: 6 year: 2020 ident: pcbi.1013083.ref026 article-title: Artificial Neural Networks for Neuroscientists: A Primer publication-title: Neuron doi: 10.1016/j.neuron.2020.09.005 – volume: 23 start-page: 744 issue: 12 year: 2022 ident: pcbi.1013083.ref005 article-title: Attractor and integrator networks in the brain publication-title: Nat Rev Neurosci doi: 10.1038/s41583-022-00642-0 – volume: 11 start-page: 333 issue: 8 year: 2007 ident: pcbi.1013083.ref042 article-title: Untangling invariant object recognition publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2007.06.010 – volume: 2 start-page: 1 issue: 1 year: 1963 ident: pcbi.1013083.ref003 article-title: Implications of short-term memory for a general theory of memory publication-title: Journal of Verbal Learning and Verbal Behavior doi: 10.1016/S0022-5371(63)80063-8 – volume: 70 start-page: 137 year: 2021 ident: pcbi.1013083.ref043 article-title: Neural population geometry: An approach for understanding biological and artificial neural networks publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2021.10.010 – volume: 3 start-page: 101501 issue: 3 year: 2022 ident: pcbi.1013083.ref050 article-title: Tetrode recording of rat CA1 place cells in an observational spatial working memory task publication-title: STAR Protoc doi: 10.1016/j.xpro.2022.101501 – volume: 22 start-page: 1512 issue: 9 year: 2019 ident: pcbi.1013083.ref041 article-title: The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep publication-title: Nat Neurosci doi: 10.1038/s41593-019-0460-x – volume: 15 issue: 11 year: 2018 ident: pcbi.1013083.ref059 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study publication-title: PLoS Med – volume: 22 start-page: 275 issue: 2 year: 2019 ident: pcbi.1013083.ref025 article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory publication-title: Nat Neurosci doi: 10.1038/s41593-018-0314-y – year: 2024 ident: pcbi.1013083.ref048 – volume: 117 start-page: 10530 issue: 19 year: 2020 ident: pcbi.1013083.ref060 article-title: Understanding the computation of time using neural network models publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1921609117 – volume: 93 issue: 6 year: 2017 ident: pcbi.1013083.ref030 article-title: Computing by Robust Transience: How the Fronto-Parietal Network Performs Sequential, Category-Based Decisions publication-title: Neuron doi: 10.1016/j.neuron.2017.03.002 – volume: 602 start-page: 123 issue: 7895 year: 2022 ident: pcbi.1013083.ref052 article-title: Toroidal topology of population activity in grid cells publication-title: Nature doi: 10.1038/s41586-021-04268-7 – ident: pcbi.1013083.ref009 doi: 10.32470/CCN.2022.1162-0 – volume: 26 start-page: 2063 issue: 12 year: 2023 ident: pcbi.1013083.ref056 article-title: Bayesian encoding and decoding as distinct perspectives on neural coding publication-title: Nat Neurosci doi: 10.1038/s41593-023-01458-6 – year: 2020 ident: pcbi.1013083.ref047 – volume: 10 start-page: 3366 issue: 1 year: 2019 ident: pcbi.1013083.ref001 article-title: Error-correcting dynamics in visual working memory publication-title: Nat Commun doi: 10.1038/s41467-019-11298-3 – volume: 512 start-page: 423 issue: 7515 year: 2014 ident: pcbi.1013083.ref023 article-title: Neural constraints on learning publication-title: Nature doi: 10.1038/nature13665 – volume: 61 start-page: 331 issue: 2 year: 1989 ident: pcbi.1013083.ref036 article-title: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex publication-title: J Neurophysiol doi: 10.1152/jn.1989.61.2.331 – volume: 27 start-page: 1349 issue: 7 year: 2024 ident: pcbi.1013083.ref014 article-title: Flexible multitask computation in recurrent networks utilizes shared dynamical motifs publication-title: Nat Neurosci doi: 10.1038/s41593-024-01668-6 – volume: 18 issue: 3 year: 2020 ident: pcbi.1013083.ref040 article-title: Drifting codes within a stable coding scheme for working memory publication-title: PLoS Biol doi: 10.1371/journal.pbio.3000625 – volume: 144 start-page: 744 issue: 4 year: 2015 ident: pcbi.1013083.ref031 article-title: Why some colors appear more memorable than others: A model combining categories and particulars in color working memory publication-title: J Exp Psychol Gen doi: 10.1037/xge0000076 – volume: 592 start-page: 601 issue: 7855 year: 2021 ident: pcbi.1013083.ref034 article-title: Shared mechanisms underlie the control of working memory and attention publication-title: Nature doi: 10.1038/s41586-021-03390-w – volume: 21 start-page: 860 issue: 6 year: 2018 ident: pcbi.1013083.ref038 article-title: Prefrontal cortex as a meta-reinforcement learning system publication-title: Nat Neurosci doi: 10.1038/s41593-018-0147-8 – volume: 39 start-page: 110612 issue: 1 year: 2022 ident: pcbi.1013083.ref018 article-title: Learning to represent continuous variables in heterogeneous neural networks publication-title: Cell Rep doi: 10.1016/j.celrep.2022.110612 – volume: 21 start-page: 3646 issue: 10 year: 2001 ident: pcbi.1013083.ref035 article-title: Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-10-03646.2001 – volume: 6 year: 2017 ident: pcbi.1013083.ref037 article-title: Reward-based training of recurrent neural networks for cognitive and value-based tasks publication-title: Elife – volume: 16 start-page: 235 issue: 2 year: 2013 ident: pcbi.1013083.ref020 article-title: Inferring decoding strategies from choice probabilities in the presence of correlated variability publication-title: Nat Neurosci doi: 10.1038/nn.3309 – volume: 92 start-page: 3844 issue: 9 year: 1995 ident: pcbi.1013083.ref015 article-title: Theory of orientation tuning in visual cortex publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.9.3844 – volume: 114 start-page: 394 issue: 2 year: 2017 ident: pcbi.1013083.ref011 article-title: Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1619449114 – volume: 22 start-page: 297 issue: 2 year: 2019 ident: pcbi.1013083.ref029 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nat Neurosci doi: 10.1038/s41593-018-0310-2 – volume: 18 issue: 9 year: 2020 ident: pcbi.1013083.ref002 article-title: Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory publication-title: PLoS Biol – volume: 13 issue: 5 year: 2017 ident: pcbi.1013083.ref007 article-title: Slow diffusive dynamics in a chaotic balanced neural network publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005505 – volume: 566 start-page: 212 issue: 7743 year: 2019 ident: pcbi.1013083.ref016 article-title: Discrete attractor dynamics underlies persistent activity in the frontal cortex publication-title: Nature doi: 10.1038/s41586-019-0919-7 – volume: 109 issue: 16 year: 2021 ident: pcbi.1013083.ref053 article-title: Mental compression of spatial sequences in human working memory using numerical and geometrical primitives publication-title: Neuron doi: 10.1016/j.neuron.2021.06.009 – volume: 15 issue: 4 year: 2019 ident: pcbi.1013083.ref012 article-title: Stability of working memory in continuous attractor networks under the control of short-term plasticity publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006928 – volume: 110 issue: 7 year: 2022 ident: pcbi.1013083.ref055 article-title: Orthogonal representations for robust context-dependent task performance in brains and neural networks publication-title: Neuron doi: 10.1016/j.neuron.2022.01.005 – volume: 17 start-page: 431 issue: 3 year: 2014 ident: pcbi.1013083.ref028 article-title: Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory publication-title: Nat Neurosci doi: 10.1038/nn.3645 – volume: 18 start-page: 16 issue: 1 year: 2014 ident: pcbi.1013083.ref049 article-title: Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.10.010 – volume: 11 year: 2022 ident: pcbi.1013083.ref022 article-title: A general decoding strategy explains the relationship between behavior and correlated variability publication-title: Elife – volume: 8 start-page: 7879 issue: 1 year: 2018 ident: pcbi.1013083.ref019 article-title: Synaptic mechanisms of interference in working memory publication-title: Sci Rep doi: 10.1038/s41598-018-25958-9 – volume: 103 issue: 5 year: 2019 ident: pcbi.1013083.ref039 article-title: Bayesian Computation through Cortical Latent Dynamics publication-title: Neuron doi: 10.1016/j.neuron.2019.06.012 – volume: 38 start-page: 473 issue: 3 year: 2003 ident: pcbi.1013083.ref006 article-title: Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks publication-title: Neuron doi: 10.1016/S0896-6273(03)00255-1 – volume: 19 issue: 10 year: 2023 ident: pcbi.1013083.ref027 article-title: A recurrent neural network model of prefrontal brain activity during a working memory task publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1011555 – volume: 33 start-page: 18999 issue: 48 year: 2013 ident: pcbi.1013083.ref008 article-title: Optimizing working memory with heterogeneity of recurrent cortical excitation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1641-13.2013 – ident: pcbi.1013083.ref061 – volume: 20 start-page: 590 issue: 4 year: 2017 ident: pcbi.1013083.ref017 article-title: Persistently active neurons in human medial frontal and medial temporal lobe support working memory publication-title: Nat Neurosci doi: 10.1038/nn.4509 – volume: 17 start-page: 876 issue: 6 year: 2014 ident: pcbi.1013083.ref051 article-title: Executive control processes underlying multi-item working memory publication-title: Nat Neurosci doi: 10.1038/nn.3702 – ident: pcbi.1013083.ref057 – volume: 617 start-page: 360 issue: 7960 year: 2023 ident: pcbi.1013083.ref046 article-title: Learnable latent embeddings for joint behavioural and neural analysis publication-title: Nature doi: 10.1038/s41586-023-06031-6 – volume: 19 start-page: 394 issue: 3 year: 2016 ident: pcbi.1013083.ref010 article-title: Computational principles of memory publication-title: Nat Neurosci doi: 10.1038/nn.4237 – year: 2023 ident: pcbi.1013083.ref058 – volume: 70 start-page: 113 year: 2021 ident: pcbi.1013083.ref044 article-title: Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2021.08.002 – volume: 34 start-page: 16700 year: 2021 ident: pcbi.1013083.ref033 article-title: Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems publication-title: Advances Neural Inf Process Syst – volume: 98 issue: 6 year: 2018 ident: pcbi.1013083.ref024 article-title: Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis publication-title: Neuron doi: 10.1016/j.neuron.2018.05.015 – volume: 25 start-page: 626 issue: 3 year: 2013 ident: pcbi.1013083.ref032 article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks publication-title: Neural Comput doi: 10.1162/NECO_a_00409 – volume: 109 start-page: 17645 issue: 43 year: 2012 ident: pcbi.1013083.ref004 article-title: Fundamental limits on persistent activity in networks of noisy neurons publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1117386109 – volume: 26 start-page: 2203 issue: 12 year: 2023 ident: pcbi.1013083.ref021 article-title: Behavioral read-out from population value signals in primate orbitofrontal cortex publication-title: Nat Neurosci doi: 10.1038/s41593-023-01473-7 |
SSID | ssj0035896 |
Score | 2.4585266 |
Snippet | Accurate retrieval of the maintained information is crucial for working memory. This process primarily occurs during post-delay epochs, when subjects receive... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1013083 |
SubjectTerms | Biology and Life Sciences Computational Biology Computer and Information Sciences Humans Male Memory, Short-Term - physiology Models, Neurological Neural circuitry Neural Networks, Computer Neurological research Physical Sciences Research and Analysis Methods Short-term memory Social Sciences |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggxC4hTq-BXvsSBWBQkOQKW9WX7SHkhW2V1V_fedibPVRhy4cM3MIZ7PnhknM98Q8o63WZjMVW08tuTwtqm9M6xmQbm88I3IGruRv33XZ-fy60qtDkZ9YU1YoQcuhjuRKsqYTZM9fqFwyqTEmY9t47KXkHyg94WYt79MFR8slBknc-FQnLoVcjU1zYm2OZkw-rAO_hLvroIZMQtKI3f_3x76IETNyycP4tHyAbk_JZL0tCzgIbmTukfkbhktef2YLAF_OhVr0D5TyPPout9sa2SFvKaQdocLEHT0qnwtp3-w5BYEw9APdEBCV4TsCTlffv716ayeZibUQfF2Wy9YjI5D2HEaArFOzCvBvY_eOA6pBBgzLxaphXeH0B9ikI5nlp3P2gTvAhNPyVHXd-k5oSl4UIvZa5-kVxrckUpKRxMk4M5yReq90ey6UGPY8f9YC1eKYgSLRraTkSvyES17q4vE1uMDgNtOcNt_wV2Rt4iLReqKDmtjfrvdZmO__PxhT42EaCyEYBV5PynlHhAKbmo1gHUh29VM83imCWcrzMRv9vBbFGFBWpf63cYKjtT6rdGg86xsh9uFSaRFlLypiJltlNnK55Lu8mKk9kaCPS21efE_bPWS3OM4rRi5ZsUxOdoOu_QKUqitfz2elhuRmRtj priority: 102 providerName: Directory of Open Access Journals |
Title | The effects of the post-delay epochs on working memory error reduction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40359421 https://www.proquest.com/docview/3203917860 https://pubmed.ncbi.nlm.nih.gov/PMC12136468 https://doaj.org/article/45d4df81fb3540a58ee20bd71afb4932 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELb2ISQuiDeFpQoIiVNWid89INTClgVpV2ihUm-W7di7K0FS0lbQf89MklYb8bg0UmcS2eNxZuyMv4-QV1RFpiMVqXZ4JIeqPHVWZ2nmhY0jl7Mo8TTy2bk8nfFPczHfI1vO1s6Ay78u7ZBPalZ_O_71Y_MWJvybhrVB5dubjhfeXeNqlEFasU8OITYp5DQ447vvCkzohrELyXJSxfi8O0z3r6f0glWD6f_nm_tG6OqXVd6IU9O75E6XYCbj1iPukb1Q3ie3WsrJzQMyBb9IuiKOpIoJ5H_JolquUkSL3CSQjvsrEJTJz3YXPfmOpbggqOuqTmoEesWhfEhm05Ov707Tjksh9YKqVTrKisJSCEdWQoCWIXOCUecKpy2FFEMUPI5GQUHbISXwheeWxixaF6X2zvqMPSIHZVWGJyQJ3oFaEZ10gTsh4TUlgpCF9hz8IYsDkm6NZhYtZIZpvpspWGq0RjBoZNMZeUAmaNmdLgJeN39U9aXp5o_h0MIi6jw63KiyQodAM1eo3EbHIQcdkJc4LgYhLUqsmbm06-XSfPxyYcaaQ5RmjGUD8rpTihWMkLfdEQToF6Jg9TSPepow53xP_GI7_AZFWKhWhmq9NIwi5L7SEnQet-6w6xhHuERO8wHRPUfp9bwvKa-vGshvBN6TXOqn_2_XM3KbIj8xosuyI3KwqtfhOSRNKzck-2qu4FdPPwzJ4XjyfjKF6-Tk_PPFsNmIGDYz5TcSUB2v |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+the+post-delay+epochs+on+working+memory+error+reduction&rft.jtitle=PLoS+computational+biology&rft.au=Ye%2C+Zeyuan&rft.au=Li%2C+Haoran&rft.au=Tian%2C+Liang&rft.au=Zhou%2C+Changsong&rft.date=2025-05-13&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=21&rft.issue=5&rft.spage=e1013083&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013083&rft.externalDocID=A843623330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |